Modeling Failure in Bank Networks

Preventing a Crisis

<u>Committee</u> Tulika Bose Plamen Ch. Ivanov William Skocpol Irena Vodenska H. Eugene Stanley Adam Avakian Thesis Defense January 12, 2017

Contributors Irena Vodenska Sary Levy-Carciente Dror Y. Kenett Shlomo Havlin H. Eugene Stanley

What is a (bank) network?

• Elements (nodes) that interact with each other (links)

What do we mean by failure?

- Banks have Assets & Liabilities
- Assets Liabilities = Equity

Why is this important?

- Can the connections between banks change the risk of bank failure?
- How could the whole financial system fail?
 What causes cascading failures?

SYSTEMIC RISK

• Can we add value to current policy making?

Why should physicists study bank networks?

- Bank network structures are complex, time-dependent and not well understood
 - Many interacting elements
 - Complex rules of interaction
 - Driven by stochastic processes
- Many banks rely on "quants" with physics/mathematics/computer science backgrounds
- Applying physics to the study of bank networks will help us understand cascading failures and may help us avoid economic disaster

Presentation Overview

- Summary of network models in banking
- Direct exposure network model
 Federal Reserve Y-15 report case study
- Bipartite cascading failure network model
 Venezuelan banking case study
- What have we learned from these models?

What kind of network model?!

- Type of network structure
 - Direct bank-to-bank network
 - Bipartite bank-asset network
- Type of nodes
 - All financial institutions
 - Only the biggest banks
- Type of links
 - Credit obligations
 - Asset similarity
- Other factors
 - Market liquidity, leverage ratios, etc.
 - Endogenous vs. exogenous shocks

What kind of network model?!

Gazi Kara, Mary Tian and Margaret Yellen *Taxonomy of Studies on Interconnectedness*, Board of Governors of the Federal Reserve System, July 31, 2015.

Direct Interbank Network

- Nodes = Banks
- Links = credit obligations between banks
 - Banks borrow funds from each other on a regular basis, mostly overnight lending
 - Banks also buy forms of insurance from other banks
 - If banks become distressed, they may not be able to fulfill their obligations to other banks

"Exposures" are the inverse of "obligations"

Direct Interbank Network

Direct Interbank Network

Bank X Bank Y Bank Z

Bank X	0	?	?
Bank Y	?	0	?
Bank Z	?	?	0

- = obligation of bank to bank
- = exposure of bank to bank

- We used data from Federal Reserve FR Y-15 report
 - This data set includes total assets and liabilities as well as total <u>interbank</u> obligations and exposures for the 33 largest US financial institutions
- Interbank obligations are the sums of the rows
- Interbank exposures are the sums of the columns of our network matrix

Bank X Bank Y Bank Z

Bank X	0	?	?	8
Bank Y	?	0	?	5
Bank Z	?	?	0	7
	10	6	4	

13

• Start with prior matrix

- Find L that minimizes Kullback-Leibler divergence (aka cross-entropy) within the constraints
 - This results in the most interconnected network possible

$$D_{KL}^*(L,U) = \sum_{i=1}^n \sum_{j=1}^n l_{ij} \log\left(\frac{l_{ij}}{u_{ij}}\right)$$

• We impose further constraints to alter the network structure

Bank X Bank Y Bank Z

Bank X Bank Y Bank Z

Bank X	0	2.4	1.6	8
Bank Y	2.5	0	1	5
Bank Z	3.5	2.1	0	7

Bank X Bank Y Bank Z

Bank X	0	4.69	3.31	8
Bank Y	4.31	0	0.69	5
Bank Z	5.69	1.31	0	7

Can the banks cover their obligations?

• If payments are made on all interbank obligations, will any banks fail?

then the bank fails

- If a bank fails then it can't completely fulfill it's obligations
- Banks "exposed" to that bank won't receive full payments
- Now those banks may fail, even if $equity \downarrow i + \sum j \uparrow L \downarrow i j - \sum j \uparrow L \downarrow i j > 0$, and we will have cascading failures

Measuring systemic risk

- How many banks fail? How many cascading failures?
 - For the FR Y-15 US bank data, we find that
 - 3 of the 33 banks would fail initially (BNY MELLON, AMEX, STATE STREET)
 - 1 due to a cascading failure (DEUTSCHE BANK)
- How much money is lost in the system due to bankruptcies?
 - \$292.4M out of \$2.38B (12.3%) in total interbank obligations
- How do these values change with our assumptions about interconnectedness?
- What if we shock the system?
 - What if asset values drop across the system?
 - What if a bank unexpectedly fails? How does that affect the rest of the system?

Changing the Network Structure

Bank W Bank X Bank Y Bank Z

Bank W	0	3.15	2.25	2.60	8
Bank X	3.06	0	0.90	1.04	5
Bank Y	4.00	1.64	0	1.36	7
Bank Z	2.94	1.21	0.86	0	5

Changing the Network Structure

Bank W Bank X Bank Y Bank Z

Bank W	0	3.15	2.25	0	8
Bank X	3.06	0	0.90	1.04	5
Bank Y	4.00	1.64	0	1.36	7
Bank Z	2.94	1.21	0.86	0	5

Changing the Network Structure

Bank W Bank X Bank Y Bank Z

Bank W	0	4.75	3.25	0	8
Bank X	2.58	0	0.30	2.12	5
Bank Y	3.52	0.60	0	2.88	7
Bank Z	3.89	0.66	0.45	0	5

Measuring systemic risk Network Structure

Risk Sensitivity to Interconnectedness

Measuring systemic risk Network Structure

Risk Sensitivity to Interconnectedness

Bipartite Bank-Asset Network

- Nodes = Banks & Assets Classes
 - Two types of nodes
- Link = asset type is owned by a bank
 - Links are only between bank nodes & asset nodes

BIPARTITE

Bipartite Bank-Asset Network

Mortgage Loans

Cascading Failure Model

 Initial shock to chosen asset class
 Devalue bank assets correspondinglyp
 Check for bankruptcies if none, the provide the providet the providet the providet th

Sensitivity to a & p

χ

32

χ

33

What should you take away?

