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ABSTRACT

The quantitative study of financial markets is more and more widespread due to
their growing importance in the economy and everyday life. Financial markets can be
viewed as real-world complex dynamical systems which are continually evolving, have
significant practical importance and produce an enormous amount of data recording
the aggregate action of many participants. In recent years, the quantitative approach
to the modeling of stock markets has greatly benefitted from methods and tools
developed in the domains of engineering and physics. Indeed, the recent availability
of large and high quality data sets has transformed finance into the most quantitative
social science.

A field called “Financial Engineering” has appeared, gathering scientists experi-
enced in non-linear, deterministic and stochastic dynamical systems and interested in
modeling and forecasting financial markets. Many world-class US universities have
opened laboratories, departments or courses on financial engineering.1 Moreover, the
study by means of simulations of complex systems, characterized by the interaction of
a large amount of heterogeneous units, needs one to develop flexible software frame-
works based on advanced software engineering techniques. The growing interest in
this kind of approach is further confirmed by an emerging field of statistical physics,
called “Econophysics”.

The first part of this Thesis presents an artificial financial market conceived as
a computational experimental facility where different experiments can be performed,
hypotheses verified and conjectures validated. An artificial financial market is an
agent-based computer simulator of a financial market. Artificial financial markets
model financial interactions from the bottom up by means of a large number of inter-
acting agents. This approach relies heavily on computational tools in order to avoid
the restrictions of analytical methods.

The analysis of financial markets through the construction of artificial markets
aims to explain the emergence of the characteristic statistical properties of asset prices
on the basis of hypotheses on traders behavior, market microstructure and economic
environment. These problems are usually too complex to be treated analytically, thus
computer simulations have to be employed. This approach involves the identification
of an interactions system that allows the researcher to generate financial time series
in order to study the relationships between the elements of the system and market
results.

The dynamics of a financial market depends on the interactions between the rules
defining the trading mechanism and the behavioral assumptions about the agents
population. Therefore, building an artificial market means to determine the trading

1See, for instance, the Operations Research and Financial Engineering Department of Prince-

ton University (http://www.orfe.princeton.edu/), the Laboratory for Financial Engineering

at MIT (http://lfe.mit.edu/) and the Master degree on Financial Engineering at Berkeley

(http://www.haas.berkeley.edu/MFE/).
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rules defining the price formation process on one side, and to specify the trading
strategies followed by the agents on the other side. Using computer simulation, this
methodology opens the possibility to analyze the impact of interactions rules which
are analytically intractable. Thus, this approach allows the investigation of issues
fundamental to understand how financial markets work.

In details, the statistical properties of high-frequency data are investigated by
means of computational experiments performed with the Genoa Artificial Stock Mar-
ket - GASM. In the market model, heterogeneous agents trade one risky asset in
exchange for cash. Agents have zero intelligence and issue random limit or market
orders depending on their budget constraints. The price is cleared by means of a
limit order book. The order generation is modelled with a renewal process where the
distribution of waiting times between two consecutive orders is a Poisson process, a
Weibull distribution and a mixture of Poisson processes. Results point out that, ac-
cording to the empirical evidences, only a mixture of Poisson processes does not reject
the hypothesis of Weibull distribution for the waiting times between two consecutive
market orders. Moreover, the mechanism of the limit order book is able to recover
fat tails in the distribution of price returns without ad-hoc behavioral assumptions
regarding agents; moreover, the kurtosis of the return distribution depends also on
the renewal process chosen for orders.
Furthermore, a multi-assets artificial financial market has been considered. The fi-
nancial market is populated by zero-intelligence traders with finite financial resources.
The market is characterized by different types of stocks representing firms operating
in different sectors of the economy. Zero-intelligence traders follow a random allo-
cation strategy which is constrained by finite resources, past market volatility and
allocation universe. Within this framework, stock price processes exhibit volatility
clustering, fat-tailed distribution of returns and reversion to the mean. Moreover, the
cross-correlations between returns of different stocks is studied using methods of ran-
dom matrix theory. The probability distribution of eigenvalues of the cross-correlation
matrix shows the presence of outliers, similar to those recently observed on real data
for business sectors. It is worth noting that business sectors have been recovered as
only consequence of random restrictions on the allocation universe of zero-intelligence
traders. Moreover, in the presence of dividend paying stocks and in the case of cash
inflow added to the market, the artificial stock market points out the same structural
results obtained in the simulation without dividends. Such results suggest a significa-
tive structural influence on statistical properties of multi-assets stock market.
Finally, an information-based multi-assets artificial stock market has been modeled.
The market is populated by heterogeneous agents that are seen as nodes of sparsely
connected graphs. The market is characterized by different types of stocks and agents
trade risky assets in exchange for cash. Beside the amount of cash and of stocks owned,
each agent is characterized by sentiments. Moreover, agents share their sentiments by
means of interactions that are determined by direct graphs. A central market maker
(clearing house mechanism) determines the price processes for each stock at the in-
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tersection of the demand and the supply curves. Within this framework, stock price
processes exhibit main univariate stylized facts, i.e., unitary root price processes, fat
tails of return distribution and volatility clustering. Furthermore, the multivariate
price processes exhibit both static and dynamic stylized facts, i.e., the presence of
static factors and common trends.

The second part of this Thesis applies statistical physics approaches to investigate
quantitatively the size and growth of the complex system of business firms. It is stud-
ied the logarithm of the one-year growth rate of firms g ≡ log(S(t + 1)/S(t)) where
S(t) and S(t + 1) are the sizes of firms in the year t and t + 1 measured in monetary
values.

These sections review some main empirical results of firm size and firm growth
based on different databases. They are (i) the size distribution of firms P (S) are found
to be skewed (either log-normal or power-law depending on the different databases),
(ii) the growth-rate distributions of firms P (g) are of Laplace form with power-law
tails, (iii) the standard deviation of firm growth rates is related by a negative power-
law to the firm size. The distribution of firm growth rates conditioned on firm size
collapses onto a single curve, which implies that a universal functional form may exist
to describe the distribution of firm growth rate. Moreover it is modeled the Entry &
Exit effect and firm proportional growth using a generalized preferential attachment
model. The model assumes that a new firm enters the system with a constant rate; a
new unit enters/exits one of existing firms preferentially, that is, the larger firms have
bigger probability to obtain the new unit, and the larger firms have bigger probability
to lose a unit. The model successfully explains the observations: (i) the distribution
of unit number P (K) in a firm is power law with exponential tails, (ii) P (g) is of
Laplace form with power-law tails with exponent 3.
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Chapter 1

Why a quantitative approach to economics

and finance?

Introduction

The computer simulation of financial markets is a multidisciplinary topic which re-
quires the involvement of strong skills from very different fields such as model building,
complex systems, econometric and statistical data analysis, and software engineering.
This approach is continuing to gain a wider and wider interest in the scientific com-
munity. Its birth can be traced back to the 1950’s with the introduction of Monte
Carlo computer simulations [144]; however, a special mention in the history of this
field is devoted to the pioneering work done at the Santa Fe Institute in the early
nineties [11, 117, 154].

1.1 Historical background

The study of economic systems by means of agent-based computational models is
a relatively new field. In order to model the interactions of large numbers of agents
characterized by heterogeneous behaviors, computationally expensive experiments are
required. Only in the last fifteen years, the increasing availability of cheap computing
power made them possible. However, the study of agents heterogeneity in economics
from an analytical point of view has a long history and can be traced back to the
early eighties.

1.1.1 Beyond the representative agent model

In the past two decades, economics has witnessed an important paradigmatic
change. Analytically tractable models of the economy based on rational expectations
theory and the representative agent hypothesis have gradually moved to a bound-
edly rational heterogeneous agents framework with a computationally oriented and
evolutionary approach. In the rational expectations framework, agents can be het-
erogeneous in the sense that they might have different utilities functions, however
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2 CHAPTER 1 Why a quantitative approach?

there is not heterogeneity of beliefs as all agents share the same full knowledge of
processes followed by the economy [126, 148]. The cooperative actions of all agents
can be summed up to the action of the single representative agent under appropriate
mathematical conditions. In a boundedly rational environment, agents heterogeneity
is relative not only to different utilities functions, as in the rational expectations the-
ory, but also to different beliefs and decision making processes of individual agents
[172, 182].

This change has been characterized by some important closely related aspects:
the representative agent has been substituted with interacting heterogeneous agents
systems, full rationality with bounded rationality and a mainly analytical approach
with a mainly computational one. Obviously, heterogeneity complicates the modelling
framework and may lead to analytical intractability. A computational approach is
thus better suited for investigating an heterogeneous agents world.

In finance, a similar paradigmatic change has occurred. From a perfect rational
world where asset allocations and prices are completely determined by the perfect
knowledge of the dynamic process governing them, to a boundedly rational world
where heterogeneous agents employ competing trading strategies and prices may, at
least partially, be driven by market psychology. The counterpart in finance of the
rational expectations theory is the Efficient Market Hypothesis (EMH) formulated in
the 1960’s by Samuelson [171] and Fama [72]. The EMH states that, at each time t, the
current price p(t) of every financial asset reflects all relevant information for judging
the future returns of those assets. The intuitive idea is that rational individual traders
process the information that is available to them and take optimal positions in assets
on the basis of this information. The market price for an asset then aggregates this
diverse trader information and, in this sense, reflects all the available information. An
implication of the EMH is that asset prices from periods prior to period t will not be
of any help in predicting asset prices for periods t+1 and beyond, since this past price
information is already fully reflected in period-t asset prices. While throughout of the
1970’s, many economists seemed to accept the presumption that financial markets are
efficient, i.e., that the EMH was satisfied, in the 1980’s, a growing concern about the
EMH began. In the last years, many empirical studies appeared showing evidences of
violation of the EMH: price volatility was seen to be strongly temporally correlated
[64], the largest price movements often occurred with little or no news [54], prices were
not accurately reflecting rational valuations and sometimes diverged systematically
from fundamental values originating bubbles [37, 179, 193].

1.1.2 The heterogeneous agents framework

The new heterogeneous agents approach was born in order to address the empirical
findings which were well outside the theoretical framework of the representative agent
and of the EMH. First, in the late seventies, Grossman and Stiglitz1 proposed a sort

1In 2001, Prof. Joseph Stiglitz has been awarded of the Bank of Sweden Prize in Economic

Sciences in Memory of Alfred Nobel for his pioneering studies of asymmetric information in markets.



1.1 Historical background 3

of heterogeneous agents rational expectation model [89, 90]. The authors tried to
complement the EMH, introducing the so-called “noisy rational expectations”, in the
sense that each agent is endowed with private information which is not fully reflected
in asset prices, but all investors nevertheless exhibit rational behavior. Later, models
departing totally from the EMH appeared. The new models were characterized by
heterogeneous interacting agents grouped in different coexisting populations according
to different beliefs or expectations.

In 1980, Beja and Goldman wrote a seminal paper [19] which departed from the
idea of perfect rational investors and introduced an agents behavioral model charac-
terized by the dynamics of value investors (or fundamentalists) and trend followers
(or chartists). Value investors hold an asset when they think it is undervalued and
short it when it is overvalued; trend followers hold an asset when the price has been
going up and sell it when it has been going down. Beja and Goldman, assuming
linear trading rules for each type of trading, showed that equilibrium in unstable
when the fraction of trend followers is sufficiently high and introduced the idea that
the interaction of different categories of agents could explain some typical features of
the dynamics of prices. In 1986, in his presidential address at the American Finance
Association, Fisher Black introduced to the mainstream of financial economists the
notion of “noise trading” [24]. He suggested that irrational behavior should be part of
a realistic theory of financial markets. A noise trader is a market participant with in-
correct information who implements trades on the basis of this information under the
false belief that this information is correct. Black argued that the presence of noise
traders was necessary to explain the large volume of trading activity that occurs in
financial markets. Without noise traders, there would be virtually no trades in indi-
vidual shares. Rational investors trading with each other would realize that any other
trader willing to pay a higher price for the asset must have superior information about
the asset return and so they would not trade. The presence of noise traders provides
rational traders with an incentive to gather information. Sophisticated traders can
bring correct information to a market and exploit the profit opportunities created by
the presence of noise traders. Sophisticated traders tend to move asset prices toward
fundamental values. However, the continual presence of noise traders (particularly,
the continual entrance of new noise traders) makes it difficult for other traders to
discern who is a noise trader and who is acting on correct information. This can give
a sophisticated trader a chance to make profits from his superior information for an
extended period of time.

Stimulated by the 1987 Wall Street market crash, a symposium on market bubbles
by the American Economic Association held in 1989 increased the interest on this
subject among the economists. In the early nineties, two papers by De Long at al.
[59, 60] studied in detail the lasting effects that a misperception of future returns by
some agents has on the behavior of a financial market. In their model, furthermore,
irrational agents may earn greater returns that rational ones. This result supported
the plausible claim that the existence of different categories of traders cannot be



4 CHAPTER 1 Why a quantitative approach?

dismissed as a transient phenomenon that market forces would get rid of. In the same
years, Shleifer and Summers argued that, if noise traders take larger risky positions on
average, because of erroneous beliefs, some noise traders can still profit in the market
despite their erroneous beliefs [180]. The essential idea is that some noise traders
holding large risky positions with high expected returns are lucky and manage to
earn a high enough return rate on their wealth to enable them to remain in the
market.

In 1992, Chiarella extended the work by Beja and Goldman introducing, still in a
purely deterministic framework, non-linear chartist demand functions [43]. Chiarella
showed that when the fraction of trend followers is sufficiently low, the price process is
characterized by a stable equilibrium, but when the fraction exceeds a critical value,
the equilibrium becomes unstable and prices exhibit periodic limit cycles. In a similar
fashion, a related work, reported in a paper by Day and Huang [58] that appeared in
1990, presented a simple model where a “fundamentalist” and a “noise” representative
agent interact in discrete time and cause persistent deviations from the equilibrium
price which can be interpreted as a sequence of chaotic switchings between bull and
bear market regimes.

An agent-based model of stock market makes both structural assumptions, re-
garding the market design and the economic environment, and behavioral assump-
tions describing the rule by which traders take their decisions. In 1993, a seminal
paper by Gode and Sunder [84] established the allocative efficiency of a double auc-
tion regardless of the specific behavioral assumptions, by comparing the experimental
performance of human traders with the simulated choices of zero-intelligence traders.
However, in the following years, agent-based modelling of stock markets has explored
a very rich set of behavioral assumptions, but has paid comparatively little attention
to structural assumptions.

The landmark of most of the recent research has become the introduction and
explicit consideration of various degrees of heterogeneity among agents, concerning
either their trading strategies, or their learning abilities, or their adaptive responses.
Genuine multi-agent models in which trading strategies co-evolve were described for
example in a paper by Margarita and Beltratti [20] and in a paper by Blume and
Easley [25], both in 1992. In the second half of nineties, Brock and Hommes, studying
the effect of switching between trend following and value investing behavior, focused
their work on the bifurcation structure and conditions under which the dynamics
become chaotic [31, 32]. Some researchers introduced agents with learning and op-
timization capabilities. Arifovic studied the behavior of the exchange rate between
two currencies when decision rules by agents are updated using genetic algorithms
[8]. Beltratti et al. developed a stock market model based on artificial neural network
agents [21].

While these works were done in a purely deterministic setting, studies along some-
what different lines appeared in the late nineties by Lux [127, 128] and Lux and March-
esi [129, 130]. These papers present a disequilibrium method of price formation, and
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focus their work on demonstrating agreement with more realistic price series. They
also assume a stochastic value process, and stress the role of the market as a signal
processor. The model by Lux and Marchesi is based on the interaction of three differ-
ent populations of traders where agents can switch between trend and value investing
due to contagion effects. The issue of herding behavior was already addressed some
years before in a famous paper by Kirman who introduced an interesting explana-
tion of herding in financial markets that relied on an analogy with the behavior of
ants choosing between different food sources [112]. Recently, Cont and Bouchaud
modelled herding behavior in financial markets by means of random graphs and lat-
tices and reproduced the important stylized fact of fat tails in the distributions of
returns [51]. Garibaldi et al. derived a model of herding from a well-known model
of statistical physics, the Ehrenfest urn model [80]. In 1997 and 1998, Youssefmir et
al. [208, 209], while avoiding the introduction of adaptative or learning capabilities,
present a continuous time model where chartist agents extrapolate trends using tech-
nical signals (moving averages of different lengths) and value investors expect price to
return quickly to fundamentals. Such a market exhibits a periodic sequence of rising
and falling prices. Moreover, while bubbles are stable when a small noise is added,
stronger exogenous shocks can abruptly invert the direction of the market.

In the last years, the number of models on heterogeneous agents continuously
increased. Among them, some models still deserve a special mention. The first
is the model proposed in 1997 by Bak et al. [14] where agents are endowed with
finite resources. Second, the so-called “Minority Game” [40] that Challet and Zhang
proposed in the same year of the model by Bak et al.. The minority game is a
repeated game where N (odd) players have to choose one out of two alternatives at
each time step. Those who happen to be in the minority win. The minority game is
an abstraction of the famous El-Farol’s bar problem [10] where the problem was that
100 people would like to go to a bar (El Farol) which is too crowded if there are more
than 60 people. Since its introduction, this model has gained quite a lot of interest.
Indeed, since it is quite simple, this model is very suitable for detailed numerical
studies and analytical descriptions. Moreover, the so-called Minority Game is a game
where agents are characterized by partial information and bounded rationality and it
is believed that a game with a minority mechanism captures an essential feature of
systems where agents compete for limited resources, like financial markets [39, 104].

Recently, Iori proposes a model where a trade friction, by responding to price
movements, creates a feedback mechanism on future trading and generates volatility
clustering [102]; a paper by Hommes [96] presents an analytical evolutionary model
able to explain the stylized facts of real financial time series; Farmer and Joshi [73]
argue that traders can be thought as signal processing devices and explicitly raise
the problem of testing for cointegration between prices and fundamental value as a
benchmark for the ability of the market price to track the dividend process underlying
the fundamental value. Aoki introduces an heterogeneous agents framework to the
modelling of macroeconomic fluctuations [5, 6].
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1.1.3 The fully computational approach

The main feature of models discussed in the previous section is that, in order
to be handled analytically or by means of simple numerical simulations, agents are
often treated as a statistical ensemble and they do not have their own individuality.
Agents heterogeneity is then addressed by means of different populations of traders,
each population or group of agents being characterized by a particular behavior, but
agents belonging to a group are not tracked individually. The switching between
different trading strategies is resolved by changing the number of agents belonging to
a particular population. These models are then kept quite simple but, consequently,
they are often able to reproduce only partially the complex statistical features of
financial time series.

In order to deal with the problem of very complex heterogeneity, which leaves the
boundary of what can be handled analytically, some researchers decided to abandon
the goal of analytical tractability and to embrace a complete computational approach.
The most influential project in this respect is the Santa Fe artificial stock market
[11, 117, 154] developed in the early 1990’s. This simulated market bypasses some
pitfalls of the representative agent approach by endowing agents with non-trivial
capabilities: the actors have an internal representation of the world and can try
to figure out the best optimizing model through continuous testing of alternative
demand rules. Agents do not need to share information (other than price) and, when
intensive learning is assumed, the market exhibits a complex behavior where even
technical trading can be profitable in the short-run.

This line of research initiated by Arthur and his coauthors opened two promising
ways to study financial markets:

• creation of artificial markets where heterogeneous, boundedly rational and pos-
sibly optimizing agents co-evolve dynamically;

• analysis of the computer generated price series by statistical tests to check for
consistency with the known stylized facts in real data that challenge traditional
models (e.g., fat tails of returns and volatility clustering).

Following the Santa Fe artificial market, a number of computer simulated markets
later appeared. In 1998, Steiglitz and Shapiro [189] introduced an auction-mediated
computer simulated market which was able to produce price bubbles and subsequent
crashes by means of the presence of value-based and trend-based traders. In the same
year, an agent-based microeconomic simulation model of the U.S. economy was devel-
oped at Sandia National Laboratories [15]. It was an ambitious computer simulator
of a capitalistic economy with a detailed financial sector including a banking system
and a bond market; agents learning was simulated by means of genetic algorithms.

In the last years, the interest on the subject of agent-based computational eco-
nomics increased worldwide. Recently, a project for the development of an artificial
market started at the Artificial Intelligence Laboratory of the Massachusetts Insti-
tute of Technology [42]. Two books have been published on this field [67, 121] and a
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number of studies appeared in the scientific literature; LeBaron [118] and Wan et al.
[204] provide good reviews. Recently, four special issues on the subject of agent-based
computational economics have been published by influential scientific journals. See
the guest editorials by Tesfatsion [197–199] and by Lux and Marchesi [131]. In Oc-
tober 2001, a colloquium titled “Adaptive agents, intelligence, and emergent human
organization. Capturing complexity through agent-based modeling” has been held at
the National Academy of Science and Engineering of the United States of America.
A special issue of the Proceedings of the Academy followed; see therein, e.g., the
paper by Nigel and Bankes [83] and the paper by Kephart [111] on software issues.
In the same issue, the papers by Tesfatsion [200] and by LeBaron [119] also deserve a
mention.

This body of recent literature variously support the claim that heterogeneity of
agents can produce endogenous price fluctuations with the same statistical features
of financial time series. These heterogeneous agents market models can be classified
with respect to how they describe trading strategies and learning algorithms of agents.
Up to now, however, the literature on artificially simulated financial markets has
only rarely addressed an explicit modeling of the market microstructure, favoring
instead unrealistic approximating devices for the price formation mechanisms like
some sort of Walrasian auctioner or market maker with unbounded liquidity. In some
recent papers, Maslov [139], Matassini [141], Chiarella and Iori [44] suggest that an
accurately modeled order-driven market can produce remarkably fat-tailed returns
in a variety of simple settings even without the recourse to complicated behavioral
hypotheses on agents.

1.2 Key issues in artificial markets

An agent model of an artificial market is characterized by a number of independent
agents which interact by trading stocks and cash. There must be a system that allows
agents to buy and sell, either directly with one another, by means of a central clearing
mechanism, or through special dealer agents. Agents must encapsulate some decision
process which they use to determine whether or not to trade, and at what price.
The decision process may be fixed, or may be adaptive (they may learn how to trade
over time). Decisions are based on information, usually at least some information on
previous prices (endogenous information) but also often some exogenous information
giving a (noisy) estimate of future yield. The share price itself indirectly gives some
indication of other agents information, as the price reflects their decision processes.
Last but least, artificial price series have to be characterized by the same statistical
features, the so-called “stylized facts”, of real stock price series; this being a necessary
condition for the validation of the artificial market.
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1.2.1 Stylized facts of real stock price series

Stock price series exhibit a number of statistical features which are common in all
financial markets and for which a satisfactory explanation is still lacking in standard
theories of financial markets. Pagan provides an authoritative survey of these salient
features [152]. The main empirical regularities characterizing the univariate prices
time series which an agent model of speculative activity should incorporate are: the
unit-root property, the fat tails phenomenon and the volatility clustering.

1.2.1.1 Unit-root property

Denoting by x(t) the value of a time series at time t, x(t) is said to follow an
unit root process if x(t) can be expressed as an autoregressive process: x(t) = ρ ·
x(t − 1) + ε(t), where ρ = 1 and ε(t) represents a stationary stochastic increment.
Using standard statistical procedures such as the Dickey-Fuller test [61, 62], one is
usually unable to reject the null hypothesis of ρ = 1 for the time series of logarithms
of prices, i.e., x(t) = log p(t), where p(t) is the stock price at time t. Moreover, if
ε(t) represents a white noise process, i.e., the increments ε(t) are independent and
identically distributed, one is unable to reject the hypothesis that stock price prices
follow a geometric random walk. If logs of prices obey a unit-root dynamics, stock
prices are characterized by non stationarity and lack of predictability, while returns
or differences of logs should be stationary, independent and identically distributed
random variables. These empirical findings served as the pillars for the efficient market
hypothesis (EMH) and the view of arbitrage-free financial markets [72, 171].

