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APPLICATIONS OF STATISTICAL PHYSICS AND INFORMATIONTHEORY TO THE ANALYSIS OF DNA SEQUENCES(Order No. )IVO GROSSEBoston University Graduate School of Arts and Sciences, 2000Major Professor: H. Eugene Stanley, University Professor, Professor of PhysicsABSTRACTDNA carries the genetic information of most living organisms, and the goal of genomeprojects is to uncover that genetic information. One basic task in the analysis of DNAsequences is the recognition of protein coding genes. Powerful computer programs for generecognition have been developed, but most of them are based on statistical patterns thatvary from species to species.In this thesis I address the question if there exist universal statistical patterns that aredi�erent in coding and noncoding DNA of all living species, regardless of their phyloge-netic origin. In search for such species-independent patterns I study themutual informationfunction of genomic DNA sequences, and �nd that it shows persistent period-three oscil-lations. To understand the biological origin of the observed period-three oscillations, Icompare the mutual information function of genomic DNA sequences to the mutual in-formation function of stochastic model sequences. I �nd that the pseudo-exon model isable to reproduce the mutual information function of genomic DNA sequences. Moreover,I �nd that a generalization of the pseudo-exon model can connect the existence and thefunctional form of long-range correlations to the presence and the length distributions ofcoding and noncoding regions.Based on these theoretical studies I am able to �nd an information-theoretical quantity,the average mutual information (AMI), whose probability distributions are signi�cantlydi�erent in coding and noncoding DNA, while they are almost identical in all studiedspecies. These �ndings show that there exist universal statistical patterns that are di�erentin coding and noncoding DNA of all studied species, and they suggest that the AMI maybe used to identify genes in di�erent living species, irrespective of their taxonomic origin.
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7.3 Comparison of three entropy estimators for M = 1024, N = 5000, and~p derived from C.elegans. This �gure displays the three histograms corre-sponding to Figure 5.2. We see that the variances of Grassberger's estimatorand the Bayes estimator are of comparable size, whereas the 
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8.3 Comparison of the entropy estimators cH2 (right) and �H2 (left) with M =4096, N = 4000 and equidistributed pi = 1=M . We observe the small widthof the variance of the Bayes estimator cH2 as compared to the frequency-countestimator �H2. Equation (12.3) predicts the entropy bias with �cH2 = �2:66 �10�4 (bits/symbol), in good agreement to the observed value. According to[Holste 1997], the bias of �H2 can be approximated to be � �H1 = �0:36 �10�3(bits/symbol), which is in good agreement to the observed value, too. Insamples where N is in the order of magnitude of M , the reliability of theBayes estimator is signi�cantly higher than the reliability of the frequency-count estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168.4 Comparison of the entropy estimators fK2 (right) and �K2 (left) with M =4096, N = 4000 and equidistributed pi = 1=M . We observe that 
uctu-ations of the Bayes estimator fK2 are strongly suppressed as compared tothe frequency-count estimator �K2. Equation (12.5) predicts the entropybias with �fK2 = �0:81 (bits/symbol), in good agreement to the observedvalue. According to [Holste 1997], the bias of �K2 can be approximated tobe � �K2 = �1:02 (bits/symbol), which is in good agreement to the observedvalue as well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178.5 Comparison of the entropy estimators cH2 (right) and �H2 (left) with M =4096, N = 8000 and pi derived from the H. in
uenzae DNA sequence. Weobserve the smaller variance of the Bayes estimator cH2 as compared to thefrequency-count estimator �H2. Equation (12.3) predicts the entropy biaswith �cH2 = �0:38 � 10�4 (bits/symbol) and, according to [Holste 1997], thebias of �H2 can be approximated to be � �H1 = �0:18 � 10�3 (bits/symbol). . 1189.1 Variance of the observed 5-gram entropies H5. We generated 10; 000 se-quences each of which contained N = 1000 out of 1024 equidistributed5-mers. The bias of the natural Shannon entropy estimator of about � 0:58is almost perfectly predicted by our linear approximation M2�N . Note thatthe standard deviation of the natural entropy estimates, which we approx-imate by 0:05, is signi�cantly smaller than the their systematic error. Thevariance, i.e., the squared standard deviation, can be roughly estimated as3 � 10�3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129xv



13.1 Two autocorrelation functions and the mutual information for a pseudo-exonwithout codon-codon-interactions. We chose the 6324 base pair long exonstarting at position 278851 on chromosome III of the yeast Saccharomycescerevisiae to derive a representative codon usage table for yeast DNA. Then,we generated a 300000 base pair long pseudo-exon by a random concate-nation of 100000 codons according to this table. The GG-autocorrelationfunction (upper graph) exposes a very strong periodicity, since the proba-bility to �nd the nucleotide G varies tremendously with its position in thereading frame. The \non-biological" AC-GT-autocorrelation (middle graph)reveals only a faint periodicity due to the fact that the corresponding prob-abilities are almost uniformly distributed over the three possible positionsin the frame. The pronounced periodicity exhibited by the mutual infor-mation corresponds exactly to the predicted behavior. Note that, despitethe absolute values of the mutual information are really tiny, the di�erencesbetween the maxima at k = 3; 6; ::: and the minima at k = 4; 5; 7; 8; ::: areby far higher than random 
uctuations. . . . . . . . . . . . . . . . . . . . . 16813.2 Correlations of the 315338 base pair long DNA sequence of the yeast Saccha-romyces cerevisiae chromosome III for distances k between 1 and 100 basepairs. The dominating triplet-periodicity that is induced by the nonuniformcodon usage in yeast can easily be observed. The comparison of the up-per two graphs reveals that the A+C content is indeed a poor indicator fora nonuniform codon usage. The mutual information function displays itstypical high-low-low-pattern, which can be exploited to discriminate exonsfrom introns. Note that the peak at k = 3 reveals correlations betweenneighboring codons in yeast DNA. . . . . . . . . . . . . . . . . . . . . . . . 17013.3 Correlations of the complete DNA sequence of yeast chromosome III fordistances k between 900 and 1000 base pairs. The GG-autocorrelation func-tion as well as the mutual information maintain their dominating period-3-oscillations up to 1000 base pairs. Remember that the reduced amplitudesare due to the small number of exons longer than 1000 base pairs. . . . . . 171xvi



14.1 Mutual information function of the yeast chromosome XI (666,448 bp). Theperiodicity due to the triplet code is visible even for distances above 1000bp. The dashed line marks the bias according to Eq.(8). . . . . . . . . . . . 17714.2 Period-three oscillations of the mutual information for a chromosome regionof Escherichia coli (strain K-12, 111,401 bp). . . . . . . . . . . . . . . . . . 17814.3 Mutual information function of the HUMBMYH7 gene (20,855 bp from the�rst to the last exon). The mean exon length is about 150 bp which is thecharacteristic length of the decay of the pronounced period-three oscillations. 17914.4 Dashed line: Mutual information of a concatenation of all 40 exons (5,805bp) of the HUMBMYH7 gene (compare Figure 3). Full line: Correspond-ing pseudo-exon (5,805 bp) generated from the codon usage table of theHUMBMYH7 gene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18214.5 Histogram of open reading frames (ORF's) longer than 500 bp from theyeast chromosomes III, IX, and XI. Regression by an exponential functionand a power-law decay are indicated by full and dashed lines, respectively. 18414.6 Mutual information of a 106 bp long random sequence. Within a \randomsea" of independent letters A, C, G, and T, 1000 pseudo-exons of a length600 bp have been interspersed. For small k, we observe the expected period-three oscillations between F 2Iin and F 2Iout (see Eqs. (7) and (20)). Pleasenote that Eq. (24) predicts exactly the parabolic decay between k = 0 andk = 600. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18714.7 Mutual information of a 106 bp long sequence containing 1000 pseudo-exonswith exponentially distributed lengths (mean value 600 bp). The logarithmicvertical scale reveals the predicted exponential decay. . . . . . . . . . . . . . 18914.8 Mutual information of a 7 � 106 bp long sequence with 7000 pseudo-exons.The parameters of the exon length distribution are Lmin = 150 and � = 94 . . 19014.9 Decay of the mutual information function for yeast chromosomes (thin lines)and the corresponding pseudo-chromosomes (thick lines). In order to reducethe strong 
uctuations (compare Figure 1) and to focus on the decay wehave applied a 99 bp running average. Upper graph: Chromosome III. Thecodon usage table was taken from the temperature-sensitive lethal TSM1protein (4,221 bp). Lower graph: Chromosome XI, table from the ORFwhich encodes dynein (12,276 bp). . . . . . . . . . . . . . . . . . . . . . . . 192xvii



14.10Mutual information decay for the E. coli chromosome region (thin line) anda corresponding pseudo-region with the same length distribution of pseudo-exons. The codon usage table was taken from the isoleucil-tRNA ligase(2,811 bp). As in Figure 9 a 99 bp running average was applied. . . . . . . 19314.11Comparison of the smoothed mutual information (99 bp running average)of Brugia malayi myosin heavy chain gene (8,600 bp from the �rst to thelast exon) and a corresponding random sequence with the same exon lengthdistribution and codon usage. Since the sample size decreases with thedistance there is a clear increase of the bias (see also the Appendix). . . . . 19414.12Mutual information of yeast chromosomes III (full line), IX (dashed line),XI (dotted line) for short distances. In order to eliminate the dominatingperiod-three oscillations, we apply a running average over 3 bp. The compar-ison with a pseudo-chromosome (thick line) reveals additional correlations(in particular a 10-11 bp period). . . . . . . . . . . . . . . . . . . . . . . . . 19616.1 Mutual information function, I(k), of coding (thin line) and noncoding(thick line) human DNA, from GenBank release 111 [Comment 3]. We cutall human, non-mitochondrial DNA sequences into non-overlapping frag-ments of length 500 bp, starting at the 5'-end. We compute the mutualinformation function of each fragment, correct for the �nite length e�ect[Herzel et al. 1995], and display the average over all mutual informationfunctions (of coding and noncoding DNA separately). While I(k) for non-coding DNA monotonically decays to zero as k increases, I(k) of codingDNA shows persistent period-3 oscillations. . . . . . . . . . . . . . . . . . . 21216.2 I-distributions of data sets humg108a (solid lines) and humg108b (dashedlines) of Fickett and Tung [Fickett & Tung 1992] for coding DNA (thin lines)and noncoding DNA (thick lines). In both data sets the I-distributionof noncoding DNA is centered at signi�cantly smaller values than the I-distribution of coding DNA. The cumulative distribution functions of Ipresented in the inset show that I allows a discrimination of coding andnoncoding DNA with an accuracy of approximately 76%. . . . . 215xviii



16.3 I-distributions of coding DNA (thin lines) and noncoding DNA (thick lines)from all eukaryotic DNA sequences in GenBank release 111 [Comment 3].We cut all sequences into non-overlapping fragments of length 54 bp[Comment 7], starting at the 5'-end. We compute I of each DNA frag-ment and show the I-histograms for coding and noncoding DNA, for eachof the 4 disjoint taxonomic sets (primates, non-primate vertebrates, inver-tebrates, plants) separately. We �nd that (i) for all taxonomic sets �n(I)is centered at signi�cantly smaller values than �c(I), while (ii) �c(I) and�n(I) of di�erent taxonomic sets are almost identical. The close similarityof the I-distributions for di�erent taxonomic classes, phyla, and kingdomsillustrates the species independence of �c(I) and �n(I). . . . . . . . . . . . 21816.4 Rescaled I-distributions of model and experimental, coding and noncod-ing DNA [Comment 3]. Figure 3(a) shows the histograms of log10N2I fornoncoding human DNA for N = 54 bp (�), 108 bp (2), and 162 bp (3),and the corresponding �2 probability density function with 6 degrees offreedom (thick line). In addition to the observation (Figure 2) that theI-distributions are almost identical for di�erent species, we �nd that (i)the rescaled I-distributions collapse for all taxonomic sets and for all N ,and that (ii) they agree with the �2 probability density function. Hence,the species independence of the I-distributions for noncoding DNA maybe explained by the absence of a reading frame in noncoding DNA of allspecies. Figure 3(b) shows the histograms of log10N2I for coding humanDNA sequences of length N = 54 bp (�), the corresponding non-central �2probability density function (thick line), and the central �2 probability den-sity function (thin dotted line). We �nd that (i) the modeled I-distribution(thick line) is indeed shifted to higher I-values than the I-distribution ofnoncoding DNA (thin dotted line), but that (ii) the I-distribution of themodel sequences (�) is signi�cantly di�erent from the I-distribution of cod-ing human DNA. The signi�cant di�erence between the modeled and theexperimental I-distribution states that the presence of a reading frame isnot su�cient to reproduce the species-independent I distributions for codingDNA (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222xix



17.1 Histograms of I1 for human exons (right) and introns (left) of length 108 bp.The corresponding cumulative distributions are shown in the inset. Whilethe values of I1 
uctuate from window to window, their distribution is almostthe same irrespective of Atraining, Atest, or B. For all three data sets, the I1-histograms of non-coding DNA are centered at signi�cantly smaller values ascompared to coding DNA. For Atraining the mean � and standard deviation �for exons (introns) are �(log I1) = �2:39 (�3:36) and �(log I1) = 0:70 (0:68),for Atest �(log I1) = �2:41 (�3:38) and �(log I1) = 0:74 (0:69), and for B�(log I1) = �2:52 (�3:41) and �(log I1) = 0:69 (0:66). For coding DNA, weobserve a small but signi�cant shift of set B with respect to both Atrainingand Atest. Both distributions show an overlap, the enclosed area of whichspeci�es how accurately we can distinguish coding versus non-coding DNA.The inset shows that I1 performs on Atraining and Atest with approximately76%, and on set B with approximately 75% accuracy. . . . . . . . . . . . . 23817.2 We study the dependence of I1 on the A+T content for exons (thick graph)and introns (thin) in Atraining (a), Atest (b), and B (c). To calibrate errorbars, we equate the number of coding sequences with the number of non-coding sequences in all three �gures (each class comprising 7000 sequences).In the top, we display the histograms of the overall A+T content as derivedfrom the data sets. The overall A+T content of exons is approximately45% in Atraining, 43% in Atest, and 47% in B. For introns, it is 52%, 51%,and 54%. In the bottom, we show the dependence of log I1 on the A+Tcontent, by binning the A+T values to 20 bins and computing the meanand standard deviation of I1 per bin. The overlap of error bars indicatesthat the discrimination of exons from introns is less accurate for high A+Tcontent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24117.3 The accuracy of Dp as a function of the parameter p evaluated on Atraining,Atest, and B. The region around popt is shown in the inset. The accuracyshows a strong dependence on the parameter p, dropping to nearly 50%(no discrimination) while zero-crossing. The accuracy exhibits two distinctmaxima, one local for p < 0. For p > 0, the accuracy of Dp reaches its globalmaximum, and it shows a plateau-like behavior for p > popt while decaying
atly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242xx



17.4 The accuracy of Iq as a function of the parameter q evaluated on Atraining,Atest, and B. The region around qopt is shown in the inset. The accuracydepends on the parameter q, and exhibits a clear maximum which decayssteeply for q > qopt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24317.5 Accuracy of Dp as a function of the parameter p for di�erent window lengths(from bottom to top the lengths read: 27, 30, 36, 45, 54, 60, 72, 90, 108,120, 135,180, 216, 270, 360, 540, and 1080 bp). To guide the eye, the 108bp length is graphed as a thick line. The value popt (3) at which Dp dis-tinguishes most accurately coding from versus non-coding DNA is relativelyinsensitive to the window length. The broken line indicates the mean valueof all optimal p with hpopti = 1:6 and standard deviation �(popt) = 0:3 asestimated on all lengths shown. The 
uctuations increase for small (< 60)windows. We note the shape of the accuracy spectrum (two maxima, dis-tinct better performance for p > 0) remains overall unchanged when varyingthe window size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24417.6 Accuracy of Iq as a function of the parameter q for di�erent window lengthsfor set B (as described in Figure 5). The value qopt (3) at which Iq dis-tinguishes most accurately coding versus non-coding DNA is approximatelylength-independent. The mean value of all optimal q results to hqopti = 1:7and standard deviation to �(qopt) = (0:2). We observe that for increasinglength the sharp pro�le 
attens out and becomes a unimodal function of q. 24518.1 (a) JS vs. cutting position for a sequence obtained by joining a coding re-gion (gene carB of bacteria E. coli, 3,222 bp long) and a noncoding region(intergenic region between genes leuO and ilvI of bacterium E. coli, 389 bplong); the dashed vertical line is the border between both regions. (b) JSvs. cutting position for a sequence obtained by joining two coding regions:genes carB (3,222 bp) and polB (2,463 bp) of the bacterium E. coli. Thedashed vertical line is the boundary between the two regions. . . . . . . . . 25318.2 Comparison between the known coding regions of Rickettsia (shaded areas)and the cuts obtained at signi�cance level s = 99% (dotted lines). . . . . . . 254xxi



18.3 (a) Comparison of the accuracy of segmentation (open symbols) and slid-ing window (closed symbols) approaches in �nding borders between cod-ing and noncoding regions for three complete bacterial genomes: Rickettsiaprowazekii (
), Escherichia coli (4), and Methanococcus jannaschii (ut);we �nd the best results when the training of the windows is carried outusing the same sequence as the one analyzed. (b) Comparison of the ac-curacy of segmentation and sliding window approach in identifying codingDNA. The discriminant function and the training is the same as used in (a),the threshold value used with the segments is obtained by interpolating thevalues obtained for the moving windows. . . . . . . . . . . . . . . . . . . . . 257F.1 The rank-ordered hexamer (6-letter) distribution of the complete DNA se-quence of H. in
uenzae displayed as a double-logarithmic plot (2). Fora comparison, the rank ordered distribution of a corresponding Bernoullisequence of same length has been included in the �gure (4). . . . . . . . . 282F.2 Comparison of entropy estimators: H(R)q with parameter set M = 4096,N = 8000, P = 1=M . We observe the smaller variance of the Bayes entropyestimator (thick line, the black curve corresponds to U = 2=� and thegrey curve corresponds to U = 1=�) as compared with the frequency-countestimator (thin line) for a single realization for each order q. We observethe signi�cant small width of the variance of the Bayes entropy estimator ascompared with the frequency-count estimator. . . . . . . . . . . . . . . . . . 283F.3 Comparison of entropy estimates: H(R)q with parameter set M = 4096, N =4000 P = 1=M , and U = 2=�. We observe that 
uctuations of the Bayesentropy estimator (thick line, the black curve corresponds to U = 2=� andthe grey curve corresponds toU = 1=�) are strongly suppressed as comparedwith the frequency-count estimator (thin line) for a single realization for eachorder q. The signi�cant small width of the variance of the Bayes entropyestimator as compared with the frequency-count estimator is visible. . . . . 284F.4 Histograms of entropy estimates: H(R)q with parameter set M = 4096, N =4000, P = 1=M , U = 1=�, and q = 2. We observe the smaller variance ofthe Bayes entropy estimator as compared with the frequency-count estimator.286xxii
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Chapter 1IntroductionUnraveling the human genome is one of the most supreme challenges in our days. Asidefrom raising a lot of serious ethical questions, it also confronts us with a series of tremen-dously hard scienti�c problems.These problems mainly arise from the following discrepancy: while sequencing tech-niques are almost completely automatic controlled, the analysis of the sequenced data isnot. Hence, the major scienti�c goal raised by the Human Genome Project is the extrac-tion of biologically and medically relevant information from almost automatically sequencedDNA and RNA molecules.In principle, biochemical methods are able to do this job, but since they are extremelyexpensive and time consuming, the pressing demand for alternative approaches to extractthe information hidden in our genome appeared. In this situation, concepts and techniquesfrom statistical physics and information theory turned out to be welcome tools to handlethe problem of extracting valuable information from biosequences such as DNA, RNA, oramino acid chains.The main goal of this work is the presentation of concepts and methods derived fromstatistical physics that we apply to problems born by a statistical analysis of biosequences.This thesis is divided into seven parts: a brief presentation of some basic biologicalbackground, parts A - E, and an appendix. Part A (chapters 3 - 5) contains an introductionto basic concepts of information theory, a comparison of the mutual information function tocorrelation functions, and an introduction to R�enyi and Tsallis entropies. Part B (chapters6 - 8) is devoted to the problem of estimating entropies from �nite experimental data setsand to the derivation of the Bayes estimator of R�enyi, Tsallis, and (as a limiting case)



2Shannon entropies. Part C (chapters 9 - 12) consists of a discussion and derivation of �nitesize e�ects that occur when estimating (generalized) entropies, the mutual informationfunction, or correlation functions from �nite experimental data. In part D (chapters 13 -15) we study long-range correlations in genomic DNA sequences, and we present a simplestatistical model that can reproduce experimentally observed correlations in genomic DNAsequences. In part E (chapters 16 - 18) we study statistical patterns that are universallydi�erent in coding and noncoding DNA, and we present four di�erent approaches { allbased on statistical physics and information theory { of how these patterns may be usedto identify coding regions in un-annotated DNA sequences.In chapter 2, we provide our reader with a brief molecular biological background, whichwill su�ce to understand the motivation of our statistical analysis of biosequences as wellas the application of our results to biological questions.In chapter 3, we introduce several entropy functions as measures of the informationcontent stored in symbolic sequences such as time series generated by dynamical systems,natural texts, pieces of music, climatic data, or DNA sequences. We show how theseinformation theoretical measures can be bene�cially applied to extracting the informationcontent stored in unknown sequences.Chapter 4 is devoted to a comparison of the mutual information function introduced inchapter 3 to correlation functions. We present two fundamental problems that arise whenapplying correlation functions to symbolic sequences. First, symbols must be mapped tonumbers in order to compute any correlation function, and correlation functions are notinvariant under changes of the map. Hence, computing correlation functions from sym-bolic sequences introduces some arbitrariness of choosing the function by which symbolsare mapped to numbers. Second, we show that even the in�nite set of all possible auto-correlation functions computable from a given (non-binary) symbolic sequence is unable todetect all statistical dependences in that sequence.We �rst analyze how many parameters are necessary and su�cient to store all infor-mation about statistical dependences in sequences over an alphabet of � symbols. Thenwe show that even the in�nite set of all di�erent autocorrelation functions belonging toone symbol sequence cannot determine all of these parameters. This implies that thereare functional relations between di�erent autocorrelation functions computed from onesymbolic sequence.The solution of the puzzle of why in�nitely many autocorrelation functions (which are