- Greater interconnectedness tends to result in a more resilient system
- Risk of systemic failure is sensitive to small changes in shock size and the fire-sale effect
- The size of a shock and level of liquidity that will cause systemic failure can change abruptly month-to-month and needs to be monitored

Why is this important?

- How do the connections between banks change the risk of bank failure?
 - More interconnectedness tends to mean less systemic risk, but not always so
- How could the whole financial system fail?
 - Shocks in prices of widely held assets, i.e. mortgages, bonds, etc.
- Can we add value to current policy making?
 - We have tools help monitor systemic sensitivity to adverse scenarios, i.e. a new mortgage crisis

Econophysics publications

- S. Levy-Carciente, D.Y. Kenett, A. Avakian, H. E. Stanley and S. Havlin. Dynamical macro-prudential stress testing using network theory. Journal of Banking and Finance, Vol. 59 (164-181), 2015.
- 2. A. Avakian, I. Vodenska, and H.E. Stanley. Interconnectedness in bank networks of direct credit exposure. (2017, in preparation)
- A. Avakian, B. Podobnik, M. Piskor and H.E. Stanley. Capital death in the world market Phys. Rev. E. 89, 032805, 2014.
- H.S. Moat, C. Curme, A. Avakian, D.Y. Kenett, H.E. Stanley, T. Preis. Quantifying Wikipedia usage patterns before stock market moves. Scientific Reports, Vol. 3, pp. 1801, 2013.

Thank you!

- Thanks to Gene Stanley
- Thanks to Irena Vodenska, Sary Levy-Carciente, Dror Kenett, Shlomo Havlin & all my collaborators
- Thanks to my committee members
- Thanks to all who listened to my practice talks
- Thanks to Mirtha Cabello!!!!!

Measuring systemic risk Asset Shocks

Asset & Bank Types

Asset Types	Bank Types		
Cash & Cash Equivalents	Commercial banking		
Credit	Universal banking		
Commercial credit	Investment banking		
Vehicle credit	Savings and loan institutions		
Credit cards	Mortgage banking		
Mortgage loans	Leasing institutions		
Microcredit	Money market funds		
Agriculture credit	Micro-finance banking		
Tourism credit	Development banking		
Manufacturing credit			
Securities			
Private securities			
Treasury notes			
Treasury bonds			
Public national debt			
BCV bonds			
Agriculture bonds			

A brief history of the Venezuelan banking system

Results from Huang, et al. (2013)

- Was able to correctly identify many of the banks that failed following the 2008 crash
- Sensitivity to commercial (not residential as many people said) real estate asset values were primarily responsible for 2008 crash
- Can be used as a stress testing tool to prevent future crashes

Venezuelan case study

- Cons
 - No crash with which to tune parameters
 - Much smaller financial system
 - Less global impact
- Pros
 - Longitudinal data (monthly 1998-2013)
 - Much smaller financial system
 - We can easily look at a large parameter space

Sensitivity to liquidity and relative asset size

Asset size and concentration with sensitivity to liquidity

Asset size and concentration with sensitivity to liquidity

Asset size matters Correlation of α_{crit} vs β

Commercial Credit Vehicle Credit **Credit Cards** Mortgage Loans Microcredit **Agriculture Credit Tourism Credit** Manufacturing Credit Other Credit **Private Securities** Treasury Notes **Treasury Bonds** Public National Debt **BCV Bonds** Agriculture Bonds **Other Securities**

Asset distribution matters Correlation of α_{crit} vs HHI

Commercial Credit Vehicle Credit Credit Cards Mortgage Loans Microcredit Agriculture Credit **Tourism Credit** Manufacturing Credit Other Credit **Private Securities Treasury Notes Treasury Bonds** Public National Debt **BCV Bonds** Agriculture Bonds **Other Securities**

Comparing to traditional risk

measures

Average fail order α=0.10, p=0.70, all assets

GALICIA DE VENEZUELA PARTICIPACIONES VENCRED BANCO DE LAS FUERZAS ARMADAS Fails earlier >=20 FINANCORE AVANZA BANAVIH FEDERAL (Banco de Inversion FIVCA (BI INVERBANC DESARROLLO DEL MICROEMPRESARI SOFIOCCIDEN ANFICO THE ROYAL BANK OF SCOTLAND BANCO DEL SOL PROVIVIENDA BANCO DE EXPORTACION Y COMERCIO BANCAMIGA BANCO INTERNACIONAL DE DESARROLLO PIRITO SANTO MI BANCO BANCO REAL ABN AMBO BANK HEI M BANK DE BANGENTI IMC FEDERAL (Fondo del Mercado Mo BANVALO BANINVES TOTAL BAN BANORTI INVERUNIO ASA PROPI 100% BANCC BANPLUS BANCO ACTIV BANCOR CANARIAS DE VENEZUEL DEL SU PI AZ SOFITA FEDERAL (Banco Cor CITIBAN BANCO AGRICOLA DE VENEZUELA CARON O DE CREDI FONDO COMUN CORP BANC Fails Later/Not at all EXTERI Does Not Exist Does Not Exis AL DE DESCUEN CENTENARIO MERCANTI BANESC

105/6 2006/12 2008/6 2009/12 2011/6 2012/12

Debt-to-equity ratio

2005/6 2006/12 2008/6 2009/12 2011/6 2012/12

Sensitivity to a & p