1.2.1.2 Fat tails phenomenon

In the last two decades, a great increase in the calculation and data storage ca-
pabilities of computers has permitted a deeper empirical analysis of financial data.
The empirical analysis of a huge amount of data shows significative departures from
the pillars of the classical financial mathematics theory (EMH). The first important
departure regards the probability distribution of returns.

Empirical studies show that returns at weekly, daily and higher frequencies exhibit
more probability mass in the tails and in the center of the distribution than does the
standard Normal [30, 136, 137]. It is perhaps also remarkable that, besides this devi-
ation from the Gaussian, the shape of the distribution usually appears well-behaved:
namely, histograms of stock price returns mostly show a unimodal bell shape with, in
most cases, only modest levels of negative skewness. The fat tails phenomenon has
been identified with excessive fourth moments (leptokurtosis). Recent literature [87]
provides evidences that the decline of probability mass in the outer parts follows a
power law with a exponent in the range 3÷ 5, whereas the Normal and a number of
other often-used distributions have an exponential decline.
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1.2.1.3 Volatility clustering

Another striking feature is the intermittent nature of the fluctuations of stock
prices. Volatility is a measure of the amplitude of price fluctuations over a given time
interval. Localized bursts of volatility, i.e., of the amplitude of fluctuations, can be
identified. This fact, known as volatility clustering, is also evident in the slow decay
of the autocorrelation function of the magnitude of price fluctuations, whereas the
time series of raw fluctuations, i.e., fluctuations with their sign, exhibits insignificant
autocorrelations. Moreover, the autocorrelation function of the daily volatility can
be fitted by an inverse power law with a rather small exponent in the range 0.1÷ 0.3,
see Ref. [123, 137]. This suggests that there is no characteristic scale for volatility
fluctuations: outbursts of market activity can persist for short times (a few hours),
but also for much longer times (weeks or even months).

1.2.2 Definition of agents

In agent models, the definition of agents structure and decision making process is
fundamental to the design. Heterogeneity of agents is a key requirement and provides
the main source of dynamics in the agent model, as agents will not trade unless their
estimates of gain (implicit or explicit) differ.

1.2.2.1 The decision making process

The decision making process of agents can be modeled by means of a prefer-
ence function regarding the proportions of cash and stock they prefer to hold. The
preference function may be implemented by a range of techniques, including sim-
ple functions, probabilistic functions, and artificial intelligence models such as neural
networks and classifier systems. Frequently, the function is based on a forecasting
method that predicts the share price in the future. Share price prediction may be
performed using a simple regression function, linear equations, neural networks or
other predictive techniques. If agents are not constrained by their money and stock
reserves, the forecasting process can be used fairly directly to provide the preference
function.

1.2.2.2 Information

The preference function takes as input some parameters and produces as output
a decision. Most of the preference functions used in agent modeling need, as input,
some information about the market. Endogenous information includes the current
trading price and possibly previous prices, interest rate and dividend, in addition to
information about the agent itself (cash and stock holding). Exogenous information
is supposed to correspond to facts that, in a real market, would lead investors to
alter their perception of likely future yield. It can be incorporated as an estimate of
future dividends, corrupted with noise. Thus agents are characterized by the amount
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of available information and endogenous or exogenous information distinguishes an
informed agent from an uninformed one.

1.2.2.3 The individual endowment

The individual endowment is the money and stocks that agents hold. Some agent
models ignore the endowment, allowing agents to trade an unbounded amount of stock
and to incur negative stock holdings and/or cash reserves. The inclusion of individual
endowments makes the agent system more realistic. This imposes a budget constraint
on the agents, as they can only buy and sell within the finite amounts of money and
stock they hold. Thus the terms endowment and budget constraint are synonyms in
this context.

1.2.2.4 Learning

Agents may possess the ability to learn from the success or failure of their previous
investment decisions. Adaptation of the agents can be implemented via changes to
their preference function. The learning procedures used in adaptive agent models
invariably require some measure of performance, which is used to guide adaptation.

1.2.3 Market design

1.2.3.1 Traded securities

In real stock markets, investors decide how to distribute their investment between
different financial instruments, including interest bearing cash accounts, and stocks
in various companies. Agent models of stock markets typically allow a choice between
interest-bearing cash investment and stocks.

Most agent models allow only a single stock as an alternative to cash. The interest
rate is fixed, but the dividend on the stock may vary. This is sufficient to simulate
many of the interesting dynamic features of a stock market, including the effects of
market sentiment, while keeping the simulated system as simple as possible. The ratio
of dividend to interest assigns a yield to the stock that can be used as one fundamental
measure of stock value, and variation in the stock price alone is equivalent to variation
in both dividend and interest rate (as it is the ratio that indicates which is better to
hold).

1.2.3.2 Clearing mechanism

A clearing mechanism is necessary in order to process transactions made by agents.
In most of the literature, there is no explicit description of the clearing method.
Clearing of bids and offers is typically instantaneous and is performed by assuming
zero aggregate excess demand or by means of a central market authority matching
supply and demand.

Recently, an increasing attention has being devoted to the clearing mechanism as a
possible source of the stylized facts of financial time series. In particular, order-driven
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artificial markets have appeared with an explicit modeling of the clearing process by
means of a limit orders book.

1.2.4 Validation

Validation is a critical issue. The problem of validation characterize all types
of economic models, however, there are some key issues which in particular affect
artificial financial markets. Artificial markets can be characterized by a great number
of parameters which might be utilized to fit any feature of actual data but often make
the model exceedingly complicated, almost to the point of losing tractability.

Indeed, the computer modeler faces a different set of problems from the analytical
modeler. Often the latter is faced with constraints about what can be done analyti-
cally. This pushes to keep the framework simple, but the simplicity is due to analytical
tractability rather than economic structure. The computer modeler is free of these
constraints, but this can be both a blessing and a curse, in that it can lead to overly
complicated structures which are difficult to examine. Thus, a move towards keep-
ing the models relatively simple without cutting out their key components is often
necessary.

The problem of validation can be addressed with the requirement of an high sim-
ilarity with the statistical properties of empirical data, also regarding different data
sets and different time horizons. However, the use of experimental data, and the po-
tential design of experiments to falsify computer models remains a largely unexplored
area.

1.3 Major contributions of the GASM

The Genoa Artificial Stock Market (GASM) is an unique and innovative artificial
financial market. A number of features deserve special mention:

• the finiteness of agents financial resources;

• the clearing mechanism;

• the random background trading with the volatility feedback;

• the agents wealth distribution;

• the number of agents engaged in trading.

1.3.0.1 The finiteness of agents financial resources

In the present literature on artificial financial markets, the attention of researchers
is mainly focused on modeling agent optimization and learning capabilities. Little
effort has been devoted to study how the market microstructure and the macroeco-
nomic environment affect market prices. The Genoa Artificial Stock Market has been
conceived mainly to address these problems.
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The hypothesis is that, in the long run, is the interplay between the flow of cash in
and out financial markets and the creation/destruction of stocks that determine price
trends. In order to address this issue by means of the GASM, agents are endowed
with finite financial resources (cash and stocks) and the system is able to keep track
of every agent’s portfolio. The finiteness of agents’ financial resources is an innovative
and essential feature of the GASM. It poses significant constraints on possible trading
strategies if different populations of agents should coexist indefinitely. Actually, the
study of the interplay between different trading strategies in a changing market envi-
ronment is one of the main results of this thesis. Results show that a trading strategy
cannot be judged only on the basis of the strategy itself, but its success depends also
on the market conditions.

1.3.0.2 The clearing mechanism

The price formation process is another essential feature of GASM. It is based on
a realistic auction-type order matching mechanism that allows to define a demand-
supply schedule. The demand-supply schedule is an essential feature since price fluc-
tuations are due to an imbalance between demand and supply. As market must clear,
this means that somehow the “intention” to buy or sell must be modified to allow
orders to match. This is the essence of the demand-supply schedule. As demon-
strated in many studies on market microstructure, e.g. see [151], the details of the
order matching process have a bearing on both price setting and price-volume rela-
tionships.

1.3.0.3 The random background trading with the volatility feedback

In the GASM, the great majority of agents does not follow complex trading strate-
gies but issue random buy and sell orders which are constrained by the limited finan-
cial resources and by the past price volatility. This gives birth to a a background
trading which is able to produce a price process characterized by the main stylized
facts observed in real markets, i.e., fat-tailed distribution of returns and volatility
clustering.

The background trading is originated by the random buy and sell orders of agents.
However, although random, the background trading is characterized by different states
of volatility. Volatility is uncertainty and, in volatile markets, agent uncertainty on
asset market prices grows. The link between nervous (i.e. volatile) markets and agent
uncertainty is modeled through the ordering mechanism. To represent this, orders
are issued at random, but their limit price exhibits a functional dependence on past
price volatility. In periods of high volatility, traders are more nervous and therefore
allow for wider price limits in order to get their trades done quickly. The assumption
is that trades have to be done for exogenous reasons and therefore traders want to
execute trades at the best possible price. Fearing large market movements, they allow
more freedom in the setting of limit prices.
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It is worth noting that a population of agents that issue random orders in a limited
resource market produces a price process with a Gaussian distribution and mean-
reverting behavior, but neither fat tails nor volatility clustering. The introduction of
the volatility feedback mechanism results in a price process exhibiting fat tails, zero
autocorrelation of returns and the serial autocorrelation of volatility.

1.3.0.4 The agents wealth distribution

The agents wealth distribution is another important structural element of the
GASM; it follows a Pareto distribution and gives an important contribution to the
fat tails of the price returns distribution. This wealth distribution is also a very
realistic assumption. In fact, it is well known empirically that in an economy the
wealth distribution tends to follow a Pareto inverse power law [122, 155]. It has been
also demonstrated theoretically that auto-catalytic processes naturally lead to inverse
power law distribution of wealth [28, 97, 98, 146]. The wealth of agents in the GASM
is indeed governed by an auto-catalytic process which explains the emergence and
conservation of inverse power law distributions.

1.3.0.5 The number of agents engaged in trading

The number of agents engaged in trading at each moment is a small fraction, ran-
domly selected, of the total number of agents. This is a realistic feature also present in
real markets where prices are set by transactions that involve only a small fraction of
the market participants. The notion that the entire population of investors is contin-
uously engaged in trading is simply unrealistic as trading cost would skyrocket. Even
professional fund managers tend to limit their trading activity to only a few trades
per day and this only to tune portfolios that remain substantially stable for periods of
the order of weeks. The above implies that the consideration of the “thermodynamic
limit” of markets, i.e. an infinite number of traders, is simply unrealistic and possibly
misleading. Finite size effects in real markets are not an artifact but a real feature.
The interaction of a small set of agents sets the “wealth” of the entire market.

1.4 The simulation software

Agent-based models are naturally implemented in object-oriented programming
(OOP) languages [66, 83]. In the OOP framework, each agent is an object and the
object related to each agent is a particular instance of the class describing all agents
characterized by the same data structures and the same behavior. The wealth and the
number of shares of each agent are naturally the instance variables of the object and
the trading strategies are implemented by methods. The hierarchical organization
of classes, the properties of inheritance and polymorphism of variables and meth-
ods belonging to classes of the same hierarchy allow to develop compact and logical
programming framework which are also very flexible for variations and extensions.
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From the early 1990’s, most agent models have been developed in OOP languages
such as C++, Java and Smalltalk. Recently, standard libraries that allow program-
mers to develop simulation environments have been made available. Among them,
the most famous are REPAST 2 developed in Java at the University of Chicago, AS-
CAPE3, also in Java, of The Brookings Institution, and SWARM 4 in C++ developed
at the Santa Fe Institute.

The GASM simulator has been developed in Smalltalk language. Smalltalk proved
very suited for this kind of application. It is also worth noting that the first version
of the Santa Fe artificial stock market was written in Objective C, which is C with
embedded Smalltalk instructions. Using Smalltalk, in fact, it is possible to develop
complex systems and to make substantial modifications to them very quickly, not
jeopardizing quality. As regarding performance, though Smalltalk is an interpreted
language, the simulation speed is enough for the purposes of the simulator and there
has not been any need to trade Smalltalk flexibility for further speed.

The simulator has been implemented following Extreme Programming (XP) as
development process. Extreme Programming is a software engineering technique de-
veloped by Kent Beck in the late nineties [18, 192]. In the XP framework, the software
development process is incremental and iterative. The software system is developed
step by step, adding new features at each step. These features come from requirements
gathering in the form of user stories, i.e., short sentences describing the behavior of
the system and/or its interactions with the users. User stories are collected, sorted
by importance and risk and then implemented. A working system, implementing a
subset of the required features, is released as soon as possible and new releases are
made every step.

Testing and refactoring are of paramount importance in the process [76]. Indeed,
an automatic test suite for all objects present in the system has been developed. The
suite has been continuously increased as new objects and new features were added to
the system, and is run after every modification, to ensure that the modification does
not break system integrity.

A revised version of XP has been used [9]. It proved effective and enabled to
successfully deliver a first release of the system in a few months.

Finally, by means of OOP and XP, the system is not a stand-alone application
optimized for the presented models, but is an evolving system, able to be continuously
modified and updated. For instance, the system can manage a practically unlimited
number of different kinds of securities, and could be used also as an engine for a trading
game, or for implementing real online trading. As another example, the modification
of adding more intelligence to traders, like the capability to learn and to take decisions
by means of genetic algorithms as in the seminal stock market model developed at the

2http://repast.sourceforge.net/

3http://www.brook.edu/dybdocroot/es/dynamics/models/ascape/

4http://www.swarm.org
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Santa Fe Institute, would amount simply to add the objects supporting this kind of
computation and to introduce a new subclass of the superclass Agent. The remaining
parts of the system would remain unaffected, and trading could start immediately
with the new “intelligent” traders.

Outline

After this introductory chapter, the rest of this thesis will mainly discuss the math-
ematical formulation of the GASM and the computational experiments. The software
implementation based on XP practices greatly simplified the growing complexity that
characterized the development process. In the end the statistical analysis and the
modeling of the firm growth problem is presented.





Chapter 2

Modeling and Statistical Analysis of a

Single Asset Artificial Stock Market

Overview

In the first part of this chapter, the statistical properties of high-frequency data
are investigated by means of computational experiments performed with the Genoa
Artificial Stock Market (Raberto et al. 2001, 2003, 2004). In the market model,
heterogeneous agents trade one risky asset in exchange for cash. Agents have zero
intelligence and issue random limit or market orders depending on their budget con-
straints. The price is cleared by means of a limit order book. The order generation
is modeled with a renewal process where the distribution of waiting times between
two consecutive orders is a Weibull distribution. This hypothesis is based on recent
empirical investigation made on high-frequency financial data (Mainardi at al. 2000,
Raberto et al. 2002, Scalas et al. 2003). How the statistical properties of prices and
of waiting times between transactions are affected by the particular renewal process
chosen for orders is investigated. Results point out that the mechanism of the limit
order book is able to recover fat tails in the distribution of price returns without
ad-hoc behavioral assumptions regarding agents; moreover, the kurtosis of the return
distribution depends also on the renewal process chosen for orders. As regarding the
renewal process underlying trades, in the case of exponentially distributed order wait-
ing times, also trade waiting times are exponentially distributed. Conversely, if order
waiting times follow a Weibull, the same does not hold for trade waiting times.

In the second part of the chapter, empirical analysis and computational experi-
ments are presented on high-frequency data for a double-auction (book) market. Main
objective is to generalize the order waiting time process in order to properly model
such empirical evidences.
The empirical study is performed on the best bid and best ask data of 7 U.S. financial
markets, for 30-stock time series. In particular, statistical properties of trading wait-
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ing times have been analyzed and quality of fits is evaluated by suitable statistical
tests, i.e., comparing empirical distributions with theoretical models.
Starting from the statistical studies on real data, attention has been focused on the
reproducibility of such results in an artificial market. The computational experiments
have been performed within the Genoa Artificial Stock Market. In the market model,
heterogeneous agents trade one risky asset in exchange for cash. Agents have zero
intelligence and issue random limit or market orders depending on their budget con-
straints. The price is cleared by means of a limit order book. The order generation
is modeled with a renewal process.
Based on empirical trading estimation, the distribution of waiting times between two
consecutive orders is modeled by a mixture of exponential processes. Results show
that the empirical waiting-time distribution can be considered as a generalization of
a Poisson process. Moreover, the renewal process can approximate real data and im-
plementation on the artificial stocks market can reproduce the trading activity in a
realistic way.

2.1 The waiting-time distribution of trading activity in a dou-

ble auction artificial financial market

2.1.1 Introduction

A model of trading in the Genoa Artificial Stock Market [46, 138, 160, 162, 163]
characterized by a double auction clearing mechanism, i.e., the limit order book [45,
161] is presented. The limit order book is a snapshot at a given instant of the queues
of all buy limit orders and sell limit orders, with their respective price and volume.
Limit orders are organized in ascending order according to their limit prices. All buy
limit orders are below the best buy limit order, i.e., the buy limit order with the
highest limit price (the bid price). The best buy limit order is situated below the best
sell limit order, i.e., the sell limit order with the lowest limit price (the ask price).
All other sell limit orders are above the best sell limit order. Orders are stored in the
book. A transaction occurs when a trader hits the quote (the bid or the ask price) on
the opposite side of the market. If a trader issues a limit order, say a sell limit order,
the order either adds to the book if its limit price is above the bid price, or generates
a trade at the bid if it is below or equal to the bid price. In the latter case, the limit
order becomes a marketable limit order or more simply a market order. Conversely,
if the order is a buy limit order it becomes a market order and is executed if its limit
price is above the ask price, otherwise it is stored in the book. Limit orders with the
same limit price are prioritized by time of submission, with the oldest order given the
highest priority. Order’s execution often involves partial fills before it is completed,
but partial fills do not change the time priority.

In recent years, some studies about the statistical properties of the limit order
book have appeared in the literature [23, 29, 103, 124, 140]. An important empirical
variable is the waiting time between two consecutive transactions. In fact, trading
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via the order book is asynchronous, i.e., a transaction occurs only if a trader issues a
market order. For liquid stocks, waiting times vary in a range between some seconds to
a few minutes. Raberto et al. [164] analyze the intra-day trades of General Electric
stock prices and find that waiting times exhibit a 1-day periodicity, corresponding
to the daily stock market activity, and a survival probability distribution which is
well fitted by a stretched exponential. They also find a significative cross-correlation
between waiting times and the absolute value of log-returns.

In this chapter, the effect of a more general distribution of order waiting times
is investigated. In particular, the attention is focused on the Weibull distribution
that admits the exponential distribution as a limit case. Results show that in the
case of exponentially distributed order waiting times, also trade waiting times are
exponentially distributed. Conversely, if order waiting times follow a Weibull, the
same does not hold for trade waiting times.

2.1.2 The model

A model of artificial trading by means of a limit order book is presented in this
section. Agents trade one single stock in exchange for cash. They are modeled as
liquidity traders; as a consequence, the decision making process is nearly random and
depends on the finite amount of financial resources (cash + stocks) they own. At the
beginning of the simulation, cash and stocks are uniformly distributed among agents.

2.1.2.1 The order generation process

Trading is organized in M daily sections. Each trading day is subdivided in T

elementary time steps, say seconds. During the trading day, at given time steps th, a
trader i is randomly chosen for issuing an order. Order waiting times τO

h = th − th−1

are determined according to a Weibull distribution, whose probability density function
(PDF) p(τ) is:

p(τ) =
β

η

(
τ

η

)β−1

e−
(

τ
η

)β

, (2.1)

where η is the scale parameter and β is the shape parameter, also known as the slope,
because the value of β is equal to the slope of the regressed line in a probability plot.
The expected value 〈τ〉 of a random variable following a Weibull PDF is given by:

〈τ〉 = η · Γ
(
1/β + 1

)
, (2.2)

where Γ is the Gamma function. The surival probability distrbutiion P>(τ) =
∫∞

τ
p(τ)

is given by:

P>(τ) = e−
(

τ
η

)β

. (2.3)

The exponential distribution is a particular case of the Weibull distribution for
β = 1. In the case β < 1, the Weibull distribution assumes the form of the so-called
stretched exponential and great values of τ occur with higher probability than in the
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case of β = 1. In the computational experiments, only values of the shape parameters
β less or equal than one are considered.

The order generation process is then described as a general renewal process where
the times between two consecutive orders τO

h are independent and identically dis-
tributed random variables following a Weibull distribution. In the case β = 1, the
order generation process is assumed to be a Poisson process with an exponential
waiting-time distribution. For further details on renewal processes, see Cox and Isham
1980 [52].

2.1.2.2 The trading decision making process

A trader issues a buy or a sell order with probability 50%. Denote with a(th−1)
and with d(th−1) the values of the ask and of the bid prices stored in the book at
time step th−1. Suppose that the order issued at time step th be a sell order, then
the limit price si(th) associated to the sell order is given by:

si(th) = ni(th) · a(th−1) , (2.4)

where ni(th) is a random draw by trader i at time step th from a Gaussian distribution
with constant mean µ = 1 and standard deviation σ. If si(th) > di(th−1), the limit
order is stored in the book and no trades are recorded; else, the order becomes a
market order and a transaction occurs at the price p(th) = d(th−1). In the latter
case, the sell order is partially or totally fulfilled and the bid price is updated. The
quantity of stocks offered for sale is a random fraction of the quantity of stocks owned
by the trader.

If the order is a buy order, we assume that the associated limit price bi(th) is given
by:

bi(th) = ni(th) · d(th−1) ; (2.5)

where ni(th) is determined as in the previous case. If bi(th) < a(th−1), the limit
order is stored in the book and no trades are recorded; otherwise the order becomes
a market order and a transaction occurs at the price p(th) = a(th−1). The quantity
of stocks ordered to buy depends on cash endowment of the trader and on the value
of bi(th).

It is worth noting that, in this framework, agents compete for the provision of
liquidity. If an agent issues a buy order, its benchmark is the best limit buy order
given by the bid price. Being µ = 1, half times, he offers a more competitive buy
order (if bi(th) > d(th−1)), which may result in a trade if bi(th) ≥ a(th−1). The same
applies for sell limit orders.

2.1.3 Computational experiments

The timing parameters of every simulation have been set as follows: M = 50 daily
sections, each characterize by a length of T = 25, 200 s (corresponding to 7 hours of
trading activity). Each simulation is characterized by a particular value of the shape
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parameter β of the Weibull distribution modeling order waiting times. 17 different
values of β ranging from 0.2 to 1 with step 0.05 have been chosen. The average order
waiting time 〈τo〉 has been set to 20 s for every simulation. The scale factor η is so
determined by the choice of β and 〈τo〉 according to Eq. 2.2. The orders lifespan has
been set to 600 s À 〈τo〉. Sell and buy limit prices are computed following Eq. 2.4
and Eq. 2.5 respectively. The random number ni(th) is a random draw by trader
i from a Gaussian distribution with constant mean µ = 1 and standard deviation
σ = 0.005.

The number of agents is set to 10,000. At the beginning of the simulation, the
stock price is set at 100.00 units of cash, say dollars and each trader is endowed with
an equal amount of cash and of shares of the risky stocks. These amounts are 100,000
dollars and 1,000 shares, respectively.