3di�erent from each other) are unable to detect the (�� 1)2 statistical dependences storedin a �-ary symbolic sequence is that all autocorrelation functions form a linear space thedimension of which is even smaller than the number of parameters storing the informa-tion about the statistical dependence between all � symbols. We present a method bywhich a proper basis of autocorrelation functions can be constructed chapter 4. Moreover,we deliver an algorithm, by which the functional dependence of an arbitrarily selectedautocorrelation function on the basis functions can be derived.At the end of chapter 4 we show that the mutual information function does not pos-sess the two shortcomings mentioned above, and hence we choose the mutual informationfunction and related information-theoretic quantities in our study of DNA sequences.In chapter 5 we introduce two families of generalized entropies, the R�enyi entropiesand the Tsallis entropies. We illustrate the relation of both the R�enyi and the Tsallisentropies to the Shannon entropy as well as some relations between the R�enyi and theTsallis entropies. We discuss some mathematical properties of these generalized entropies,which will become important in our study of DNA sequences.We learn that serious problems to estimate entropies or other statistical measures ariseby the uncircumventable fact that all sequences have a �nite length. Hence, chapters 6 -12 are devoted to the derivation and discussion of statistical properties of (higher order)Shannon, R�enyi, and Tsallis entropies, the mutual information function, and correlationfunctions.In chapter 6, we review some theorems from sampling theory and realize that estimatesof population parameters can be regarded as random variables, the expectation value andvariance of which we try to determine in the following chapters. These results allow us toevaluate the accuracy and reliability of those measures introduced in chapters 3 - 5.A fundamental property of every estimator is its bias, i.e., the systematic error that isinduced by estimating population parameters from �nite samples. By applying Steiner'stheorem about the angular momentum of rigid bodies to the problem of sampling in math-ematical statistics, we learn that the maximum likelihood estimator of the variance of anormal population is biased and therefore commonly corrected. Analogously, it is our goalto derive unbiased estimators of higher order Shannon, R�enyi, and Tsallis entropies, themutual information function, and correlation functions, which we display in terms of lengthcorrection formulae.In chapter 6, we introduce two basic statistical concepts: the maximum likelihood



4and the minimum variance method. The �rst method results in the maximum likelihoodestimator, whereas the second leads us directly to the Bayes estimator. Regarding theBayes theorem and applying it to our task to estimate population parameters from �nitesamples, we come up with a relation between these two independently developed estimators.Two approaches can be followed to improve the accuracy and reliability of statisticalestimators. We can either compute the bias of commonly used estimators and then correctthem or try to derive alternative estimators that inherently are more accurate and precisethan their classical counterparts. In chapters 7 and 8, we follow the latter approach andderive the Bayes estimator of the Shannon entropy in chapter 7 and the Bayes estimatorof the R�enyi and Tsallis entropies in chapter 8.In chapters 9, 10, 11, as well as 12 we compute the means and variances of the frequencyestimators of the Shannon entropy, the mutual information function, correlation functions,as well as R�enyi and Tsallis entropies, respectively. In all four cases we are successful topresent length correction formulae that allow us to estimate the desired quantities withoutbias in a �rst order approximation.Not all of these results are new. The bias of the Shannon entropy estimator, i.e.,its mean systematic error, was already derived by [Herzel 1988], [Grassberger 1988], and[Li 1989], as well as [Basharin 1959], [Harris 1975], or [Levitin 1994], who also foundan approximation of the variance of this estimator, i.e., its reliability, by expanding theentropy function in a Taylor series. The novel results that we contribute are the proof thatwe always underestimate the Shannon entropy independently of the underlying probabilitydistribution and a relation between the variance of the entropy estimates and the varianceof the corresponding logarithmic probabilities.By exploiting the same approach as in chapter 9, we derive the bias and the varianceof the mutual information estimator in a �rst order approximation. Although the �rstapproximation of the bias of the mutual information is always negative, we show that thenatural estimator does not always overestimate the mutual information. This means that{ in contrast to chapter 9 where we could prove that the natural estimator always underes-timates the Shannon entropy { such a theorem does not exist for the mutual information,and we present a counterexample in chapter 10.In order to determine the variance of the mutual information estimates, we have toconsider correlations between 1-gram and 2-gram Shannon entropies. Surprisingly, thesetwo entropy estimates are highly correlated in biological sequences, which results in only



5tiny 
uctuations of the mutual information estimates.Again, we can relate the sample variance of the mutual information estimates to thepopulation variance of the logarithmic probability ratios. Furthermore, we derive an anal-ogous relation for the correlators between di�erent entropies. The basic approach thatwe chose to derive all previously mentioned results utilizes the Taylor expansion of theentropy function, which we truncate in order to derive our approximate results. However,since the entropy function is not analytic, the Taylor series diverges in certain parts of ourgiven simplex. Therefore, we present an alternative approximation of the entropy functionborrowed from regression theory in appendix G.There, we derive an approximation that converges in all points of our given simplexextremely quickly. We present a completely analytic solution to this problem, which even-tually leads us to the di�cult task of inverting the famous Hilbert matrix. Since we can,however, explicitly display the inverse, we obtain the desired expansion coe�cients bycompletely elementary methods.Chapter 11 is devoted to statistical properties of correlation functions. We show that thenatural estimator of correlation functions is always biased by deriving an exact estimationof the corresponding �nite sample e�ect. This analytic result allows us to present an exactlength correction formula for the natural correlation function estimator.In chapter H.5 we derive the means and variances of the natural estimators of R�enyiand Tsallis entropies, and we compare these results with the mean and variance of thenatural estimator of the Shannon entropy. The signi�cant variance of the natural entropyestimators was the motivation for our search for alternative estimators and the derivationof the Bayes estimators of (higher order) Shannon, R�enyi, and Tsallis entropies in chapters7 and 8.In chapter 13 we study correlations in DNA sequences. Our results obtained in chapters10 and 11 allow us to correct for �nite size e�ects in order to detect biologically inducedcorrelations in DNA sequences. We show that periodic oscillations of correlation functionsand the mutual information, which dominate all correlations on length scales up to thou-sands of base pairs, are simply due to a nonuniform codon usage in protein coding DNA.We develop a simple statistical model, the pseudo-exon model, which can qualitativelyand quantitatively reproduce the experimentally observed period-3 correlations in genomicDNA of yeast.In chapter 14 attempt to understand not only the presence of long-range period-3



6correlations, but also the decay of the envelop of these correlations. We show that thedecay of the envelope may originate from the mosaic structure of genomic DNA, i.e. fromthe concatenation of alternating coding and noncoding regions in any genomic DNA. Basedand the simplifying assumption that coding regions are drawn independently from a givenlength distribution, we can relate the length distribution of coding regions to the functionalform of the decay of correlations. Speci�cally, we can show that an exponential lengthdistribution will lead to an exponential decay of correlation functions and the mutualinformation function, while a power-law length distribution of coding regions will lead toa power-law decay of correlations.We generalize the pseudo-exon model to the pseudo-chromosome model by taking intoaccount the experimentally observed length distribution of coding regions, and we can showthat this model is able to reproduce the long-range correlation behavior of genomic DNAin many di�erent organisms.Chapter 15 is devoted to an more detailed discussion of long-range correlation featuresin genomic DNA sequences. As we have shown in chapter 4, correlation functions com-puted from one symbolic sequence by choosing di�erent mappings of symbols to numbersare not necessarily equal to each other. In chapter 15 we study correlation functions forseveral biologically relevant mappings, and relate the observed patterns to biological fea-tures of coding and noncoding DNA. Speci�cally, we show that the pronounced period-3in correlation functions for almost any mapping is caused to a signi�cant degree by thenonuniformity of the codon frequency distribution in coding DNA. We also show that theslow decay of the long-range C+G correlation function is related to the existence of dis-persed repeats and CpG islands. As a last example, we show that periodicities of 10-11 bpin correlation functions of yeast DNA may originate from an alternation of hydrophobicand hydrophilic amino acids in yeast proteins.In chapter 18 we present a new approach to the problem of the statistical identi�cationof protein-coding regions in genomic DNA. This approach is based on an entropic segmen-tation algorithm, which attempts to divide a heterogeneous sequence into homogeneoussubsequences based on the Jensen-Shannon divergence as a measure of heterogeneity. We�nd that this method is highly accurate in �nding borders between coding and noncodingregions, and we demonstrate that it is more accurate in identifying the correct location ofgenes than methods based on sliding windows.In chapter 16 we investigate if there exist universal statistical patterns that are di�erent



7in coding and noncoding DNA of all living species. We �nd that the probability distributionfunctions of the average mutual information (AMI) are signi�cantly di�erent in codingand noncoding DNA, while they are almost identical for all living species, ranging fromsimple bacteria to complex vertebrates. We show that the accuracy by which the AMI candistinguish coding from noncoding DNA is comparable to the accuracy of classical codingmeasures, which are trained on species-speci�c data sets.In an attempt to understand the origin of the observed species-independence of theAMI distributions, we search for statistical models that could reproduce the experimentallyobtained AMI distributions. For noncoding DNA we succeed, and we can show that thespecies-independence of the noncoding AMI distributions re
ects the absence of the geneticcode in noncoding DNA of any living species. However, for coding DNA we can show thatthe presence of the genetic code in coding DNA is not su�cient to reproduce the observedAMI distributions. This �nding leads us to the conclusion that there exist additionalcorrelations and inhomogeneities in coding DNA of all living species, which are responsiblefor the observed universality of the AMI distributions.Let us �nally mention that all concepts introduced in this thesis are not restricted toanalyses of biological sequences. The derived statistical properties of the Bayes entropyestimators and the natural estimators of correlation functions, the mutual information, orthe Shannon, R�enyi, and Tsallis entropies apply to all situations in which we are confrontedwith inferring knowledge from experimental data. Moreover, the techniques introduced toevaluate statistical properties of correlation functions or entropies are also applicable tomeasures and quantities not discussed in this work.



Chapter 2Biological BackgroundIn this chapter, we present a brief survey of molecular biology and genetics, as far as it isrelevant for motivating why this thesis has been written and for understanding the applica-tions of statistical physics and information theory that will follow. A detailed introductionto molecular biology and genetics can be found in a series of textbooks about molecularbiology or genetics such as [Wolkenstein 1983], [Knippers 1990], [Watson 1992], [Berg &Singer 1992], [Lewin 1993], [Gri�th 1993], or [Kolchanov & Lim 1994], the study of whichwe highly recommend to interested readers.When Robert Hooke analyzed a piece of cork under a light microscope in 1665, hediscovered the �rst organic cells. However, it took another 170 years before Mathias JacobSchleiden and Theodor Schwann published observations that gave birth to the disciplinenamed cytology. Today we know that all organisms consist of cells, the nuclei of whichcontain their entire genetic information.Organisms whose cells possess a nucleus are called eukaryotes, whereas those withouta nucleus like, for example, bacteria are called prokaryotes. The absence of a nucleus doesnot mean that bacteria can live without genetic material. The de�ning di�erence betweenprokaryotes and eukaryotes is just the missing or existing nucleic membrane that protectsthe genetic material.If we try to trace back where the genetic material is stored, we will realize a substancecalled chromatin, which is found in a sometimes compressed and sometimes uncompressedshape depending on the cell's cycle. As we will see in the following, the compressedshape, which we refer to as chromosomes, corresponds to the inactive state, whereas theuncompressed shape corresponds to the active state of the chromatin.



9About 80% of the chromatin is built up of proteins, whereas the remaining 20% arecontributed by nucleic acids. The proteins, which are mainly basic and called histones,play a fundamental, however, not yet completely discovered role in the complex frameworkof gene regulation in higher eukaryotes.Nucleic acids are linear macromolecules synthesized by a polycondensation of nu-cleotides and thus called polynucleotides. Their building blocks, the nucleotides, arechemical compounds consisting of a base, a sugar molecule, and phosphoric acid. Thenucleotides are connected such that we obtain a sugar phosphorus backbone where thebases are attached to the sugar molecules.The sugar can either be 2-deoxyribose or ribose. In the �rst case, we obtain deoxyri-bonucleic acid called DNA, whereas we end up with ribonucleic acid called RNA in thesecond case. These macromolecules can either be single stranded or complexes of two noncovalently bounded polynucleotides. The total length of all DNA molecules stored in onetiny cell of the human organism is about two meters. This unambiguously suggests thatthere is a highly hierarchical structure of the genome, since otherwise a proper functioningof a randomly compressed thread seems unimaginable.Let us �nally specify the bases that build up the nucleotides of DNA or RNA molecules.The four bases adenine, cytosine, guanine, and thymine occur in DNA nucleotides, whereasthymine is substituted by uracil in RNA molecules. These �ve bases can be chemicallyclassi�ed to belong to the following two classes: adenine and guanine are purines, whereascytosine, thymine, and uracil are pyrimidines.Since Watson and Crick discovered the double helix structure of the DNA [Watson &Crick 1953], we can easily understand why the number of purines equals the number ofpyrimidines in all DNA molecules. Because the two complementary strands that DNAconsists of are bound by hydrogen bonds between a purine and a pyrimidine, the purine-pyrimidine-ratio has to be constant for all double stranded DNA. Moreover, since adenine(A) always pairs with thymine (T ) and cytosine (C) with guanine (G), we further obtainthat the number of A equals the number of T and the number of C equals the number ofG appearing in all double stranded DNA.A gene is a region in the DNA that encodes one protein. Therefore, regions betweenthem are commonly called intergenic sequences. Before we go ahead to de�ne what codingand noncoding regions are, let us list three fundamental processes that govern molecularbiology and genetics.



10The process that produces an identical copy of the DNA is called replication. Today weknow that this process is semi-conservative, i.e., each of the two daughter DNA moleculescontains one parental and one freshly synthesized strand.Aside from its multiplication, the production of proteins is essential for the survival ofthe cell. Two processes are established to perform this task. The �rst one, which is termedtranscription, copies the coding strand of the DNA to a so called messenger RNA. Thism-RNA can then leave the nucleus and swim to the ribosomes, where the second processcalled translation takes place.Ribosomes can be considered as factories where the demanded polypeptides are syn-thesized. The genetic message now stored on the m-RNA is here translated into its cor-responding amino acid chain. The molecules governing the translation process are againRNAs, however this time so called transport RNAs. They can be regarded as the moleculardictionary of the genetic code, since they guarantee an unambiguous assignment of aminoacids to codons, which are de�ned as triplets of m-RNA nucleotides.Let us have a closer view on the transcription of genes to m-RNAs. Strictly speaking,we were cheating when we wrote that the coding DNA strand is directly copied to them-RNA molecule. Let us now consider the transcription process in detail.In a �rst step, the DNA polymerase, i.e., the enzyme that copies the coding DNA strandto a so called pre-m-RNA, binds to the promoter. Promoters are functional sites in thegenomic DNA that act as transcription start signals. We know that almost all promoterscontain a TATA box, which is located about 30 base pairs upstream the transcription start.Furthermore, we know that a CAAT box about 75 base pairs upstream the transcriptionstart point is vital for an e�cient gene expression. However, these two features are not atall su�cient to identify promoters in un-annotated DNA sequences. Hence, much e�ort ispaid to discover more features that are typical for real promoters and atypical for all otherTATA simulants.After the polymerase has bound to the promoter, it starts copying the DNA along itscoding strand until a transcription stop signal terminates the transcription. The pre-m-RNA molecule is now provided with a cap and a poly-A-tail which both are supposed toimpart the m-RNA its stability and resistance against aggressive enzymes. Additionally, anumber of pieces called introns are spliced out of the pre-m-RNA.This observation implies that genes of higher eukaryotes possess a mosaic like structureof alternating exons and introns. The exons are those parts of the genes that carry the



11genetic information transferred by m-RNAs to the ribosomes. Here it is then translatedinto its corresponding amino acid sequence determining the structure and function of themanufactured polypeptide. On the other hand, the purpose of the introns and the intergenicsequences, which make up about 95% of the entire human genome, is much more unclear[Nowak 1994].This situation caused some people to call the noncoding DNA junk, which we thinknames just the opposite of what the noncoding pieces really are. Many functional groupssuch as promoters, enhancers, or poly-A-sites are known to be located in the noncodingDNA. Moreover, the complex network of gene regulation is supposed to be stored in thenoncoding DNA, which might be related to recent �ndings of long range correlations inintrons and intergenic sequences [Li 1992],[Peng 1992], [Voss 1992], [Peng 1993], [Peng1994].It is still an open question how the cell identi�es coding regions in the pre-m-RNA withan accuracy of almost 100%. All arti�cially created techniques fail to discriminate exonsfrom introns with a probability of at least 5% [Lapedes 1989], [Uberbacher 1991], [Fickett1992], [Farber 1992], [Mural 1994]. The reliability of their prediction becomes in particularbad if the exons to be identi�ed become smaller than 50 base pairs [Farber 1992].This fact, which re
ects the di�culties that statistical methods have with discriminatingbetween exons and introns or identifying functional sites such as promoters, poly-A-sites,or splice junctions if the available sample size becomes small, perfectly motivates the goalof our following work.



Part A



Chapter 3Entropies and Information TheoryIn the previous chapter, we have seen that the main problem in molecular biology is notthe sequencing of DNA, RNA, or protein chains, but the extraction of biologically relevantinformation from them.Hence, we devote this chapter to information measures, i.e., quantities that measurethe amount of information stored in single symbols (such as nucleotides in DNA or aminoacids in protein sequences) or blocks of n of those symbols, which we in general call n-wordsor n-grams.We will axiomaticly introduce the Shannon entropy H1(~p) in section 3.2, which de�nesthe average amount of uncertainty in one symbol of a given sequence. The four axioms, bywhich the Shannon entropy can be uniquely de�ned, display some powerful mathematicalproperties, which we will discuss in the same section.In section 3.3, we will generalize the Shannon entropy by introducing higher orderentropies Hn. As in the previous section, we will devote the second part of section 3.3 toa discussion of some properties of higher order entropies.Conditional entropies hn will be de�ned in section 3.4, in which we will also discuss somemathematical properties of the series hn computed from stationary and ergodic sources.The following four sections, 3.5, 3.6, 3.7, and 3.8, are dedicated to the introductionof the mutual information function. In section 3.5, we present a �rst de�nition of thisfunction as a measure that quanti�es the information gain about a symbol X by obtaininganother symbol Y .Three possible generalizations of this preliminary mutual information make up thecontents of sections 3.6, 3.7, and 3.8. In section 3.6, we give up the restriction to single



14symbols and thus obtain the higher order mutual information as a measure of correlationsbetween sub-words of arbitrary size.We will present the mutual information between two cylinders of di�erent sources insection 3.7 and �nally introduce the Kullback entropy in section 3.8. We will realize themutual information as a special case of the Kullback entropy and thus develop a deeperunderstanding of what the mutual information measures.In section 3.8, we will also show that the mutual information only vanishes, if really allappearing symbols are statistically independent.Finally, we will present a short summary of all results collected in this chapter in section3.9.Although all results presented in this chapter can be found elsewhere in the literature[Ebeling & Feistel 1982], [Grassberger 1988], [Herzel 1988], [Khinchin 1957a], [Khinchin1957b], [Kolmogorov 1958], [Kullback 1959], [Leven 1989], [McMillan 1953], [Pompe 1994],[R�enyi 1982], [Shannon 1948a], [Shannon 1948b], [Yockey 1992], we consider it bene�cialfor our reader� to display in one chapter the de�nitions of information theoretical measures that wewill use in the remainder of this work,� to present some intuitive explanations of these measures, and� to exhibit an encyclopedic collection of useful theorems,since concepts derived from theory have already been proven to be extraordinarily fruitfulin various disciplines such as statistical physics, bioinformatics, or linguistics.Since the realization of the basic concepts behind all de�nitions presented in this chapterare essential for understanding the methods by which we will analyze biological sequences,we recommend all readers to become familiar with, for example, the concept of an infor-mation source, before going over to the following chapters, in which we start our statisticalanalysis of DNA sequences.3.1 Introduction to Information TheoryIn this section, we want to present some basic ideas behind what is commonly calledinformation theory. We will start with analyzing the communication process and dissect



15it into �ve elementary steps according to [Shannon, 1948b]. We will introduce the conceptof an information source and rationalize why we can derive all statistical properties of astationary and ergodic source from a single, however, in principle in�nitely long samplesequence. We will de�ne a probability measure on the set of all cylinders of a giveninformation source and show that, for stationary and ergodic sources, this measure can beinterpreted as the probability to �nd the corresponding substrings in the in�nitely longsample sequence generated by the considered source. Finally, we will mention a seriousproblem arising from the uncircumventable fact that all available sequences always have a�nite length and present an example that might �rst illustrate all de�nitions and conceptsdelivered in this section and second give us an insight into techniques designed to distinguishcoding from noncoding DNA.If we want to communicate with others, the following �ve elementary steps are essentialfor the transmission of any kind of information:1. The message that we wish to send has to be produced and emitted.2. We have to encode the message that we are going to send.3. We have to transmit this encoded message to our desired receiver through a possiblynoisy channel.4. The receiver has to decode our received message.5. Our destined subject or object has to receive this decoded message.Even though this classi�cation, which was introduced by Shannon in 1948, looks slightlyarti�cial, it has been proven to be very valuable for a scienti�c analysis of the communica-tion process and will be proven to be extremely fruitful for a statistical analysis of biologicalsequences.Please note that the information source as well as the destination do not necessarilyhave to be humans. The basic concept sketched above also holds for the communicationbetween animals or even between computers, machines, and other technical devices.The central question in information theory, which we can now understand, is how wecan determine the capacity of a channel. Here, the channel capacity is understood as themaximum amount of information that this channel is capable to transmit per time.Before we however present a proper de�nition of the amount of information stored in amessage, we �rst want to explain what is commonly understood by an information source.