Computational experiments produce realistic intraday price paths, see Ref. [161]
for further details. Log-returns r∆t have been computed in homogeneous time win-
dows ∆t, according to the previous-tick interpolation technique [56, pag. 37]. The
time window ∆t has been set to 100 s, which is about two times the average value
of trade waiting times. Figure 2.1 presents the average values of orders waiting times
〈τo〉 and trade waiting times 〈τT 〉, respectively, as a function of the shape parameter
β. 〈τo〉 is nearly 20 s, as expected by model construction, whereas 〈τT 〉, i.e., an
output of the GASM model, is around 55 s. 〈τT 〉 appears to be independent from β

when β ≥ 0.3; the pattern of increasing values of 〈τT 〉 when β < 0.3 may be due to
numerical effects. The choice of ∆t > 〈τT 〉 has been made in order to avoid spurious
effect in the statistical properties of returns due to long period of trading inactivity,
especially in the case of small value of β.

Figure 2.2 presents the values of kurtosis of log-returns as a function of the shape
parameter β. The figure shows that the distribution of log-returns is characterized by
increasing values of kurtosis as β decreases. In previous works [45, 161], it is already
showed that the mechanism of the limit order book was able to recover fat tails in the
distribution of log-returns without ad-hoc behavioral assumptions regarding agents.
In that cases, β was set to 1, i.e., the order generation process was modeled as a Poisson
process with exponentially distributed waiting times. Figure 2.2 generalizes such a
result showing that the same conclusion also holds for a more general renewal process,
i.e., Weibull distributed waiting times. Furthermore, the tails of the distribution of
returns become fatter when β decreases from 1, i.e., the distribution of order waiting
times becomes a stretched exponential.

Figure 2.3 and Figure 2.4 show estimates of the survival probability distribution of
order waiting times (dots) and of the survival probability distribution of trade waiting
times (crosses) in the case β = 0.4 (Fig. 2.3) and β = 1 (Fig. 2.4). As expected by the
assumptions of the model, survival probability distributions of order waiting times
follow the corresponding Weibull distribution, represented by the continuous line.
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Figure 2.1: Average values of order waiting times and of trade waiting times as a
function of the shape parameter β of the Weibull distribution for orders.
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Figure 2.3: Survival probability distribution of order waiting times (dots) and of
trade waiting times (crosses) in the case β = 0.4. The two curves represent the
corresponding Weibull fits.

The survival probability distribution of trade waiting times is well fitted by a Weibull
distribution only in the case β = 1. Figure 2.3 shows that, in the case β = 0.4,
the survival probability distribution of trade waiting times departs from a Weibull
distribution determined from data by means of the maximum likelihood principle
and represented in the Figure with the dashed curve. In this case, the Kolmogorov-
Smirnov test rejects the null hypothesis of Weibull distribution at the significance
level of 5 %. Generally speaking, trade waiting times are Weibull distributed only in
the case β = 1.

In the case β = 1, the process of trading is a Poisson process as the order arrival
process. An identical conclusion follows from theoretical considerations. In fact,
consider that every transaction occurs when a new order that arrives in the book
finds a matching order in the queue of orders of the opposite type. Therefore, any
new order will be satisfied or not in function of the state of the book in that moment.
The state of the book varies for each moment and for each simulation path. Given
the absence of significant feedbacks in the market, however, it is reasonable to assume
that the average state of the book is time invariant. Therefore, each incoming order
will be satisfied on average with a constant probability and the trading process can
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Figure 2.4: Survival probability distribution of order waiting times (dots) and of trade
waiting times (crosses) in the case β = 1 (exponential distribution). The two lines
represent the corresponding exponential fits.
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be regarded as a random extraction form the Poisson process of orders issuing. The
procedure of random extraction from a Poisson process is called “thinning” and it is
well known that a thinning from a Poisson process is a new Poisson process; see Ref.
[52] for further details.

2.2 Poisson-process generalization for the trading waiting-time

distribution in a double-auction mechanism

2.2.1 Introduction

The dynamics of a stock market depends on the interaction between trading mech-
anism and trading behaviors. The behavior of the participants is the outcome of their
trading strategies, which include how they form expectations or interpret signals.
Conversely, the trading mechanism defines the rules of the market, which specify how
orders are placed and how the price changes.

A model of the stock market makes structural assumptions, related to the trading
mechanism. In order-driven systems, competing market makers supply liquidity by
quoting bid and ask prices and volumes at which they are willing to trade. Investors
demand liquidity through the submission of market orders. A limit order book is a
snapshot at a given instant of the queues of all buy limit orders and sell limit orders,
with their respective price and volume.

All buy limit orders are below the best buy limit order, i.e., the buy limit order
with the highest limit price (the bid price). The best buy limit order is situated below
the best sell limit order, i.e., the sell limit order with the lowest limit price (the ask
price). All other sell limit orders are above the best sell limit order. A transaction
occurs when a trader hits the quote (the bid or the ask price) on the opposite side of
the market. If a trader issues a limit order, say a buy limit order, the order either
adds to the book if its limit price is below the ask price, or generates a trade at the
ask if it is larger or equal to the ask price. In the latter case, the limit order becomes
a marketable limit order, or more simply, a market order. Conversely, if the order
is a sell limit order it becomes a market order and is executed if its limit price is
below the bid price, otherwise it is stored in the book. Limit orders with the same
limit price are prioritized by time of submission, with the oldest order given highest
priority. The execution of orders often involves partial fills before it is completed, but
partial fills do not change the time priority.
In recent years, some studies on the statistical properties of the limit order book have
proposed by the scientific community [23, 29, 103, 124, 140]. An important empirical
variable is the waiting time between two consecutive transactions. Indeed, trading
via the order book is asynchronous, i.e., a transaction occurs only if a trader issues
a market order. For liquid stocks, waiting times may vary in a range between some
seconds to a few minutes. Generally speaking, the survival of order waiting times is
modeled by an exponential[46]. However, analysis of the intra-day trades of General
Electric stock prices pointed out that trading waiting times exhibit a 1-day periodic-
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ity, corresponding to the daily stock market activity, and that the survival probability
distribution is properly fitted by a stretched exponential[132, 164, 174]. Moreover, a
significative cross-correlation between waiting times and the absolute value of log-
returns was also found which suggested other memory effects.
Starting from these results, the effects of a more general distribution of order wait-
ing times have been investigated. In particular, attention has been focused on the
Weibull distribution that admits the exponential distribution as a limit case [47]. Re-
sults showed that in the case of exponentially distributed order waiting times, also
trade waiting times are exponentially distributed. Conversely, if order waiting times
follow a Weibull, the same does not hold for trading waiting times. Thus, such stud-
ies concluded that a single Weibull distribution of the order waiting time could not
reproduce the empirical evidences.
In this chapter, order and trading waiting times are studied in the general framework
of the Genoa Artificial Stock Market [46, 138, 160, 162, 163]. A trading mechanism
characterized by a double auction clearing mechanism, i.e., the limit order book, is
considered[45, 161]. In particular, mixture of Poisson process is used to describe the
order generation process. The characteristics of the Poisson process in the mixture
are estimated by high frequency real data that points out changes of the average wait-
ing time during the trading day[22]. Results pointed out that a mixture of Poisson
process can reproduce the behavior of real stock market.

2.2.2 The artificial stock market

In this subsection, a model of artificial trading by means of a limit order book
is presented. The model makes reference to the Genoa Artificial Stock Market -
GASM[47, 138, 160–163]. In the GASM, agents trade a single stock in exchange for
cash. They are modeled as liquidity traders, and the decision making process is nearly
random constrained by the finite amount of financial resources (cash + stocks) they
own. At the beginning of the simulation, cash and stocks are uniformly distributed
among agents.

2.2.2.1 Trading decision making process

The GASM is populated by random trader, i.e., a trader issues a buy or a sell
order with probability 50%. Denote with a(th−1) and with d(th−1) the values of ask
and of bid prices stored in the book at time step th−1. Now assume that the order
issued at time step th is a sell order. Thus, the quantity of stocks offered for sale is a
random fraction of the quantity of stocks owned by the trader whereas the limit price
si(th) associated to the sell order is given by:

si(th) = ni(th) · a(th−1) , (2.6)

where ni(th) is a random draw by trader i at time step th from a Gaussian distribution
with constant mean µ = 1 and standard deviation σ. If si(th) > di(th−1), the
limit order is stored in the book, otherwise the order becomes a market order and a
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transaction occurs at the price p(th) = d(th−1). In the latter case, the sell order is
partially or totally fulfilled and the bid price is updated.

If the order is a buy order, the associated limit price bi(th) is given by:

bi(th) = ni(th) · d(th−1) ; (2.7)

where ni(th) is determined as in the previous case. If bi(th) < a(th−1), the limit order
is stored in the book, otherwise the order becomes a market order and a transaction
occurs at the price p(th) = a(th−1). The quantity of stocks ordered to buy depends
on cash endowment of the trader and on the value of bi(th).

It is worth noting that, in this framework, agents compete for the provision of
liquidity. If an agent issues a buy order, its benchmark is the best limit buy order
given by the bid price. Being µ = 1, he offers in average a more competitive buy
order (if bi(th) > d(th−1)), which may result in a trade if bi(th) ≥ a(th−1). The same
applies for sell limit orders.

2.2.2.2 Order generation process

Trading is organized in M daily sections and each trading day is subdivided in T

elementary time steps, say seconds. During the trading day, at given time steps th,
a trader i is randomly chosen for issuing an order. The trading day can be divided
into L subintervals. Within each subinterval, waiting times τh = th − th−1 follow
an exponential distribution with different average waiting times τ1

0 , ..., τL
0 . Recalling

that the rate µi is the inverse of the average waiting time, i.e. µi = 1/τ i
0, the survival

function of the i-th subinterval is given by

pi(τ) = e−µiτ , (2.8)

where i = 1, ..., L.
In recent years, several author have shown that, in average, trading waiting time
are not uniformly distributed during a trading day. In particular, Bertram pointed
out that the number of trading in time interval of 600 seconds (i.e, 10 minutes) are
variable in time with a typical smile pattern[22] (see Figure 2.5). According to his
result, it was used the average number of trading to estimate the rate parameter µi

of the exponential distribution that represents the order waiting time distribution. It
is worth noting that such estimation is based on trades instead of orders. However,
one can assume that a linear relationship generally exist between the number of issue
orders and the number of transactions.
Generally speaking, the average number of trading in a period of 600 seconds is a
function of time (see Figure 2.5). In this study, the average number of transactions
is modeled by a polynomial approximation i.e.,

n(t) =
J∑

j=0

ajt
j (2.9)
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Moreover, least squared fit on the empirical data pattern reported by Bertram[22]
points out that Eq. 2.9 with J = 8 is in good agreement with the empirical results (as
shown in Figure 2.5). Thus, Eq. 2.9 allows one to evaluate the rate of the exponential
distribution in the sub-interval as

µi =
n(ti)
600

(2.10)

where i = 1, ..., L. It is worth noting that n(ti) denotes the value of the polynomial
calculated in the middle of i-th interval (see circle in Figure 2.5). As a consequence, in
any time interval, agents issue orders according to an exponential distribution whose
rate changes in time, i.e., order waiting times are distributed according to a mixture
of Poisson processes.

2.2.3 Empirical Analysis

In this section, the trading waiting time for 30 DJIA titles traded at NYSE in
October 1999 have been considered. The time-series have been statistically analyzed
and Table 2.1 points out main results. The first column reports the Anderson-Darling
statistics A2. In these cases, the critical value is 1.9 and, as clearly stated, the null
hypothesis of exponential distribution is rejected for all real time-series. This con-
clusion is in perfect agrement with previous results, thus pointing out that the point
process of trading is not a Poisson process [47, 164].
The second column shows estimation of Weibull exponent parameter β. The Weibull
process generalizes the Poisson process. Indeed, the exponential distribution is a par-
ticular case of the Weibull distribution for β = 1. In the case β < 1, the Weibull
distribution assumes the form of the so-called stretched exponential and great values of
trading waiting times occur with higher probability than in the case of β = 1[47, 164].
As shown, the estimated β are lower than 1, i.e., the trading waiting times distribu-
tion are stretched exponentials.
The third column reports Ljung-Box test statistics Q at lag 15. The critical value of
the test is 24.99 at the 5% significance level. As clearly stated, the null hypothesis of
no serial correlation is generally rejected, except for the case of Citigroup Inc. (de-
noted by ∗), that is the only case in which test is not rejected.
Furthermore, Table 2.2 summarizes serial correlation results. First, second and third
columns reports autocorrelation value of trading waiting times for different lags, mea-
sured in seconds, for IBM stock in December 1990, January 1991, October 1999.
Fourth column shows the same statistics of the trading times for Citigroup Inc. (C),
i.e., the only stock for which the null hypothesis of no serial correlation is not rejected.
The data sets used to produce Table 2.2 have different characteristics. First sample
exhibits an average time interval between trades of 26.2 seconds, with minimum and
maximum interval of 0 and of 4, 592 seconds (i.e., about 1 hour and 15 minutes), re-
spectively. Moreover, standard deviation results of 53.9 seconds and skewness is equal
to 42.3. Second sample has an average of 27.07 seconds with minimum and maximum
interval of 0 and of 426 seconds (i.e., about 7 minutes), respectively. The standard
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deviations is 37.69 seconds. The third sample has an average time interval between
trades of 9.8 seconds, minimum interval is 0 seconds, and maximum interval is 3, 600
seconds. The standard deviation is 34.3 seconds and skewness is 91.4. The fourth
sample has an average time interval between trades of 9.2 seconds, with minimum and
maximum interval of 0 seconds and 3, 655 seconds respectively, the standard deviation
is 41.8 seconds and skewness is 82.2.
The autocorrelations of trading waiting times in Table 2.2 point out the presence
of correlation, i.e., autocorrelation functions decrease slowly with exception of C as-
set whose autocorrelation function decrease faster. This result is confermed by the
Ljung-Box statistical test. Indeed, Ljung-Box statistics are very large, except for the
stock C. Thus, the null hypothesis of white noise is generally rejected based on the
critical value of 24.99 at the 5% significance level.

2.2.4 Computational experiments

Besides real data analysis, some computational experiments have been considered.
The timing parameters of every simulation have been set as follows: M = 50 daily
sections, each characterized by a length of T = 21, 000 s. Each simulation is charac-
terized by a different number of exponential distributions used in the mixture. In the
simulation how many exponential distributions use can be chosen. 7 different value
for L : 2, 3, 4, 5, 15, 25, 35 have been chosen. The orders lifespan has been set to 600 s
À 〈τo〉.

Sell and buy limit prices are computed following Eq. 2.6 and Eq. 2.7 respectively.
The random number ni(th) is a random draw by trader i from a Gaussian distribution
with constant mean µ = 1 and standard deviation σ = 0.005.

The number of agents is set to 10,000. At the beginning of the simulation, the
stock price is set at 100.00 units of cash, say dollars and each trader is endowed with
an equal amount of cash and of shares of the risky stocks. These amounts are 100,000
dollars and 1,000 shares, respectively.

The effects of the number of exponential distribution on the order and trading
waiting times have been considered. In particular, mixtures of 2, 3, 4, 5, 15, 25, 35
exponential distributions have been studied, being 35 the maximum time resolution
allowed by empirical data.[22]
Figure 2.6 shows the survival functions of order and trading waiting times. As clearly
stated, the effect of large numbers of exponential distribution on the survivals of order
and trading waiting times results almost negligible, thus suggesting that already a
mixture of two Poisson processes can properly represent the empirical evidences. It is
worth noting that a mixture of two exponential process per trading day corresponds
to order waiting times identically distributed at the beginning and at the end of the
trading day. In fact, it can be thought that the Poisson process at the end of one day
is exactly the same at the beginning of the next day.
Figure 2.6 points out that waiting times generated by the GASM are not distributed
according to a Poisson process. This is further confirmed by the Anderson-Darling
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test, shown in Table 2.3. According to the critical value of 1.9, we reject the null
hypothesis of exponential distribution[47, 173]. Conversely, Weibull distribution has
been verified with the Kolmogorov-Smirnov test. As shown in Table 2.4 the null
hypothesis is never rejected, thus allowing the possibility of Weibull processes for
order and trading waiting times.
In addition to Kolmogorov-Smirnov test, estimation of β (i.e., the Weibull parameter)
for GASM data points out values quite close to those obtained in the case of 30 DJIA
stocks traded at NYSE in October 1999 (see Tables 2.5 and 2.1 for a comparison).
This suggest applicability of the proposed model in order to reproduce empirical
evidences. Moreover, in the case of β estimation, results point out again an almost
negligible effect of the number of exponential distribution in the mixture.
Concerning serial correlation, Ljung-Box test statistics Q at lag 15 for the order
τO and trading τT waiting times have been calculated. As shown in Table 2.6,
the null hypothesis is rejected. Moreover, fifth column in Table 2.2 points out the
autocorrelation of trading waiting times for different lags in the case of 35 exponential
distribution in the mixture.
It is worth noting that GASM data are referred to 50 trading days, instead of the one
month trading data set for columns 1-4. Moreover, the GASM data are characterized
by an average time interval between trades of 130.61 seconds, with minimum and
maximum intervals of 0 and 3109 seconds, respectively. Standard deviation is equal
to 181.06 seconds and skewness is 5.08. The statistical properties of GASM intertrade
durations are not in contradiction with those measured for real data. This confirm
that the GASM can reproduce the beavior of real stock market.
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Figure 2.5: Average number of transactions during the trading day. Dotted line
represents real data[22], continuous line the polynomial fit and dashed curve the
discretization of polynomial fit in 15 intervals.
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Table 2.1: Anderson-Darling test statistics A2, β estimated and Ljung-Box test statis-
tics Q at lag 15 for trading waiting times τT of the 30 DJIA titles traded at NYSE
in October 1999.

A2 β Q

Stocks τT

AA inf 0.74 569

ALD 111 0.72 1058

AXP inf 0.58 401

BA inf 0.73 815

C inf 0.48 20∗

CAT 291 0.76 754

CHV inf 0.74 403

DD inf 0.68 63

DIS inf 0.64 238

EK 123 0.85 997

GE inf 0.55 110

GM 144 0.84 1131

GT 262 0.78 3098

HWP inf 0.57 634

IBM inf 0.51 208

IP inf 0.76 439

JNJ 107 0.64 1812

JPM inf 0.66 797

KO 134 0.61 2537

MCD 177 0.75 2007

MMM 211 0.80 1264

MO inf 0.60 551

MRK inf 0.55 601

PG 126 0.61 2252

S inf 0.75 655

T inf 0.55 347

UK 182 0.99 1529

UTX 169 0.80 777

WMT inf 0.58 58

XON 399 0.68 3469
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Table 2.2: Trading-interval autocorrelations function and Ljung-Box statistics for 15
lags. The first two columns are taken from Engle and Russell (1994)[65].

IBM (Dec 1990) IBM (Jan 1991) IBM (Oct 1999) C (Oct 1999) GASM (L=35)

lag 1 0.168 0.129 0.061 0.003 0.165

lag 2 0.090 0.120 0.009 0.011 0.157

lag 3 0.068 0.106 0.005 0.005 0.140

lag 4 0.074 0.119 0.005 0.005 0.133

lag 5 0.059 0.107 0.007 0.004 0.151

lag 6 0.069 0.096 0.003 0.006 0.144

lag 7 0.051 0.100 0.002 0.003 0.104

lag 8 0.046 0.099 0.003 0.004 0.102

lag 9 0.045 0.123 0.004 0.005 0.114

lag 10 0.042 0.085 0.003 0.005 0.074

lag 11 0.043 0.105 0.002 0.003 0.101

lag 12 0.045 0.087 0.001 0.004 0.060

lag 13 0.047 0.089 0.005 0.004 0.075

lag 14 0.037 0.089 0.001 0.004 0.054

lag 15 0.025 0.083 0.002 0.002 0.058

Q 1272 2423 208 20 1583

Table 2.3: Anderson-Darling test statistics, A2 for order τO and trading τT waiting
times. Critical value of the test is 1.9. In all cases, the null hypothesis of exponential
distribution is rejected.

A2

L τO τT

2 52 53

3 66 71

4 20 22

5 31 34

15 61 57

25 84 84

35 73 64
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Table 2.4: Kolmogorov-Smirnov test statistics D for order waiting times τO and trade
waiting times τT .

D

L τO τT Critical Value

2 0.033 0.029 0.052

3 0.030 0.039 0.050

4 0.025 0.018 0.051

5 0.026 0.024 0.051

15 0.032 0.026 0.052

25 0.034 0.025 0.051

35 0.033 0.026 0.51

Table 2.5: Value of β for trading waiting times and orders waiting times for GASM
data.

L βO βT

2 0.93 0.87

3 0.92 0.86

4 0.96 0.91

5 0.95 0.89

15 0.92 0.87

25 0.91 0.85

35 0.92 0.86

Table 2.6: Ljung-Box test statistics Q at lag 15 for order waiting times τO and trade
waiting times τT . The critical value of the test is 24.99. In all the cases, the null
hypothesis of no serial correlation up to lag 15 is rejected.

Q

L τO τT

2 6405 1543

3 7970 1155

4 2371 562

5 3429 526

15 7442 1380

25 7662 1792

35 8717 1583



Chapter 3

Modeling and Statistical Analysis of a

Multi-Assets Artificial Stock Market

Overview

At the beginning of this chapter, a multi-assets artificial financial market pop-
ulated by zero-intelligence traders with finite financial resources is presented. The
market is characterized by different types of stocks representing firms operating in
different sectors of the economy. Zero-intelligence traders follow a random allocation
strategy which is constrained by finite resources, past market volatility and allocation
universe. Within this framework, stock price processes exhibit volatility clustering,
fat-tailed distribution of returns and reversion to the mean. Moreover, the cross-
correlations between returns of different stocks is studied using methods of random
matrix theory. The probability distribution of eigenvalues of the cross-correlation
matrix shows the presence of outliers, similar to those recently observed on real data
for business sectors. It is worth noting that business sectors have been recovered in
our framework without dividends as only consequence of random restrictions on the
allocation universe of zero-intelligence traders. Furthermore, in the presence of divi-
dend paying stocks and in the case of cash inflow added to the market, the artificial
stock market points out the same structural results obtained in the simulation with-
out dividends. These results suggest a significative structural influence on statistical
properties of multi-assets stock market.

In the second part of the chapter, an information-based multi-assets artificial stock
market is presented. The market is populated by heterogeneous agents that are seen
as nodes of sparsely connected graphs. The market is characterized by different types
of stocks and agents trade risky assets in exchange for cash. Beside the amount
of cash and of stocks owned, each agent is characterized by sentiments. Moreover,
agents share their sentiments by means of interactions that are determined by graphs.
A central market maker (clearing house mechanism) determines the price processes

37
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for each stock at the intersection of the demand and the supply curves. Within this
framework, stock price processes exhibit main univariate stylized facts, i.e., unitary
root price processes, fat tails of return distribution and volatility clustering. Fur-
thermore, the multivariate price processes exhibits both static and dynamic stylized
facts, i.e., the presence of static factors and common trends. These results suggest a
significative structural influence on statistical properties of multi-assets stock market.

3.1 A multi-assets artificial stock market with zero-intelligence

traders

3.1.1 Introduction

Agent based simulation of financial markets is a rapidly growing field. The Genoa
Artificial Stock Market (GASM)1 is a computer simulator of financial markets which
reproduce main stylized facts of the real markets, i.e., volatility clustering and fat-
tailed distribution of returns with very simple assumptions about the behavior of
agents and realistic market microstructure. Based on recent results on the Genoa Ar-
tificial Stock Market with a single risky stock traded in exchange of cash [138, 162, 163],
an extension of the GASM in a multi-assets environment is presented. In previous
researches [46], a multi-assets environment has been investigated with agents char-
acterized by different trading strategies e.g.,random traders, mean-variance traders,
relative chartist traders and mean-reversion traders. In this case, only random traders
are assumed, i.e., agents that do not use the information about dividends to choose
the stocks on which to invest. Both stocks paying dividends and non-paying dividends
are considered. Results point out statistical properties of the multi-assets artificial
market similar to those of real market. This suggests that behavioral assumptions
may not be necessary to obtain the main stylized facts of the market.

3.1.2 The model

In this subsection, the model of a multi-assets artificial market is presented. The
model makes reference to the Genoa Artificial Stock Market - GASM. In the GASM,
agents trade stocks in exchange for cash. They are modeled as liquidity traders,
i.e., decision making process is random constrained by the finite amount of financial
resources (cash + stocks) they own. At the beginning of the simulation, cash and
stocks are uniformly distributed among agents.
Let S be the number of sectors that characterize the economy, e.g., construction,
information technology, manufacturing, etc. Let s denote the particular economic
sector and the pair s, j the j-th firm operating in the sector s. For each firm, a number
of stock securities is traded sequentially in the market by N agents. Let the subscript
i denote the i-th agent. At every discrete time step h, agent i is characterized by a
cash ci(h) and number of stocks as,j

i (h) of firm s, j held in his portfolio. If ps,j(h) is

1The name is devoted to the city where the project has been developed.
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the market price of the risky asset s, j at time step h, the risky wealth W r
i (h) owned

by trader i at time step h is:

W r
i (h) =

∑

s,j

as,j
i (h)ps,j(h) , (3.1)

whereas Wi(h) = ci(h) + W r
i (h) represents the total wealth. The weight ωs,j

i (h) of
asset s, j in the portfolio of agent i at time step h is given by:

ωs,j
i (h) = ps,j(h) · as,j

i /W r
i . (3.2)

It is worth noting that
∑

s,j ωs,j
i = 1 for all i by definition. Furthermore, it is imposed

that ωs,j
i ≥ 0 for all i and for all asset types s, j (i.e., short positions are not allowed).

At each step, every zero-intelligence agent is activated with a given probability.
An agent i, if activated, tries to allocate in the risky assets a random fraction γi

of his total wealth, i.e., Ŵ r
i (h + 1) = γiWi(h), where γi is a random draw from an

uniform distribution between 0 and 1. The symbol .̂ means that Ŵ r
i (h + 1) is the

amount that agent i desires to allocate in the risky investment, whereas the real
amount Wi(h + 1) effectively allocated in stocks will depend on the trading process
with other agents. Zero-intelligence traders follow a random allocation strategy, i.e.,
the desired weight ω̂s,j

i (h + 1) for stock s, j in the portfolio of agent i at time step
h+1 is a random draw from an uniform distribution between 0 and 1 with the above
constraints on normalization and absence of short positions. The number of stocks
âs,j

i (h+1) desired by trader i for stock s, j at time step h+1 is determined accordingly,
i.e.,

âs,j
i (h + 1) =

⌊
ω̂s,j

i (h + 1) · Ŵ r
i (h + 1)
ps,j(h)

⌋
, (3.3)

where the symbol b..c denotes the integer part. In order to fulfill the prescription of
their random allocation strategies, agents issue buy or sell orders regarding all the
assets traded in the market. The amount ∆s,j

i (h + 1) of the order issued by trader i

at time step h + 1 relative to stock s, j is:

∆s,j
i (h + 1) = âs,j

i (h + 1)− as,j
i (h) . (3.4)

∆s,j
i is the difference between the desired amount of stock s, j at time step h + 1 and

the real amount held in the portfolio by agent i. If ∆s,j
i > 0 the order is a buy order,

conversely if ∆s,j
i < 0 the agent issues a sell order.

Every order is associated with a limit price. According with the previous models
[46, 138, 162, 163], it is stipulated that buy (sell) orders cannot be executed at prices
above (below) their limit price ds,j

i (os,j
i ), where:

ds,j
i (h + 1) = ps,j(h) ·Ni(µ, σs,j

i ) , (3.5)

os,j
i (h + 1) =

ps,j(h)
Ni(µ, σs,j

i )
. (3.6)

Ni(µ, σs,j
i ) is a random draw from a Gaussian distribution with average µ = 1.01

and standard deviation σs,j
i that is proportional to the historical volatility σs,j(Ti)
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of the price ps,j(k) of stock s, j through the equation σs,j
i = ασs,j(Ti). Linking limit

orders to volatility takes into account a realistic aspect of trading psychology: when
volatility is high, uncertainty on the “true” price of a stock grows and traders place
orders with a broader distribution of limit prices. In this model, α is a constant for
all agents, whereas σs,j(Ti) is the standard deviation of log-price returns of asset s, j,
computed in a time window Ti proper for agent i-th. All buy and sell orders issued
at time step h + 1 are collected and the demand and supply curves are consequently
computed. The intersection of the two curves determines the new price ps,j(h + 1) of
stock s, j (see [163] for more details on market clearing).
Let us now consider dividends paying stocks. Each stock is characterized by a dividend
qs,j
n which is payed every Q time steps. The dividend process qs,j

n , n = 1, 2, 3, ...

follows an autoregressive process of order 1, i.e.,

qs,j
n = as

0 + a1q
s,j
n−1 + bs,jεs

n, (3.7)

where as
0 is a coefficient specific to the economic sector s, a1 assumes the same

value for all sector s, bs,j is a number specific to each stock and εs
n is a random draw

from a normal distribution and is specific to each economic sectors s. The initial
condition qs,j

0 for each dividend is set to the mean value of the autoregressive process,
i.e.,

qs,j
0 =

as
0

1− a1
. (3.8)

As traders are zero-intelligent, the information about dividends is not used. In
fact they choose the stocks j randomly, i.e., without considering the dividends.

3.1.3 Computational experiments

Two different market conditions characterized by constant financial resources, i.e.,
without dividend paying stocks and without cash inflow, and by varying financial
resources, i.e., with dividend paying stocks and external cash inflow are considered.
Both market conditions are characterized by 100 different stocks, each related to a
particular firm. Assets are traded sequentially in the market in exchange of cash and
the economy is characterized by 10 sectors each constituted by 10 firms. Both market
conditions consider two different cases. In the first, agents invest on stock belonging
to all the sectors (L = 10), whereas in the latter, each agent randomly restricts his
allocation universe to 5 business sectors among the 10 available (L = 5). In the
simulation with varying financial resources, stocks pay dividends every Q = 63 time
steps, i.e., about three financial months. Thus, every three months agents increase
their cash according the number of stocks owned. Dividends are calculated according
to Eq. 3.7. The parameter as

0 is specific to each sector and ranges from 0.05 to 0.095,
with steps of 0.005 in the 10 sectors considered, a1 is a constant set to 0.9, whereas
bs,j is a random draw from an uniform distribution in the range [0, 0.02].
Agents are initially characterized by an equal endowment of cash and number of
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Figure 3.1: Prices and Returns of a stocks in simulations without dividends paying
stocks.

stocks, set to e 10,000,000 and to 1,000 shares for each stock. Figure 3.1 shows
the dynamic of prices and returns in the absence of dividend paying stock, whereas
Figure 3.2 presents the same processes for a dividend paying stock. In both cases,
price fluctuations are characterized by volatility clustering of returns and fat-tailed
distributions.

The normal distribution of returns has been tested by Jarque-Bera test and the
null hypothesis of no serial correlation has been tested by the Ljung Box Q test.
These features are recovered by means of the volatility feedback effect which has
been modeled explicitly in the limit price associated to orders according to Eqs.
3.5 and 3.6 for buy and sell order, respectively. Due to the finiteness of financial
resources, price processes exhibit strong reversion to the mean. In the simulation
without dividends paying stocks, the variance-ratio test [36] rejects the null hypothesis
of random walk and the augmented Dickey-Fuller test [62], with a specification of
a constant term in the deterministic part, rejects the null hypothesis of unit root.
Conversely, in simulation with dividends paying stocks, the variance-ratio test rejects
the null hypothesis of random walk, but the Dickey-Fuller test does not reject the
hypothesis of unit root. Both tests have been performed at the significance level of
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Figure 3.2: Prices and Returns of a stocks in simulations with dividends paying stocks.
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Figure 3.3: Probability density function (PDF) for eigenvalues cross-correlation ma-
trix of returns in simulation without dividends paying stocks.

5%.
Stated these price process properties, in this study the attention has been focused on
statistical properties of the multivariate process of prices and returns. In particular,
following the approach recently introduced in the econophysics literature [116, 158,
159], the cross-correlations between returns of different stocks have been studied using
methods of random matrix theory (RMT). Figures 3.3 and 3.4 show the probability
density function (PDF) of eigenvalues of the cross-correlation matrix for the two
cases considered in simulations, i.e., L = 10 and L = 5. These two cases have been
represented by the black colored and the gray colored histograms, respectively.

Figure 3.3 is referred to a simulation with non dividends paying stocks, Figure 3.4
to a simulation with dividends paying stocks. In Figures 3.3 and 3.4, the theoretical
PDF for random matrices is represented by the continuous line. In this case, i.e., 100
series of returns and 800 time steps, the largest eigenvalue results equal to 1.83. For
the sake of comparison, the white colored histogram in Figures 3.3 and 3.4 shows the
PDF of eigenvalues for a sample of 100 stocks included in the S&P 500 index in a
time window of 800 days (i.e., close prices from the year 2001 to the year 2004 are
considered). Results point out the presence of outliers well above the bounds deter-
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mined according to RMT.
Figure 3.5 reports the eigenvalues for the three cases considered, i.e., the simulated se-
ries with L = 10 and L = 5 number of business sectors, and the S&P 500 sample. The
horizontal continuous line represents the largest eigenvalues according to the RMT.
In the case of L = 10, only one large deviation from RMT is pointed out, whereas
in the case of S&P 500 and of L = 5 more than 5 deviations from the largest bound
set by RMT are pointed out. These deviations have been studied and interpreted
recently in the literature [158]. The eigenvector related to the largest eigenvalue rep-
resents the entire market, whereas the other eigenvectors, whose eigenvalues deviate
from RMT distribution, are related to the business sectors existing in the economy.
In the computational experiment with a single business sector, only one deviation
from RMT is present, whereas in the experiment where the number of sectors is set
to 10, there are nearly 10 eigenvalues larger than the largest eigenvalue determined
by RMT. Figure 3.6 shows the eigenvalues for the three cases considered, i.e., L = 10
and L = 5 number of business sectors,in the presence of dividends, and the S&P
500 sample. As clearly shown, the result is similar to the previous one. This can
be explained observing that, as the traders are random the information about the
dividends does not provide useful insight for trading.

In all cases, the analysis of the inverse participation ratio [158] show that the
eigenvectors related the largest eigenvalue represents the entire market. Furthermore,
for the simulated series with L = 5, the deviating eigenvalues corresponds to business
sectors.
Finally, it is worth noting that the same results can be obtained also adding an
external cash inflow.

3.2 Information-based multi-assets artificial stock market with

heterogeneous agents

3.2.1 Introduction

The increasing interest towards complex systems characterized by a large number
of simple interacting units has carried to the birth of co-operations between the fields
of economics, physics, mathematics and engineering. The large availability of finan-
cial data has allowed to improve the knowledge about the price processes and many
so-called stylized facts have been discovered, e.g., the fat tails of return distributions,
the absence of autocorrelation of returns, the autocorrelation of volatility, the dis-
tribution of trading volumes and of intervals of trading, etc. [88, 133, 134, 136, 147].
Generally speaking, these features cannot be reproduced within the context of a sin-
gle representation agent, thus resulting in a great interest in developing of artificial
financial markets based on interacting agents.
In fact, in the classical approach, simple analytically tractable models with a repre-
sentative, perfectly rational agent have been the main corner stones and mathematics
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has been the main tool of analysis. Conversely, new behavioral approach, character-
ized by markets populated with boundedly rational, heterogeneous agents using rule
of thumb strategies, fits much better with agent-based simulation models and com-
putational and numerical methods have become an important tool of analysis. Over
the last 15 years, a number of computer-simulated, artificial financial markets have
been built; LeBaron [118] offers a review of recent work in this field. Following the pi-
oneering work done at the Santa Fe Institute [117, 154], a large number of researchers
have proposed artificial markets populated with heterogeneous agents endowed with
learning and optimization capabilities.
This lead to several examples of artificial stock markets proposed in the literature,
e.g., Santa Fe Institute Artificial Stock Market [11] and the Genoa Artificial Stock
Market (GASM) [138, 162, 163]. Generally speaking, in the framework of artificial
stock market, attention has been focused on single asset artificial stock markets. This
in order to understand and to reproduce the main stylized facts of an univariate
price process. Only recently, an extension of the GASM to multi-assets environment
has been proposed [49]. In that case, the GASM was populated by zero-intelligence
traders and computational experiments pointed out the possibility to reproduce some
stylized facts both in terms of the single price process and of the aggregate behav-
ior. However, results suggested a reduced capability in reproducing the well known
unitary root stylized fact, as it was obtained only in the presence of exogenous cash
inflow.
This limitation can be overcame employing recent results on a single-asset artificial
stock market based on information propagation [48]. Indeed, the information-based
artificial stock market proposed in [48] was able to reproduce unitary root also in an
endogenous framework.
This framework deals with a multi-assets framework, where the market is populated
by heterogeneous agents that are seen as nodes of sparsely connected graphs. The
market is characterized by different types of stocks and agents trade risky assets in
exchange for cash. Beside the amount of cash and of assets owned, each agent is
characterized by sentiments. Moreover, agents share their sentiments by means of
interactions that are determined by graphs. Agents are subject to a portfolio choice
on number and type of risky securities. The allocation strategy is based on sentiments
and wealth. A central market maker (clearing house mechanism) determines the price
processes for each stock at the intersection of the demand and the supply curves.
The validation method followed in this paper is the capability of the information-based
artificial stock market to reproduce the stylized facts for univariate and multivariate
price processes. Concerning univariate processes, the three main stylized facts are
taken as reference, i.e., unitary root of price processes, fat-tails distribution of returns
and volatility clustering.
The multi-assets environment offers a new set of stylized facts for validation, i.e., the
statistical properties of cross-correlation matrices of returns [116, 157, 159, 201] and
of variance-covariance matrices of prices [191], that make reference to static and dy-
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namic factors, respectively.
The results show that the main statistical properties of univariate and multivariate
price processes are reproduced in an endogenously framework. This points out the
importance of connection structure among the agents.

3.2.2 The model

In this section, the model of an informed multi-assets artificial stock market is
presented. The model makes reference to the Genoa Artificial Stock Market - GASM.
Heterogeneous and informed agents trade risky assets in exchange for cash depending
on the interactions among agents. They are modeled as liquidity traders, i.e., decision
making process is constrained by the finite amount of financial resources (cash +
stocks) they own. At the beginning of the simulation, cash and stocks are distributed
randomly among agents.
Let N be the number of traders and K the number of assets. Let k denote the
particular asset.
For each asset, the traders of the market are organized according to a directed random
graph, where the agents are the nodes and the branches represent the interactions
among agents. The graphs are responsible of the changes in agent’s sentiments. The
graphs are directed, i.e., the interactions are assumed unidirectional (i.e., agent j− th

influences agent i− th but not necessarily vice versa) and characterized by a strength
gk

ji, assumed a positive real number. Generally speaking, due to the presence of a
directed graph, both an output node degree, related to the output branches of a given
node, and an input node degree, related to the input branches, should be defined.
At each time step h, information is propagated through the market and sentiments
of agent i − th is updated. Let =k

i the set of agents that influences the behavior of
trader i − th for the asset k. The new sentiments Sk

i of agent i − th for each asset
are functions of the previous sentiments, of the influence of interacting agents, of the
log return (market feedback) and of average sentiment of the agent about the market
behavior according to the equation

Sk
i (h + 1) = F (α1,iS

k
i (h) + α2,iŜ

k
i (h) + α3,ir

k(h) + α4,iS̃i(h)) (3.9)

where

Ŝk
i (h) =

∑
j∈=k

i
gk

jiS
k
j (h)

∑
j∈=k

i
gk

ji

(3.10)

represents the influence of interacting agents,

rk(h) = log[pk(h)]− log[pk(h− 1)] (3.11)

represents the market feedback and

S̃i(h) =
∑

k Sk
i

K
(3.12)

models the global vision of agent i − th for the market trend. This last term is a
stabilizing element for the sentiment, so that the coefficient α4,i in Eq. 3.9 is always
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negative. Moreover the non-linear function in Eq. 3.9 is an hyperbolic tangent, i.e.,
F (x) = tanh(2x) that constraints agent sentiments in the range (−1, 1). Finally, a
constraint on graph interaction is considered |α2,i| = (0.6 − |α1,i|) with randomly
change in sign at each time step. The meaning is that sometimes an agent changes
idea about the sentiments of neighbor, and so he changes his reaction.
The agents are ranked according to a Zipf law, i.e., the importance of each agents
is approximately inversely proportional to its rank. All the parameters of the agents
are calculated according to such a ranking. Moreover, for each stock an agent is
randomly connected to a set of other agents whose number and strength gk

ij are
inversely proportional to his rank, i.e., richer agents influences a larger number of
agents with a higher strength. Consequently, the output degree distributions over
the nodes are set to power laws and the input degree distributions result power laws
too. Furthermore, agent’s trading decision is based on cash and stocks owned and on
sentiment. Thus, the stock price processes depend on the propagation of information
among the interacting agents, on budget constraints and on market feedbacks. In this
respect, also the α coefficients in Eq. 3.9 are inversely proportional to agent’s rank,
i.e., richer agents have stronger beliefs.
Let Sk

i (h) be the sentiment, Ci(h) the amount of cash, qk
i (h) the amount of asset k

owned by the i-th trader at time h.
If pk(h) is the market price of the risky asset k at time step h, the risky wealth W r

i (h)
owned by trader i at time step h is:

W r
i (h) =

∑

k

qk
i (h)pk(h) (3.13)

whereas Wi(h) = ci(h) + W r
i (h) represents the total wealth of agent i− th.

At each simulation step, trader i− th tries to allocate in risky assets a fraction γr of
his total wealth related to his vision of the market trend, i.e.,

Ŵ r
i (h + 1) = γr(h)Wi(h), (3.14)

where γr = 1+S̃i(h)
2 .

S̃i is the average sentiments of all assets described by Eq. 3.12. The symbol .̂ denotes
that Ŵ r

i (h + 1) is the amount that agent i− th desires to allocate in the risky invest-
ment, whereas the real amount Wi(h + 1) effectively allocated in stocks will depend
on the trading process with the other agents. For each assets, a positive sentiment
denotes a propensity to buy, whereas a negative sentiment corresponds a propensity
to sell. In this model only long positions are allowed. Thus, if the agent i − th is
characterized by a positive sentiment for asset k , the quantity desired of risky asset
k is given by:

q̂k
i (h + 1) =

⌊
γk

aŴ r
i (h + 1)

pk(h)

⌋
(3.15)

where γa is given by:

γk
a =

Sk
i∑

k∈Ai
Sk

i

. (3.16)
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Ai is the subset of assets in which the sentiments of agent i − th are positive,
i.e.,

∑
k γk

a = 1. The symbol b..c in Eq. 3.15 denotes the integer part. Conversely, if
the sentiment relatives to asset k is negative, the agent i − th is characterized by a
desired quantity q̂k

i (h + 1) = 0.
The amount ∆k

i (h + 1) of the order issued by trader i− th at time step h + 1 relative
to stock k is:

∆k
i (h + 1) = q̂k

i (h + 1)− qk
i (h) . (3.17)

∆k
i is the difference between the desired amount of stock k at time step h+1 and the

real amount held in the portfolio by agent i− th. If ∆k
i > 0 the order is a buy order.

Conversely if ∆k
i < 0 the agent issues a sell order. Every order is associated with a

limit price. According to previous models [46, 138, 162, 163], it is stipulated that buy
(sell) orders cannot be executed at prices above (below) their limit price dk

i , i.e.,

dk
i (h + 1) = pk(h) ·Ni(µk

i , σk
i ) (3.18)

Ni(µk
i , σk

i ) is a random draw from a Gaussian distribution with average

µk
i = (1 + sgn(∆k

i )|Sk
i |). (3.19)

It is worth noting that for a buy order (i.e., ∆k
i > 0) in average dk

i (h + 1) > pk(h),
otherwise for a sell order (i.e., ∆k

i < 0) in average dk
i (h + 1) < pk(h). Furthermore,

the standard deviation σk
i is proportional to the historical volatility σk(Ti) of the

price pk(h) of stock k through the equation σk
i = ξσk(Ti). Linking limit orders to

volatility takes into account a realistic aspect of trading psychology: when volatility
is high, uncertainty on the “true” price of a stock grows and traders place orders with
a broader distribution of limit prices. In this model, ξ is a constant for all agents,
whereas σk(Ti) is the standard deviation of log-price returns of asset k, computed in
a time window Ti proper for agent i− th randomly associated to the agent.
All buy and sell orders issued at time step h + 1 are collected and the demand and
supply curves are consequently computed. The intersection of the two curves deter-
mines the new price(clearing price) pk(h + 1) of stock k (see [163] for more details on
market clearing).
Buy and sell orders with limit prices compatible with pk(h + 1) are executed. After
any transactions, traders’ cash, portfolio and sentiments are updated. Orders that do
not match the clearing price are discarded.

3.2.3 Computational experiments

Generally speaking, the main objective of an artificial market is to reproduce the
statistical features of the price process with minimal hypotheses about the intelligence
of agents. This general philosophy is used in the model described in the previous sec-
tion to reproduced the main stylized facts of the real markets both for univariate and
multivariate cases. As regarding the single-asset market three main stylized facts, i.e.,
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the integrated I(1) property of prices processes, the presence of volatility clustering
in the returns time-series and the presence of fat tails distributions of the returns
are considered. Concerning the multi-assets market two statistical properties have
been recently assumed as stylized facts. The first is related to the returns processes,
i.e., static factors evidenced by the random matrix property of the cross-correlation
matrix of returns [158, 159], whereas the second concerned the common trends of the
price processes in terms of the variance-covariance matrix of prices[191].
As it will be shown, the proposed model is able to reproduce in an endogenous frame-
work all these stylized facts, i.e., univariate, multivariate, statics and dynamic. It is
worth remarking the importance of this result, as for the first time, an artificial stock
market reproduce endogenously all this features.
The market conditions adopted for the computational experiments are characterized
by 100 different stocks. The number of agents is set to 2,278 that are initially endowed
by a random distribution of cash and number of stocks. Furthermore, time window
Ti for the calculation of the historical standard deviation is randomly chosen by a
uniform distribution in the range (10, 100).
Figure 3.7 shows the prices processes for the k = 100 assets. The price processes
point out relevant differences, depending on the specific nature of the asset. Indeed,
starting from identical initial prices, after a transient (not shown in the Figure 3.7
for the sake of compactness) price levels result significantly different. This suggest a
possible herding behavior induced by the graphs that drives the agent propensities to
buy/sell the assets.

Moreover, focussing attention to a single asset, it allows one to verify the main
stylized facts of a univariate price time-series. Figure 3.8 shows the prices and the
return process of asset number 9.