16A mathematical de�nition of the information source was presented by McMillan in[1953] and Khinchin in [1957a, 1957b]. Let us at this point just brie
y outline their basicideas.What an information source basically does is producing a symbolic sequencefxtgt2G = ::: x�2 x�1 x0 x1 x2 :::with an, in principle, in�nite length. G denotes the set of all positive and negative integernumbers and xt de�nes the symbol that we �nd at position t in our given sequence. The�nite set of all appearing symbols is called an alphabet A � fA1; A2; :::; AMg where M isthe number of di�erent symbols appearing in our sequence of consideration and thereforecalled the alphabet size.German and English texts are composed of the 26 letters fA;B;C; :::;X; Y;Zg, so that,in this particular case, the term we de�ned as alphabet is identical to the Latin alphabet. InDNA sequences, where the four letters A, C, G, and T denote the four occurring nucleotidesadenine, cytosine, guanine, and thymine, the alphabet of size 4 would simply be the setfA;C;G;Tg.There is, of course, an in�nite number of sequences belonging to one information source,everyone of which can be understood as one possible realization of this source.If we now restrict, at some arbitrarily chosen positions ti, our symbols xti to be equalto given symbols yi 2 A, then we call the set containing all possible realizations of thesource that are compatible with these constraints a cylinder. At this point, we can assignprobabilities to any given cylinder of a source and thus end up with a probability measure� re
ecting the set of all assignments of probabilities to all cylinders of a source. Thisassignment, i.e., the probability measure �, unambiguously characterizes the informationsource.Two special cylinders will become the focus of our attention in the remainder of thiswork. One is the cylinder that is given by n consecutive indices, i.e., by t1 = �; t2 =� + 1; :::; tn = � + n � 1. If we choose the symbols y1; y2; :::; yn as those de�ning ourparticular cylinder, then its measure � is interpreted as the probability to �nd the n-wordor n-gram (y1; y2; :::; yn) at position � . This probability is, in the following, simply denotedby p(y1;y2 ;:::;yn)(�).The second class of cylinders we will deal with in the following are those de�ned bytwo symbols y1 and y2 at the two positions t1 and t2 that are k positions apart from each



17other, i.e., t2� t1 = k. By setting � � t1, we analogously obtain the probability to �nd thesymbol y1 at position � and the symbol y2 k positions later with its common denotationp(y1;y2)(k; �).In case of stationary sources, the probabilities p(y1;y2;:::;yn)(�) and p(y1;y2)(k; �) do notdepend on � , i.e., the probability to �nd a certain string does not depend on the positionwithin the sequence.If, moreover, the source is also ergodic, then we can consider the relative frequencies ofsubstrings that we derive from one in�nitely long realization (which we commonly call asample sequence) as their probabilities, i.e., then the time averages converge (in probability)to the corresponding ensemble averages.Although it is, in principal, trivial to derive the probabilities p(y1;y2;:::;yn) or p(y1;y2)(k)for any y1; y2; :::; yn from in�nitely long sequences produced by a stationary and ergodicsource, the estimation of these probabilities can become extremely hard or even impossibleif only �nite sequences are available.Imagine, for example, we want to estimate the probability, by which the 6-mer ofnucleotides ACTTGT appears in a given DNA sequence with a length of 10,000 basepairs. Since there are 4096 di�erent 6-mers possible, we cannot expect to �nd the substringACTTGT much more frequently than twice in our entire sequence (provided that theprobability pACTTGT does not drastically deviate from 1=4096).This situation, however, corresponds to the task to estimate the probability of a coinby 
ipping it twice.The situation in biology is even worse. Although there are sequences as long as 10,000base pairs and longer, one of the main goals of computational molecular biology is todevelop algorithms that can reliably distinguish between coding and noncoding DNA. Aswe, however, have learned in chapter 2, exons and introns are often shorter than 100 basepairs.Since, on the other hand, signi�cant di�erences between the 6-mer frequencies of eu-karyotic exons and introns exist, these di�erences are desired to be exploited by algorithmsthat are designed to discriminate coding from noncoding DNA.Surprisingly, these approaches, which make up the central part of the Gene RecognitionModule GRAIL installed at the Oak Ridge National Laboratory [Uberbacher 1991] and[Mural 1994], are really successful. Three of the twelve algorithms that base on statisticaldi�erences between coding and noncoding DNA in humans exploit di�erences in the 6-mer



18composition between exons and introns. This means that the 4096 dimensional vectorcontaining the absolute frequencies of the observed 6-mers, which often contains morethan 4000 zeros, carries some valuable information about the decision whether or not theunderlying DNA strand is protein coding.3.2 Shannon EntropyIn this section, we will introduce the Shannon entropy as a measure of uncertainty. Strictlyspeaking, the Shannon entropy characterizes a source and thus a set of produced sequences,but not a particular sequence. This means that the Shannon entropy is a functional of theprobability distribution over all possible sequences that our considered source can produce.Theoreticians like Shannon [1948b], Khinchin [1957b], R�enyi [1957], and Kolmogorov[1958] have introduced some requirements that functions have to ful�ll in order to beconsidered a measure of uncertainty. These requirements, which eventually build up acomplete system of axioms, are presented below.Axiom 3.1 Let p1; p2; :::; pM be the components of the M -dimensional probability vector ~pand H(~p) a scalar function of ~p. Then the �rst axiom requires the function H(~p) be smoothin ~p, which means that tiny variations of the probabilities pi cause only tiny variations ofthe values of H.Axiom 3.2 Let M be constant and the positive probabilities pi ful�ll the normalizationconstraint MPi=1 pi = 1. Then H (~p) becomes a maximum if pi = 1=M for all i = 1; 2; :::;M ;i.e., H � 1M ; 1M ; :::; 1M � � H (p1; p2; :::; pM) (3.1)for all p1; p2; :::; pM. Hence, the second axiom requires that the source is transmittingsymbols with the maximum amount of uncertainty if all symbols are sent with the sameprobability 1=M .Axiom 3.3 If we formally add an impossible event, i.e., pM+1 = 0, then the third axiomrequires H (p1; p2; :::; pM; 0) = H (p1; p2; :::; pM) : (3.2)This means that a desirable measure should not be a�ected by the formal addition of im-possible events.



19Axiom 3.4 Let pi be the probabilities for the events xi, qj be the probabilities for theevents yj, and Pij be the joint probabilities to observe the events xi and yj simultaneously.Let us further denote the vector (p1; p2; :::; pM) by ~p, the vector (q1; q2; :::; qM) by ~q, andthe M � N matrix containing the elements Pij by P̂ . If we now de�ne the conditionalprobabilities p(xijyj) � Pij=qj and p(yj jxi) � Pij=pi for all non-vanishing pi and qj , thefourth axiom requires the following equality:H �P̂� = H (~p) + MXi=1 pi �H (p(y1jxi); p(y2jxi); :::; p(yNjxi)) (3.3)= H (~q) + NXj=1 qj �H (p(x1jyj); p(x2jyj); :::; p(xMjyj)) (3.4)for all multivariate distributions P̂ .By de�ning the conditional entropiesH (~pj~q) � NXj=1 qj �H (p(x1jyj); p(x2jyj); :::; p(xMjyj)) (3.5)and H (~qj~p) � MXi=1 pi �H (p(y1jxi); p(y2jxi); :::; p(yNjxi)) ; (3.6)we obtain the fourth axiom in the memorizable formH �P̂� = H (~p) +H (~qj~p) = H (~q) +H (~pj~q) : (3.7)A conclusion of the fourth axiom is that, for independent events X and Y , i.e., ifPij = pi � qj for all i = 1; 2; :::;M and j = 1; 2; :::;N , the measure of uncertainty is simplyadditive, i.e., H �P̂� = H (~p) +H (~q) : (3.8)In section 3.8, we will show that this equality only holds if the two events X and Yare statistically independent. This means that the single equation H �P̂� = H (~p) +H (~q)implies the M �N equalities Pij = pi � qj (3.9)for i = 1; 2; :::;M and j = 1; 2; :::;N .On the other hand, we realize H (~qj~p) = 0 if X and Y are functionally dependent. Inthis case, we obtain the equality H �P̂� = H (~p) = H (~q).



20In general, we can state the following inequalities for all p̂:0 � H (~pj~q) � H (~p) (3.10)as well as 0 � H (~qj~p) � H (~q) (3.11)and thus max (H (~p) ; H (~q)) � H �P̂� � H (~p) +H (~q) : (3.12)As Khinchin shows in [1957b], the four axioms displayed above determine the followingfunctional form of the desired measure of uncertainty H (~p):H (p1; p2; :::; pM) = �C MXi=1 pi � ln(pi) (3.13)where C is a constant that de�nes the units in which we desire to measure the amountof uncertainty. This means that the measure of uncertainty compatible to all four axiomsdisplayed above has to be proportional to the average logarithm of the probabilities pi.Therefore, we de�ne the Shannon entropyH (p1; p2; :::; pM) � � MXi=1 pi � log(pi) (3.14)where the base to which we take the logarithm corresponds to the units in which we wishto measure the average amount of uncertainty stored in one symbol of our stationary andergodic sequence.If we identify this constant C with the Boltzmann constant kB, we receive the micro-scopic de�nition of the thermodynamic entropy.Setting C = 1= ln(2) yieldsH (p1; p2; :::; pM) = � MXi=1 pi � log2(pi); (3.15)which identi�es the elementary units of uncertainty with binary digits. In this case, wherewe measure the amount of uncertainty in bits, we end up with a very instructive interpre-tation of the Shannon entropy.Then the Shannon entropy H (p1; p2; :::; pM), which is a measure of the average amountof uncertainty in one symbol of our given sequence, is the (average) number of binary



21questions that we must ask in order to identify a particular symbol provided we use anoptimal strategy of asking.Let us, at this point, present an example that will explain this interpretation.Imagine we are sitting in front of a deck of 32 hidden cards, which all are di�erent,and want to guess which card is on top of the pile. The deeper question is how much wegather if somebody tells us the answer. Applying our informal de�nition of the Shannonentropy, we start asking binary questions about the uppermost card. Let us, for the sakeof simplicity, assume that all cards are numbered from 1 through 32.Since each card exists exactly once, an optimal asking strategy would be the following:1. Does the card on top of the pile belong to the �rst 16, i.e., is the number on this card� 16?2. Depending on the answer on question 1, yes or no, we would continue asking: Doesthe card belong to the �rst ... or third ... group of 8?3. And so on.After having asked the �fth question, we will know for sure which card is on top of thepile, i.e., the amount of uncertainty is equal to 5 bit in this case.Calculating H (p1; p2; :::; pM) = � MXi=1 1M � log2� 1M � = log2(M) (3.16)yields the same result for M = 32 since 25 = 32.Imagine we are now interested in the amount of uncertainty in a single letter in anEnglish text. A foreign friend1 whose only knowledge about English be that there are 32letters would be confronted with the same task of guessing letters as we were with the taskof guessing cards.For him, the amount of uncertainty per letter would be 5 bit as well.However, if we ask an Englishmen to guess a letter that we randomly picked from anEnglish text, he would de�nitely need less than 5 questions on average to determine thehidden letter. Two reasons contribute to this decrease of the Shannon entropy per letter.1Please note that this is a hypothetic example since we believe that foreign people might, on average,understand ten-thousand times more about English than we about their foreign language.



22First, there are only 26 letters in the Latin alphabet and not 32. And second, these26 letters are by far not equidistributed. An E appears much more frequently than, forexample, an X . Hence, an optimal strategy would probably start with the �rst question:Is the hidden letter a vowel?Shannon was the �rst who analyzed the entropy of English texts [Shannon 1951]. Hisresults, which have not been changed over the last �ve decades, state that the amount ofuncertainty per letter in English texts is about 4.03 bit. This means that we should beable to recover a lost letter by asking somebody who found it about 4 binary questions onaverage.However, what happens if we want to guess letters from a context? Imagine for examplewe are reading a book and suddenly are coming across a spot where black ink hides exactlyone letter. The sentence reads as follows: \The sky is blu%." The % marks the letter thatwe cannot identify and thus have to guess. But do we really have to ask more than fourtimes to guess the letter completely?Of course, not! The answer is that the amount of uncertainty in this letter (e) is indeedvery close to zero. The question that we pose with this statement is where this entropydecrease originates from?In the following section, we will introduce higher order entropies and conditional en-tropies, which will eventually allow us to quantify the amount of uncertainty in a symbolthat is embedded in a context.We will learn that correlations between a symbol that we want to guess and its en-vironment always decrease the Shannon entropy of this symbol and hence increase itsredundancy.3.3 Higher Order EntropiesIn this section, we will introduce Shannon's n-gram entropies Hn, which de�ne the amountof uncertainty in a sub-word of length n.As we have already mentioned in section 3.1, a source is completely and unambiguouslydetermined by its probability measure �. Vice versa, we are automatically given all n-gramprobabilities once our source is speci�ed. Please let us neglect the problems that arise fromestimating these n-gram probabilities from �nite sequences for the next moment.



23In section 3.2, we have learned that the functionH (p1; p2; :::; pM) = � MXi=1 pi � log2(pi); (3.17)measures the average amount of uncertainty in one single letter.Let us now formally identify all possible sub-words of length n that can be composed byletters yi derived from an alphabet of size � with new symbols Aj . Note that i = 1; 2; :::; �,but j = 1; 2; :::;M with M = �n. Of course, there are M = �n di�erent sub-words oflength n composable from letters belonging to a �-ary alphabet.Denoting the n-gram probabilities by p(n)1 ; p(n)2 ; :::; p(n)M , we obtain the higher order en-tropies Hn �p(n)1 ; p(n)2 ; :::; p(n)M � = � MXi=1 p(n)i � log2 �p(n)i � (3.18)as a measure of uncertainty in sub-words of length n.Again, we choose the dual logarithm in order to measure the amount of uncertainty inbit. Then, the a higher order entropy of 12 bit means we have to ask 12 binary questionsto get to know the corresponding sub-word.As Khinchin shows in [1957a], the series fHng is monotonically increasing for stationaryand ergodic sources, i.e., Hm � Hn (3.19)for all m < n.This statement is intuitively clear if we apply our informal de�nition of the Shannonentropy. If we have to ask Hn times to get to know a sub-word of length n on average,then we need at least the same number of questions to ask for a sub-word of length n+ 1.The amount of uncertainty in the last letter cannot be negative, since entropies are alwaysnonnegative.Let us consider a purely random and a periodic sequence to exemplify the de�nition ofhigher order entropies.In the following, we will call a sequence Bernoulli-like or, in short, Bernoulli sequence,if all � symbols appear statistically independent of each other. This means that the prob-ability to �nd a sub-word of length n is identical to the product of the probabilities of itscomponents, i.e., p(y1;y2;:::;yn) = py1 � py2 � � � pyn : (3.20)



24Exploiting this equality for Bernoulli sequences immediately yieldsHn = n �H1; (3.21)which is intuitively clear: H1 is the average amount of uncertainty per letter. This meanswe have to ask H1 times to get to know this letter. How often do we then have to aska binary question in order to guess the second letter of our n-gram? Since all lettersare statistically independent in our sequence, we cannot infer anything about the letterat position 2 by getting to know the �rst letter and thus have to ask again H1 binaryquestions. Hence, we have to ask n � H1 questions to obtain the identity of a sub-wordof length n, which is in accord to the fourth axiom stating the additivity of the Shannonentropy for independent variables.The same approach allows us to derive an analytic relation among higher order entropiesof periodic sequences. If the sub-words are longer than the period, which we denote by l,i.e., n > l, then we do not have to guess the last n� l symbols, because they are completelydetermined by the �rst l symbols. Hence, we obtainHn = Hl (3.22)for all n � l.Let us now come back to the question how we can exploit the properties of the seriesfHng to detect correlations in our underlying sequence.Two examples might serve as a motivation why many scientists are interested in corre-lations that appear in symbolic sequences such as natural texts, pieces of music, computerprograms, or DNA.On the one hand, there is the increasing demand to compress data. However, datacan only be compressed if they contain some redundancy. But redundancies are intrinsiclyrelated to correlations within the analyzed sequence.If there is a set of rules that have to be obeyed such as spelling rules and the grammarof a certain language, then we have less freedom to construct permitted sequences. This,however, decreases the number of questions we have to ask in order to obtain a hiddensymbol or sub-word.Imagine, for example, we are to guess an English word and have already found outone particular letter be a q. Then we do not have to ask at all for the next letter sincewe know it must be an u. This example clearly demonstrates how correlations (which areweak forms of restrictions) decrease higher order entropies and thus increase redundancies.



25Aside from demanding better data compression algorithms, many biologists and physi-cians are interested in understanding gene regulation in higher eukaryotes. The discoveryof the existence of long-range correlations in noncoding DNA sequences [Li 1992], [Peng1992], [Voss 1992], which however seem to be not present in protein coding pieces, raised aloud controversy and hence the demand for a careful analysis of all measures and techniquesused to detect correlations in symbol sequences.In chapter 11, we will introduce some classical techniques like the analysis of randomwalk 
uctuations, power spectra, or autocorrelation functions, by which correlations arecommonly measured. We will show how all of these techniques are related to each otherand thus concentrate on the question whether or not correlation functions are able to detectall kinds of correlations hidden in a symbol sequence. We will present some novel resultsregarding this question and outline a method, by which all statistical dependences betweensymbols or sub-words within a symbolic sequence can be detected.We will see that the mutual information, an entropy-related measure derived frominformation theory, is a welcome tool to detect all kinds of correlations in a symbol sequence.Therefore, we will now come back to our question for a quantity that de�nes the amountof uncertainty that is remaining in a symbol, if the preceding n symbols are known. If wethen apply this measure, which we term conditional entropy, to our sentence \The sky isblu%," we will realize that this conditional entropy is indeed much smaller than four bit.This means we do not have to ask about four times for an illiterate letter in English texts,if we are given some preceding letters and know some basic orthographic and grammaticalrules.The e�ect that we have to ask the less, the more we understand about English, i.e.,the more regulations we know, again illustrates the crucial relation between the strengthof correlations and redundancy.Let us in the following section de�ne the conditional entropies hn, which de�ne theamount of uncertainty in a symbol yn+1 if the preceding n symbols y1; y2; :::; yn are known.3.4 Conditional EntropiesPlease recall that we denote Shannon's n-gram entropies, which de�ne the amount ofuncertainty in a string of length n, by Hn.Let us in this chapter de�ne the conditional entropy hn as the di�erence between the



26two higher order entropies Hn+1 and Hn, i.e.,hn � Hn+1 �Hn: (3.23)The quantity hn measures the amount of uncertainty in one symbol provided we knowthe preceding n-gram, i.e., the conditional entropy hn quanti�es the number of questionswe must ask in order to identify the last letter of our (n + 1)-gram provided we alreadyknow the �rst n letters.In the following paragraph, we will motivate the term conditional entropy, i.e., wewill show that hn can be written as the average logarithm of the conditional probabilitiesp(yn+1jy1; y2; :::; yn), whereas the Shannon entropy Hn is given by the average logarithmof the n-gram probabilities p(y1; y2; :::; yn), as we have seen in section 3.3.Let p(Sn) � p(y1; y2; :::; yn) be the probability to �nd the string Sn � y1y2:::yn of lengthn at any arbitrary position � in our stationary and ergodic sequence. Let furtherp(yn+1jSn) � p(Sn; yn+1)p(Sn) (3.24)be the conditional probability to �nd the symbol yn+1 following the string Sn, wherep(Sn; yn+1) denotes the probability to �nd the (n+ 1)-gram y1y2:::yn+1.Then the conditional entropy hn can be rewritten in the following manner:hn = Hn+1 �Hn (3.25)= � XfSnyn+1g p(Sn; yn+1) � log2(p(Sn; yn+1)) + XfSng p(Sn) � log2(p(Sn)) (3.26)= � XfSnyn+1g p(Sn; yn+1) � log2(p(Sn; yn+1))+ XfSnyn+1g p(Sn; yn+1) � log2(p(Sn)) (3.27)= � XfSnyn+1g p(Sn; yn+1) � log2�p(Sn; yn+1)p(Sn) � (3.28)= � XfSnyn+1g p(Sn; yn+1) � log2 (p(yn+1jSn)) ; (3.29)which states that the conditional entropy is given by the average logarithm of the condi-tional probabilities p(yn+1jSn) and hence the average uncertainty about the symbol yn+1if the preceding n symbols y1; y2; :::; yn are known.



27Since the amount of uncertainty about a symbol yn+1 can never be increased by pro-viding the observer with some additional information about the symbol y0, we can statethat hn � hn+1 (3.30)for all n 2 N , i.e., the series of the conditional entropies hn is monotonicly decreasing.This relation between the conditional entropies hn can be back-translated into a niceproperty of the higher order entropies Hn. Since the conditional entropy hn as a functionof n can be understood as the �rst derivative of the higher order entropy Hn as a functionof n, the monotonic decrease of the function hn implies the convexity of Hn as a functionof n.This means that although the higher order entropies are always increasing with risingn, the increase becomes smaller and smaller.Since, in addition to the monotonicity of hn, the conditional entropies are always non-negative, i.e., the set of all hn is bounded from below, the series fhngn2N converges to anonnegative number h � limn!1 hn: (3.31)This quantity h, which is called the entropy of the source, quanti�es the amount ofuncertainty remaining in a symbol, if all preceding symbols of our in�nitely long, stationary,and ergodic sequence are known.Please note that the quantities Hn=n, which can be de�ned as the average amount ofuncertainty of an n-gram per letter, also converge to the entropy of the source, i.e.,limn!1 Hnn = limn!1 hn = h: (3.32)Hence, the quantity Hn=n is a good measure of correlations as well. In fact, the number1 � Hnn�log(�) is chosen as a measure of redundancy by Gatlin [1972], Ebeling [1982], andMantegna [1994, 1995], who analyzes linguistic di�erences between coding and noncodingDNA in these s.We, however, stick to the conditional entropies hn for three reasons:� The numbers hn converge quicker to the entropy of the source than the entropies perletter Hn=n.