Moreover, the corresponding autocorrelation function of raw returns, of absolute
value of returns and of the square returns are plotted in Figure 3.9. Volatility clusters
are well underlined in Figure 3.8 and a long memory effect is further pointed out in
Figure 3.9 by the autocorrelation function of absolute value of returns and square
returns. As clearly pointed out in Figure 3.9, autocorrelation of raw returns shows
immediate decay within noise level of the correlation just after one lag, whereas abso-
lute value of returns and of square returns exhibits slow decay of the autocorrelation.
Focussing attention on statistical evidences, the normal distribution of returns has

been tested by the Jarque-Bera test and the unitary root has been tested by the
Augmented Dickey-Fuller test at the significance level of 5%. Table 3.1 summarized
the corresponding results. Moreover, for the sake of comparison, the results obtained
for the case of 100 assets randomly selected within the S&P500 are also included.
NrI1 refers to the number of assets that do not reject the hypothesis of unitary root
according the Augmented Dickey-Fuller test (ADF test). NrFTJB refers the number
of assets whose returns process does not follow a normal distribution according to
Jarque-Bera test. It is worth noting that the value of GASM data are in very close
agreement with those of the S&P500. These evidences, together with the volatility
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Table 3.1: ADF test and Jarque-Bera test for GASM data and real data(S&P500)
Data NrI1 NrFTJB
SASM 99 100

S&P500 83 100

clustering property previously pointed out, allow, one to conclude that the GASM is
able to reproduce endogenously the main stylized facts of univariate processes.

Stated the univariate price process properties, the attention has been focused on
the statistical properties of the multivariate process of prices and returns. Generally
speaking, the analysis of multivariate stylized facts leads to the definition of fac-
tor models. Furthermore, in the context of factor models, two main classes can be
identified, i.e., static factor and dynamic factor models. Concerning the former class,
attention is payed to returns as the return processes result (in the first approximation)
stationary. In particular, the risk of a security can be described as superposition of
different source of risks (also described by stationary processes) and this general for-
mulation is the basic for classical portfolio theory and risk management, e.g., CAMP,
multifactors CAMP, APT, etc.[75, 143, 170, 178].
Conversely, in the case of dynamic factors attention is payed to prices and the main
employed concept is co-integration. In particular, it is assumed that in a large market
it is not possible to reject the hypothesis of integrated univariate price processes, but
these price processes are not independent. Indeed, only few independent integrated
processes can be identified, whereas all the others are co-integrated, i.e., it is possible
to identify linear (lagged) combinations that result stationary (so called cointegration
equations) [75, 143, 170, 178].
In this chapter, the static factors are studied according to the cross-correlation matrix
of returns. In particular, following the approach recently introduced in the econo-
physics literature [116, 158, 159], the cross-correlations between returns of different
stocks have been studied using methods of random matrix theory (RMT). Figure 3.10
shows the probability density function (PDF) of eigenvalues of the cross-correlation
matrix. The PDF of eigenvalues of GASM data is presented in black colored histogram
and the theoretical PDF for random matrices is represented by the continuous line.
In this case, i.e., 100 series of returns and 800 time steps, the largest eigenvalue results
equal to 1.83. For the sake of comparison, the white colored histogram in Figure 3.10
shows the PDF of eigenvalues for a random sample of 100 stocks included in the S&P
500 index in a time window of 800 business days (i.e., close prices from the year 2001
to the year 2004 are considered). Results point out the presence of outliers well above
the bounds determined according to RMT in perfect agreement to the empirical evi-
dence shown by S&P500 data.
Furthermore, Figure 3.11 plots the GASM data and the S&P 500 sample. The hor-

izontal continuous line represents the largest eigenvalues according to the RMT. In
this case, some deviations from the largest bound set by RMT are pointed out. These



3.2 Informed traders 57

−5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
D

F

Eigenvalues

 

 

GASM
S&P500 sample
Random matrix

Figure 3.10: Probability density function (PDF) for eigenvalues cross-correlation ma-
trix of returns



58 CHAPTER 3 Multi-assets Artificial Stock Market

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

E
ig

en
va

lu
es

Index of Eigenvalues

 

 

GASM
S&P500 sample
Random Matrix

Figure 3.11: Eigenvalues of the cross-correlation matrix of returns

deviations have been studied and interpreted recently in the literature [158]. The
eigenvector related to the largest eigenvalue represents the entire market, whereas the
other eigenvectors, whose eigenvalues deviate from RMT distribution, are related to
the business sectors existing in the economy. Also this feature is pointed out in the
computer experiments, but is not included here for the sake of compactness.
As regarding the dynamic factors, they have been studied according to the variance-

covariance matrix of prices. According to real data, only a reduced number of assets
prices series in a market are independent integrated processes [191]. In fact, the
analysis of prices processes shows that financial assets are random walk, i.e., I(1) pro-
cesses, but aggregate of financial assets exhibits cointegration, i.e., linear combination
of I(1) process results a stationary stochastic I(0) process. The analysis of this data
has been carried on following the procedure described by Stock and Watson [191]. In
particular, the PCA analysis on the variance-covariance matrix of prices allows one
to identify portfolios with minimum variance. Conversely to price processes, these
portfolios, i.e., linear combination of prices, generally accept the hypothesis of sta-
tionarity [191]. This feature can be verified by the ADF test at significance level of
5%. Figure 3.12 shows the results of the ADF test for the series of a random sam-
ple of 100 assets within the S&P500. As clearly stated, only a reduced number of
portfolios (i.e., equal to 9) reject the hypothesis of stationarity. These series are the
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Figure 3.12: ADF test statistics of the cointegration portfolios in the case of S&P500

only independent I(1) processes, i.e., the common trends of the aggregate, whereas
there exist 91 cointegration equations (i.e., the I(0) portfolios). Figure 3.13 shows
the same analysis in the case of GASM data. As clearly pointed out, also in the case
of the artificial stock market, only a reduced number of portfolios (i.e., equal to 12)
reject the hypothesis of stationarity. These series that are the only independent I(1)
processes, i.e., the common trends of the aggregate.
Thus, the proposed information-based artificial stock market is able to reproduce

the statistical properties of single-asset environmental as well as the stylized facts
of multi-assets. Moreover, the multi-assets properties make reference to static and
dynamic factors, in close agreement with empirical evidences for real data. Finally,
it is worth noting that both the stylized facts on returns and on prices are obtained
in endogenous way, i.e., without any external framework.
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Figure 3.13: ADF test statistics of the cointegration portfolios in the case of GASM



Chapter 4

Modeling and Statistical Analysis of the

Firms Growth Problem

Overview

4.0.4 What is the Firm Growth Problem

The central task of complex system and statistical physics is to understand macro-
scopic phenomena that result from microscopic interactions among many individual
components driven by competing forces. A firm clearly is an extremely complex
system which includes lots of competing divisions.

The firm growth problem is based on statistical quantification of size changes of
firms. The size of a firm can be measured by the number of employees, the expendi-
tures of firm, the total assets of a company, or any other measurable quantity that can
describe the size of a company. Firm size is a random variable and it fluctuates with
time due to different reasons: sometimes a company grows by obtaining a new patent
or contract due to the invention of a new technique, or as an effect of new management
staffs or techniques; but sometimes the company shrinks because of some changes of
industry policy, or bad news in the market. Firm growth rate is a derived quantity
from firm size and it usually is defined as

g ≡ ln(S(t + 1)/S(t)), (4.1)

where S(t) is firm size at time t. In this work, firm size S is primarily measured by
the sales of organizations.

It has been discovered that these seemingly random and complex phenomena
exhibit some universal behaviors no matter what industry a company gets involved
with: first, the distribution of firm size exhibits a stable shape (usually claimed as a
log-normal distribution); second, the distribution of firm growth rates (the quantity
derived from firm size) has a Laplace-distributed shape; third, the standard deviation
of growth rate is power-law related to firm size with power-law exponent about 0.2.
These findings above are independent of the specific database, which implies that
there is a common principle that manipulates the dynamics of firm growth, and

61
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that this common principle may be independent of the particular business that a
firm does. Therefore, the above empirical findings deserve deeper understanding
and explanation. Economists have not anticipated them, and this study attempts
to reproduce them with stochastic models based on ideas from complex system and
statistical physics. Interpretation of these models provides new insights into how the
empirical regularities may arise.

The firm growth problem focuses on the statistical properties of firm growth rate,
e.g. the distribution of growth rate, the mean growth rate, the standard deviation
of growth rate, and the relationship between growth rate and other economic quan-
tities. Firm growth rates interest economists because growth rate means the change
of firm size or firm scale, which may be related to the profits of a firm. Whether
a firm is profitable or not is a standard to measure whether it performs well in the
market. So far, the distribution of growth rates of business firms is an unsolved topic
in economics [17, 26, 50, 55, 57, 63, 68, 69, 77, 79, 81, 82, 85, 86, 92–95, 99–101, 105, 108–
110, 125, 145, 149, 153, 165, 176, 177, 181, 184, 185, 188, 190, 194, 202, 205, 210]. However,
the complex system theory and the statistical physics approaches can make some
contributions, because (i) each firm is a complex system and that includes many in-
dividual components, and (ii) the firms usually are driven by competing forces, such
as entry and exit processes of companies or products, and merging and splitting pro-
cesses for bigger profit or survival. To explain the empirical findings by utilizing basic
theories of random process and mature statistical physics models, let to understand
the growth of firms more deeply, and may develop better strategies to manage or even
control the growth of companies, so as to improve the economy of a country. Because
companies are the fundamental building-bricks of the whole economy of a country,
people may live better if firms perform well.

4.0.5 The Distribution of Firm Size S

In this section the empirical findings on the distribution of firm size P (S) is pre-
sented. The concept of firm can be extended to another concept—”organization”
because many non-economic subjects also share the same characteristics as compa-
nies. Organizations here are the classes whose units usually interact with each other
and may agglomerate or split to form a new class. The size S here is a dynamic
and measurable quantity of some classes, e.g., it can be the GDP for a country, the
annual sales for a company, the size of a city measured by its area or population, or
the income for individuals. Thus, A organization can be a country (Lee 1998; Can-
ning, 1998), a business firm (Stanley, 1996; Amaral, 1997; Buldyrev, 1997; Takayasu,
1998; Sutton, 2000; Wyart, 2002), a university or research institute (Plerou, 1999), a
voluntary social organization, or a bird species (Keitt, 1998; Keitt, 2002).

The size distributions of organizations are typically 1) either Pareto (power law)
distribution whose probability density function (PDF) is given by

P (S) =
(

S

Smin

)−k

(4.2)
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where S is any number greater than Smin, which is the (necessarily positive) minimum
possible value of S, and k is a positive parameter, or log-normal distribution whose
PDF is

P (S) =
e−(ln S)2/2σ2

σ
√

2πS
(S ≥ 0; σ > 0). (4.3)

On a log-log plot, the PDF for the Pareto distribution ρ(S) is a straight line but the
one for the log-normal distribution, ρ(ln S), is like a parabola.

Since Pareto and log-normal are two typical skewed distributions, we conclude
that the size distributions of organizations are skewed. In the following sections, we
briefly show the size distribution of different subjects.

Figure 4.1: Probability distribution of the logarithm of GDP, P (log(G)) where G

is as S here. The data have been detrended by the average growth rate, so values
for different years are comparable. The data points are the average over the entire
period, 1950-1992, and the continuous line is a Gaussian fit to the data. The bins
were chosen equally spaced on a logarithmic scale with bin size 0.5. The distribution
is claimed stationary — i.e., remains the same for different time intervals. (From Lee
et al. [120])

4.0.5.1 Country

Countries are clearly complex organizations because they are usually composed of
millions of people and companies. The size of a country can be measured by the total
population or the area of the country. Lee and Canning et al. [38, 120] firstly analyzed
the gross domestic product (GDP) of 152 countries during the period 1950–1992. As
Fig. 4.1 shows, the distribution of GDP can be well fitted by Gaussian function of
logarithmic scale which means that country GDP follows a log-normal distribution.
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Buldyrev [34] et al find that the size distribution of countries (PDF), if measured
by the quantity area or population, follows an inverse power-law with an exponent
about 1 (Fig. 4.2).

Figure 4.2: The area and population distributions of nations, P (S). Double-
logarithmic plot of the histogram of areas, A, of the 255 nations of the world in 1998;
the linear regression coefficient is µN ≈ 0.93. The bins were chosen equally spaced
on a logarithmic scale with bin size 0.5. Using population as alternative measure of
size, almost identical exponents are found. (From Buldyrev et al. [34])

4.0.5.2 City

Compared with countries, cities are complex organizations on a lower level because
a country contains many cities. Zipf [210] observed that the population distribution
of cities follows a power-law behavior with exponent about 1 (Fig. 4.3).
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Figure 4.3: The population for Canadian communities of 1, 000 or more inhabitants
in 1881-1931, ranked in decreasing order of population size. (From Zipf et al. [210])

Figure 4.4: Distribution of firm size. The circles are a histogram showing the number
of firms having 1993 sales of X dollars as a function of log X. The data are for the
4701 Compustat firms in SIC code 2000-3999. The values of the sales are binned in
powers of

√
2. The solid curve is a log-normal fit to the data using the mean of the

log of sales and the standard deviation of the log of sales as fitting parameters. (From
Stanley et al. [188])

4.0.5.3 Company in Different Industries

Firms are also complex systems since a firm is composed of different divisions
or production units. In 1995, M. Stanley, at al. [188] tested the 1993 sales of 4071
manufacturing firms (SIC codes 2000-3999) from the Compustat database. As Fig. 4.4
shows, the distribution of firm sizes is well fit by a log-normal function. The data in
other years also leads to similar conclusions.
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Figure 4.5: Histogram of the logarithm of the annual R&D expenditures of 719 US
universities, expressed in 1992 US dollars. Here, S denotes the R&D expenditures
deflated by the Consumer Price Index so that values for different years are comparable.
The data for individual universities are the average over the entire period, 1979–1995,
and the continuous line is a Gaussian fit to the data. The bins were chosen equally
spaced on a logarithmic scale with bin size 0.5. The form of the size distribution is
similar for different measures of academic performance such as the number of papers
published and the number of patents filed each year. The functional form of the size
distribution holds also for the external income of English universities and the grants
for Canadian universities. (From Plerou et al. [156])

Plerou [156] et al. studied a different industry and analyzed the size distribution
of universities based on the production of academic research and development (R&D)
funding. The database includes: (i) a National Science Foundation database of the
R&D expenditures for science and engineering of 719 United States (US) research
universities for the 17-year period 1979–1995, and (ii) an Institute of Scientific Infor-
mation database of the research publications of the top 112 US research universities
for the 17 year period 1981–1997. Fig. 4.5 shows that university size defined by R&D
expenditure is log-normal distributed. Other measures produced similar results.
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Figure 4.6: Histogram of US firm sizes, by employees. Data are for 1997 from the
US Census Bureau, tabulated in bins having width increasing in powers of three.
The solid line is the ordinary least squares (OLS) regression line through the data,
and it has a slope of 2.059, meaning that probability density function of growth rate
P (S) ∼ S−2.059. (From Axtell et al. [13])

In 2001, Axtell [13] tested U.S. Census Bureau data from 1997. Data from the U.S.
Census Bureau put the total number of firms that had employees sometime during
1997 at about 5.5 million, including over 16, 000 having more than 500 employees.
Compared with Compustat database, the Census Bureau data has more records on
smaller firms whose employee number is less than 500. In Fig. 4.6, the distribution
of firm size (measured by the number of employees) is well fit by a power law.

How about an even lower level, products, since companies are composed of prod-
ucts? The Pharmaceutical Industry Database (PHID) analyzed by Matia et al. [142]
records quarterly sales figures of 55624 pharmaceutical products commercialized by
3939 firms in the European Union and North America from September 1991 to June
2001. They find that the size distribution of products also approximately follows a
log-normal function (Fig. 4.7).
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Figure 4.7: The size distribution of products sales (squares) and firm sales (circles)
in the pharmaceutical industry during 1990-2001. The variance of the PDF’s of
products sales at launch and firm sales are estimated to be Wp = 0.88 and Wf = 1.72
respectively. The PDF of sales is observed to be log-normal. (From Matia et al. [142])

4.0.5.4 Income

Aoyama et al. [7] has studied the data on income and income-tax of individuals in
Japan for the fiscal year 1998. The income data contains all 6, 224, 254 workers who
filed tax returns and among them, there are 84, 515 individuals who paid income tax
because their incomes are 10 million yen or more in 1998.

Figure. 4.8 shows the rank-size plot, which is the log-log plot of the rank (R) as a
function of income (S). Because P (S) = R(S)/R(0), and R(0) is a constant, y axis
represents the distribution of income. It is found that a power law, R ∝ S−2.06, fits
the data over three magnitudes of income, 10 < S < 104.



4.0 Overview 69

Figure 4.8: The rank-size plot of the income. The raw income data is shown by dots,
whereas deduced income data from the income-tax database are connected by the
solid line-segments. The dash line is given by Eq. 4.2 with k = 2.06. (From Aoyama
et al. [7])

This result that diverse organizations such as countries, companies, universities
and products follow log-normal or power-law distributions is much more remarkable
than modern economists generally acknowledge. Perhaps the reason it has not pre-
viously generated much interest is that systematic differences in firm sizes across
markets are related to industry characteristics such as economics of scale and the
opportunities to advertise. If the distribution of firm sizes within an industry are
driven by such factors, then the over-all distribution of firm size would seem to be
determined by the composition of output, time dependent and diverse factors. As a
consequence, there was no reason to believe that this distribution would remain stable
over time or that it would necessarily be subject to modeling.
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4.0.6 The Distribution of Growth Rate

Previous studies (described below) have found that g follows a distribution that
looks like a tent, hence it is called the “tent-shaped” distribution. This distribution
has a Laplace shape in the body, therefore, on a log-linear plot, the shape of P (g) is
two symmetric lines. Specifically this P (g) can be written by:

P (g) =
1√
2σo

exp

(
−
√

2 |g − ḡ|
σo

)
, (4.4)

where σo is the standard deviation. The empirical conditional probability density of
g given the size S therefore follows as

P (g|S) =
1√

2σ(S)
exp

(
−
√

2 |g − ḡ|
σ(S)

)
, (4.5)

where σ(S) is the standard deviation for size S.

In the next subsection, the empirical findings on P (g) and P (g|S) of different
subjects are showed.
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4.0.7 Country

Figure 4.9: (a) PDF of annual growth rate r of GDP for 152 countries where r is
the same as g here. Shown are the average annual growth rates for the entire period
1950–1992 together with an exponential fit, as indicated in Eq. (4.4). (b) PDF of
annual growth rate for two subgroups with different ranges of S. The entire database
was divided into 3 groups: 6.9× 107 ≤ S < 2.4× 109, 2.4× 109 ≤ S < 2.2× 1010, and
2.2 × 1010 ≤ S < 7.6 × 1011, and the figure shows the distributions for the smallest
and largest groups. (From Lee et al. [120])

Lee et al. [120] analyzed the fluctuations in the growth rate of the gross domestic
product (GDP) of 152 countries during the period 1950–1992. In Fig. 4.9, P (g) and
P (g|S) can be fit by the Laplace distribution function (Eq. 4.4 and Eq. 4.5).

In the limit of small annual changes in S, g(t) is the relative change in S. For all
countries and all years, it was proposed that the probability density of g is consistent,
for a certain range of |g|, with a double-exponential decay (see Fig. 4.9a), that is,
Eq. 4.4 is a good option for the fitting function of P (g).

The countries were divided into groups according to their GDP. It was found that
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the empirical conditional probability density of g for countries with approximately
the same GDP is also consistent in a given range with the double-exponential form
(see Fig. 4.9b) given by Eq. 4.5.

4.0.7.1 Company in Different Industries

Figure 4.10: Conditional probability density function P (g|S) of the annual growth
rates g in R&D industry. For this plot the entire database is divided into three groups
(depicted in a by different shades). (From Plerou et al. [156])
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Figure 4.11: (a) Probability density P (g) of the growth rate for all publicly-traded US
manufacturing companies in the 1994 Compustat database with Standard Industrial
Classification index of 2000-3999. The distribution represents all annual growth rates
observed in the 19-year period 1974-1993.(b) Conditional probability density P (g|S) of
the growth rate. The data for three different bins of initial sales (with sizes increasing
by powers of 8: 87 < S < 88, 88 < S < 89, and 89 < S < 810. The solid lines are
exponential fits to the empirical data close to the peak. It is seen that the wings
are somewhat “fatter” than what is predicted by an exponential dependence. (From
Amaral et al. [3])
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Figure 4.12: (a) Distribution of firm growth rate P (g) in the pharmaceutical industry.
Only the central part of the distribution can be fit by a Laplace function. (b) Con-
ditional probability density function P (g|S) of the annual growth rates g in PHID.
Firm are divided into 3 categories: small [S < 102], medium [102 < S < 104], and
large [104 < S] firms. Again, each of them gives a Laplace central part and fat tails.
(From Matia et al. [142])

For all the US manufacturing companies studied by Amaral et al. [3], Fig. 4.11
shows that P (g|S) can be fit by Laplace distribution (see Eq. 4.5). Compared with
manufacturing industry, the R&D industry also shows that the Laplace distribution
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for P (g|S) (Fig. 4.10) is a good choice. Figure 4.11 shows that, for the pharmaceutical
industry, (a) the central part of P (g) is Laplace distributed, but the tails clearly
deviate from it; (b) shows P (g|S) have similar shapes as P (g) and they also have fat
tails.

4.0.8 Size-variance Relation

If the conditional distribution of growth rates has a functional form dependent on
S, the standard deviation σ(S)—which is a measure of the width of P (g|S)—should
be dependent on S. Thus, when the scaled quantities

σ(S)P (g/σ(S)|S) versus g/σ(S) (4.6)

are plotted, all σ curves from the different size groups collapse onto a single curve.
Then p(g|S) follows a universal scaling (Amaral, 1997, Buldyrev, 1997)

P (g|S) ∼ 1
σ(S)

f

(
g

σ(S)

)
. (4.7)

Interestingly, studies by Matia et al. reveal that σ(S) decays as a power law Stanley
(1996), Buldyrev (1997)

σ(S) ∼ S−β , (4.8)

where β is known as a scaling exponent for size-variance relation.

Various kinds of classes such as country, company, university and product etc.,
are all composed of units. If it is assumed that the units are growing independently,
according to the law of large numbers, the relation between their size and the variance
of their corresponding growth rate should follow S ∼ g−β where β is 0.5. But the
empirical results give different value of β.
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Figure 4.13: (a) Plot of the standard deviation σ(G) of the distribution of annual
growth rates as a function of S where G is the same as S here, together with a power
law fit (obtained by a least square linear fit to the logarithm of σ vs the logarithm
of S). The slope of the line gives the exponent β, with β = 0.15. (b) Rescaled
probability density function, σ(S)ρ(g|S), of the rescaled annual growth rate, g/σ(S).
Note that all data collapse onto a single curve. (From Lee et al. [120])

4.0.8.1 Country

Lee et al. [120] show that the width of the distribution scales as a power law of
GDP with a scaling exponent β ≈ 0.15. In the limit of small annual changes in S,
g(t) is the relative change in S. The countries were divided into groups according to
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their GDP. It was found that the empirical conditional probability density of g for
countries with approximately the same GDP is also consistent in a given range with
the double-exponential form given by Eq. 4.5. These data are shown in Figure 4.13.

4.0.8.2 Company in Different Industries

It is apparent from Fig. 4.14, the width of the distribution of growth rates in
manufacturing industry decreases with increasing firm size S0. It is found that σ(S0)
is well approximated for eight orders of magnitude (from sales of less than 103 dollars
up to sales of more than 1011 dollars) by the law σ1(S0) ∼ exp(−βS0), where β =
0.17± 0.03.
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Figure 4.14: (a) Dependence of σ1 on S0 for two subsets of the data correspond-
ing to different values of the SIC codes for manufacturing industry. In principle,
companies in different subsets operate in different markets. The figure suggests that
these results are universal across markets. (b) Scaled probability density Pscal(r) ≡√

2σ(S0)P (r|S0) as a function of the scaled growth rate rscal ≡
√

2[g − r̄(S0)]/σ(S0)
where r is the same as the g defined. The values were rescaled using the mea-
sured values of ḡ(S0) and σ(S0). All the data collapse upon the universal curve
Pscal(g) = exp(−|gscal|) as predicted by Eqs. 4.5 and 4.8. Again, it is seen that all
the data collapse onto a single curve. (From Amaral et al. [3])

The size-variance relation is also verified to exist by the databases of R&D and
pharmaceutical industries in figures 4.15 and 4.16. The values of β are 0.25 for R&D
industry and 0.20 for pharmaceutical industry.
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Figure 4.15: (c) The size-variance relation for universities in R&D industry. It shows
a power-law shape with exponent 0.25. (d) Rescaled distribution of growth rates after
applying the size-variance relationship. The overlap of P (g|S) implies that different
universities follow the same growth dynamics. (From Plerou et al. [156])



80 CHAPTER 4 Firm growth problem

10
0

10
2

10
4

10
6

 Firm sales, S

10
-2

10
-1

10
0

 S
ta

nd
ar

d 
de

vi
at

io
n,

 σ
(g

|S
)

10
0

10
2

10
4

10
610

-2

10
0

β=0.20

(a)

-10 -5 0 5 10

 Scaled growth rate of firms, g/S
-0.20

10
-4

10
-3

10
-2

10
-1

10
0

 P
ro

ba
bi

lit
y 

de
ns

ity
, S

-0
.2

0 P
(g

|S
)

 small
 medium
 large

(b)

Figure 4.16: (a) Firms in the pharmaceutical industry are divided into 10 groups
according to sales S. The standard deviation σ(g|S) of the growth rates scales is a
power law, σ(g|S) ∼ S−β with β = 0.20±0.01. (b) PDF of the growth rates for small
[S < 102], medium [102 < S < 104], and large [104 < S] values of S is scaled by their
standard deviation. Note the collapse of the histograms of the three groups which
confirms the scaling exponent β. (From Matia et al. [142])

What is remarkable about Eqs. 4.5 and 4.8 is that they approximate the growth
rates of a diverse set of companies. They differ not only in their size but also in what
they manufacture. The conventional economic theory of the company is based on pro-
duction technology, which varies from product to product. Conventional theory does
not suggest that the processes governing the growth rate of car companies should be
the same as those governing, e.g., pharmaceutical or paper companies. Indeed, these
findings are reminiscent of the concept of universality found in statistical physics,
where different systems can be characterized by the same fundamental laws, indepen-
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dent of “microscopic” details. Thus, it can be posed the question of the universality
of these results: Is the measured value of the exponent β due to some averaging over
the different industries, or is it due to a universal behavior valid across all industries?
As a “robustness check”, Amaral et al. split the entire company sample into two
distinct intervals of SIC codes. It is visually apparent in Fig. 4.14 that the same be-
havior holds for the different industries. Thus, it can be concluded that these results
are indeed universal across different manufacturing industries in the US. In statisti-
cal physics, scaling phenomena are sometimes represented graphically by plotting a
suitably “scaled” dependent variable as a function of a suitably “scaled” independent
variable. If scaling holds, then the data for a wide range of parameter values are
said to “collapse” upon a single curve. From the following empirical results, the data
collapse upon the single straight line shows small but consistent deviations for large
growth rates from the exponential distribution in Eq. (4.5). Thus, Eq. (4.5) can be
regarded only as a first-order approximation to reality.

4.1 Previous Models

All of the empirical results presented above not only provide a justification for
developing a model to explain the statistical properties of firm growth, but also have
implications for what statistical properties are most important to explain. In 1931,
Gibrat presented striking evidence [81, 82] that the distribution of firm size at different
times and within different “populations” was approximately log-normal; and showed
the log-normality could be generated by a process in which the distribution of growth
rates is independent of initial size. Gibrat’s stochastic model is an early example of
the use of statistical physics in economics. His model is one of a random stochastic
process, and the objective of his model was to explain the shape of a distribution that
emerged from it.

The assumptions Gibrat proposed are : (1) the growth rate R of a company is
independent of its size (this assumption is usually referred to by economists as the law
of proportionate effect), (2) the successive growth rates of a company are uncorrelated
in time, and (3) the companies do not interact.

In mathematics, Gibrat’s model is expressed by the stochastic process:

St+∆t = St(1 + εt), (4.9)

where St+∆t and St are, respectively, the size of the company at times (t + ∆t) and
t, and εt is an uncorrelated random number with some bounded distribution and
variance much smaller than one (usually assumed to be Gaussian). Hence,

St = S0(1 + ε1)(1 + ε2) · · · (1 + εt). (4.10)

If it is assumed that all companies are born at approximately the same time and have
approximately the same initial size, then the distribution of company sizes is also
log-normal. This prediction from the Gibrat model is approximately correct.
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However, under Gibrat’s assumptions, it can be easily derived the expression of
growth rate g as follows: at time T (T is much larger than t, for example a year)

log S(t = T ) = log S(t = 0) +
M∑

t′=1

log(ηt′), (4.11)

where M is the total number of time steps. Because of g(T ) = log(S(T )/S(0)), we
get

g =
M∑

t′=1

log(ηt′). (4.12)

Since M is large, and ηt is a random variable following a certain distribution, using
the Central Limit Theorem the distribution of g is Gaussian. Now we know that this
prediction is wrong and this model needs some changes.

Buldyrev [33] et al. (1997) present a model of organizational hierarchy in which
decisions get passed down through successive layers. At each decision point in the
hierarchy, a manager can either accept the decision of his immediate superior or
reject it and make his own independent decision. Amaral [4] et al. (1998) describe a
model of Gibrat-type growth processes at the business unit level and firms consisting
of multiple units with uncorrelated growth processes. This model predicts the key
empirical findings about firm growth for a wide variety of parameters. The Buldyrev
and Amaral et al. models qualitatively justify why the distribution of firm growth
rates shows a “tent” shape, and also numerically give the size-variance relation.

Sutton [194] postulates that all partitions of a company of size S into smaller sub-
pieces are equiprobable . This is similar to the corresponding hypothesis in statistical
physics that all microstates which a physical system can attain are equiprobable. More
precisely Sutton assumes that S is a large integer, and uses known mathematical
results on the number of partitions to compute σ(S). Finally, Sutton analytically
gives β ≈ 0.24 as a universal power-law exponent. Following Sutton, Bouchaud et
al. (2002) present a model in which firms consist of independent, divisions that are
varying groupings of a basic unit size [206]. He assumes that all partitions of the
firm are equally likely. For example, a firm of size 4 could consist of four one-unit
divisions, two one-unit divisions and one two-unit division, a two two-unit division,
one three-unit and one one-unit division, or one four-unit division. This model is
similar to the Amaral et. al. model in that it views firms as consisting of units whose
growth rates are independent of each other. But, Sutton model discusses little about
the distribution of firm growth rates, and its relationship with firm size.

Axtell (1999) presents a model in which firms are teams of individuals who select
effort levels and share the output [12]. Holding effort levels constant, adding indi-
viduals (or collections of individuals) to a firm increases output. As firms become
larger, however, each individual has more of an incentive to shirk because of the shar-
ing rule. The growth dynamics come from having individuals randomly joining and
leaving firms. This model implies a Pareto distribution of firm size and the scaling
relationships in growth dynamics described above.



4.2 The distribution of unit number 83

Given that there are already four models that predict the same empirical findings,
one might question the need for a fifth. However, there is no reason to believe that
these findings sufficiently identify the “true” model of the firm. Models that are
not consistent with empirical findings can be rejected, but a model just because it
is consistent with them cannot be accepted. The primary feature that distinguishes
the preferential attachment is that it is explicitly designed to address the question of
which activities are organized within a given firm.

4.2 The distribution of unit number, P (K)

4.2.1 Introduction

The preferential attachment model originally comes from an explanation for the
distribution of unit number P (K). By analyzing the pharmaceutical dataset PHID,
P (K) exhibits a power-law shape for small K and exponential tails for large K. It
is argued that the exponential shape is not due to a finite-size effect as others had
previously assumed, but rather is the characteristic of the growth of a complex system.
PHID is a very good dataset which records the values of K and gives possible empirical
controls for different boundary conditions of the model, such that, whether the model
can give a good explanation can be tested. In the model, it is used “class” to denote
the upper-level subject and “unit” for the lower-level subject that the class contains.

Many complex systems of interest to physicists, biologists and economists [16, 35,
91, 106, 210] share two basic similarities in their dynamics: (i) The system does not
have a steady state but is growing. (ii) Basic units are born, they agglomerate to form
classes, and classes grow in size according to a rule of proportional growth [81, 82]. In
biological systems, units could be bacteria, and classes would be bacterial colonies.
In the context of economic systems, units could be products, and classes would be
firms; in social systems units could be human beings, and classes would be cities.

The probability distribution function P (K) of the class size K of the systems
mentioned above has been shown to follow a universal scale-free behavior P (K) ∼
K−τ with τ ≈ 2 [16, 106, 115, 210]. Other possible values of τ are discussed and
reported in [150]. Also, for most of the systems P (K) has an exponential cut-off,
which is often assumed to be a finite size effect of the databases analyzed. Several
models [35, 41, 74, 79, 101, 168] explain τ ≈ 2 but none explains the exponential cut-off
of P (K). Moreover, the models describing P (K) ∼ K−τ are not suitable to describe
simultaneously systems or ranges of K for which P (K) ∼ exp(−γK).

4.2.2 The model

In this section, a model with a simple set of rules to describe P (K) for the entire
range of K, i.e., a power law with an exponential cut-off is presented. The exponential
cut-off of the power law is not due to finite size, but is an effect of the finite time
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interval of the evolution. How the functional form of P (K) is determined by different
scenarios of the model, changing from a pure exponential to a pure power law (with
τ ≈ 2), via a power law with an exponential cut-off is showed. The predictions of the
model are then tested through the analysis of a unique industrial database [70, 142],
which covers both elementary units (products) and classes (markets, firms) in a given
industry (pharmaceutical).

The model in this section consists of the following rules:

1. At time t = 0 there exist N classes, each with a single unit [1].

2. At each step:

• (a) With probability b (0 ≤ b ≤ 1) a new class with a single unit is born.

• (b) With probability λ (0 < λ ≤ 1) a randomly selected class grows one
unit in size. The selection of the class that grows is made with probability
proportional to the number of units it already has [“preferential attach-
ment”].

• (c) With probability µ (0 < µ < λ) a randomly selected class shrinks one
unit in size. The selection of the class that shrinks is done with prob-
ability proportional to the number of units it already has [“preferential
detachment”].

After M steps one expects N + bM classes and N +(λ−µ+ b)M units, since each
class starts with one unit. Note that, for now, it is not included a Gibrat process to
control the growth of each unit because the distribution of unit number P (K) is our
focus and a Gibrat formula has no effect on P (K). In the continuum limit, the above
rules give rise to a master equation for the class size PDF P (K, ti, t), which is the
probability at time t, for a class i introduced at time ti, to have K units,

∂P (K, ti, t)
∂t

= λ
(K − 1)

n(t)
P (K − 1, ti, t) + µ

(K + 1)
n(t)

P (K + 1, ti, t)− (λ + µ)
K

n(t)
P (K, ti, t),

(4.13)

where n(t) ≡ N +(λ−µ+b)t is the expected total number of units at simulation step
t. Each class has its own master equation. Eq. (4.13) is transformed to the master
equation of birth and death processes [53] by a new variable s, where dt/ds = n(t)
and P̄ (K, si, s) ≡ P (K, ti(si), t(s)). The master equation for P̄ (K, si, s) has the same
form as Eq. (4.13) after replacing t by s, P (K, ti, t) by P̄ (K, si, s) and n(t) by 1
respectively. From the well-known solution of birth and death processes under the
initial condition P̄ (1, si, si) = 1 [2], the solution after transforming back from s to t

is,

P (K, ti, t) =





µ
ληti,t [K = 0]

(1− ηti,t)(1− µ
ληti,t)η

K−1
ti,t [K > 0]

(4.14)
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with

ηti,t =
1−Rα

1− µ
λRα

, (4.15)

where R = [ti + N(λ− µ + b)−1]/[t + N(λ− µ + b)−1] and α = (λ− µ)(λ− µ + b)−1.
P (K, ti, t) ∝ ηK−1

ti,t is obviously an exponential function of K. Finally, one can obtain
P (K, t), by averaging P (K, ti, t) over units introduced at different ti as follows:

P (K, t) =
N

N + bt
P (K, 0, t) +

b

N + bt

∫ t

0

dti P (K, ti, t). (4.16)

The first term, I1, is

I1 ∝ exp(−γK) with γ = − log η0,t ∼ t−α. (4.17)

Note that this represents the contribution from the original firms. To obtain the
second term I2 we first substitute P (K, ti, t) from Eq. (4.14) in Eq. (4.16), then
change the variable of integration from ti to η. Hence

I2 =
b(t + N

λ−µ+b )(1 + b
λ−µ )(1− µ

λ )

(N + bt)

∫ η0,t

0

dη

(
1− η

1− µ
λη

)1+ b
λ−µ

ηK−1. (4.18)

In the limit of t → ∞, η0,t → 1. Since (1 − µη/λ)−1 ≈ 1 + µη/λ, Eq. (4.18) can be
integrated giving the Yule distribution [184]

I2 = (1 +
b

λ− µ
)(1− µ

λ
)
∞∑

m=0

(µ
λ )m

m!

( b
λ−µ + m)!

( b
λ−µ )!

∫ 1

0

dη (1− η)1+
b

λ−µ ηm+K−1. (4.19)

In the limit of t →∞, from Eq. (4.19)

I2 ∝ K−(2+ b
λ−µ ), (4.20)

in which an exponential function has been transformed into a power law function by
integration. This situation is analogous to the one described by the standard prefer-
ential attachment model [106], where the power law distribution also follows from the
Yule distribution. In the limit of fixed time t and K →∞, I2 ∝ exp(−γ K)/K which
decays faster than Eq. (4.17), implying that the distribution of class size K for new
classes has an exponential cut-off faster than for the old classes. Thus, the full solu-
tion of Eq. (4.13) is a power law (Eq. (4.20)) with an exponential cut-off (Eq. (4.17)).
These two terms are of the same order in the range K ≥ tα for large finite t.

A mean-field interpretation of the result τ ≈ 2 is next presented. At any time
t0, the number of units in the already-existing classes is n(t0). Suppose a new class
consisting of one unit is born at time t0. According to Rules 2b and 2c, its growth
rate is proportional to 1/n(t0). Neglecting the effect of the influx of new classes on
n(t0), the average size K of this class born at t0 is proportional to 1/n(t0). So the
classes which were born at times t > t0 tend to have an average size measured in
terms of K which is smaller than the one of older classes. If the classes are sorted
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according to their size, the rank R(K) of a class is proportional to its age R(K) ∝ t0.
Thus, K ∼ 1/n(t0) ∼ 1/t0 ∼ 1/R(t0), coherently with the standard formulation of the
Zipf law [210] according to which the size of a class K is inversely proportional to its
rank. If it is taken into account the decrease of the growth rate with the influx of new
classes, one can show after some algebra that K ∼ R−(λ−µ)/(λ−µ+b), which includes
K ∼ R−1 as a limiting case for b → 0. Since R(K) is the number of classes whose
sizes are larger than K, it can be written in the continuum limit R(K) ∼ ∫∞

K
P (K)dk,

and hence P (K) ∼ K−2−b/(λ−µ).

The full solution of Eq. (4.13), a power law with an exponential cut-off, can be
interpreted as follows. Starting with N classes which are colored red, and let the
newly born classes be colored blue. Due to the preferential attachment rule, the red
classes have on average a number of units which is larger than the blue classes. Thus
for large K, P (K) is governed by the exponential distribution of the red classes (Case
i), while for small K, P (K) is governed by the power law distribution of the blue
classes (Case ii).

4.2.3 Comparison of model with data

The predictions of the model has been tested using the pharmaceutical industry
database (PHID), a micro-level economic database which allows a fine grained de-
composition of the statistical properties of growth dynamics of business firms in a
given industry. PHID records quarterly sales figures of 48,819 pharmaceutical prod-
ucts commercialized in the European Union and North America from September 1991
to June 2001. The products are then classified into different hierarchical levels based
on the Anatomic and Therapeutic Classification (ATC) (Table 4.1). Each level has a
specific number of classes (Table 4.2).

At all different levels, there are positive correlations between the number of units
(products) which enter or exit and the number of units in the classes of a given
level L = A,B, C,D (Table 4.3). This empirical observation is consistent with a
preferential birth and death process (Rules 2b and 2c), as described.
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Level Type N Code Content
A Anatomical main

group
13 M Musculo-Skeletal System

B Therapeutic
subgroup

84 M05 Drugs for treatment of bone
diseases

C Pharmacological
subgroup

259 M05B Drugs affecting bone structure
and mineralization

D Chemical subgroup 432 M05BA Bisphosphonates

Table 4.1: The ATC hierarchical classification. The ATC categorizes drugs at four
levels of aggregation according to the organ or system on which they act and their
chemical, pharmacological and therapeutic properties. There are 13 main groups
(level A) and 84 pharmacological subgroups (level B). The levels C and D are phar-
macological/therapeutic subgroups. Medicinal products, such as Bisphosphonates in
the example, are classified according to the main therapeutic use of the main active
ingredient. The basic principle is one ATC code for each pharmaceutical formula-
tion. The WHO is responsible to manage the ATC. Over the period of our empirical
analysis, the number of classes of levels A and B have remained constant, while the
number of classes in levels C and D increased by 3% and 5% respectively.

Level A B C D firms products
Nf 13 84 259 432 3913 48819
Nb 0 0 8 20 458 12645
Nd 0 0 0 0 252 3361

Table 4.2: The evolution of the number of classes N for different levels of the PHID
over 10 years. There are three different cases of N in 6 levels: (i) For levels A and
B there is no birth or death of classes (i.e., the number of newly born classes Nb is
0 and the number of dead classes Nd is also 0. (ii) For levels C and D system grows
not only with birth and death of units inside classes but also with the birth of classes.
The system grows with the birth of new classes to the final Nf classes (259 for level
C and 432 for level D). (iii) For firm level, there also exists the death of classes which
is not considered in the model. From the table, the values of b/(λ− µ) estimated to
be Nb,L/(Nb,p −Nd,p) are 0.0009 (level C), 0.002 (level D) and 0.049 (firms).
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Level A B C D firms
C(kb, ke) 0.93 0.87 0.84 0.82 0.70
C(kd, ke) 0.88 0.86 0.80 0.78 0.75

Table 4.3: Correlation coefficient C(Kb,Ke) between the number of born units Kb

and existing number of units Ke in classes and C(Kd,Ke) between the number of
dead units Kd and Ke in classes for each level in the PHID. The observed correlations
justify the assumptions in the model: the preferential birth and death of units (Rules
2b and 2c).

(Level) γ (A) γ (B) γ (C) γ (D) γ (firms) τ (firms)
data 0.00031 0.0015 0.0039 0.0044 0.0054 1.97

model 0.00020 0.0013 0.0033 0.0050 0.0173 2.05

Table 4.4: Comparison of values of the parameters in the model using the data and
from the model. γ of the data is estimated by regression in Fig. 4.17, and γ of the
model is estimated using γ = − log η0,t (η0,t in Eq. (4.15) is estimated by the value
of b/(λ− µ) and N which is the solution of two equations: N + (λ− µ + b)t = 48819
and N + bt = Nf,L, based on Table 4.2). τ of the data is estimated by regression in
Fig. 4.18a and τ of the model is estimated using τ = 2 + b/(λ− µ) with the numbers
of Table 4.2.
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Figure 4.17: Empirical results for the cumulative probability distribution, P (K), of
class size K at different levels. Figures (a)-(d) correspond to levels A-D respectively.
Symbols represent data points in each level (a)∼(d), while solid lines are predictions
of the model. The cumulative probability distributions for all levels are reasonably
well fit by pure exponentials, as predicted by the model.
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Figure 4.18: Comparison of empirical results for firms of the PHID and the simulation
results. (a) and (c) Log-log plots of the cumulative probability distribution‘ of the
class sizes show a power law decay K−(τ−1) with τ ≈ 2 for K <200. (b) and (d) Log-
linear plots of the cumulative probability distribution, showing exponential decay for
K >200. In (c) and (d)©, ¤ and4 show the distribution for t = 200, 000, t = 20, 000
and t = 2000 respectively. Note that the exponential function gradually changes into
a power law function.
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For levels A and B, the number of classes did not change during the period of
observation and it is found an exponential distribution (Figs. 4.17a and 4.17b) as
predicted by the limiting Case i of the model. For levels C and D, a weak departure
from the exponential functional form (Fig. 4.17c and Fig. 4.17d) can be accounted for
within the model, if it is considered a slight growth in the number of classes.

The full solution predicted by the model, i.e., power law followed by the exponen-
tial decay of P (K), is observed empirically for firms (Fig. 4.18), displaying a power
law with exponent τ = 1.97 for K < 200, and an exponential cut-off for K > 200.
Coherently with the predictions of the model, the exponential part of P (K) arises
from large, diversified, “old” firms, while the power law part of P (K) is produced
by young firms. The reason for the departure of the empirically observed τ from the
prediction of the model τ > 2 comes from the fact that the distribution is the sum
of the distributions of the new and old classes. The latter create a “bump” on the
power law distribution caused by the new classes in the region of K ≥ tα. We have
tested numerically that the value of τ measured for the distribution of the new classes
is consistent with the analytical predictions τ > 2 while the effective value of τ < 2
measured for the entire distribution is in agreement with the empirical data.

The estimated parameters are given based on Table 4.2: b/(λ−µ) is estimated to
be Nb,L/(Nb,p−Nd,p), λ/µ = Nb,p/Nd,p, N +(λ−µ+ b)t = 48819 and N + bt = Nf,L

(where the subscripts ‘p’, ‘b’, ‘d’ and ‘f ’ denote ‘product’, ‘birth’, ‘death’ and ‘final’
respectively, and ‘L’ means either of level A to D or firms). Using γ = − log η0,t and
η0,t in Eq. (4.15) by eliminating t, γ and τ can be estimated (Table 4.4).

The oldest firms within the industry entered it almost 150 years ago, while this
data cover only the last decade. Nonetheless, the theoretical estimations of γ and
τ based on Eq. 4.17 and Eq. 4.20 are surprisingly good, except for the γ of firms.
This departure can be accounted for if it is considered that the real data on firms are
shaped not only by firm entry, but also by firm exit, mergers & acquisitions, which
are not considered by the model [101, 169]. Additional computer simulations show,
that if a possible exit of classes is included in the model, the value of γ estimated from
the parameters of the model comes to an agreement with the actual one. Simulation
results are showed in Fig. 4.18c and Fig. 4.18d, and they are in good agreement with
the empirical results in Fig. 4.18a and Fig. 4.18b.

4.3 The Distribution of Growth Rates, P (g), and its Modeling

4.3.1 Introduction

The growth-rate distributions P (g) exhibit many similar behaviors among differ-
ent subjects and fields but without a general model towards the justification. In
particular, growth rate interests economists and entrepreneurs far more than other
quantities because growth rate means the change of firm size which relates to the
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profit of a firm, and positive growth rate means that a given company can live in the
market.

The first prediction of the Gibrat model, log-normal distribution of firm size, was
supported by many subsequent researchers [3, 34, 120, 142, 187, 207], but the second
one has been challenged by many researchers [27, 120, 142, 156, 187] who found that
the firm growth distribution is not Gaussian but displays a tent shape. Here a math-
ematical framework that provides an unifying explanation for the growth of business
firms based on the number and size distribution of their elementary constituent com-
ponents [3, 4, 33, 34, 38, 71, 195, 196] is introduced. Specifically a model of proportional
growth in both the number of units and their size is presented and some general impli-
cations on the mechanisms which sustain business firm growth [71, 92, 100, 109, 135,
194] is drawn. According to the model, the probability density function (PDF) of
growth rates, P (g) is Laplace [113] in the center [187] with power law tails [166, 168]
decaying as g−ζ where ζ = 3.