28� The conditional entropies hn with their interpretation as the average uncertaintyabout a symbol given the preceding n-gram are closer to the correlation measure weare looking for than the quantities Hn=n.� The mutual information function, which we will introduce in the next section, caneasily be de�ned (and understood) in terms of the conditional entropies hn.Before we, however, go over to our next section, where we introduce the mutual infor-mation function, let us present two examples in the remainder of this section that shallillustrate the meaning of conditional entropies.Imagine a Bernoulli sequence. Then all conditional entropies hn are equal to H1, i.e.,hn = H1; (3.33)since Hn = n �H1 for all n 2 N . This result is not at all surprising, because all symbols arestatistically independent and hence uncorrelated so that we do not learn anything aboutthe following symbol in our sequence independently on how many preceding symbols wehave gotten to know. Therefore, we have to ask H1 times for a single symbol independentlyon how many preceding symbols we are given, i.e., the conditional entropies hn are alwaysidentical to H1.If we consider a periodic sequence, then we obtainhn = 0 (3.34)by applying eq. (3.22) for all n � l, where l denotes the length of the period. This isintuitively clear, since we can predict (without any uncertainty) the symbol yn+1 followingthe n-gram Sn if n � l.The series fhng of all other stationary and ergodic sequences range within these twolimiting cases and tell us, in principle, everything about statistical dependences betweensymbols or substrings within our sequence. The practical problem that we are, however,confronted with while analyzing English texts, pieces of music, or biological sequences isthe �nite size of all these samples. In order to get a reliable estimate about the conditionalprobability p(yn+1jSn), we have to make sure that the corresponding (n+ 1)-gram Snyn+1occurs at least once in our sample.This restriction would, however, never allow us to analyze correlations on length scalesof hundreds or thousands of symbols, since even in the best case that we are dealing with



29binary sequences, the required minimum sequence length would be 21000, which is a numberthat exceeds by far the number of atoms in our entire universe.In the following section, we will introduce the mutual information function, which isnot a�ected by those serious combinatorial problems mentioned above. Since the mutualinformation will turn out to measure exactly what we understand by redundancy, we willuse the mutual information function to measure correlations in symbolic texts.3.5 Mutual InformationIn this section, we will present the mutual information as a measure of correlations betweensymbols within one sequence. Since we analyze these correlations depending on the distancebetween the considered symbols, we obtain the mutual information as a function of theinter-symbol-distance, which we will brie
y call the mutual information function.The philosophy behind the de�nition of this measure is extremely simple. Instead ofconsidering substrings of length n, we will now deal with cylinders that are given by a pairof two symbols in a distance k, as outlined in section 3.1.Then we can de�ne a conditional entropy h1(k) by the following equation:h1(k) � H2(k)�H1; (3.35)in which H1 and H2(k) are de�ned byH1 � � �Xi=1 pi � log(pi) (3.36)and H2(k) � � �Xi;j=1Pij(k) � log (Pij(k)) (3.37)where pi denotes the probability to �nd the symbol Ai at any arbitrary position in ourstationary sequence and Pij(k) names the joint probability to �nd the two symbols Ai andAj (in this order) k positions apart from each other. Please recall that k = 1 correspondsto adjacent positions and note that pi = pAi and Pij(k) = p(Ai;Aj)(k) according to ourdenotation introduced in section 3.1.In analogy to section 3.4, we obtain that h1(k) quanti�es the average amount of in-formation hidden in a symbol of our stationary and ergodic sequence provided we knowthe symbol that appears k positions upstream. If this conditional information is measured



30in bit, then h1(k) is equal to the average number of questions we have to ask in order toobtain the information about the second symbol provided we know the �rst symbol.Let us now compare this information h1(k) with the Shannon entropy H1, which isequal to the average number of binary questions we have to ask about the second symbolprovided we do not know the symbol k positions upstream. The di�erence between thesetwo entropies gives us the information that we gain about the second symbol by getting toknow the �rst one.This di�erence is exactly what we are looking for as a correlation measure between twosymbols that appear k positions apart from each other in a given stationary and ergodicsequence.Hence, we de�ne I(k) � H1 � h1(k) (3.38)as the mutual information function of our given information source.Applying eqs. (3.35), (3.36), and (3.37) to this de�nition yieldsI(k) = 2 �H1 �H2(k) = �Xi;j=1Pij(k) � log Pij(k)pi � pj ! ; (3.39)which is the de�nition usually found in the literature [Kullback 1951b], [McEliece 1977],[Pompe 1986], [Ebeling 1992], [Yockey 1992], [Herzel 1994a].Let us at this point again consider a Bernoulli sequence to illustrate the de�nition givenabove.Since, in the case of Bernoulli sequences, hn = H1 for all n, we obtainI(k) = 0 (3.40)for all k 2 Nnf0g.This result exactly corresponds to our intuitive understanding of what the mutualinformation de�nes. In Bernoulli sequences, where all symbols are statistically independentof each other, we do not gain any information about the current symbol by getting to knowany previous one.In deterministic sequences, were all hn are zero, i.e., there is no uncertainty about thenext symbol provided we know at least one symbol that appeared in the past, the mutualinformation function is constant at its highest possible value H1. In mathematical terms,I(k) = H1 (3.41)



31for all k 2 Nnf0g.This means not only that the entire information available about the symbol to beguessed is provided by getting to know any previous symbol of our deterministic sequence,but also that the information H1 that any symbol of this sequence can provide us with isentirely exploited to predict the symbol to be guessed.In chapter 13 we will deal with some delicate problems that arise by analyzing correla-tions in periodic sequences. We will see that even slight periodicities give rise to periodicmutual information functions as well as to periodic correlation functions. Since periodici-ties in coding DNA sequences are trivially generated by a nonuniform codon usage, whichis typical for coding but atypical for noncoding sequences, the periodicity of the mutualinformation function can be exploited to identify coding DNA pieces.But before we start discussing some important mathematical properties of the mutualinformation function, let us outline three possible generalizations of this 2-point correlationmeasure.In our �rst step, we will not only consider symbol-symbol-correlations, but also correla-tions between a set of n symbols at arbitrary positions and another m symbols at arbitrarypositions. A special case of this generalization are correlations between n-grams and m-grams separated by k symbols and, for n = m = 1, our mutual information prototype justde�ned above.In our second step, we will give up our restriction to one sequence. We will alsoconsider correlations between symbols or sub-words appearing in di�erent sequences. Thecombination of both step one and step two will eventually provide us with a measure of allmany-point crosscorrelations.In step three, we will introduce the Kullback entropy [Kullback, 1951b] and show thatthe mutual information is a special case of this measure.3.6 Higher Order Mutual InformationThe mutual information I(k) quanti�es what we will (on average) learn about a hiddensymbol if somebody tells us which symbol is located k positions upstream in the sequence.Let us now generalize this mutual information by not only considering pairs of symbols kpositions apart from each other, but, for example, a symbol pair at position � and a singlesymbol at position � + k in our sequence of investigation.



32The answer on the question \Which amount of information about the symbol at position� + k do we obtain by getting to know the symbol pair at position �?" is then exactlyde�ned as our generalized mutual information. It can again be written as the averagelogarithm of the terms Pij(k)pi�qj where pi is now the probability to �nd the i-th 2-gram, qj isthe probability to �nd the j-th symbol, and Pij(k) is the joint probability to �nd the i-th2-gram and the j-th symbol k positions downstream.In mathematical terms,I(k) = �2Xi=1 �Xj=1Pij(k) � log Pij(k)pi � qj ! : (3.42)Please note that the index i is now counting all 2-grams and thus running from 1 to�2. All following generalizations are straightforward and thus only brie
y displayed.Instead of considering correlations between a 2-gram and a remote symbol, we can aswell analyze the mutual information between an n-gram and a symbol k positions down-stream in our stationary and ergodic sequence. Then i runs from 1 to �n and pi denotesthe probability of the cylinder given by the i-th n-gram. The mathematical expression isanalogous to eqs. (3.39) and (3.42) and reveals the following interpretation: if the loga-rithm is taken to base 2, the mutual information quanti�es the information gain about arandomly chosen symbol by getting to know the n-gram k positions upstream.We will, in the following, also stop to restrict the target of our prediction be a singlesymbol. Instead we will present a quantity that measures correlations between an n-gramand a 2-gram separated by k symbols. In this case, we denote the 2-gram probabilities byqj where j = 1; 2; :::; �2 and again apply the same de�nition. Then the mutual informationmeasures the average amount of information we gain about a 2-gram by getting to knowthe n-gram k positions upstream.Correlations between n-grams and m-grams that are separated by k symbols can beanalyzed by an analogously de�ned mutual information that quanti�es the informationcontent we obtain about anm-gram if somebody tells us which n-gram is located k positionsupstream. Please note that n and m can be any positive integer number, i.e., we do notrequire n � m.The last step will be that we also allow our n-tuple andm-tuple to contain disconnectedsymbols. The ultimate question that we are now asking is which information do we obtainaboutm symbols atm arbitrary positions by getting to know another n symbols at another



33n arbitrary positions? The answer is given by the mutual information, which is de�ned asI(~k) � �mXi=1 �nXj=1Pij(~k) � log Pij(~k)pi � qj ! : (3.43)Please note that this mutual information function now depends an a vector ~k thatcontains the distances between all of the considered m+ n symbols.This generalization will turn out to be extremely fruitful for the analysis of DNAsequences, since there are a lot of correlations of this type known to molecular biologists,which are, however, not yet systematically exploited. As an illustrating example, we mightchoose the problem to identify promoters in eukaryotic genomes. We already know frommolecular biology that a TATA box at position k1 = � 30 and a CAAT box at positionk2 = � 75 are necessary for building up a functioning promoter, if position k0 = 1 marksthe transcription start.The problem by which computational molecular biologists are now confronted with isthat these features are by far not su�cient to identify real promoters in eukaryotic DNA. Ifwe assume for the sake of simplicity that all nucleotides appear with the same probability,we come up with the bothering result that the mean distance between two TATA boxesis 256 base pairs on average.On the other hand, we know the typical lengths of genes and their density in the genome,i.e., we know about the typical lengths of intergenic sequences. The human genome, whichconsists of about three billion base pairs, is expected to contain about a hundred thousandgenes. This means that the mean distance between two promoters is in the order of thirtythousand base pairs.Hence, a search for all TATA elements will certainly provide us with all promoters, but99% of them will be TATA-simulants and not real promoters. Therefore, many biologistsare searching for other features or patterns that distinguish real promoters from TATA-simulants [Mural 1994]. A welcome tool for these kinds of studies could be the generalizedmutual information. This measure might reveal whether there are additional positions thatare highly correlated with appearing CAAT and TATA boxes. These correlations couldthen be exploited for identifying real promoters with a higher reliability.



343.7 Mutual Information CrosscorrelationsIn this section, we will introduce a second generalization of the mutual information de�nedin section 3.5. We will give up our restriction to one sequence in which we look for corre-lations. The consideration of two sequences and correlations between them will eventuallybring us back to the original questions risen in information theory.Let us remember the �ve elementary steps by which a message is transmitted. We arenow neglecting the coding and decoding process and only concentrate on the question whathappens with a given symbol sequence that is sent through a noisy channel.Let the original sequence, which we assume to be stationary and ergodic for the sake ofsimplicity, be denoted by X := ::: x�2 x�1 x0 x1 x2 :::, where the letters xi are chosen fromthe alphabet A of size �. Let then the received sequence be Y := ::: y�2 y�1 y0 y1 y2 :::,where we assume the letters yi be chosen from the same alphabet A.If the channel is noiseless, we obtain X � Y , i.e., xi = yi for all integer i.However, if the channel is noisy, mutations may happen that randomly change some ofthe transmitted symbols.The question that we are now asking is: \How much information do we gain about thesent symbol xn (that we, as the receiver, do not know) if we receive the symbol yn?"The answer is given by the mutual information, which is de�ned asI(k) = �Xi=1 �Xj=1Pij � log Pijpi � qj! ; (3.44)where pi is the probability that the symbol Ai 2 A is sent, qj is the probability that thesymbol Aj 2 A is received, and Pij is the joint probability that the symbol Ai 2 A is sentand the symbol Aj 2 A is received. If the logarithm is taken to base 2, we obtain themutual information measured in bit.The motivation and explanation of this de�nition is analogous to section 3.5 and thusonly sketched here.Let HX be the Shannon entropy of the emitted sequence2 X , HY be the Shannonentropy of the received sequence Y , and H2 the Shannon entropy re
ecting the average2Please remember that this de�nition is only correct for stationary and ergodic sources, where we canidentify the statistical properties of an in�nitely long sample sequence with the statistical properties of thesource. In all other cases, the de�nition of HX , HY , and H2 would also be possible, but then we wouldhave to spend more words to present a proper de�nition of the Shannon entropies HX , HY , and H2 of theinformation sources X, Y , and (X;Y ).



35information stored in the symbol pairs (xi; yi).The di�erence between the mean uncertainty about the symbol pair (xi; yi) and themean uncertainty about the symbol yi is again identical to the mean uncertainty aboutthe (sent) symbol xi provided we know the (received) symbol yi. Therefore, let us againde�ne the conditional entropy hX jY � H2 �HY (3.45)in analogy to the de�nition of h2 in section 3.4.Of course, we can also de�ne a conditional entropy hY jX � H2 �HX , which quanti�esthe mean uncertainty about yi provided we know xi. However, please note that hX jY isnot necessarily equal to hY jX , i.e., hX jY is not necessarily symmetric in X and Y .In order to answer the question what amount of information we gather about the sentsymbol xi by receiving the symbol yi, we just subtract hX jY from HX and thus obtainI [X; Y ] = HX � hX jY = HX +HY �H2 = �Xi;j=1Pij � log Pijpi � qj ! : (3.46)Even though we will, in the remainder of this work, only deal with analyzing correlationsbetween symbols or sets of symbols within one sequence, this two-sequence-generalizationwill turn out to be essential for correctly calculating the mutual information function of�nite sequences.If we are given an only �nite sequence, we cannot determine the corresponding mutualinformation with absolute accuracy, but only estimate the mutual information values witha certain reliability. Due to �nite size e�ects, the estimates of pi and qi (these are theprobabilities to �nd the symbol Ai at the left hand side and at the right hand side ofour symbol pair, respectively) do not have to be identical. Therefore, a careful distinctionbetween the two probabilities pi and qi is required even in the case of dealing with onlyone sequence.Moreover, the two-sequence-generalization will be crucial for understanding statisticaland systematic errors by estimating correlation functions from �nite samples. We willshow in chapter 11 that a careful analysis of the relation between the probabilities pi andqi will eventually result in an exact expression of the systematic errors induced by thenon-vanishing bias of the natural correlation function estimator.At the end of this section, we will brie
y focus on some possible (and recommendable)generalizations of the mutual information between two sequences.



36In the �rst instance, we give up our restriction that the letters xi and yi have to bechosen from the same alphabet. This means that i now runs from 1 to �X and j from 1 to�Y , where �X denotes the size of the alphabet A, from which the symbols x� are chosen,and �Y denotes the size of the alphabet B, from which the symbols y� are chosen.In the second instance, we apply all generalizations discussed in our previous section.This means that we are now asking how much information we gain about n symbols pickedat arbitrary positions in the sent sequence X by getting to see m symbols of the receivedsequence Y . Let us eventually present our �nal de�nition of the mutual information.De�nition 3.1 Let pi denote the probability of the cylinder Ai of a given informationsource X, where i = 1; 2; :::;MX andMX = �nX in case of our example presented above. Letanalogously qj denote the probability of the cylinder Bj of a source Y , where j = 1; 2; :::;MYand MY = �mY for example. Let further Pij be the joint probability for the simultaneousoccurrence of the two cylinders Ai and Bj.Then we de�ne the mutual information asI [X; Y ] = MXXi=1 MYXj=1Pij � log Pijpi � qj ! : (3.47)Before we will turn to our third generalization of the mutual information by de�ningthe Kullback entropy, let us state an interesting theorem about the mutual informationI [X; Y ] as a function of the two information sources X and Y , which deals with the relationbetween I [X; Y ] and I [Y;X ].Imagine we substitute the role between the sender and the receiver, i.e., we do not askwhat the receiver learns about the sent sequence X by receiving Y , but vice versa whatthe sender can infer about the received sequence Y by analyzing the channel and the sentsequence X .It is formally trivial to show thatI [X; Y ] = I [Y;X ] (3.48)independently on the chosen alphabets A and B.This, however, means that, for example, the amount of information we gain about areceived symbol from a binary alphabet B by getting to know a sent 5-gram composedfrom a ternary alphabet A is equal to the amount of information we obtain about this5-gram from X by getting to know the binary symbol from Y . This general statement of



37the symmetry of the mutual information as a function of the two sources X and Y justre
ects the mutuality of this information measure.3.8 Kullback Entropy and Mutual InformationIn this section, we will de�ne the Kullback entropy K �~p; ~p0� and show that the mutualinformation I(~p) is equal to the Kullback entropy in the special case in which we set ~p0equal to the product of the marginal distributions of ~p.We will present some properties of the Kullback entropy that will turn out to be ex-tremely valuable for the application of the mutual information function as a correlationmeasure to symbol sequences such as texts, pieces of music, time series, DNA, RNA, oramino acid sequences.We will, in particular, show in theorem 3.1 that the Kullback entropy is always positiveand only vanishes if ~p � ~p0, which implies that the mutual information vanishes if, andonly if, all appearing symbols in our sequence are statistically independent.An extended introduction of Kullback's entropy and detailed discussions of the theoremspresented in this section can be found in [Jaglom 1965], [Khinchin 1957a], [Kullback 1951b],[McEliece 1977], [Shannon 1948a], [V�olz 1982 & 1983], and [Yockey 1992].We introduced the mutual information as that amount of information which we gainabout a symbol or tuple xi by receiving a message yi. Let us now consider the general casethat we have some prior assumption about a system X , which we represent by a vector~p0 � (p01; p02; :::; p0M) containing the prior probabilities p0i of the states of our consideredsystem.Let us then carry out some experiments that provide us with new information aboutthis system. Let our posterior knowledge about the states of the system be re
ected by~p � (p1; p2; :::; pM), which denotes the vector containing the posterior probabilities pi.Then the information gain K �~p; ~p0� is given byK �~p; ~p0� � C MXi=1 pi � ln pip0i ! (3.49)and termed the Kullback entropy.Kullback introduced this quantity as a divergence measure, since it quanti�es the com-patibility of the outcomes of a sampling experiment with the prior hypothesis about theconsidered system.



38Let us now illustrate the relationship between the Kullback entropy and the mutualinformation as de�ned in the previous chapter. Imagine we are setting up some sam-pling experiments by which we want to decide whether or not two random variables arestatistically independent. Let the two random variables be X and Y with their possiblerealizations x1; x2; :::; xMX and y1; y2; :::; yMY , respectively.Let now our prior assumption be the statistical independence of X and Y , i.e., P 0ij =pi � qj , where pi denotes the probability to observe xi and qj denotes the probability of theexperimental outcome yj .If we denote the experimental joint probabilities by Pij , we come up with the specialKullback entropy K �P̂ ; P̂ 0 = ~p � ~q� = MXXi=1 MYXj=1Pij � log Pijpi � qj ! ; (3.50)where the base of the logarithm is purposely left unspeci�ed, since it is related to the unitsin which we wish to measure the amount of information.As we easily recognize, this Kullback entropy is identical to our de�nition 3.1 of themutual information.By de�nition, this quantity K �P̂ ; P̂ 0 = ~p � ~q� measures the information we gain aboutthe Pij under the assumption of independent X and Y . If this information is zero orclose to zero, this means that our assumption P̂ 0ij , i.e., the assumption of the statisticalindependence between X and Y , is perfect or very good, respectively. If, on the other hand,the mutual information is high, this means that our independence assumption is very bad,i.e., X and Y are statistically dependent.Let us now present a lemma and a theorem that underscore the value of the mutualinformation I [X; Y ] as a measure of correlations between X and Y .Lemma 3.1 The Kullback entropy K �~p; ~p0� is a convex function of the probabilities pi,i.e., @2K@pi@pj = �ijpi � 0 (3.51)for all i; j = 1; 2; :::;M , all ~p, and all ~p0.Since also f(x; x0) = � ln(x=x0) is a convex function in x, i.e., @2f@x2 = 1x2 � 0, we canapply Jensen's inequality (see Appendix B) to the de�nition of the Kullback entropy and



39obtain �K �~p; ~p0� = MXi=1 pi � log p0ipi ! (3.52)� log MXi=1 p0i! (3.53)= log(1) = 0; (3.54)which yields our announced theorem.Theorem 3.1 The Kullback entropy is always positive, i.e.,K �~p; ~p0� � 0 (3.55)for all ~p and ~p0, and only vanishes if equality holds in Jensen's inequality, i.e., the Kullbackentropy vanishes if, and only if, ~p � ~p0.This theorem implies the important property of the mutual information I [X; Y ] to bealways positive and only equal to zero, if X and Y are statistically independent. For exactlythis reason, we consider the mutual information a more powerful measure of correlationsthan, for example, the correlation function C[X; Y ] de�ned in chapter 11.At this point we turn back to analyzing symbol sequences and present a theorem aboutthe mutual information function I(k) of Markov chains.Theorem 3.2 Let the random variables X, Y , and Z form a (�rst order) Markov chain,i.e., Z depends on X only through Y , i.e., p(zjy) = p(zjx; y). Then we obtain thatI [X;Z] � I [X; Y ] (3.56)as well as I [X;Z] � I [Y; Z] (3.57)for all X, Y , and Z.This means that the mutual information function I(k) of a �rst order Markov chainis always monotonicly decreasing. Vice versa, we can state that any deviation from themonotonic decay of the mutual information function indicates the non Markovian characterof the underlying sequence.



40In information theory, the inequalities (3.56) and (3.57) carry a very important meaning:discrete memoryless channels always tend to leak information [McEliece 1977]. If Y isa de�nite function of X and Z is a de�nite function of Y , then we can think of theMarkov chain (X; Y; Z) as a data processing con�guration. Then theorem 3.2 says thatdata processing can only destroy information.3.9 SummaryIn section 3.1, we analyzed the communication process and introduced the concept ofan information source. We showed that the probability measure of a given cylinder canbe understood as the probability to �nd the corresponding substring in stationary andergodic sequences. We want to emphasize again that we are only in this case allowed tostudy in�nitely long sample sequences instead of sequence ensembles.In section 3.2, we presented an axiomatic approach to the de�nition of the Shannonentropy as a measure of uncertainty in single symbols.Section 3.3 was then devoted to the introduction of higher order entropies, which mea-sure the amount of uncertainty in substrings of, in principle, arbitrary length. We realizedthat the series of higher order entropies is always monotonicly increasing and convex.Whereas Bernoulli sequences exhibit a linear growth of their higher order entropies, peri-odic sequences reach a plateau at the length of their period.In section 3.4, we introduced conditional entropies, which measure the amount of un-certainty in a symbol provided we know some previous ones. We explained why the seriesof conditional entropies of stationary and ergodic sources always monotonicly decreasesand considered a Bernoulli sequence as well as a periodic string as limiting cases of allpossible hn-series of stationary and ergodic sources.In section 3.5, we motivated the de�nition of the mutual information as a measure ofcorrelations between two symbols. Since these two symbols are not restricted to neighboreach other, but can instead be separated by a gap of arbitrary length, the mutual infor-mation function turned out to be a very powerful tool to detect long-range correlations insymbolic sequences.Sections 3.6, 3.7, and 3.8 were eventually dedicated to presenting three kinds of gener-alizations of the mutual information function presented in section 3.5.In section 3.6, we gave up the restriction of measuring correlations between single



41symbols and de�ned the mutual information between a set of m and a set of n symbolsat arbitrary positions. We demonstrated that this generalization yields a powerful tool forlinguistic analyses of DNA sequences.In section 3.7, we presented a generalization of the mutual information as a measureof the shared between two symbols or sets of symbols stored in di�erent sequences. Weunderscored the importance of this generalization for properly understanding and correctlycalculating the systematic estimation errors induced by the always �nite length of realsequences.Section 3.8 was reserved for introducing the Kullback entropy. We showed that themutual information is a special Kullback entropy and thus gained a new interpretation ofthe mutual information between two random variables. By relating this interpretation withour previous understanding, we developed a new insight into what the mutual informationmeasures.In section 3.8, we derived the theorem that the mutual information is always positiveand vanishes if, and only if, the considered random variables are statistically independent.This property is the main reason why we prefer the mutual information function overautocorrelation functions for analyzing symbolic texts such as DNA, RNA, or amino acidsequences.



Chapter 4Measuring Correlations in SymbolSequencesThis chapter is devoted to relations between correlation functions and the mutual infor-mation function. We show that in sequences over an alphabet of � symbols statisticaldependences are measured by (�� 1)2 independent parameters. However, not all of themcan be determined by autocorrelation functions. Appropriate sets of correlation functions(including crosscorrelations) are introduced, which allow the detection of all dependences.The results are exempli�ed for binary, ternary, and quaternary symbol sequences. As anapplication, we discuss in section 13 that a nonuniform codon usage in protein-coding DNAsequences introduces periodic correlations even at distances in the order of 1000 base pairs.4.1 IntroductionThe statistical analysis of symbol sequences is of growing interest in various �elds, forexample lin-guistics [Shannon 1951, Jaglom & Jaglom 1965, Schenkel 1993, Ebeling & P�oschel 1994,Levitin & Feingold 1994], analysis of biosequences [Gatlin 1972, Ebeling & Feistel 1982,Ebeling et al. 1987, Herzel 1988, Karlin & Brendel 1992, Peng et al. 1992,Bor�stnik et al. 1993, Herzel et al. 1994a, Herzel et al. 1994, Herzel et al. 1995], cellular au-tomata [Grassberger 1986], or dynamical systems [Farmer 1982, Eckmann & Ruelle 1985,Ebeling & Nicolis 1991]. Under the assumption of stationarity, probabilities can be as-signed to the occurrence of symbols in given sequences. These symbols are, for example,42



43the four nucleotides A, C, G, and T occurring in DNA sequences, the 26 letters of theLatin alphabet in English texts, or the 20 amino acids in protein sequences.The aim of this chapter is to study certain characteristics of some widely usedmeasures such as correlation functions and mutual information [Herzel & Ebeling 1985,Pompe et al. 1986, Fraser & Swinney 1986, Li 1990]. In particular, we focus onthe interrelation between correlation functions and the mutual information func-tion. Our study is motivated by the continuing analysis of long correlations inbiosequences [Ebeling et al. 1987, Herzel 1988, Karlin & Brendel 1992, Peng et al. 1992,Bor�stnik et al. 1993, Herzel et al. 1994a, Herzel et al. 1994, Herzel et al. 1995], but mostof our results are of general importance.Both, the correlation function and the mutual information measure correlations withinone sequence (autocorrelations) or between two sequences (crosscorrelations). However,both measures impose their own meaning of what they de�ne as correlation. There is aclear mathematical expression for statistical independence between random variables |the factorization of the corresponding probabilities. The mutual information and correla-tion coe�cients vanish in case of statistical independence, but they di�er in quantifyingdeviations from statistical independence, i.e., in quantifying statistical dependences.Correlation coe�cients measure only linear dependences, whereas the mutual infor-mation is more general in the sense that it detects all kinds of statistical dependences.However, we will argue that vanishing correlation functions can ensure statistical indepen-dence under certain circumstances as well.Both, correlation functions and mutual information have their advantages and disad-vantages. The following list might help to compare and contrast some features that arerelevant in this context:Advantages of correlation functions:� A lot of experience how correlation functions behave has been gathered in statisticalphysics. For example, there are well known relations between the autocorrelationfunction and the variance growth of a corresponding random walk [Peng et al. 1992,Stanley et al. 1994].� Fourier transforms of autocorrelation functions give power spectra, which allow aneasy detection of periodicities.



44� Correlation coe�cients can be either positive or negative. Hence, they can distinguishbetween correlations and anticorrelations.� Correlation coe�cients are very speci�c. They can, for example, measure correlationsbetween the nucleotides A and C in DNA sequences or between hydrophilicity andcharge in amino acid sequences.On the other hand,� correlation functions measure only linear correlations. This can be illustrated bychaotic sequences for which correlation coe�cients may vanish, although the iteratesare even functionally dependent. For example, the autocorrelation coe�cients vanishfor the fully developed logistic map xn+1 = 4 xn(1 � xn) [Herzel & Ebeling 1985,Grossmann & Thomae 1977].� Correlation coe�cients are not invariant with respect to coordinate transformations.Hence, the assignment of numbers to symbols is somewhat arbitrary and the outputof the autocorrelation function depends on the chosen projection.Advantages of the mutual information:� The mutual information detects any kind of dependence (not only linear correlations),which is stated by the following theorem: The mutual information vanishes if, andonly if, all occurring symbols are statistically independent. (See, e.g., [Mackey 1989]for a proof.)� The mutual information is invariant under coordinate transformations.� No assignment of numbers to symbols is required.Disadvantages:� The mutual information is less speci�c than autocorrelation functions since any de-viation from statistical independence is mapped onto a single number.� For all �nite sequences, there is a systematic overestimation of the mutual informa-tion, which, however, can be corrected. (See [Herzel et al. 1994a] and Appendix IIfor reviews of �nite sample corrections.)



45We have already mentioned that a vanishing mutual information is necessary and suf-�cient for the statistical independence of all symbols. The arising question is now whetherthere are sets of correlation functions the vanishing of which guarantees statistical indepen-dence as well. Moreover, we derive some functional relations between di�erent correlationfunctions, on the one hand, and correlation functions and the mutual information function,on the other hand. With this respect, this chapter can be regarded as a generalization ofprevious results by Wentian Li [Li 1990].In particular, we concentrate on quaternary sequences, which were not studied in[Li 1990], and apply our results to DNA sequences since they are of immanent interestin biology.Our main results may be summarized as follows: In order to quantify statistical depen-dences in sequences with � symbols, (�� 1)2 independent parameters have to be studiedfor a given distance between symbols.However, only ��(��1)2 of these parameters can be measured by autocorrelation coe�-cients. We suggest to use crosscorrelations in order to detect all statistical dependences.4.2 De�nitionsSymbol sequences are composed of letters from an alphabet of � letters fA1; A2; :::; A�g(e.g. fA;C;G;Tg for DNA sequences or fA;B;C; :::;X; Y;Zg for English texts). Since weassume stationarity, any symbol Ai (i = 1:::�) occurs with a well de�ned probability pi atany arbitrary site, i.e., this probability pi does not depend on the position at which thesymbol appears in the sequence. At this point, we remark that the assumption of sta-tionarity is a delicate question for �nite sequences. Natural sequences such as languages,DNA, or proteins are often not completely stationary. So we see, for example, signi�-cant 
uctuations of the G+C content in DNA sequences even on length scales of severalmillion base pairs. For instance, chromosome bands indicate regions of di�erent G+Ccontent [Herzel et al. 1995, Lewin 1997]. However, these problems of instationarity can bereduced by trend elimination techniques [Stanley et al. 1994, Li et al. 1994]. The e�ectsof a nonuniform codon usage in the reading frame on instationarity is discussed in sectionVII.Now we de�ne joint probabilities pij(k) to �nd the symbol Ai and the symbol Aj (inthis order) in a distance k. So pij(1) refers to adjacent symbols Ai and Aj . Please note



46that, due to the assumed stationarity, the joint probabilities pij(k) do not depend on thepositions of Ai and Aj , but only on their distance within the sequence.Two symbols in a distance k are de�ned to be statistically independent if, and onlyif, pij(k) = pi � qj where pi denotes the probability to �nd the symbol Ai at an arbitraryposition n, and qj denotes the probability to �nd the symbol Aj at position n+ k. Due tostationarity, all pj are equal to qj , so that we can call two symbols statistically independentif (and only if) pij(k) = pi � pj .At this point we de�ne a quantity that measures the statistical dependence (and thuscorrelations) between symbols in a distance k:I(k) � �Xi;j=1 pij(k) � log pij(k)pi � pj : (4.1)This quantity istermed mutual information (or transinformation [Herzel & Ebeling 1985]) and is relatedto the Kullback information or Boltzmann's H-functional [Mackey 1989]. As base of thelogarithm we choose 2 and obtain the following interpretation for I(k). The mutual infor-mation gives us the information (measured in bit) that we receive about the second symbolby getting to know the �rst one.Now we turn to the de�nition of autocorrelation functions of symbol sequences. Here,we have to assign real numbers (a1; a2; :::; a�) to symbols A1; A2; :::; A�. For further con-venience, we de�ne the vector ~a as the �-tuple ~a � (a1; a2; :::; a�). Then we de�neC~a(k) � ha(n) � a(n+ k)i � ha(n)i � ha(n+ k)i (4.2)as the autocorrelation function with the chosen projection ~a where a(n) denotes the numberassigned to the symbol at position n in the sequence and h:::i refers to the average over theentire sequence.Assuming ergodicity, the above average can be replaced by the average over probabilitiespij(k) to de�ne the autocorrelation function:C~a(k) = ( �Xi;j=1 pij(k) � ai � aj)� ( �Xi=1 pi � ai)2= �Xi;j=1(pij(k)� pi � pj) � ai � aj : (4.3)



47If we now de�ne a quadratic ��� matrix D̂(k) by setting the entries Dij(k) � pij(k)�pi � pj , we can write any autocorrelation function as a bilinear form of this matrix D̂(k) inthe following way: C~a(k) = ~a � D̂(k) � ~aT : (4.4)If, and only if, all symbols in our sequence are statistically independent, this matrixD̂(k) is identical to 0̂.Various relations between di�erent autocorrelation functions are derived in the nextsections. For simplicity, the dependence of the joint probabilities pij(k), the matrix D̂(k),the mutual information I(k), and the correlation functions C~a(k) on the distance k isdropped in the following. However, relations derived for any of those quantities hold forall k 2 N n f0g.4.3 How to guarantee statistical independenceThis question was also addressed by Wentian Li [Li 1990] for binary and ternary sequences.However, we do not require the matrix P̂ (which is de�ned by the entries pij) to besymmetric. Moreover, we discuss statistical properties of sequences that are composed ofmore than three di�erent letters. Some relations valid for sequences with any alphabet sizeare derived in Appendix I. Novel results regarding the dependence between autocorrelationfunctions of ternary and quaternary sequences are derived as special cases in sections IVand V, respectively.As shown above, any correlation function is a bilinear form of the matrix D̂, andD̂ � 0̂ is necessary and su�cient for the statistical independence of all symbols in thesequence. Hence, this matrix D̂ contains all information we need to evaluate any statisticaldependence within our symbol sequence of interest.We �rst raise the following question: How many of the �2 entries of the matrix D̂ areindependent?For this reason, let us �rst collect all constraints that might decrease the number ofindependent entries of D̂.The normalization of the joint probabilities pij�Xi;j=1 pij = 1 (4.5)



48and of the probabilities pi �Xi=1 pi = 1 (4.6)yields �Xi;j=1Dij = �Xi;j=1Pij � ( �Xi=1 pi) � ( �Xj=1 pj) = 0: (4.7)So the normalization constraint for our dependence matrix D̂ reads as follows: The sumover all entries of D̂ has to vanish.Furthermore, the equations �Xi=1 pij = pj (4.8)and �Xj=1 pij = pi (4.9)hold due to stationarity for all j = 1:::� and for all i = 1:::�, respectively. Hence, we obtainfor all j = 1:::� �Xi=1Dij = �Xi=1(pij � pi � pj) = 0 (4.10)and for all i = 1:::� �Xj=1Dij = �Xj=1(pij � pi � pj) = 0: (4.11)In other words, this means that the sum of the matrix entries Dij in each column andin each row has to vanish. This gives us another 2 �� constraints besides the normalization.At this point, it is important to realize that these2 � � + 1 constraints are not independent of each other. In the following paragraph, weare showing that two of the constraints mentioned above depend on a set of only 2 � �� 1equations.In a �rst step, we show that the equations�Xi=1Di� = 0 (4.12)and �Xj=1D�j = 0 (4.13)can be derived from the remaining 2 ��� 1 constraints. This means we have to prove thatboth, the sum in the last column and the sum in the last row vanish, provided normalization



49holds and all sums in the �rst �� 1 columns and in the �rst �� 1 rows vanish. By usingthe �� 1 row-constraints and realizing the normalization condition, we obtain:�Xi=1Di� = �Xi;j=1Dij � ��1Xj=1 ( �Xi=1Dij)| {z }0 = 0: (4.14)Analogously, we proceed and yield:�Xj=1D�j = �Xi;j=1Dij � ��1Xi=1 ( �Xj=1Dij)| {z }0 = 0: (4.15)Now we have to show that the 2 � �� 1 constraints, which have just been found to besu�cient to guarantee stationarity and normalization, are indeed independent. By nowwe know that there are not more than 2 � �� 1 independent equations constraining the �2dimensional space of all parametersDij . Thus, there are �2�2 ��+1 = (��1)2 parameterssu�cient for determining the matrix D̂.In order to prove that these parameters are also necessary, let us �ll the matrix D̂starting with the �rst line. We de�ne the entries D11; D12; :::; D1��1. At this point, D1� isalso de�ned by the �rst row-sum-constraint. We proceed with the second row and de�neD21; D22; :::; D2��1. Again, D2� is then determined by the second row-sum-constraint. Werepeat this procedure until we arrive at the element D��1��1. By now, we have �lled the�rst �� 1 rows completely by having exploited all of the �� 1 row-sum-constraints.We can determine the matrix element D�1 by applying the �rst column-sum-constraint,D�2 by applying the second one, ..., and D���1 by using the (� � 1)th column-sum-constraint. We have just determined all entries Dij except D�� by having de�ned (�� 1)2parameters and having used 2 � (� � 1) constraints. The last parameter D�� can now bedetermined by using the remaining normalization constraint. The whole procedure, whichis exempli�ed for ternary sequences in section V, is illustrated by the following sketch:D̂ = 0BBBBB@ D11 � � � D1��1 �... . . . ... ...D��11 � � � D��1��1 �� � � � � � 1CCCCCA (4.16)The matrix elements marked by stars can be determined by the upper left quadraticmatrix of type (��1)� (��1) together with the constraints. At this point, we can answer



50the question how many parameters are required to determine the matrix D̂ unambiguously.It is obvious that exactly (�� 1)2 entries (all elements of the upper left quadratic matrix)can be chosen independently. So we have learned that (�� 1)2 parameters are necessaryand su�cient to de�ne the matrix D̂.Consequently, we concentrate on the (��1)�(��1) matrix composed of those (��1)2independent parameters in the upper left corner, which we denote by ~D. The remaining2 � �� 1 entries of the matrix D̂ can then be calculated by all of the 2 � �� 1 constraintsdiscussed above.Now we turn to another relevant question. How many of those (� � 1)2 parameters(which are required to identify all correlations in a sequence built up of an alphabet con-taining � letters) can be determined by autocorrelation functions?To evoke the reader's interest in this question, let us call that there is an in�nite numberof autocorrelation functions since we can assign real numbers to all � symbols, but thereare only (�� 1)2 parameters to be determined.We remember that every matrix can unambiguously be decomposed into a sum of asymmetric and an antisymmetric matrix in the following way. If D̂ is the matrix to bedecomposed, and Ŝ and Â denote its symmetric and antisymmetric parts, thenSij = Dij +Dji2 (4.17)and Aij = Dij �Dji2 (4.18)for all i; j = 1:::�.It follows immediately from eqs. (10), (11), and (18) that the sum over all entries,row-sums, and column-sums of the antisymmetric matrix Â vanish. Consequently, ourconstraints for D̂ apply to Ŝ as well.It can easily be seen that autocorrelation functions are determined solely by the sym-metric part: C~a = �Xi=1Dii � a2i + �Xi; j = 1i < j (Dij +Dji) � ai � aj= ~a � Ŝ � ~aT : (4.19)



51Hence, autocorrelation functions cannot reveal any information about antisymmetriccomponents of D̂. We stress that also autocorrelations of moments of the numbers aidepend only on the symmetric ingredients of the matrix D̂.The symmetric matrix corresponding to the matrix ~D (remember that only the upperleft matrix has to be considered) contains ��(��1)2 independent parameters, Sij (i; j =1:::��1; i� j), which is the number of elements in the upper triangle matrix including thediagonal elements. On the other hand, the corresponding antisymmetric matrix contains(��1)�(��2)2 independent parameters, Aij (i; j = 1:::� � 1; i < j) (upper triangle matrixexcluding the diagonal elements).Summarizing, we state that (��1)2 independent parameters are necessary and su�cientfor the estimation of all correlations in a given sequence, (��1)�(��2)2 of which cannot bedetermined by any autocorrelation function. The question that we are going to answer inthe following sections is how all of the remaining ��(��1)2 parameters can be calculated byautocorrelation functions.4.4 Binary SequencesIn this section, we want to apply our results to binary sequences and compare them withstudies by Wentian Li [Li 1990]. In binary stationary sequences, the dependence matrix D̂has the form: D̂ =  p11 � p21 p12 � p1 � p2p21 � p1 � p2 p22 � p22 ! (4.20)Due to the constraints of vanishing row-sums and column-sums, we getD̂ =  D11 �D11�D11 D11 ! (4.21)where we have introduced the notation D11 = p11 � p21. Since p12 = p1 � p2 � D11 andp21 = p1 � p2 �D11, we realize that Li's requirement, p12 = p21, is a simple consequence ofthe constraints resulting from stationarity.As shown in section II, any autocorrelation function can be expressed by the followingbilinear form: C(a1;a2) = (a1; a2) �  D11 �D11�D11 D11 ! � a1a2 != (a1 � a2)2 �D11 (4.22)



52Now we consider the autocorrelation function where we have assigned the numbers 1and 0 to the symbols A1 and A2, respectively, i.e, (a1; a2) = (1; 0). Then, the correspondingautocorrelation function is identical to D11:C(1;0) = D11: (4.23)Thus, we can rewrite eq. (22) as follows:C(a1;a2) = (a1 � a2)2 �C(1;0): (4.24)This equation reveals that all autocorrelation functions are dependent on only one (e.g.,on C(1;0)) which can be considered a basis of the 1-dimensional space spanned by all auto-correlation functions of binary sequences.We see that C(1;0) = 0 implies D̂ � 0̂ and thus statistical independence. This meansthat C(1;0) (or any other autocorrelation function of binary sequences) vanishes if, and onlyif, all symbols are statistically independent.Thus, we realize that autocorrelation coe�cients are as good as the mutual informationwith respect to detecting correlations in binary sequences.These results also apply to a problem arisen in communication theory [Bernasconi 1987]:Extensive optimization studies have been performed [Krauth & Mezard 1995] to �nd lowautocorrelation binary sequences by minimizing C(1;�1)(k). It turns out that a vanishingautocorrelation function C(1;�1) = 4 � C(1;0) = 4 �D11 (4.25)implies also statistical independence of letters in the corresponding binary strings.4.5 Ternary SequencesSequences based on an alphabet of three letters are widely used to encode natural lan-guages [Ebeling & P�oschel 1994] or music [Ebeling & Nicolis 1992, Ebeling et al. 1995].The well known Morse Code can also be regarded as being composed of three symbols:fshort; long; pauseg. In this section, we show that� not all correlations between symbols can be detected by autocorrelation functionsand that