Two key sets of assumptions in the model are described in Sec. 4.3.2.1 (the num-
ber of units K in a class grows in proportion to the existing number of units) and
Sec. 4.3.2.2 (the size of each unit fluctuates in proportion to its size). Our objective
is to first find P (K) (by a different approach from last chapter), the probability dis-
tribution of the number of units in the classes at large t, and then find P (g) using
the convolution of P (K) and the conditional distribution of the class growth rates
P (g|K), which for large K converges to a Gaussian.

4.3.2 The Model

4.3.2.1 Case 1: Mean-field solution of P (K)

In this subsection, a different approach to solve the distribution of unit number
P (K) by mean-field approximation, compared to the method that it is used in Sec-
tion 4.2 by solving partial differential equations is given. The two different methods
starting from the same assumptions show the same results for P (K).
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Figure 4.19: Schematic representation of the model of proportional growth. At time
t = 0, there are N(0) = 2 classes (¤) and n(0) = 5 units (©) (Assumption A1).
The area of each circle is proportional to the size ξ of the unit, and the size of each
class is the sum of the areas of its constituent units (see Assumption B1). At the
next time step, t = 1, a new unit is created (Assumption A2). With probability b

the new unit is assigned to a new class (class 3 in this example) (Assumption A3).
With probability 1 − b the new unit is assigned to an existing class with probability
proportional to the number of units in the class (Assumption A4). In this example,
a new unit is assigned to class 1 with probability 3/5 or to class 2 with probability
2/5. Finally, at each time step, each circle i grows or shrinks by a random factor ηi

(Assumption B2).

The set of assumptions [207] described in the previous section can be simplified as

(A1) Each class α consists of Kα(t) number of units. At time t = 0, there are N(0)
classes consisting of n(0) total number of units. The initial average number of
units in a class is thus n(0)/N(0).

(A2) At each time step a new unit is created. Thus the number of units at time t is
n(t) = n(0) + t.

(A3) With birth probability b, this new unit is assigned to a new class, so that the
average number of classes at time t is N(t) = N(0) + bt.

(A4) With probability 1 − b, the new unit is assigned to an existing class α with
probability Pα = (1− b)Kα(t)/n(t), so Kα(t + 1) = Kα(t) + 1.

This model can be generalized to the case when the units are born at any unit of time
t′ with probability µ, die with probability λ, and in addition a new class consisting of
one unit can be created with probability b′ [207]. This model can be reduced to the
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present model if one introduce time t = t′(µ−λ+b′) and probability b = b′/(µ−λ+b′).
The simplified model is shown in Fig. 4.19.

In two limiting cases (i) b = 0, Kα = 1 (α = 1, 2 . . . N(0)) and (ii) b 6= 0, N(0) = 1,
n(0) = 1 this model has exact analytical solutions P (K) = N(0)/t(t/(t+N(0)))K(1+
O(1/t)) [107, 114] and lim

t→∞
P (K) = (1+b)Γ(K)Γ(2+b)/Γ(K+2+b) [167] respectively.

In general, an exact analytical solution of this problem cannot be presented in a
simple closed form. Accordingly, it is sought for an approximate mean-field type [186]
solution which can be expressed in simple integrals and even in elementary functions
in some limiting cases. First it will be presented a known solution of the preferential
attachment model in the absence of the influx of new classes [53]:

Pold(K) = λK 1
K(t)− 1

≈ 1
K(t)

exp(−K/K(t))[1 + O(t−1)], (4.21)

where λ = 1− 1/K(t), and K(t) = [n(0) + t]/N(0) is the average number of units in
the old classes at time t. Note that the form of the distribution of units in the old
classes remains unchanged even in the presence of the new classes, whose creation
does not change the preferential attachment mechanism of the old classes and affects
only the functional form of K(t).

Now the problem in the presence of the influx of the new classes will be treated.
Assume that at the beginning there are N(0) classes with n(0) units. Because at every
time step, one unit is added to the system and a new class is added with probability
b, at moment t there are

n(t) = n(0) + t (4.22)

units and approximately

N(t) = N(0) + bt (4.23)

classes, among which there are approximately bt new classes with nnew units and
N(0) old classes with nold units, such that

nold + nnew = n(0) + t. (4.24)

Because of the preferential attachment assumption (A4), it can be written, neglecting
fluctuations [186] and assuming that t, nold, and nnew are continuous variables:

dnnew

dt
= b + (1− b)

nnew

n(0) + t
, (4.25)

dnold

dt
= (1− b)

nold

n(0) + t
. (4.26)

Solving the second differential equation and taking into account the initial condition
nold(0) = n(0), nold(t) = (n(0) + t)1−b n(0)b. Analogously, the number of units at
time t in the classes existing at time t0 is

ne(t0, t) = (n(0) + t)1−b(n(0) + t0)b (4.27)
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where the subscript ‘e’ means “existing”. Accordingly, the average number of units
in old classes is

K(t) =
nold(t)
N(0)

=
(n(0) + t)1−b

N(0)
n(0)b. (4.28)

Now using Eq. (4.21) to calculate the distribution of units in the old classes

Pold(K) ≈ N(0)
(n(0) + t)1−bn(0)b

exp
(
− K N(0)

(n(0) + t)1−bn(0)b

)
. (4.29)

and the contribution of the old classes to the distribution of all classes is

P̃old(K) = Pold(K)N(0)/(N(0) + bt). (4.30)

Next, the same strategy is used: first to figure out the average number of units
in new classes, and second to calculate the Pnew(K). In an infinitesimal time dt, the
number of units in the classes that appear at t0 is b dt and the number of these classes
is b dt. Because the probability that a class captures a new unit is proportional to the
number of units it has already gotten at time t, the number of units in the classes
that appear at time t0, observed at time t, is

nnew(t0, t) = ne(t0, t)bdt/[n(0) + t0]. (4.31)

The average number of units in these classes is

K(t0, t) = nnew(t0, t)/b dt = (n(0) + t)1−b/(n(0) + t0)1−b. (4.32)

Assuming that the distribution of units in these classes is given by a continuous
approximation (4.21)

Pnew(K, t0) ≈ 1
K(t0, t)

exp (−K/K(t0, t)) . (4.33)

Thus, their contribution to the total distribution is

b dt0
N(0) + b t

1
K(t0, t)

exp (−K/K(t0, t))

The contribution of all new classes to the distribution P (K) is

P̃new(K) ≈ b

N(0) + b t

∫ t

0

1
K(t0, t)

exp (−K/K(t0, t)) dt0. (4.34)

If y = K/K(t0, t) then P̃new(K) = Pnew(K)bt/(N(0) + bt) where

Pnew(K) ≈ n(0)/t + 1
1− b

K(− 1
1−b−1)

∫ K

K′
e−y y

1
1−b dy. (4.35)

and the low limit of integration, K ′ is given by

K ′ = K

(
n(0)

n(0) + t

)1−b

(4.36)
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Finally the distribution of units in all classes is given by

P (K) =
N(0)

N(0) + bt
Pold(K) +

bt

N(0) + bt
Pnew(K). (4.37)

Now the asymptotic behavior of the distribution in Eq. (4.35) is investigated and it
can be described by the Pareto power law tail with an exponential cut-off.

1. At fixed K when t →∞, K ′ → 0, thus

Pnew(K) =
1

1− b
K− 1

1−b−1

∫ K

0

e−y y
1

1−b dy,

=
1

1− b

[
Γ

(
1 +

1
1− b

)
−

∫ ∞

K

e−y y
1

1−b dy

]
K−1− 1

1−b . (4.38)

As K →∞, Pnew(K) converges to a finite value:

Pnew(K) = K−1− 1
b

(
1

1− b

)
Γ

(
1 +

1
1− b

)
. (4.39)

Thus for large K À 1, but such that K ′ ¿ 1 or K ¿ (1 + t/n(0)1−b, an approximate
power-law behavior is :

Pnew(K) ∼ K−ϕ, (4.40)

where ϕ = 2 + b/(1− b) ≥ 2.

As K → 0,

Pnew(K) =
1

1− b
K(− 1

1−b−1) K(1+ 1
1−b )

1 + 1
1−b

=
1

2− b
. (4.41)

2. At fixed t when K → ∞, using partial integration to evaluate the incomplete Γ
function:

∫ ∞

x

e−y yα dy = −e−y yα|∞x + α

∫ ∞

x

e−y yα−1 dy ≈ e−x xα.

Therefore, from Eq. (4.35)

P̃new(K) ≈ n(0) + t

N(0) + bt

b

1− b
K− 1

1−b−1

∫ ∞

K( n(0)
n(0)+t )

1−b
e−y y

1
1−b dy,

=
n(0)

N(0) + bt

b

1− b

1
K

exp

(
−K

(
n(0)

n(0) + t

)1−b
)

, (4.42)

which always decays faster than Eq. (4.29) because n(0) ≥ N(0) and there is an ad-
ditional factor K−1 in front of the exponential. Thus the behavior of the distribution
of all classes is dominated for large K by the exponential decay of the distribution of
units in the old classes.
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Figure 4.20: Comparison of the distributions P (K) for the new and old classes ob-
tained by numerical simulations of the model with the predictions of Eq. (4.34) and
Eq. (4.30) respectively. For large K the agreement is excellent. The discrepancy ex-
ists only for P̃new at small K, e.g. Eq. (4.34) significantly underestimates the P̃new(1)
and P̃new(2).

Note that Eq. (4.29) and Eq. (4.35) are not exact solutions but continuous approx-
imations which assume K is a real number. This approximation produces the most
serious discrepancy for small K. To test this approximation, numerical simulations of
the model for b = 0.1 is performed, N(0) = n(0) = 104 and t = 4× 104. The results
are presented in Fig. 4.20. While the agreement is excellent for large K, Eq. (4.35)
significantly underestimates the value of P̃new(K) for K = 1 and K = 2. Note that
in reality the power-law behavior of P̃new(K) extends into the region of very small
K.

The predictions of the model is tested using the pharmaceutical industry database
(PHID), a micro-level economic database which allows a fine grained decomposition
of the statistical properties of growth dynamics of business firms in a given industry.
PHID records quarterly sales figures of 48,819 pharmaceutical products commercial-
ized in the European Union and North America from September 1991 to June 2001.
The empirical data (Fig. 4.18) have the same shape and power-law exponent (1.14)
as the simulation results (Fig. 4.20).

4.3.2.2 Case 2: The Proportional Growth of Size of Units

The model in Sec. 4.3.2.1 can be extended for the purpose of obtaining the growth
rate distribution P (g) by introducing the Gibrat process onto the growth of each
units. The resulting distribution of the growth rates of all classes is determined by

P (g) ≡
∞∑

K=1

P (K)P (g|K), (4.43)
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where P (K) is the distribution of the number of units in the classes, computed in the
previous stage of the model and P (g|K) is the conditional distribution of growth rates
of classes with given number of units. Because the form of P (K) is already obtained
in Sec. 4.3.2.1, an expression of P (g) can be derived if P (g|K) can be calculated from
a new set of assumptions, and they are:

(B1) At time t, each class α has Kα(t) units of size ξi(t), i = 1, 2, ...Kα(t) where
Kα and ξi > 0 are independent random variables taken from the distributions
P (Kα) and Pξ(ξi) respectively. P (Kα) is defined by Eq. (4.37) and Pξ(ξi) is a
given distribution with finite mean and standard deviation and ln ξi has finite
mean µξ = 〈ln ξi〉 and variance Vξ = 〈(ln ξi)2〉−µ2

ξ . The size of a class is defined
as Sα(t) ≡ ∑Kα

i=1 ξi(t).

(B2) At time t+1, the size of each unit is decreased or increased by a random factor
ηi(t) > 0 so that

ξi(t + 1) = ξi(t) ηi(t), (4.44)

where ηi(t), the growth rate of unit i, is an independent random variable taken
from a distribution Pη(ηi), which has finite mean and standard deviation. ln ηi

has finite mean µη ≡ 〈ln ηi〉 and variance Vη ≡ 〈(ln ηi)2〉 − µ2
η.

Assuming that due to the Gibrat process, both the size and growth of units (ξi

and ηi respectively) are distributed log-normally

p(ξi) =
1√
2πVξ

1
ξi

exp
(−(ln ξi −mξ)2/2Vξ

)
, (4.45)

p(ηi) =
1√

2πVη

1
ηi

exp
(−(ln ηi −mη)2/2Vη

)
. (4.46)

If units grow according to a multiplicative process, the size of units ξ′i = ξiηi is
distributed log-normally with Vξ′ = Vξ + Vη and mξ′ = mξ + mη.

The nth moment of the variable x distributed log-normally is given by

µx(n) =
∫ ∞

0

1√
2πV

xn

x
dx exp

(−(lnx−m)2/2V
)

= exp
(
nmx + n2Vx/2

)
. (4.47)

Thus, its mean is µx ≡ µx(1) = exp(mx + Vx/2) and its variance is σ2
x ≡ µx(2) −

µx(1)2 = µx(1)2 (exp(Vx)− 1).
Remember our goal is to find an analytical approximation for P (g|K) by the dis-

tribution Pξ(ξ) and Pη(η). To get an exact analytical solution for P (g|K) is difficult,
and its expression is approximated by a Gaussian distribution when K is large. In
order to do so by the central limit theorem, first it must be shown that, for large K,
the random variable g has finite mean and variance.

According to the central limit theorem, the sum of K independent random vari-
ables with mean µξ ≡ µξ(1) and finite variance σ2

ξ is

K∑

i=1

ξi = Kµξ +
√

KνK , (4.48)
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where νK is the random variable with a distribution converging to a Gaussian

lim
K→∞

P (νK) → 1√
2πσ2

ξ

exp
(−ν2

K/2σ2
ξ

)
. (4.49)

Accordingly, ln(
∑K

i=1 ξi) can be replaced by its Taylor’s expansion ln K + ln µξ +
νK/(µξ

√
K), neglecting the terms of order K−1.

The distribution of g growth rate of classes is now found. From the definition
Eq. 4.1 and the assumption (B1),

g = ln
K∑

i=1

ξ′i − ln
K∑

i=1

ξi,

= ln(Kµξ′) +
ν′K√
Kµξ′

− ln(Kµξ)− νK√
Kµξ

,

= mη +
Vη

2
+

ν′Kµξ − νKµξ′√
Kµξµξ′

. (4.50)

Here, neglecting the influx of new units, Kα = Kα(t + 1) = Kα(t). For large K

the last term in Eq. (4.50) is the difference of two Gaussian variables and that is a
Gaussian variable itself. Thus for large K, g converges to a Gaussian with mean,
m = mη + Vη/2. Next, whether g has finite variance will be tested.

In order to do this,

ν′K√
K µξ′

=
∑K

i=1(ξ
′
i − µξ′)

K µξ′
,

and
νK√
K µξ

=
∑K

i=1(ξi − µξ)
K µξ

are rewritten. Thus

g = mη +
Vη

2
+

∑K
i=1 ξi(ηiµξ − µξ′)

Kµξµξ′
,

= mη +
Vη

2
+

∑K
i=1 ξi(ηi − µη)

Kµξ′
. (4.51)

Since µξ′ = µξµη, the average of each term in the sum is µξ′ − µξ µη = 0. The
variance of each term in the sum is 〈(ξi ηi)2〉 − 〈2ξ2

i ηi µη〉 + 〈ξ2
i µ2

η〉 where ξiηi, ξ2
i ηi

and ξ2
i are all log-normal independent random variables. Particularly, (ξiηi)2 is log-

normal with V = 4Vη +4Vξ and m = 2mη +2mξ; ξ2
i ηi is log-normal with V = 4Vξ +Vη

and m = 2mξ + mη; ξ2
i is log-normal with V = 4Vξ and m = 2mξ. Using Eq. (4.47)

〈(ξiηi)2〉 = exp(2mη + 2mξ + 2Vη + 2Vξ), (4.52a)

〈ξ2
i ηi〉 = exp(mη + 2mξ + 2Vξ + Vη/2), (4.52b)

〈ξ2
i 〉 = exp(2mξ + 2Vξ). (4.52c)
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Collecting all terms in Eqs. (4.52a-4.52c) together and using Eq. (4.51) the variance
of g is:

σ2 =
K exp(2mξ + 2Vξ + 2mη + Vη)(exp(Vη)− 1)

K2 exp(2mξ + Vξ + 2mη + Vη)
,

=
1
K

exp(Vξ) (exp(Vη)− 1). (4.53)

Therefore, for large K, g has a Gaussian distribution

P (g|K) =
√

K√
2πV

exp
(
− (g −m)2K

2V

)
, (4.54)

where

m = mη + Vη/2 (4.55)

and

V ≡ Kσ2 = exp(Vξ)(exp(Vη)− 1). (4.56)

Note, that the convergence of the sum of log-normals to the Gaussian given by Eq.
(4.48) is a very slow process, achieving reasonable accuracy only for K À µξ(2) ∼
exp(2Vξ). For the PHID which is introduced in Sec. 4.3.4 [78, 142], we have Vξ = 5.13,
mξ = 3.44, Vη = 0.36, and mη = 0.16.

Now, obtained the approximation of P (g|K), as Eq. 4.54 shows, using Eq. 4.43
the closed-form approximations for the distribution of growth rate is got. Since in
Eq. 4.37, P (K) is the sum of two terms, the Pold(g) and Pnew(g) for old classes
and new classes based on Pold(K) and Pnew(K) respectively will be calculated. The
shapes of Pold(g) and Pnew(g) should give a similar shape to each other.

The distribution of the growth rate of the old classes can be found by Eq. (4.43).
In order to find a closed-form approximation, the summation in Eq. (4.43) is replaced
by integration and the distributions P (K) by Eq. (4.29) and P (g|K) by Eq. (4.54).
Assuming m = 0, we have

Pold(g) ≈ 1√
2πV

∫ ∞

0

1
K(t)

exp(
−K

K(t)
) exp(−g2 K

2 V
)
√

K dK,

=

√
K(t)

2
√

2 V

(
1 +

K(t)
2V

g2

)− 3
2

, (4.57)

where K(t) is the average number of units in the old classes (see Eq. (4.28)). This
distribution decays as 1/g3 and thus does not have a finite variance. In spite of
the drastic assumptions, Eq. (4.57) correctly predicts the shape of the convolution
Pold(g).

For the new classes, when t → ∞ the distribution of the number of units is
approximated by

Pnew(K) ≈ 1
1− b

K−1− 1
1−b

∫ K

0

y
1

1−b e−y dy. (4.58)
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Again replacing summation in Eq. (4.43) by integration and P (g|K) by Eq. (4.54)
and after switching the order of integration:

Pnew(g) ≈ 1
1− b

1√
2πV

∫ ∞

0

exp(−y) y
1

1−b dy

∫ ∞

y

exp(−g2 K/2V )K(− 1
2− 1

1−b ) dK.

(4.59)
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Figure 4.21: (a) Comparison of three different approximations for the growth rate
PDF, Pg(g), given by Eq. (4.57), mean field approximation Eq. (4.59) for b = 0.1,
and by Eq. (4.61). Each Pg(g) shows similar tent shape behavior in the central part.
There is little difference between the three cases, b = 0 (no entry), b = 0.1 (with entry)
and the mean field approximation. This means that entry of new classes (b > 0) does
not perceptibly change the shape of Pg(g). Note that it is used K(t)/Vg = 2.16 for
Eq. (4.57) and Vg = 1 for Eq. (4.61). (b) The crossover of Pg(g) given by Eq. (4.61)
between the Laplace distribution in the center and power law in the tails. For small
g, Pg(g) follows a Laplace distribution Pg(g) ∼ exp(−|g|), and for large g, Pg(g)
asymptotically follows an inverse cubic power law Pg(g) ∼ g−3.

As g → ∞, the second integral in Eq. (4.59) by partial integration can be evalu-
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ated:

Pnew(g) ≈ 1
1− b

∫ ∞

0

1√
2πV

2V

g2
y−

1
1−b− 1

2 y
1

1−b exp(−y) exp(−y g2/2V ) dy,

=
1

1− b

1√
2πV

2V

g2

1√
g2/2V + 1

√
π ∼ 1

g3
. (4.60)

It can be computed the first derivative of the distribution (4.59) by differentiating
the integrand in the second integral with respect to g. The second integral converges
as y → 0, and we find the behavior of the derivative for g → 0 by the substitution
x = Kg2/(2V ). As g → 0, the derivative behaves as g g2[−(3/2)+1/(1−b)] ∼ g2b/(1−b),
which means that the function itself behaves as C2 − C1|g|2b/(1−b)+1, where C2 and
C1 are positive constants. For small b this behavior is similar to the behavior of a
Laplace distribution with variance V : exp(−√2|g|/√V )/

√
2V = 1/

√
2V − |g|/V .

When b → 0, Eq. (4.59) can be expressed in elementary functions:

Pnew(g)|b→0 ≈ 1√
2πV

∫ ∞

0

K−3/2 exp(−K g2/2 V ) dK

∫ K

0

exp(−y) y dy,

≈ 1√
2 V

(
− 1√

1 + g2/2 V
+

2
|g|/√2 V +

√
g2/2 V + 1

)
.

Simplifying, the main result is:

Pnew(g)|b→0 ≈ 2V√
g2 + 2V (|g|+

√
g2 + 2V )2

. (4.61)

which behaves for g → 0 as 1/
√

2V − |g|/V and for g → ∞ as V/(2g3). Thus the
distribution is well approximated by a Laplace distribution in the body with power-
law tails. Because of the discrete nature of the distribution of the number of units,
when g À √

2V the behavior for g →∞ is dominated by exp(−g2/2V ).
In Fig. 4.21a the distributions given by Eq. (4.57), the mean field approximation

Eq. (4.59) for b = 0.1 and Eq. (4.61) for b → 0 is compared. All three distributions
have very similar tent-shaped behavior in the central part. In Fig. 4.21b the distri-
bution Eq. (4.61) with its asymptotic behaviors for g → 0 (Laplace cusp) and g →∞
(power law) is also compared, and it is found the crossover region between these two
regimes.

4.3.3 Analytical Results

The analytical solution of this model can be obtained only for certain limiting
cases but a numerical solution can be easily computed for any set of assumptions.
The model is investigated numerically and analytically and it is found:

(1) In the presence of the influx of new classes (b > 0), the distribution of units
converges for t → ∞ to a power law P (K) ∼ K−ϕ, ϕ = 2 + b/(1 − b) ≥ 2.
Note that this behavior of the power-law probability density function leads to a
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power law rank-order distribution where the rank of a class R is related to the
number of its units K as

R = N(t)
∫ ∞

K

P (K)dk ∼ K−ϕ+1. (4.62)

Thus K ∼ R−ζ , where ζ = 1/(ϕ−1) = 1− b ≤ 1, which leads in the limit b → 0
to the celebrated Zipf’s law[210] for cities’ populations, K ∼ 1/R. Note that this
equation can be derived for the model using elementary considerations. Indeed,
due to proportional growth the rank of a class, R, is proportional to the time of
its creation t0. The number of units n(t0) existing at time t0 is also proportional
to t0 and thus also proportional to R. According to the proportional growth, the
ratio of the number of units in this class to the number of units in the classes that
existed at time t0 is constant: K(t0, t)/ne(t0, t) = 1/n(t0). If it is assumed that
the total number of units in the classes created after t0, can be neglected since
the influx of new classes b is small, ne(t0, t) can be approximated by ≈ n(t) ∼ t.
Thus for large t, ne(t0, t) is independent of t0 and hence K(t0, t) ∼ 1/R. If
the influx of new classes is not neglected, Eq. (4.27) gives ne(t0, t) ∼ tb0, hence
K(t0, t) ∼ 1/R1−b.