53� the three autocorrelation functions fC(1;0;0); C(0;1;0); C(0;0;1)g are a basis in the sensethat all possible autocorrelation functions of ternary sequences are a linear combina-tion of those \basic" ones.From section III we know that there are (�� 1)2 = 4 independent entries of the matrixD̂, ��(��1)2 = 3 of which belong to the symmetric matrix Ŝ. We show in this section thatthese three parameters can be determined by three autocorrelation functions, for example,by fC(1;0;0); C(0;1;0); C(0;0;1)g. However, the antisymmetric parameter remains hidden andcannot be determined by any autocorrelation function.For illustration, let us consider the following �rst order Markov process: If the currentsymbol is A1, the following one is A1 with probability 1=3 and A2 with probability 2=3;A3 cannot occur right after A1. Analogously, the transition probabilities from A2 to A2and A3 to A3 are 1=3 and those from A2 to A3 and A3 to A1 are 2=3. Due to symmetry,we obtain p1 = p2 = p3 = 1=3. This Markov process can be represented by the followingmatrix: P̂ (k = 1) = 0BB@ 1=9 2=9 00 1=9 2=92=9 0 1=9 1CCA (4.26)containing the joint probabilities de�ned in section II. This process introduces some pe-riodicity A1 ! A2 ! A3 ! A1 leading to non-vanishing antisymmetric components,which is not atypical for DNA sequences. (Cf. the nonuniform codon usage discussed in[Ebeling et al. 1987, Fickett 1982, Staden 1984] and in section VII.) All information re-garding correlations in this Markov chain is stored in the matrixD̂(k = 1) = 0BB@ 0 1=9 �1=9�1=9 0 1=91=9 �1=9 0 1CCA (4.27)which obviously contains a non-vanishing antisymmetric part.Since C(1;0;0) = D11; (4.28)C(0;1;0) = D22; (4.29)and C(0;0;1) = D33; (4.30)



54we realize that these three autocorrelation functions, which were introduced by Voss, areall equal to zero in this example and thus fail to measure any correlation.In the following, we are going to show that the three autocorrelation functionsfC(1;0;0); C(0;1;0); C(1;1;0)g are su�cient to determine the three independent parameters S11,S12, and S22 required to identify the symmetric matrix Ŝ. By de�nition, we haveC(1;0;0) = S11; (4.31)C(0;1;0) = S22; (4.32)and C(1;1;0) = S11 + S12 + S21 + S22: (4.33)Eqs.(31) and (32) together withS12 = S21 = C(1;1;0)+ C(1;0;0)+ C(0;1;0)2 (4.34)give the entries of ~S (the upper left 2 � 2 matrix of Ŝ) determined byfC(1;0;0); C(0;1;0); C(0;0;1)g: Due to the constraints, Ŝ is completely determined byfS11; S12; S22g: S13 = S31 = �S11 � S12 (4.35)S23 = S32 = �S21 � S22 (4.36)S33 = S11 + S12 + S21 + S22: (4.37)We note in passing that eqs. (33) and (37) reveal the identityC(0;0;1) = C(1;1;0): (4.38)So we can summarize that the three autocorrelation functions fC(1;0;0); C(0;1;0); C(0;0;1)gare su�cient to identify the matrix Ŝ and constitute a basis for all autocorrelation functionsof ternary sequences, since C~a = ~a � Ŝ � ~aT (4.39)as pointed out in section III.However, we have to remember that autocorrelation functions cannot determine all(� � 1)2 = 4 parameters of the matrix D̂. This means that the statement \there are nocorrelations between symbols if all possible autocorrelation functions vanish" is not valid for



55ternary sequences. Hence, there are sequences for which all autocorrelation functions areidentical to zero even though correlations do exist (as shown in our introductory example).In these situations, the mutual information function could reveal those correlations notdetectable by autocorrelation functions.Another concept to display the antisymmetric correlations is to determine the(��1)�(��2)2 independent entries of the antisymmetric matrix Â by calculating crosscor-relation functions in the following manner. We introduce the crosscorrelation functionC~a;~b(k) = ha(n) � b(n+ k)i � ha(n)i � hb(n+ k)i= ~a � D̂ �~bT (4.40)by using two di�erent assignments ~a and ~b to the symbols of a given sequence. If we choosethe basis ~a = (1; 0; 0) and ~b = (0; 1; 0), we obtainC~a;~b = D12; (4.41)which is (in addition to S11, S12, and S22) su�cient to determine the four independentparameters of the matrix D̂: D11 = S11 (4.42)D12 = C(1;0;0);(0;1;0) (4.43)D21 = 2 � S12 �D12 (4.44)D22 = S22: (4.45)The application of all 2 � �� 1 = 5 constraints gives the remaining entries of D̂.4.6 Quaternary SequencesA statistical analysis of quaternary sequences is of fundamental importance in biology, sinceall nucleic acid sequences are composed of four nucleotides with the four bases: Adenine(A), Cytosine (C), Guanine (G), and Thymine (T). All kinds of RNA (m-RNA, t-RNA,r-RNA) are built up of A, C, G, U (Uracil). Measuring and understanding correlationsin DNA sequences or sub-sequences like exons, introns, or intergenic regions is one of



56the current goals. So it is the particular purpose of this chapter to apply our results toquaternary sequences in order to foster further analyses of DNA sequences.There are (� � 1)2 = 9 independent parameters in the matrix D̂, only ��(��1)2 = 6 ofwhich can be determined by autocorrelation functions. The arising question is now to �ndan appropriate basis of six independent autocorrelation functions, the linear combinationof which yields any imaginable autocorrelation function of quaternary sequences.There are seven possible projections of quaternary sequences onto binary ones, whichare indeed studied in [Stanley et al. 1994]. For convenience, we choose the DNA alphabetfA;C;G;Tg instead of fA1; A2; A3; A4g for the quaternary sequence and the alphabetfX; Y g for the binary sequence in this section. Then we can visualize the seven projectionsin the following list:� fA;Cg =) X and fG; Tg =) Y :\alphabetical AC-GT rule", no biological interpretation known; corresponding toC(1;1;0;0)� fA;Gg =) X and fC; Tg =) Y :\purine-pyrimidine rule"; corresponding to C(1;0;1;0)� fA; Tg =) X and fC;Gg=) Y :\hydrogen bond rule"; corresponding to C(1;0;0;1)� A =) X and fC;G; Tg=) Y :\Adenine rule"; corresponding to C(1;0;0;0)� C =) X and fA;G; Tg=) Y :\Cytosine rule"; corresponding to C(0;1;0;0)� G =) X and fA;C; Tg=) Y :\Guanine rule"; corresponding to C(0;0;1;0)� T =) X and fA;C;Gg=) Y :\Thymine rule"; corresponding to C(0;0;0;1)In this way we have obtained seven di�erent binary sequences, the correlation functionsof which we want to calculate. Remembering that there is but one autocorrelation functionto be determined in binary sequences and choosing (x; y) = (1; 0) for the sake of simplicity,



57we receive seven di�erent autocorrelation functions. Since we know that there are only sixindependent parameters in the symmetric matrix Ŝ, we can already conclude that thesebinary autocorrelation functions cannot be independent.In the following, we are checking whether six of these seven binary autocorrelationfunctions are su�cient to determine the matrix Ŝ entirely. In this case, they would forma basis in the (usual) sense that all quaternary autocorrelation functions could be linearlycombined by them.Now we are showing that the upper six autocorrelation functions are indeed su�cientto identify all six independent parameters of Ŝ. Applying eq. (24) to C(1;0;0;1) yields:C(1;0;0;1) = C(0;1;1;0) (4.46)We can use the same strategy as in section V and write down all six autocorrelationfunctions in terms of the symmetric elements of D̂. In the next step, we obtain the��(��1)2 = 6 entries of the symmetric matrix ~S in terms of the autocorrelation functionsC(1;0;0;0), C(0;1;0;0), C(0;0;1;0), C(1;1;0;0), C(1;0;1;0), and C(0;1;1;0):S11 = C(1;0;0;0) (4.47)S12 = C(1;1;0;0)� C(1;0;0;0)� C(0;1;0;0)2 (4.48)S13 = C(1;0;1;0)� C(1;0;0;0)� C(0;0;1;0)2 (4.49)S22 = C(0;1;0;0) (4.50)S23 = C(0;1;1;0)� C(0;1;0;0)� C(0;0;1;0)2 (4.51)S33 = C(0;0;1;0): (4.52)The remaining entries of Ŝ can be calculated by applying the constraintsS14 = �S11 � S12 � S13 (4.53)S24 = �S21 � S22 � S23 (4.54)



58S34 = �S31 � S32 � S33 (4.55)S44 = 3Xi;j=1Sij (4.56)and using the symmetry Sij = Sji: (4.57)Obviously, the chosen autocorrelation functions form a basis since they contain theentire information about all correlations that autocorrelation functions could detect inprinciple. For example, C(0;0;0;1) is the following linear combination of the basis functionsused above: C(0;0;0;1) = �C(1;0;0;0)� C(0;1;0;0)� C(0;0;1;0)+C(1;1;0;0)+ C(1;0;1;0)+ C(0;1;1;0): (4.58)After replacing C(0;1;1;0) by C(1;0;0;1), we obtainC(1;0;0;0) + C(0;1;0;0)+ C(0;0;1;0)+ C(0;0;0;1) =C(1;1;0;0) + C(1;0;1;0)+ C(1;0;0;1): (4.59)This relation allows to select an appropriate basis of six autocorrelation functions outof those seven. We suggest to choose fC(1;0;0;0), C(0;1;0;0), C(0;0;1;0), C(0;0;0;1), C(1;0;1;0),C(1;0;0;1)g since all of the autocorrelation functions in this set are biologically interpretable.The \AC-GT rule" as well as others such as the molecular mass rule [Stanley et al. 1994]are just a linear combination of those autocorrelation functions mentioned above.A general way to �nd a simple basis for any alphabet size � is presented in AppendixI. After we have extensively discussed the dependence between quaternary autocorrelationfunctions, we are now coming back to our original task to study how all of the (�� 1)2 = 9independent parameters building up the matrix D̂ can be determined.As already pointed out in section V, one possibility is the calculation of crosscorrela-tion functions. In quaternary sequences, where ��(��1)2 = 6 of 9 parameters have beendetermined by autocorrelation functions, the remaining (��1)�(��2)2 = 3 antisymmetric



59entries can be estimated by three independent crosscorrelation functions, for example:C(1;0;0;0);(0;1;0;0), C(1;0;0;0);(0;0;1;0), and C(0;1;0;0);(0;0;1;0).In order to measure all existing correlations by a single function, one can calculatethe mutual information function as discussed in sections I and II. We study the mutualinformation function of genomic DNA sequences in chapter 13, and we dedicate chapters14, 15, 18, and 16 to further applications of the mutual information to the analysis of DNAsequences.4.7 SummarySeveral statistical measures can detect long-range correlations in symbolic strings such asEnglish texts or DNA sequences. We understand all of them as functions that quantifythe degree of statistical dependence between symbols in a distance k. Hence, we raised thequestion how many parameters have to be estimated in order to determine all correlationsin a given distance. We could show that, for any distance k, (�� 1)2 parameters arerequired to identify all correlations in a sequence composed by an alphabet of � symbols.We turned to the question whether autocorrelation functions could determine these(�� 1)2 parameters and realized that they can detect only ��(��1)2 parameters. Moreover,we learned that all autocorrelation functions are linearly dependent on a set of ��(��1)2properly chosen autocorrelation functions that we termed a basis.Sections IV, V, and VI were devoted to selecting an appropriate basis for binary, ternary,and quaternary sequences, respectively.We could show that one autocorrelation function is su�cient to measure all correlationsin binary sequences. Thus we were able to state that all symbols (in a given distance) arestatistically independent if, and only if, the chosen autocorrelation function vanishes.In section V, we considered ternary sequences to illustrate our general results summa-rized in Appendix I. We realized that only three of four parameters required to identifyall correlations can be determined by autocorrelation functions. Hence, statistical inde-pendence cannot be guaranteed by the disappearance of all autocorrelation functions asillustrated by our example in that section. However, crosscorrelation functions and themutual information function were found to be a welcome tool to detect all correlations.Section VI was dedicated to quaternary sequences, which are of particular interest inbiology. We showed that all autocorrelation functions are linearly dependent on a basis



60of ��(��1)2 = 6 functions, all of which carry a biological interpretation. In particular, wederived eq. (59) connecting seven autocorrelation functions that are widely used to analyzeDNA sequences. At the end of that section, we emphasized again that crosscorrelations ormutual information are required to determine the remaining (��1)�(��2)2 = 3 parameters ofthe dependence matrix D̂.In Appendix A, we derived that a properly chosen set of ��(��1)2 autocorrelation func-tions is su�cient to identify all independent parameters of the symmetric matrix Ŝ. Hence,we proved that these ��(��1)2 autocorrelation functions form a basis. We delivered an al-gorithm that allows to construct the symmetric matrix Ŝ in terms of a properly chosenbasis.



Chapter 5Generalized EntropiesThe order-q Tsallis (Hq) and R�enyi entropies (Kq) receive broad applications in the statis-tical analysis of complex phenomena. Here we provide a brief introduction to both Hq andKq, and we present some connections between these two families of generalized entropies.5.1 IntroductionBuilding on the works of Shannon [Shannon 1948] and Khinchin [Khinchin 1957a], gener-alized entropies have witnessed an increasing interest in their application to characterizecomplex behavior in models and real systems. As the Shannon entropy is formally de-�ned as an average value, the idea underlying a generalization is to replace the averageof logarithms by an average of powers. Then this gives rise to the order-q Tsallis entropyHq [Tsallis 1988, Curado & Tsallis 1991] or, similarly, the R�enyi entropy Kq [R�enyi 1970].The external parameter q applies to describe inhomogeneous structures of the probabilitydistribution and whence the associated process under consideration. From both order-qentropies, Hq and Kq, the Shannon entropy is obtained in the limit q ! 1. Applicationsof order-q entropies occur in a variety of �elds of sciences like, e.g., non-linear dynamicalsystems [6-10], statistical thermodynamics [11-16], classical mechanics [Plastino 1994], orevolutionary programming [Stariolo & Tsallis 1995, Penna 1995].



625.2 De�nitions and PropertiesThis section is aimed at introducing the notation used throughout this work as well asgiving the de�nitions of the order-q Tsallis entropy,Hq, and the R�enyi entropy,Kq. We thenreview some basic properties of these entropies, which will �nally allow us the derivationof an indirect Bayes estimator of the R�enyi entropy in section 5.Consider a random variable A that can take on M di�erent discrete values ai, i =1; : : : ;M , with an associated probability-vector ~p � fp1; : : : ; pMg with components pi �p(ai). The probabilities satisfy the two constraints 0 � pi � 1 and PMi=1 pi = 1. It iscustomary to refer to the set of all possible outcomes as the alphabet A with cardinalityM . Then the Shannon entropy of A is de�ned asH (A) = � MXi=1 pi log2 pi � �h log2 pii: (5.1)Since the base of the logarithm is chosen to be 2, the Shannon entropy is measured in unitsof bits. One distinctive property of H , which is not shared by the generalized entropies,is worth mentioning: the entropy of a composite event can be given as the sum of themarginal and the conditional entropy.By equation (5.1), events having either a particularly high or low occurrence do notcontribute much to the Shannon entropy. In order to weight particular regions of theprobability-vector ~p, one can consider the following partition function:Zq(A) = MXi=1 pqi � hpq�1i i: (5.2)In contrast to equation (5.1), the average of logarithms is now replaced by an average ofpowers of q. Clearly, a change of the order q will change the relative weights of how theevent i contributes to the sum. Therefore, varying the parameter q allows to monitor theinhomogeneous structure of the distribution ~p: the larger q, the more heavily the largerprobabilities enter into Zq, and vice versa. Obviously, Z0 equals the number of events iwith non-vanishing probability, and Z1 introduces normalization. Then the order-q Tsallisentropy is de�ned as Hq (A) = 1ln 2 Zq(A)� 11� q � 1ln 2 hpq�1i � 1i1� q : (5.3)Since the prefactor is chosen to be 1= ln 2, the Tsallis entropy is measured in units of bits.This can be seen by considering the limit q ! 1: we easily verify that limq!1Hq = H



63holds.The order-q entropy due to R�enyi is given byKq (A) = 11� q log2Zq(A) � � log2 Dpq�1i E1=(q�1): (5.4)Here the argument of the logarithm is the generalized average of the numbers pi. Byequation (5.3), the relationship connecting both order-q entropies reads asKq(A) = 11� q log2 h1 + (1� q) ln 2 Hq(A)i: (5.5)From equation (5.5) we see that for �xed q, Kq and Hq are monotonic functions of oneanother and that limq!1Kq = H holds.Let us summarize the following features of order-q entropies:1. Hq � 0 and Kq � 0. For given M , the global maxima (minima) are attained atpi = 1=M 8i for q > 0 (q < 0). In particular, we have that Kmaxq = Hmax.2. Hq and Kq are monotonically decreasing functions of q for arbitrary probability-vectors ~p: Hq � Hq0 and Kq � Kq0 for q < q0.3. Hq(A) is a concave (convex) function of the probabilities given q > 0 (q < 0). Thecurvature dependence of Kq upon q and ~p is non-trivial [Curado & Tsallis 1991]. Yetthe following two inequalities hold: Kq is a convex (concave) function of pi for q < 0(0 < q � 1).4. Considering two subsets, A and B, then Kq(A;B) obeys additivity for inde-pendent random variables, whereas Hq(A;B) is pseudo-additive. That is, we�nd Hq(A;B) = Hq(A) + Hq(B) + (1 � q)Hq(A)Hq(B). Furthermore, Hq(A;B)generalizes the Shannon-additivity to the order q (see, e.g., [Shannon 1948] or[Curado & Tsallis 1991] for a de�nition and discussion).By the above properties, the whole set of order-q entropies (which generalize the Shannonentropy) provides us with a whole spectrum of entropies, in which q = 1 is singled-out bythe property of composite events. In the light of the fact that Kq is indeed additive but,in general, not a concave (convex) function of the probabilities pi on the entire simplex, itis remarkable that via the non-linear transformation (5.5) we are able to switch betweentwo types of entropies of order q, either having the property of additivity or of well-de�nedconcavity (convexity).



645.3 SummaryIn this chapter we presented a brief introduction to the de�nition and statistical propertiesof generalized entropies. These generalizations of the Shannon entropy will turn out to beof practical importance in later chapters. Before we apply these generalized entropies toDNA or amino acid sequences, we will �rst study how to estimate generalized entropiesfrom �nite data sets. We will present an introduction to the theory of estimating populationparameters from �nite data sets in the following chapters.



Part B



Chapter 6Estimating Population Parametersfrom Finite SamplesIn our previous chapter we have introduced some measures designed to determine theinformation content stored in symbolic sequences such as time series, natural texts, piecesof music, econometric data, or DNA strings.In chapter 2, we have learned that the extraction of biologically relevant informationfrom DNA, RNA, or amino acid sequences is the main goal in the stormingly evolvingdiscipline called computational molecular biology.The problems that we are always confronted with arise from the uncircumventable factthat all existing sequences have a �nite length and thus do often not allow us to estimatequantities that we desire to determine with su�cient reliability. However, this dilemma isidentical to the basic task dealt with in mathematical statistics.The general problem in mathematical statistics is the estimation of certain populationparameters � or of functions f(�) of those parameters from samples, which always have a�nite size. These parameters � can, for example, be the probability p of a coin, the mean�, or the variance �2 of a normal population.For the purpose of illustration, imagine we want to estimate the probability of a coin.Strictly speaking, we want to estimate the probability for the event that the coin showsits head after having been tossed. Certainly, we would 
ip the coin N times, count howoften we have observed a head, and calculate the relative frequency as k=N if the absolutefrequency (the number of heads) is denoted by k.Then we would pretend that this relative frequency k=N is a very good estimator for



67the probability p of this coin at least for su�ciently large N . The questions that ariseat this point are, however, whether there is a motivation behind this recipe to accept therelative frequency k=N as an estimator for the probability p, and whether this recipe isindeed valuable in cases when the number of sample points N is very small, which oftenoccurs when analyzing biosequences.In section 6.2, we will present the maximum likelihood method, which will eventuallyallow us to answer the question arisen above. We will discuss some general statistical prop-erties shared by maximum likelihood estimators and apply them to our primary problemto estimate entropies from �nite samples.In section 6.5, we will introduce the Bayes estimator, which | instead of maximizingthe likelihood | minimizes the variance of the estimate. Our �nal goal is the derivationof the Bayes estimator for the Shannon entropy in chapter 7 and the discussion of itsstatistical properties.Section 6.6 is devoted to comparing the maximum likelihood estimator with the Bayesestimator. In this section, we will show that the maximum likelihood estimator chooses,under the Bayes hypothesis, the maximum of the posterior density function of the quantityto be estimated, whereas the Bayes estimator chooses the expectation value of the posteriordistribution as its estimate.Recommendable books on this �eld are, for example, [Martin 1971], [McEliece 1977],[Gnedenko 1981], [R�enyi 1982], [Fisz 1989], or [Wickmann 1990].6.1 Sampling Theory and the Analysis of Time SeriesIn this section, we will introduce some helpful de�nitions and notations, which allow usto formulate our task to estimate population parameters or functions of them from �nitesamples in a mathematical language.A necessary requirement for any statistical analysis is a set of initial conditions that arereproducible. These conditions de�ne an experiment, and by making an observation (or aset of observations) we produce an outcome of this experiment. Let's denote the outcomes,which are either single numbers or possibly sets of numbers, by xi.De�nition 6.1 The set of all possible outcomes xi (i = 1; 2; :::; n) of an experiment iscalled the sample space or population.The random numbers xi are called sample points in the sample space.



68De�nition 6.2 A subset of the sample points, e.g. xi (i = 1; 2; :::;N) is called an eventand denoted by E � fxi : i = 1; 2; :::;Ng: (6.1)De�nition 6.3 If x1; x2; :::; xN denotes a set of numerical values of N observations se-lected from a larger set, then the set of values is called a sample of size N.De�nition 6.4 A numerical value determined from some, or all, of the values of a sampleis called a statistic.The basic task of mathematical statistics is now to provide us with deliberate tools ofestimating the values of the parameters of a population by calculating certain statisticsfrom a sample.As an example, we consider the estimation of the probability of a given coin. Ourexperiment can be de�ned as \tossing a given coin" resulting in outcomes head or tailup. Thus, our sample space is discrete and contains but two elements, which we like todenote by 1 and 0, respectively. A sample of size N is then a list of N values xi 2 f0; 1gcorresponding to the observed events tail or head up.The natural estimator of the Shannon entropy, which is de�ned asĤ(x1; x2; :::; xN) = � kN � log kN � (1� kN ) � log(1� kN ) (6.2)with k = k(x1; x2; :::; xN) = NXi=1 xi (6.3)is a function of the sample points x1; x2; :::; xN and thus commonly termed a statistic. Thisstatistic can formally be regarded as a random variable and then be analyzed with respectto its statistical properties, which are referred to as systematic and statistical errors.The statistical properties of this statistic Ĥ(x1; x2; :::; xN) are the focus of our investi-gations in chapter 9.The probability p of the coin to show its head is the population parameter, which wegenerally denote by �. Of course, nobody knows the value of �. It is just the value of �that we want to estimate by sampling.



696.2 Maximum Likelihood EstimatorTo prepare the introduction of the maximum likelihood method, let us de�ne the likelihoodfunction.De�nition 6.5 Let L(x; �) denote the density function of a random variable x, where theform of L is known, but not the value of �, which is to be estimated. Let x1; x2; :::; xN be arandom sample of size N . The joint density function L(x1; x2; :::; xN; �) of the independentrandom variables x1; x2; :::; xN is then given byL(x1; x2; :::; xN; �) = NYi=1L(xi; �) (6.4)and called the likelihood function of �.In the following, we suppress the dependence of L on x1; x2; :::; xN and come to thede�nition of the maximum likelihood estimator of the population parameter � from asample of size N .De�nition 6.6 The maximum likelihood estimator of the population parameter � isthat statistic �̂ which maximizes L(�) for variations of �.Here, we stick to the common notation that �̂ denotes the estimator of the the popu-lation parameter �.If L is su�ciently smooth, i.e., if the second derivative exists, then the maximumlikelihood estimator can be de�ned to be that �̂ for which the following necessary equationshold: @L(�)@� = 0 (6.5)and @2L(�)@�2 < 0: (6.6)Obviously, the maximum likelihood method leads us directly to an optimization problemin the parameter space of �, which can be perfectly dealt with by physicists, since variationalprinciples make up the fundamental laws of physics.Since L(�) > 0 and ln(�) is a monotonic function of �, the �rst equation is equivalentto @ lnL(�)@� = 0; (6.7)



70where the function lnL(�) is often referred to as the log-likelihood function.Before we start to derive some general theorems about maximum likelihood estimators,we want to calculate the maximum likelihood estimator for the probability of a coin.Let p be the probability for the observation of a coin's head after a toss, and q theprobability of observing the coin's tail. Since p+ q = 1, the only population parameter isp. The likelihood for tossing the sequence x1; x2; :::; xN is p� NPi=1 xi� � (1� p)� NPi=1 1�xi� andthus the likelihood function for this Bernoulli process of N tosses isL(p) = pk � (1� p)N�k (6.8)if k is the number of heads we observed and N � k is the number of tails, i.e., k = NPi=1xi.For k = 0 or k = N , we immediately see thatp̂ = 0 (6.9)and p̂ = 1 (6.10)maximizes the likelihood function L(p) for k = 0 and k = N , respectively.For all other k, (0 < k < N), setting the partial derivative of the log-likelihood function@ lnL(p)@p = @(k � ln p+ (N � k) � ln(1� p))@p = kp � N � k1� p (6.11)identical to zero, yields the solution p̂ = kN ; (6.12)which is neither 0 nor 1 for 0 < k < N so that all operations performed above are possible,i.e., no division by zero occurs.Summarizing eqs. (6.9), (6.10), and (6.12), we can state that the maximum likelihoodestimator p̂ for the probability p of a coin1 is given by the relative frequency k=N of theoutcomes associated with p.1In German texts, we �nd the term 0 - 1 - population for the population corresponding to the distributionfunction F (x) =8<: 0 for �1 < x < 0p for 0 � x < 11 for 1 � x < 1 (6.13)Since we do not like to term the M -dimensional generalization a 0 - 1 - 2 - ... - (M � 1) - population,we decided to name the population corresponding to the �rst distribution a coin-population and the samplespace of an M -sided die an M-sided-die-population.



71In other words, the assumption that the (hidden) probability p is indeed equal to k=Nhas the highest likelihood compared to all other estimates.It is shown in appendix D.1 that the maximum likelihood estimator of the probabilityvector ~p of an M -sided-die yields exactly the same recipe, namely, the identi�cation ofthe components pi of the vector ~p with the relative frequencies of the observations, ki=N .Hence, if we are to estimate the six probabilities of a die, we start rolling the die N times,count the absolute frequencies ki (i = 1; 2; :::; 6) of the six sides of the die, and then estimatethe probabilities p̂i = ki=N , since this is the estimate with the highest likelihood.Let's now generalize the maximum likelihood concept on cases where we want to esti-mate several parameters �1; �2; :::; �M of a population from a sample of size N .We de�ne the likelihood function of the parameters �1; �2; :::; �M in a straightfor-ward way as L(x1; x2; :::; xN; �1; �2; :::; �M), suppress the dependence on the sample pointsx1; x2; :::; xN, and de�ne the maximum likelihood estimator of the parameters �1; �2; :::; �Mto be the solution of the following system of M equations:@ lnL(�1; �2; :::; �i; :::; �M)@�i = 0 (6.14)for all i = 1; 2; :::;M .To illustrate how the maximum likelihood method works for a set of parameters�1; �2; :::; �M that we want to estimate simultaneously from a sample of size N , let usconsider the example of a normal population where both the mean � and the variance �are to be estimated.The likelihood function reads asL(�; �) = NYi=1 1p2�� � exp(�(xi � �)22�2 ) (6.15)and thus the two equations @L(�; �)@� = 0 (6.16)and @L(�; �)@� = 0 (6.17)can be solved analytically: @ lnL(�; �)@� = � NXi=1 2 � (xi � �)2 � �2 = 0 (6.18)



72gives �̂ = �x = 1N NXi=1 xi (6.19)and @ lnL(�; �)@� = �N� + NXi=1 (x� �)2�3 = 0 (6.20)gives �̂2 = 1N NXi=1(xi � �x)2: (6.21)Please realize that we have derived the maximum likelihood estimator of � and not of�2. Theorem 6.1 will however prove the identity of the maximum likelihood estimator of�2 and the squared maximum likelihood estimator of �.We note that the maximum likelihood estimator for the variance of a normal populationis equal to the sum of the quadratic deviations from the sample mean divided by N andnot by (N � 1). Before we however can give a reason why the estimator�̂2 = 1N � 1 NXi=1(xi � �x)2 (6.22)should better be used to estimate the variance of normally distributed populations, wehave to de�ne two properties of point estimators.6.3 Consistency and BiasIt is intuitively obvious that a desirable property of any estimator is that its estimatestend to the value of its population parameter as the sample size N increases. Any otherbehavior would clearly be misleading. This property is commonly called consistency andde�ned as follows:De�nition 6.7 An estimator �̂N (note that N is the index indicating the sample size)is said to be a consistent estimator of the population parameter � if, for any positive(arbitrarily small) � and �, there exist some N such thatP �����̂N � ���� < �� > 1� �: (6.23)This means that an estimator �̂ is consistent if f�̂NgN2N converges in probability to �for N !1.



73We may further restrict the possible estimators by requiring that for all N the expec-tation value of �̂N is equal to �. Such an estimator is termed unbiased.De�nition 6.8 An estimator �̂N , computed from a sample of size N , is called an unbi-ased estimator if E(�̂N) = � (6.24)for all N 2 N .At this point we can judge that the maximum likelihood estimator of the probabilityvector ~p of a multinomial population is unbiased sinceE(ki=N) = pi (6.25)for all i = 1; 2; :::;M as shown in appendix I.The maximum likelihood estimator for the mean � of a normal population is also unbi-ased, whereas the maximum likelihood estimator for the variance �2 of a normal populationis not as we will show below.In appendix C, we will calculate the expectation value of the maximum likelihoodestimator for the variance of a normal population and show that it is by a factor of N�1Nsmaller than the population variance; in mathematical terms:E(�̂2N ) = N � 1N � �2: (6.26)To illustrate the di�erence between �̂2 and �2, imagine we want to estimate the varianceof a normal population. We consider a sample of size N and determine �2 by calculatingthe maximum likelihood estimator given in eq. (6.19). We chose this estimator, becauseit maximizes the likelihood for our estimate, i.e., it maximizes the probability that ourestimate is indeed identical with the `true' sample variance.Of course, the maximum likelihood estimator does not guarantee that we are alwayscorrect with our estimate, i.e., we can understand this estimate as a random variable andthen ask for its expectation value. What we will show in appendix C is that, by applying themaximum likelihood estimator to the variance of a normal population, we systematicallyunderestimate the population variance by a factor of N�1N on average.These introductory examples were presented to illustrate the basic ideas of our approachto evaluate measures and algorithms currently used to analyze DNA, RNA, or proteinsequences by estimating (or approximating) their statistical properties like systematic andstatistical errors induced by an always �nite size of available samples.



746.4 Properties of Maximum Likelihood EstimatorsLet us eventually present a theorem about the maximum likelihood estimator of a functionf(�) of a population parameter � that is of crucial interest for all practical applicationsdealing with estimating functions of probabilities from �nite samples.Theorem 6.1 If f(�) is a monotonic function of �, then the maximum likelihood estimatorof f is given by f̂(�) = f(�̂) (6.27)if �̂ is the maximum likelihood estimator of �.This means that the estimator f̂(�) does not necessarily maximize the likelihood of fif f is not a monotonic function.Let us illustrate this message by the following example:The Shannon entropy of a coin is given byH(p) = �p � log(p)� (1� p) � log(1� p); (6.28)which is a non-monotonic function of p.It is shown in appendix D.2 that the natural estimator of the Shannon entropy,Ĥ(k) = � kN � log( kN )� (1� kN ) � log(1� kN ); (6.29)is not the maximum likelihood estimator of H although p̂ = kN is the maximum likelihoodestimator of p.Before we go over to introduce the Bayes estimator in the following section, let usmention three theorems that might emphasize the importance of maximum likelihood es-timators in general.Theorem 6.2 Maximum likelihood estimators are consistent.Theorem 6.3 Maximum likelihood estimators have a distribution that tends to normalityfor large samples.Theorem 6.4 Maximum likelihood estimators have a minimum variance in the limit oflarge samples.



75The value of theorem 6.4 is very questionable for analyzing biosequences as well as timeseries in meteorology, economics, or theoretical physics since the studied samples are oftenso small that we have to estimate population parameters or functions of them in the rangeof extremely poor statistics.At this point we are ready to rise the question whether or not there is an alternativeto the maximum likelihood estimator that has the property of minimizing the variancenot only for in�nitely large N but for all N 2 N . The next chapter will be devoted toanswering this question and deriving a minimum variance estimator.6.5 Bayes EstimatorIn this section, we will derive an estimator that minimizes the variance of its estimates forall sample sizes N 2 N . We will introduce and solve a variation principle in subsection6.5.1. In subsection 6.5.2, we will then calculate the Bayes estimator for the probabilityof a coin and compare the results with the maximum likelihood estimator of the samepopulation. Finally, subsection 6.6 is devoted to stressing some general relations betweenmaximum likelihood and Bayes estimators.6.5.1 Minimum Variance PrincipleIn this subsection, we will introduce the Bayes estimator by considering the followingexample:Imagine we have two estimators p̂1(k) and p̂2(k) for the probability p of a coin. Thequestion \Which of these estimators is the better one?" cannot be answered in general,because we have not yet speci�ed what a good estimator should look like.Certainly, it should predict the `true' sample probability as precise as possible, whichmeans (p̂(k)� p)2 be minimal.Since we, however, do not know the value of p | this is just the parameter that we aregoing to estimate | we de�ne the functionalF [p̂(k)] � 1Z0 (p̂(k)� p)2 � P (kjp) � P (p) dp; (6.30)which we are going to minimize in order to obtain our desired estimator p̂(k). Let us, inthe following, motivate this step.



76The term (p̂(k) � p)2 quanti�es the quadratic deviation of the estimate p̂(k) from thetrue population parameter p, which we choose as our penalty. Now realize that it is notonly important by which magnitude our estimates deviate from the theoretical populationparameter, but also how often a certain quadratic deviation appears.The value of an estimator that is always a bit wrong might be comparable to thevalue of another one that is almost always right, but sometimes extremely far from thetrue population parameter. Hence, we multiply the penalty (p̂(k)� p)2 by the probabilityP (kjp) by which this deviation appears.P (kjp) is the conditional probability of obtaining k heads from a sample of N tossesunder the assumption that the probability of the coin be p.The product (p̂(k)� p)2 � P (kjp) does still depend on the population parameter p, i.e.,before we integrate this term over the entire parameter space, which is the interval [0; 1]in our case, we might assume that some p appear more frequently than others. This priorassumption is expressed by the prior probability density P (p) of the population parameterp. Consequently, we also multiply our integrand by P (p) and thus end up with eq. (6.30)for the functional that we desired to minimize.The minimization of the functional F [p̂(k)] is trivial and we immediately obtainp̂(k) = 1R0 p � P (kjp) � P (p) dp1R0 P (kjp) � P (p) dp (6.31)as that estimator which minimizes F [p̂(k)] � 1Z0 (p̂(k)� p)2 � P (kjp) � P (p) dp for all N 2 N .At this point, we are ready to state the minimum variance principle and to de�ne theresulting Bayes estimator of the population parameter �.De�nition 6.9 Let � be the only parameter of our given population, P (�) its prior prob-ability density, and P (x1; x2; :::; xNj�) the conditional probability to realize the samplex1; x2; :::; xN.Then we de�ne the Bayes estimator of the population parameter � to be that statistic�̂(x1; x2; :::; xN) which minimizesF [�̂(x1; x2; :::; xN)] � Z (�̂(x1; x2; :::; xN)� �)2 � P (x1; x2; :::; xNj�) � P (�) d� (6.32)



77where the integral stretches over the whole parameters space of �.Minimizing the functional F [�̂(x1; x2; :::; xN)] leads us again to a simple quadratic equa-tion the solution of which is�̂(x1; x2; :::; xN) = Z � � P (x1; x2; :::; xNj�) � P (�) d�Z P (x1; x2; :::; xNj�) � P (�) d� : (6.33)In section 6.6, we will show that this estimator �̂(x1; x2; :::; xN) is identical to theexpectation value of the posterior probability distribution of �.At the end of this section, we present the de�nition of the Bayes estimator for popula-tions described by more than one parameter.Let ~� = (�1; �2; :::; �M) be theM -dimensional vector containing the population parame-ters �1; �2; :::; �M, P (~�) its prior probability density, and P (x1; x2; :::; xNj~�) the conditionalprobability to realize the sample x1; x2; :::; xN.Then the Bayes estimator of the population parameter vector ~� = (�1; �2; :::; �M) is thatvector function ~̂�(x1; x2; :::; xN) which minimizes the functionalF [~̂�(x1; x2; :::; xN)] � Z Z � � � Z �~̂�(x1; x2; :::; xN)� ~��2 (6.34)� P (x1; x2; :::; xNj~�) � P (~�) d~� (6.35)where �~̂�(x1; x2; :::; xN)� ~��2 denotes the scalar product, i.e., the squared norm of thevector ~̂�(x1; x2; :::; xN)� ~� and the integral stretches over the entire parameters space of ~�.Rewriting the scalar product�~̂�(x1; x2; :::; xN)� ~��2 = MXi=1 ��̂i(x1; x2; :::; xN)� �i�2 (6.36)leads to F [~̂�] = MXi=1 Z Z � � � Z ��̂i(x1; x2; :::; xN)� �i�2 (6.37)� P (x1; x2; :::; xNj~�) � P (~�) d~� ) min: (6.38)If we now minimize each of the M summands individually, i.e., independently on theother M � 1 terms, we obtain a lower bound for the minimum of the sum. If we can thenshow that the individual estimates of the parameters �i are compatible to the estimate



78of ~�, we have found the Bayes estimator for ~� and can display it in the following explicitexpression: ~̂�(x1; x2; :::; xN) = (�̂1; �̂2; :::; �̂M)(x1; x2; :::; xN) (6.39)with �̂i(x1; x2; :::; xN) = Z Z � � � Z �i � P (x1; x2; :::; xNj~�) � P (~�) d~�Z Z � � � Z P (x1; x2; :::; xNj~�) � P (~�) d~� (6.40)for all i = 1; 2; :::;M .The whole procedure is exempli�ed in appendix E.1, where we derive the Bayes esti-mator for the probabilities of anM -sided die that has been rolled N times under the priorassumption of a uniform distribution of the probabilities pi (i = 1; 2; :::;M).However, we recommend to read the following section 6.5.2, in which we derive theBayes estimator for the probability of a coin under the same assumptions, before going toappendix E.1 and studying the M -dimensional generalization.6.5.2 Laplace EstimatorIn this subsection, we will derive the Bayes estimator for the probability of coin and compareit to the corresponding maximum likelihood estimator.Our task is to calculate p̂(k) = 1R0 p � P (kjp) � P (p) dp1R0 P (kjp) � P (p) dp (6.41)with P (kjp) =  Nk! � pk � (1� p)N�k (6.42)and P (p) = 1: (6.43)The choice of a uniform prior distribution for p re
ects the maximum entropy principleapplied to the weakest possible assumption that we can make, namely that we do not knowanything about the probability p except that it ranges in the interval [0; 1].



79The assumption of a uniform prior distribution of p is also called the Bayes hypothesis,which leads to p̂ = 1R0 p � �Nk � � pk � (1� p)N�k dp1R0 �Nk � � pk � (1� p)N�k dp (6.44)for the Bayes estimator of the probability p.In appendix H.1, we will derive that1Z0 ps � (1� p)t dp = s! � t!(s+ t+ 1)! (6.45)for any s 2 N and t 2 N , which yields p̂ = k + 1N + 2 : (6.46)This is the Bayes estimator for the probability of a coin under the Bayes hypothesis,which is also called the Laplace estimator.We see that, for large N, the di�erence between the maximum likelihood estimator andthe Laplace estimator vanishes. However, for small sample sizes N , the di�erence becomessigni�cant.Imagine, for example, we want to estimate the probability of a coin, but we mustnot 
ip the coin more than once. Then there are only two outcomes of this experimentpossible. Either we obtain a head or a tail. The maximum likelihood estimator would, inthis situation, suggest to assume p = 1 or p = 0, respectively, which is extremely unrealistic.The Bayes estimator, on the other hand, would recommend you to assume the prob-abilities p = 2=3 or p = 1=3, respectively. Note, that it can even deliver a meaningfulprediction for the case that we did not 
ip the coin at all. Then, the estimated probabilitywould be p = 1=2, which corresponds exactly to our prior assumption.In appendix E.1, we will calculate the Laplace estimator for the probability vector~p = (p1; p2; :::; pM) of an M -sided die. In that case, the vector ~k = (k1; k2; :::; kM) of theabsolute frequencies is multinomially distributed, which leads to the Laplace estimatorp̂i = ki + 1N +M (6.47)for all (i = 1; 2; :::;M) under the assumption of a uniform prior distribution on the M � 1dimensional simplex spanned by all ~p.



80It is easy to show that the Laplace estimator is consistent, since p̂i = ki + 1N +M convergesin probability to p.However, the disadvantage of the Laplace estimator is that it is not unbiased for p 6= 1=2,since then E(p̂)� p = 1� 2 � pN + 2 = 1� 2pN + 2 6= 0: (6.48)6.5.3 Bayes Estimator of Functions of Population ParametersRemembering our original task to estimate higher order entropies from �nite samples, wewill apply the minimum variance principle to estimators of functions f(~�) of populationparameters �1; �2; :::; �M in this section and thus introduce the Bayes estimator f̂(~k).Let P (~�) be the posterior probability density of the vector ~� = (�1; �2; :::; �M) containingthe M population parameters �i, P (~kj~�) be the likelihood of this hypothesis ~� to generatethe sample of size N represented by the vector ~k, and f̂(~k) be the estimator of the functionf(~�).Then the minimum variance principle, which recommends us to choose that estimatorf̂(~k) which minimizes the mean quadratic deviation from the theoretical function f(~�), i.e.,which minimizes F [f̂ (~k)] � Z �f̂(~k)� f(~�)�2 � P (~kj~�) � P (~�) d~�; (6.49)de�nes the Bayes estimator f̂(~k) of the function f(~�).In equivalence to section 6.5.1, we �nally obtainf̂ (~k) = Z Z � � � Z f(~�) � P (~kj~�) � P (~�) d~�Z Z � � � Z P (~kj~�) � P (~�) d~� (6.50)as the Bayes estimator of f(~�).In chapter 7, we will derive the Bayes estimator of the Shannon entropy H (~p), whichwill turn out to be extremely powerful, if higher order entropies have to be estimated from�nite sequences.Please note in passing that the Bayes estimator of the function f(~�) is not necessarilyequal to the function f of the Bayes estimator of ~�.