(2) The conditional distribution of the logarithmic growth rates P (g|K) for the
classes consisting of a fixed number K of units converges to a Gaussian distri-
bution (4.54) for K →∞. Thus the width of this distribution, σ(K), decreases
as 1/Kβ , with β = 1/2. Note that due to slow convergence of log-normals to the
Gaussian in the case of a wide log-normal distribution of unit sizes Vξ = 5.13,
computed from the empirical data [78], and β = 0.2 for relatively small classes.
This result is consistent with the observation that large firms with many produc-
tion units fluctuate less than small firms [3, 4, 99, 194]. Interestingly, in case of
large Vξ, P (g|K) converges to the Gaussian in the central interval which grows
with K, but outside this interval it develops tent-shape wings, which become in-
creasingly wider, as K →∞. However, they remain limited by the distribution
of the logarithmic growth rates of the units, Pη(ln η).

(3) For g À Vη, the distribution P (g) coincides with the distribution of the loga-
rithms of the growth rates of the units:

P (g) ≈ Pη(ln η). (4.63)

In the case of a power law distribution P (K) ∼ K−ϕ which dramatically in-
creases for K → 1, the distribution P (g) is dominated by the growth rates of
classes consisting of a single unit K = 1, thus the distribution P (g) practically
coincides with Pη(ln η) for all g.

(4) If the distribution P (K) ∼ K−ϕ, ϕ > 2 for K →∞, as happens in the presence
of the influx of new units b 6= 0, P (g) = C1 − C2|g|2ϕ−3, for g → 0 which in
the limiting case b → 0, ϕ → 2 gives the cusp P (g) ∼ C1 − C2|g| (C1 and
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C2 are positive constants), similar to the behavior of the Laplace distribution
PL(g) ∼ exp(−|g|C2) for g → 0.

(5) If the distribution P (K) weakly depends on K for K → 1, the distribution
of P (g) can be approximated by a power law of g: P (g) ∼ g−3 over a wide
range

√
Vg/K(t) ¿ g ¿ √

V , where K(t) is the average number of units in a
class. This case is realized for b = 0, t → ∞ when the distribution of P (K)
is dominated by the exponential distribution and K(t) → ∞ as defined by
Eq. (4.21). In this particular case, P (g) for g ¿ √

Vg can be approximated by
Eq.(4.57)

(6) In the case in which the distribution P (K) is not dominated by one-unit classes
but for K → ∞ behaves as a power law, which is the result of the mean field
solution for our model when t → ∞, the resulting distribution P (g) has three
regimes, P (g) ∼ C1−C2|g|2ϕ−3 for small g, P (g) ∼ g−3 for intermediate g, and
P (g) ∼ P (ln η) for g → ∞. The approximate solution of P (g) in this case is
given by Eq. (4.59) For b 6= 0 Eq. (4.59) can not be expressed in elementary
functions. In the b → 0 case, Eq. (4.59) yields the main result Eq.(4.61). which
combines the Laplace cusp for g → 0 and the power law decay for g → ∞.
Note that due to replacement of summation by integration in Eq. (4.43), the
approximation Eq. (4.61) holds only for g <

√
Vη.

In conclusion although the derivations of the distributions (4.57), (4.59), and (4.61)
are not rigorous they satisfactory reproduce the shape of empirical data, especially
the 1/g3 behavior of the wings of the distribution of the growth rates and the sharp
cusp near the center.

4.3.4 Empirical Evidence
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Figure 4.22: Empirical results of the probability density function (PDF) P (g) on
different subjects. (a) GDP for 195 countries from 1960 to 2004. (b) all firms in
PHID database. (c) All U.S. publicly-traded manufacturing firms from 1973 to 2004
in Compustat database. (d) all products in PHID database.

To test the model, different levels of aggregation of economic systems are ana-
lyzed, from the micro level of products to the macro level of industrial sectors and
national economies. The empirical data for several examples are shown in Fig. 4.22.
First, a new and unique database is analyzed, the pharmaceutical industry database
(PHID), which records sales figures of the 189, 303 products commercialized by 7, 184
pharmaceutical firms in 21 countries from 1994 to 2004, covering the whole size dis-
tribution for products and firms and monitoring the flows of entry and exit at both
levels. The database was kindly provided by the EPRIS program. Then, the growth
rates of all U.S. publicly-traded firms from 1973 to 2004 in all industries, based on
Security Exchange Commission filings (Compustat) is studied. Finally, at the macro
level, the growth rates of the gross domestic product (GDP) of 195 countries from
1960 to 2004 (World Bank) is studied.
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Figure 4.23: Empirical tests of Eq. (4.61) for the probability density function (PDF)
P (g) of growth rates rescaled by

√
V . The shapes of P (g) for all four levels of

aggregation are well approximated by the PDF predicted by the model (dashed lines).
Dashed lines are obtained based on Eq. (4.61) with V ≈ 4×10−4 for GDP, V ≈ 0.014
for pharmaceutical firms, V ≈ 0.019 for manufacturing firms, and V ≈ 0.01 for
products. After rescaling, the four PDFs can be fit by the same function. For clarity,
the pharmaceutical firms are offset by a factor of 102, manufacturing firms by a factor
of 104 and the pharmaceutical products by a factor of 106. Note that the data for
pharmaceutical products extend from P (g) = 1 to P (g) ≈ 10−4 and the mismatch
in the tail parts is because P (g) for large g is mainly determined by the logarithmic
growth rates of units ln η.
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Figure 4.24: (a) Empirical tests of Eq. (4.61) for the central part in the PDF P (g)
of growth rates rescaled by

√
V . The shape of central parts for all four levels of

aggregation can be well fit by a Laplace distribution (dashed lines). Note that a
Laplace distribution can fit P (g) only over a restricted range, from P (g) = 1 to
P (g) ≈ 10−1. (b) Empirical tests of Eq. (4.61) for the tail parts of the PDF of growth
rates rescaled by

√
V . The asymptotic behavior of g at any level of aggregation can be

well approximated by power laws with exponents ζ ≈ 3 (dashed lines). The symbols
are as follows: Country GDP (left tail: ©, right tail: •), pharmaceutical firms (left
tail: ¤, right tail: ¥), manufacturing firms (left tail: ♦, right tail: ¨), pharmaceutical
products (left tail: 4, right tail: N).

Figure 4.23 shows that the growth distributions of countries, firms, and products
are well fitted by the distribution in Eq. (4.61) with different values of Vg. Indeed,
the growth distributions at any level of aggregation depict marked departures from
Gibrat’s Gaussian shape. Moreover, even if the Pg(g) of GDP can be approximated
by a Laplace distribution, the Pg(g) of firms and products are clearly more leptokurtic
than Laplace. Based on the model, the growth distribution is Laplace in the body,
with power-law tails. In fact, Fig. 4.24a shows that the central body part of the
growth rate distributions at any level of aggregation is well approximated by a double
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exponential fit. Fig. 4.24b reveals that the asymptotic behaviors of g at any level of
aggregation can be well fitted by a power-law with an exponent ζ = 3.

The analysis in Sec. 4.3.2.1 predicts that the power law regime of Pg(g) may vary
depending on the behavior of P (K) for K → 1, and the distribution of the growth
rates of units. In case of the PHID, for which P (1) À P (2) À P (3) . . . the growth
rate distribution of firms must be almost the same as the growth rate distribution of
products, as it was stated in Sec. II. Hence the power law wings of Pg(g) for firms
originate on the level of products. Because the PHID does not contain information
on the subunits of products it is not possible test the prediction directly, but it can
be hypothesized that the distribution of the product subunits (number of customers
or shipping ways) is less dominated by small K, but has a sufficiently wide power
law regime due to the influx of new products. These rather plausible assumptions are
sufficient to explain the shape of the distribution of the product growth rates, which
is well described by Eq. (4.61).

To further test the universality of fitting function Eq. 4.61, a new database from
pharmaceutical industry in two major developing countries: China and India is used.
In Fig. 4.25, before the scaling transformation, the firm growth rate distributions in
two countries are quite different because it is clear that India has a bigger spread
or volatility of growth rates than China; but after scaling with appropriate Vg, P (g)
for the different countries overlapped with each other and they clearly follow the
prediction of Eq. 4.61.
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Figure 4.25: (a) Empirical P (g) of pharmaceutical companies in China and India. As
it shows, the spread of P (g) for China is wider than for India which implies that the
growth in the pharmaceutical companies in China is more volatile than in India. (b)
After rescaling the P (g) with V , rescaled P (g) for China and India pharmaceutical
companies overlaps and both of them are well fitted by the Eq. 4.61. It supports the
claim that Eq. 4.61 can be a universal fitting function of P (g), even in developing
countries.
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Figure 4.26: (a) The empirical results of the relationship between the standard devi-
ation of growth rates and firm size. Note that they have similar shape with a similar
slope. (b) The β curves of GDP and Manufacturing firms, pharmaceutical firms are
offset a little in order to get a fit by one power-law function.

Finally another important empirical result is tested: the power-law relationship
between standard deviation of firm growth rates, σ(g|S), and firm size S. Based on
previous empirical findings, the power-law exponent β is 0.15 for country’s GDP [120],
0.17 for American Manufacturing Industries [3], and 0.20 for PHID [142]. In FIG. 4.26,
all of those power-law curves are put together, and it is offset some to fit them by a
power law with β = 0.17. A numerical simulation gives β = 0.18 as Fig. 4.27 shows.
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Figure 4.27: The simulation result of the relationship between the standard deviation
of growth rates and firm size. The model runs about 1 million time steps. This
simulation has α = 0.05, λ = −0.52, µ = 0.50, a log-normal distribution of product
size ξ with mean value 3.44 and standard deviation 5.13.

The existence of β implies a scaling phenomenon. Following [142], it is separated
all firms by size into three categories: small, medium, and large firms. For each
category, the distribution of firm growth rates as Fig. 4.28 is plotted. As it shows,
the conditional distribution of growth rates P (g|S) gives similar shape and the spread
of the conditional distribution for small firms is indeed much larger than the one for
large firms. Finally, scaling transformation in Fig. 4.28 is done, that is, the y axis—
P (g|S)— is multiplied by the standard deviation of growth rate σ(g|S) and divide
the x axis—g—by σ(g|S). In Fig. 4.29 the three conditional growth-rate distributions
collapse onto a single curve.
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Figure 4.28: The simulation result of P (g) for different firm size. All firms are divided
into three categories: small, medium and large. The three conditional distribution
of growth rates give a similar shape which implies that they can be fit by the same
function.
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Figure 4.29: The simulation result of P (g|S) rescaled by standard deviation of growth
rates. As it shows, the three different curves collapse onto a single curve.

4.4 The size-variance relationship

Fig. 4.30a shows the size-variance relationship for firms. Although the slope β(S)
increases with S, it does not display a strong crossover predicted by the preferential
attachment model described here. This discrepancy may arise from the inaccuracy
of two assumptions made in the model. The first assumption is that the new units
attached to a class are taken at random from a general distribution of unit sizes which
does not depend on the size of a particular class. The second assumption is that the
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growth rates of units are taken at random from a general distribution of unit growth
rates which do not depend on a size of a unit.
To test the first possibility, the products are randomly reassigned to the firms keeping
the number of the products in each firm unchanged, and keeping the history of the
fluctuation of each product sales unchanged.
This randomization practically does not change the size-variance dependence of the
firms. (Fig. 4.30a).
This test demonstrates that although there is a small correlation between the num-
ber of products in the firm and their sizes (see Fig. 4.30b), this correlation is not
responsible for the origin of the power-law size-variance relationship observed for the
empirical data.
To test the second possibility, the sizes of products ξi and their number Kα at year t

for each firm are kept the same as in the original data, so St =
∑Kα

i=1 ξi is the same
as in the empirical data. However, to compute the sales of a firm in the following
year S̃t+1 =

∑Kα

i=1 ξ′i, it is assumed that ξ′i = ξiηi, where ηi is an annual growth rate

of a randomly selected product. The surrogate growth rate g̃ = ln
eSt+1
St

obtained in
this way does not display any size-variance relationship (Fig. 4.30c). The second
test shows that the size-variance relationship for the firm growth rates in the phar-
maceutical data base is generated on the level of products. Indeed, the size-variance
relationship of the growth rates of products gξ = ln( ξt+1

ξt
) shows a large range of

approximate power law behavior with β = 0.096 (Fig. 4.30b). The origin of this size-
variance relationship cannot be determined from the present data set. It can come
from the fact that small experimental products prescribed by few physicians to few
patients are less stable then well established products prescribed to large number of
patients.
Comparing the size-variance relationship for firms and products, for small firms this
two distribution almost coincide, however for large firms,the exponent β is much larger
than for the products.

Figure 4.31 shows the survivor function for ρt
i. ρt

i is the number of products that
represent the 50% of the whole company i size at time t. Figure 4.31 tells how many
products give the 50% of the whole company size. This curve is the survivor function,
and for ρ < 10 the curve is a power law with exponent around 1.7. In only few cases
the company size is determined by more than 10 products. In the most cases the
firms size is only due at 2 or 3 larger products. The fluctuations of the firms are
due to the fluctuations of the largest or the few larger products. This data set tells
only that the distribution of the number of products is power law, and there is no
more information. So the shape of the firms growth rate is not due to the preferential
attachment model, that only supports this evidence, but to the shape of the products
growth rate. The mystery is why products have such kind of distribution, but this
data set has not enough information to understand this behavior.
The origin of the size-variance relationship of the firms comes from the analogous
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size-variance relationship of the products and not from the preferential attachment
model. To test this, the data have been left almost unchanged, randomizing only one
parameter of the data at a time. In the first case, the products are reassigned to the
firms in random order (keeping the number of products in each firm and the history
of each products unchanged). Figure 4.30a shows β for firms left almost unchanged.
This lets to conclude that β is not only due to the allocation process of products to
the firms. In the other case, the product growth rate is reassigned in a random order,
keeping the number of the products in each firm, K, and the size of each product
ξi in the year t the same as in original data. The firm size at t + 1 is computed as∑K

i=1 ξiηk where ηk is the growth rate of a randomly selected product. Figure 4.30b
and Figure 4.30c show the results. In this case beta becomes −0.028. There is no
size-variance relationship. These two analysis clearly show that β originates already
on the level of products but not due to the crossover in the preferential attachment.
This database has not enough information to understand more deeply the origin of β.
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Figure 4.30: (a) Size-variance relationship at the firm level. Continuous line with
circle represents the empirical data. The slope of the linear fit is -0.18 (β = −0.18).
Dashed line with asterisks shows the size-variance relationship for the surrogate data
set in which it is randomly allocated the products to the firms, keeping the number
of products in each firms and the historical records for each product unchanged. In
this case the slope is -0.14 (β = −0.14). (b) Size-variance relationship at the product
and firms level. The continuous line with circle plots the empirical data for firms,
whereas the dashed line with cross the data for products.The slope for the firms data
is β = −0.18 and for products is β = −0.096. (c) Size-variance relationship at the firm
level. The continuous line with circle plots the empirical data, whereas the dashed line
with asterisks the surrogate data t but after random reassignment of products growth
rates. The slope for the empirical data is β = −0.18, but after random reassignment
of the products growth rates explained in the text the slope becomes β = −0.028
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Chapter 5

Remarks and Conclusions

5.1 Single asset model and empirical results

Empirical analysis and computational experiments of high-frequency data for a
double-auction (book) market have been presented. The results of Raberto et al. 2004
[161] are confirmed and strengthened. Indeed, the return distribution is leptokurtic
not only when the order generation process is Poisson but also in presence of memory,
as in the case of Weibull-distributed waiting times. Moreover, with memory, return
tails are fatter.

This result deserves attention because previous empirical analysis [132, 164, 175]
has shown that the distribution of trade waiting times is non-exponential. Conversely,
exponentially distributed trade waiting times only result from a finite thinning of a
Poisson order process. Consequently, the distribution of order waiting times should
be a more general distribution, e.g., a Weibull, than an exponential distribution un-
derlying a simple memoryless Poisson process.

The hypothesis of non exponentially distributed order waiting times is empirically
accessible and can be directly checked if full book information were available. More-
over, one can try to solve the inverse problem: given a trade waiting time distribution,
which is the originating order waiting time distribution?

Empirical analysis confirmed that trading waiting times are not exponentially dis-
tributed, whereas a Weibull process cannot be rejected. This result deserves attention
because exponentially distributed trade waiting times only result from a finite thin-
ning of a Poisson order process. Consequently, the distribution of order waiting times
should be a more general distribution than an exponential distribution underlying a
simple memoryless Poisson process.
In order to better understand the relationship between order and trading waiting
times, computer experiments on the Genoa Artificial Stock Market have been consid-
ered. In particular, a double-auction mechanism (i.e., limit order book) with order
waiting times characterized by a mixture of Poisson process has been modeled and
implemented. The characteristics of Poisson process in the mixture have been prop-
erly estimated by real data. It has been shown that, both order and trading waiting
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times, reject hypothesis of exponentially distributed point process. Conversely, the
hypothesis of Weibull distribution cannot be rejected and estimation of the corre-
sponding Weibull parameter β pointed out values quite close to those obtained in the
case of 30 DJIA stocks traded at NYSE in October 1999. Finally, the influence of the
number of exponential distribution of the mixture appears almost negligible as far as
survivals of order and trading waiting times and β do not change significantly. This
allows one to conclude that already a mixture of two Poisson process can be sufficient
in order to reproduce the behavior of real stock market.

5.2 Multi assets model and empirical results

The ability to recover these stylized facts in a framework where only zero-intelligence
traders operate is an interesting and surprising result. Moreover, it is worth noting
that for the difference of the business sectors dividends or cash inflow are not impor-
tant, in fact also in simulation without these exogenous parameters business sectors
are differentiated. So only the restrictions on agents’ allocation strategies produce
this difference. In the standard economic and finance theory, agents usually follow
an utility of profit maximizing behavior with adaptive or rational expectations about
the future. Only in the last decade, following the pioneering work by Gode and
Sunder [84], agents endowed with zero intelligence have been take into account. Zero-
intelligence behavior still deserve much interest for its simplicity and the possibility
to focus the attention more on the structural aspects than on the behavioral features.

Moreover an artificial stock market characterized by heterogeneous and interacting
agents has been studied. In this complex system, agents are characterized by cash,
stocks and sentiments. Sentiments denote the propensities to buy or to sell of agent.
Agents are seen as nodes of sparsely connected graph, so that each agent is influenced
by a subset of agents, the only ones that are ”near” to him. The statistical properties
of the univariate and the multivariate process of prices and returns are studied. In
particular, concerning univariate price processes, the proposed approach was able to
endogenously reproduce the property of unitary root, of volatility clustering and of fat
tail distribution of returns. Furthermore, concerning the multivariate price process,
the evidence of static factors in the returns and the presence of common trends in the
prices have been investigated. The presence of static factors has been studied making
reference to the cross-correlations between returns of different stocks, whereas the
presence of common trends has been carried on considering the variance-covariance
matrix of prices. The computational experiments pointed out the possibility to en-
dogenously reproduce the multivariate stylized facts on cross-correlation matrix and
on variance-covariance matrix. Finally, it is worth remarking the importance of this
result, as for the first time, an artificial stock market reproduce endogenously all this
features.
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5.3 The firm growth problem

Business firms grow by increasing their scale and scope. The scope of a firm is given
by the number of its products. The scale of a firm is given by the size of its products. A
firm like Microsoft has a few big products while Amazon sells a huge variety of goods,
each of small size in terms of sales. In this article it is argued that both mechanisms
of growth are proportional. The number of products a firm can successfully launch
is proportional to the number of products it has already commercialized. Once a
product has been launched its success depends on the number of customers who buy
it and the price they are willing to pay. To a large extent, if products are different
enough, the success of a product is independent of other products commercialized
by the same company. Hence, the sales of products can be modeled as independent
stochastic processes. Moreover, sometimes, new products are commercialized by new
companies. As a result, small companies with few products can experience sudden
jerks of growth due to the successful launch of a new product.

It has been found that the empirical distribution of firm growth rates exhibits
a central part which is distributed according to a Laplace distribution and power-
law wings Pg(g) ∼ g−ζ where ζ = 3. If the distribution over classes of the number
of units K is dominated by single unit classes, the tails of firm growth rate are
primarily due to smaller firms that have one or few products. The Laplace center of
the distribution is shaped by big multiproduct firms. The shape of the distribution
of firm growth is almost the same whether there is a small entry rate or zero entry.
The model predictions are accurate also in the case of product growth rates, which
implies that products can be considered as composed of elementary sale units, which
evolve according to a random multiplicative process [190]. Although there are several
plausible explanations for the Laplace body of the distribution [3, 113], the power
law decay of the tails has not previously been explained. A simple and general model
that accounts for both the central part and the tails of the distribution is introduced.
The shape of the business growth rate distribution is due to the proportional growth
of both the number and the size of the constituent units in the class. This result holds
in the case of an open economy (with entry of new firms) as well as in the case of a
closed economy (with no entry of new firms).

This model can numerically duplicate the size-variance relationship. The power-
law relation implies that for different firm sizes, firm growth rates follow the same
dynamics, and the simulation results of our model verify this point.

This study provides a framework for the firm growth problem and it can act as
a direction of future study of the research. Although the model justifies some useful
findings, some questions still remain open to investigate. For example, (1) the model
does not consider a common economic phenomenon — the merging and splitting of
firms. Can this model be modified to include that? (2) the model emphasizes the
effect of the preferential attachment mechanism, and from it, a simple fitting function
for P (g) is got and unfortunately, the expression of P (g) does not include the term
S. Thus, so far, the size-variance relationship from P (g) is not derived and we only
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showed the numerical results of size-variance relationship. These open questions re-
quire to further modify and refine the model in order to more deeply understand the
firm growth problem.

5.4 Open questions of future studies

The next step can be to construct a unique model to reproduce the main statistical
properties of real financial markets and of the firm growth problem. A bottom-up
agent-based approach allows one to represent the economy as a large complex adaptive
system consisting of a huge number of independent agents, that interact in various
ways and that change their state or actions as a result of the events in the process
of interaction. Reliable agent-based software simulators represent the computational
laboratories to perform and to test the impact of different economic measures, e.g.,
the effects of a tax scheme on economic welfare and equality or the effectiveness of
industrial policies aimed at increasing the average firm size in order to boost innova-
tion.
In the top-down approach of traditional neoclassical models the bottom level typi-
cally comprises a representative individual which is constrained by strong consistency
requirements associated with equilibrium and rationality. Conversely, a fundamental
characteristic of agent-based models is heterogeneity of agents, that can range from
initial endowments, psychological attitudes, social dimensions, to behavioral rules,
preferences and degree of rationality. Therefore, agent-based models are perfectly fit
to take into account the realistic diversity of human behaviors. Within this approach,
a central issue is the theoretical and algorithmic foundation of a technological platform
for scalable modeling and simulation, where a new formalism capable of representing
and modeling complex multilevel systems can be developed.
The empirical validation of agent-based computational models of a real-world system
is a central issue in order to provide reliable what-if scenarios. The large amount of
data available to economists, particularly in the finance domain, opens the possibility
to set up data driven agent-based simulations, where the predictions are continuously
adjusted by the assimilation of new real data.
The complex strategic interaction of the huge number of actors in the market is fur-
ther strongly affected by an underling physical network, which implies constraints in
generation, transmission, distribution, storage, etc.
A top-down approach to manage such kind of systems is unrealistic, and the bottom-
up complex artificial world in one-to-one correspondence with a real economic system
should be adopted in order to design, to validate, to infer and to control the behavior
of service and utility markets. This represents a grand multidisciplinary challeng-
ing research that involves competencies originally developed in engineering, computer
science, economics, mathematics and physical sciences.
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