816.6 Sampling and the Bayes TheoremIn subsection 6.6.1, we want to introduce the Bayes formula, which we then apply toour general task to make a decision about possible values of a function f of populationparameters that we are to estimate from a sample of size N .In subsection 6.6.2, we will then show that the Bayes estimator of f(~�) (with ~� =(�1; �2; :::; �M) and �1; �2; :::; �M being the population parameters of our considered samplespace) is identical to the expectation value of f over its posterior distribution. This,however, means that the expectation value of f(~�) over the posterior probability densityP (~�jx1; x2; :::; xN) is that estimator f̂(~�) which minimizes the mean quadratic deviationfrom the real population parameter function f(~�).In subsection 6.6.3, we will derive that, under the Bayes hypothesis, i.e., under theassumption of a uniform prior density P (~�), the maximum likelihood estimator choosesthat value f(~�) which maximizes the posterior probability density P (f jx1; x2; :::; xN) ifx1; x2; :::; xN are the outcomes of our sampling experiments.The interesting point is that, under the Bayes assumption, the maximum likelihoodestimator does not only maximize the conditional probability P (x1; x2; :::; xNjf), whichthis estimator is supposed to do by de�nition, but also the posterior probability densityP (f jx1; x2; :::; xN).Finally, we will compare and contrast the Bayes estimator and the maximum likelihoodestimator in subsection 6.6.46.6.1 Bayes FormulaAfter we will have introduced the Bayes formula for discrete random variables, we willapply it to the question what we can learn about a population parameter by sampling. Inthis context, we will introduce the terms prior and posterior probability and relate themto the Bayes Formula for continuous variables at the end of this subsection.Let A;B1; B2; :::; BM�1, and BM be M + 1 events, P (A); P (B1); P (B2); :::; P (BM�1)and P (BM ) their probabilities, and P (AjBi) the conditional probability of the event Agiven that the event Bi has occurred for i = 1; 2; :::;M .The question that Thomas Bayes, an English clergyman, raised and answered in 1763,was whether we can now calculate the conditional probability P (BijA) for the event Bigiven that the event A has occurred.



82Theorem 6.5 (Bayes Theorem) If the events Bi (i = 1; 2; :::; L) are mutually exclusiveand exhaustive (i.e. all possible events are included in the Bi) events, and if A can occuronly in combination with one of the L events Bi, then the conditional probabilities P (BijA)can be calculated as follows: P (BijA) = P (AjBi) � P (Bi)LPj=1P (AjBj) � P (Bj) (6.51)for all i = 1; 2; :::; L.The proof is extremely simple.P (A \ Bi) = P (AjBi) � P (Bi) (6.52)and P (Bi \A) = P (BijA) � P (A) (6.53)by de�nition for all i = 1; 2; :::; L.However, since P (A \ Bi) = P (Bi \ A); (6.54)we obtain P (BijA) = P (AjBi) � P (Bi)P (A) : (6.55)Now, P (A) = LXj=1P (AjBj) � P (Bj); (6.56)and hence, P (BijA) = P (AjBi) � P (Bi)LPj=1P (AjBj) � P (Bj) (6.57)for all i = 1; 2; :::; L.In the following part of this section, we will introduce the terms prior and posteriorprobability and relate them to the Bayes Formula for discrete variables. Let us, for the sakeof simplicity, consider the following example.We are given two coins about which we only know that one coin is a fair coin, i.e.,the probability to show its head is p1 = 1=2, whereas the other coin has a probability ofp2 = 4=5 to show its head. Now it is our task to decide which coin the fair one is.



83Before we start tossing one of the coins, we do not know anything about them. Wecannot at all distinguish between them without starting to toss one of the coins. Hence,our intuitive assumption about the prior probability that we have chosen the fair coin is1=2, which we also obtain by exploiting the maximum entropy principle.In order to increase our knowledge about the question which coin we have chosen, westart tossing the coin N times. Let k be the number of heads we have observed. ThenP (kjp1) =  Nk! � pk1 � (1� p1)N�k (6.58)is the probability that the �rst coin has produced our observed sample whereasP (kjp2) =  Nk! � pk2 � (1� p2)N�k (6.59)is the probability that the unfair coin has generated it.The important question that we, however, ask is what is the probability that our samplewas generated by the fair coin? In other words, what is the probability that we have chosenthe fair coin?This question can easily answered by applying the Bayes formula and calculating theposterior probability P (p1jk):P (p1jk) = P (kjp1) � P (p1)P (kjp1) � P (p1) + P (kjp2) � P (p2) : (6.60)Analogously, we obtainP (p2jk) = P (kjp2) � P (p2)P (kjp1) � P (p1) + P (kjp2) � P (p2) ; (6.61)which immediately reveals that P (p1jk) + P (p2jk) = 1: (6.62)Therefore, the posterior probability P (p1jk) re
ects the knowledge about the chosencoin that we have gained by our sampling experiment of tossing the coin N times.Finally we can state that the Bayes formula relates the prior probabilities P (Bi) ofpossible hypotheses Bi with their posterior probabilities P (BijA), if we understand A asthe outcome of a given sampling experiment.If the set of all possible hypotheses we are taking into account before setting up anexperiment is not discrete but continuous, we have to modify the Bayes formula for con-tinuous variables. Then, the prior probabilities become probability densities as well as the



84posterior probabilities become posterior probability densities and the Bayes formula readsas P (BjA) = P (AjB) � P (B)R P (AjB) � P (B) dB : (6.63)6.6.2 Bayes Estimator - RevisitedThe Bayes formula allows us to derive the posterior probability distribution for any setof hypotheses and any possible experimental outcomes provided we can express our priorassumption as well as the conditional probabilities P (AjB) in mathematical terms and canthen calculate the occurring sum or integral. Often, we will not be able to derive a closedform expression of the posterior density, but let us in the following analyze what we canstate about its maximum and expectation value.The expectation value of ~� over the posterior probability distribution P (~�j~x) reads asE(~�) = Z ~� � P (~�j~x) d~� (6.64)= R ~� � P (~xj~�) � P (~�) d~�R P (~xj~�) � P (~�) d~� ; (6.65)which is identical to the Bayes estimator of ~�.In general, we can state that the Bayes estimator of a population parameter vector ~� ora function f(~�) of them can be understood as the expectation value of ~� or f(~�) over theposterior distribution of ~�. Vice versa, we have shown in section 6.5 that the expectationvalue of ~� or f(~�) over the posterior distribution of ~� automatically minimizes the sampledeviation from the theoretical value of ~� or f(~�).6.6.3 Maximum Likelihood Estimator - RevisitedFor the sake of simplicity, let p be the only population parameter in the following section.The maximum of the posterior probability density P (pjk) can then be obtained by solvingthe equation @P (pjk)@p = 0: (6.66)Applying the Bayes formula and realizing that the denominator does not depend on pyields @P (kjp)@p � P (p) + P (kjp) � @P (p)@p = 0 (6.67)



85if the denominator 1Z0 P (kjp) � P (p) dp 6= 0: (6.68)If, as under the Bayes hypothesis, the prior probability density P (p) does not dependon p, i.e., the partial derivative vanishes, then we immediately come up with@P (kjp)@p = 0: (6.69)This, however, is exactly the Maximum-Likelihood-Condition. Consequently, the max-imum likelihood estimator favors that guess about the hypothetic population parameter pwhich maximizes its posterior probability density P (pjk).6.6.4 Maximum Likelihood versus Minimum VarianceWhereas the Bayes estimator of a population parameter � chooses the expectation value ofall hypothetic � values over the posterior probability density P (�jk) and thus minimizes thequadratic deviation of the estimates from the true parameter �, the maximum likelihoodestimator searches for the maximum of the posterior probability density P (�jk) under theBayes hypothesis of a uniform prior P (�).The conclusion that we are enforced to draw here is the following. If we are to estimatea certain population parameter from a �nite sample, we �rst have to inquire about whetherit is important to estimate this parameter precisely or whether our goal should be to comeas close as possible to the true parameter value.The �rst case means that we get penalized (with the same penalty) if we do not estimatethe true parameter value correctly; i.e., it only counts whether we estimate correctly or not.In this case, we should preferably use the maximum likelihood estimator, which searchesfor the parameter value with the highest posterior probability density.If we are, however, penalized proportionally to the squared distance that our estimatedeviates from the true parameter value, then we should undoubtedly prefer the Bayesestimator. Since we, in almost all practical situation, are not confronted with the demandto determine a certain parameter precisely, but normally are required to �nd an estimatethat is as close as possible to the true parameter value, we should prefer the Bayes estimatorover the maximum likelihood estimator in those situations.



866.7 SummaryThis chapter was devoted to present some statistical de�nitions, theorems, and techniquesby which information about theoretical population parameters or functions of them can beinferred from �nite samples.After we had presented some basic de�nitions in section 6.1, we introduced the max-imum likelihood method in section 6.2. In section 6.3, we de�ned another two estimatorproperties, while section 6.4 was dedicated to presenting some valuable theorems aboutstatistical properties of maximum likelihood estimators in general.We raised the question whether we cannot develop an estimator that has the desirableproperty to predict a population parameter or a set of them from a �nite sample as preciselyas possible. This question lead us to the formulation of the minimum variance principleand the resulting Bayes estimator in section 6.5. In that section, we also calculated theBayes estimator of the probability of a coin in order to exemplify the minimum variancemethod. Finally, we presented the Bayes estimator of functions of population parameters,which will allow us to derive this desirable estimator of Shannon entropies in the followingchapter.In section 6.6, we investigated relations between the maximum likelihood and minimumvariance estimators, and realized that the Bayes estimator of a population parameter � al-ways chooses the expectation value of the posterior distribution of �, whereas the maximumlikelihood estimator chooses its maximum under the Bayes hypothesis. In subsection 6.6.4,we stated our conclusion that Bayes estimators should be preferred over maximum like-lihood estimators in situations where we want to approximate the theoretical populationparameter as closely as possible by our estimates from �nite samples.



Chapter 7Bayes Estimator of the ShannonEntropy7.1 MotivationIn the previous chapter, we have learned that Bayes estimators have to be preferred overmaximum likelihood estimators in all cases where the goal of the considered estimationis to approximate the true but hidden parameter as close as possible. Since, in general,the di�erence between the maximum likelihood and the Bayes estimator vanishes for largesample sizes N , maximum likelihood estimators are often preferred due to their simpleexpressibility. In small samples, however, the application of maximum likelihood estimatorsbecomes questionable, and should better be replaced by their Bayes counterparts.The estimation of higher entropies from �nite samples, such as DNA sequences, Englishtexts, pieces of music, or time series generated by dynamical or stochastic processes, is awide-spread method to analyze linguistic structures hidden in those sequences mentionedabove. However, entropy estimates are often required in situations where su�ciently largesamples are not available. Imagine, for example, we have realized signi�cant di�erencesof the 6-mer Shannon entropy between coding and noncoding pieces in eukaryotic DNAsequences. Our ultimate goal would then be to exploit this di�erent statistical behavior todistinguish between coding and noncoding DNA.The problem that we are confronted with in this example is to estimate the 6-merShannon entropyH6 from sequences not much longer than 100 base pairs. In our previouslyintroduced notation this means M = 46 = 4096 and N � 100. By imagining the size of



88our 4096 dimensional state space, we immediately realize that the 100 sample points thatwe are given cannot at all guarantee a reliable estimate of any of the 4096 probabilities pi.Moreover, we know that approximately 4000 dicodons do not at all appear in our DNAsequence.Since the maximum likelihood estimator of the probability assigns those non-observeddicodons the probability 0 and the natural entropy estimator is de�ned as the entropy ofthose maximum likelihood estimates, we clearly realize why the natural entropy estimatorsystematically fails to deliver any reasonable estimate of the Shannon entropy if the samplesize is small.Aside from linguistic analyses, there is a wide spectrum of problems in physics whereentropies and related statistics have to be estimated from �nite samples the size of whichis often extremely small [Wolpert & Wolf 1993].The following section will be dedicated to deriving an exact expression for the Bayesestimator of the Shannon entropy.7.2 DerivationIn this section, we will derive the estimator for the Shannon entropyH(p1; p2; :::; pM) = � MXi=1 pi � ln(pi) (7.1)that minimizes the quadratic deviation from the true value of H(p1; p2; :::; pM) under theassumption of a uniform prior probability density.According to eq. (6.50), the Bayes estimator of the Shannon entropy, which is a functionof the probabilities p1; p2; :::; pM, is given byĤ(~k) = Z H(~p) � P (~kj~p) � P (~p) d~pZ P (~kj~p) � P (~p) d~p ; (7.2)where ~p � (p1; p2; :::; pM), ~k � (k1; k2; :::; kM), and the integrals are taken over the wholesimplex given by MPi=1 pi = 1 and pi � 0 for all i = 1; 2; :::;M .By interchanging the integrals with the �nite sum appearing in the numerator, weobtain Ĥ(~k) = NXi=1 Z �pi � ln(pi) � P (~kj~p) � P (~p) d~pZ P (~kj~p) � P (~p) d~p : (7.3)



89Exploiting our results obtained in appendices H.1, H.2, and H.3, we yieldZsimplex �pi � ln(pi) � P (~kj~p) � P (~p) d~p (7.4)= 1Z0 �pi � ln(pi) �K(pi; ki;M;N) dpi (7.5)= � N !ki! � (N � ki +M � 2)! � 1Z0 ln(pi) � pki+1i � (1� pi)N�ki dpi (7.6)= � N !ki! � (N � ki +M � 2)! � J(ki + 1; N � ki +M � 2) (7.7)= N !ki! � (N � ki +M � 2)! � (ki + 1)! � (N � ki +M � 2)!(N +M)!� N+MXj=ki+2 1j : (7.8)Analogously we proceed and obtainZsimplex P (~kj~p) � P (~p) d~p = 1Z0 K(pi; ki;M;N) dpi (7.9)= N !ki! � (N � ki +M � 2)! � 1Z0 pkii � (1� pi)N�ki+M�2 dpi (7.10)= N !ki! � (N � ki +M � 2)! � ki! � (N � ki +M � 2)!(N +M � 1)! : (7.11)Eventually, dividing both terms leads toZ �pi � ln(pi) � P (~kj~p) � P (~p) d~pZ P (~kj~p) � P (~p) d~p = ki + 1N +M N+MXj=ki+2 1j (7.12)for all i = 1; 2; :::;M .If we de�ne Ĥi(ki) � ki + 1N +M N+MXj=ki+2 1j ; (7.13)we obtain the Bayes estimator of the Shannon entropy asĤ(~k) = MXi=1 Ĥi(ki): (7.14)



907.3 PropertiesThis section, which is dedicated to the discussion of and the comparison between somestatistical properties of the Bayes entropy estimator and the so called natural entropyestimator, will reveal striking advantages of using the Bayes estimator instead of the naturalone if the available sample size N is small compared to the number M of possible statesin our system of consideration.These statistical properties of the Bayes entropy estimator, which are perfectly exem-pli�ed in [Wolpert & Wolf 1993] for the binomial case, unambiguously suggest to preferthe Bayes estimator over the natural one in cases where N is small compared to M .Since the algorithm for calculating the Bayes entropy estimator only consists of calcu-lating �nite harmonic sums, it might be even quicker than the natural estimator algorithm,where logarithms of relative frequencies have to be taken. Hence, we highly recommendto substitute all subroutines calculating the natural entropy estimator by subroutines thatcalculate the Bayes entropy estimator from a given �nite sample.Let us �nally outline a relation between the� Bayes estimator of the Shannon entropy H(p1; p2; :::; pM)and the� Shannon entropy H of the Bayes estimator of the probabilities p1; p2; :::; pM.In section D.2, we learned that, due to the non-monotonicity of the function H(p) =�p�ln(p)�(1�p)�ln(1�p), the maximum likelihood estimator of the Shannon entropy is notequal to the Shannon entropy H of the maximum likelihood estimator of the probabilityp. The same statement holds for the Bayes estimator of the Shannon entropy; i.e., theShannon entropy of the Bayes estimators of the probabilities p1; p2; :::; pM,ĤG � � MXi=1 ki + 1N +M � ln� ki + 1N +M � ; (7.15)is not the Bayes estimator of the Shannon entropy [Wolpert & Wolf 1993].In the following, we will, however, derive a relation between these two entropy estima-tors.Let us, for this reason, approximate the �nite harmonic sum N+MXj=ki+2 1j by the corre-



91sponding de�nite integrals:N+MZki+1 1x dx > N+MXj=ki+2 1j > N+M+1Zki+2 1x dx: (7.16)Multiplying the upper bound approximationN+MZki+1 1x dx = � ln� ki + 1N +M � (7.17)by ki + 1N +M and summing over all terms yieldsĤ < � MXi=1 ki + 1N +M � ln� ki + 1N +M � : (7.18)Now we see that the right hand side of this inequality is the Shannon entropy of theBayes probability estimator, which we brie
y call Grassberger's entropy estimator accord-ing to [Grassberger 1994].The di�erence between the the Bayes entropy estimator and Grassberger's entropyestimator is equal to the error of replacing the �nite harmonic sums by the correspondingintegrals.Considering the asymptotic behavior of the Bayes entropy estimator, we can state thatĤ(~k) = MXi=1 ki + 1N +M N+MXj=ki+2 1j ! � MXi=1 kiN � ln�kiN � (7.19)for N ! 1. This means that not only the natural entropy estimator, but also the Bayesentropy estimator is consistent [Wolpert & Wolf 1993].Let us in the remainder of this section study some simulations that are to reveal sta-tistical properties of the three entropy estimators introduced above. In order to chooseadequate parameters of our simulations, let us �rst study the following biological situa-tion, which is typical for raising the problem of estimating entropies from �nite samples.While analyzing biological symbol sequences, we are almost always confronted withsituations in which the sample size N can not be guaranteed to be signi�cantly greaterthan the number M of possibly occurring words, since M is blowing up exponentially withthe word-length n, namely M = �n.The following simulations are motivated by the task to estimate 5-mer entropies ofseveral DNA sequences. Since M = �n = 1024, we need sequences of at least 10,000 base



92pairs to obtain reliable entropy estimates by the natural entropy estimator. However, sincebiological tasks often demand to analyze shorter sequences as well, we are confronted withestimating entropies from samples in which N �M . Hence, we chose N = 5000,N = 2000,and N = 1000 for our simulations.Another parameter that we must specify is the probability vector ~p = (p1; p2; :::; p1024).We know that, if we compare two estimators A and B, A can be on average much closerto the true population parameter than B for some particular ~p, but then B can be moreaccurate than A for some other ~p. Since each estimator has its favorite ~p, we have to choosethis probability vector very carefully in order to make sure that our following analysis doesnot become useless just because we simulate in a point on the ~p-simplex that is biologicallyirrelevant.As representation of a typical probability vector ~p, we choose the the 5-mer distribu-tion derived from the 2,181,032 base pairs long sequence of the Caenorhabditis eleganschromosome III. The rank ordered distribution of these 1024 probabilities is displayed inFigure 7.1 as a double-logarithmic plot.
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Figure 7.1: Rank-ordered 5-mer distribution of the Caenorhabditis elegans chromosomeIII. We estimate the 5-mer probabilities as the corresponding relative frequencies of alloverlapping 5-mers in the 2,181,032 base pairs long sequence of the Caenorhabditis eleganschromosome III.



94This probability vector is now chosen for the following three simulations correspondingto N = 5000, N = 2000, and N = 1000. According to these 1024 given probabilities, asequence ofN 5-mers is randomly composed. Then we apply three di�erent entropy estima-tors, namely the natural entropy estimator, the Bayes entropy estimator, and Grassberger'sentropy estimator [Grassberger 1994] given by eq. (7.15), to this sequence with the �nitelength N .Since we know the true population parameters p1; p2; :::; p1024, we can as well calculatethe theoretical 5-mer entropy. The di�erences between the estimated entropy values andthe theoretical entropy value de�ne our three random variables, which we call entropyestimate deviation from true. Now we repeat the experiment of generating a sequence10,000 times and thus obtain a time series where we denote the time step by number ofsimulation.Figures 7.2 { 7.7 demonstrate the accuracy and reliability of the Bayes estimator overthe natural estimator for the C.elegans probability vector ~p.
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Figure 7.2: Comparison of three entropy estimators for M = 1024, N = 5000, and ~p de-rived from C.elegans. The upper curve corresponds to Grassberger's estimator, the curvein the middle to the Bayes entropy estimator, and the lower curve to the natural estimatorof the Shannon entropy H5. We see that the natural estimator and the Bayes estimatorsystematically underestimate the theoretical Shannon entropy, whereas Grassberger's esti-mator systematically overestimates the true entropy value for our chosen ~p. However, thebiases of the natural estimator as well as Grassberger's estimator are so strong that thereis even not a single event among our 10,000 trials where their estimates come close to thetheoretical value, i.e., their biases are larger than their standard deviations. The Bayesestimator, on the other hand, is almost unbiased compared to its variance. Please notethat our length correction formula presented in chapter 6 can almost perfectly correct thebias of the natural estimator. Hence, the signi�cant di�erence between the quality of thenatural and the Bayes estimator is not given by their biases, but by their variances, whichwe will study in the next �gure.
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Figure 7.3: Comparison of three entropy estimators for M = 1024, N = 5000, and ~pderived from C.elegans. This �gure displays the three histograms corresponding to Fig-ure 5.2. We see that the variances of Grassberger's estimator and the Bayes estimator areof comparable size, whereas the 
uctuations of the natural entropy estimator are slightlylarger. This implies to prefer the Bayes estimator over the natural one even though we canalmost perfectly correct the signi�cant bias of the natural entropy estimator by our lengthcorrection formula derived in chapter 6.
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Figure 7.4: Comparison of three entropy estimators forM = 1024,N = 2000, and ~p derivedfrom C.elegans. Again, the upper curve re
ects Grassberger's estimates, the curve in themiddle the Bayes ones, and the lower curve the natural estimates of the Shannon entropy.In comparison with our previous two �gures, we see that the biases of all three estimatorsbecome larger as the sample size N , i.e., the sequence length, decreases. Again, the naturaland the Bayes estimator systematically underestimate the theoretical Shannon entropy,whereas Grassberger's entropy estimator systematically overestimates the theoretical value.We note again that the bias of the Bayes estimator is signi�cantly smaller than the biasesof its competitors. However, please keep in mind that we can correct the strong bias of thenatural estimator of the Shannon entropy.
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Figure 7.5: Comparison of three entropy estimators forM = 1024,N = 2000, and ~p derivedfrom C.elegans. These histograms exhibit that not only the biases, but also the variancesgrow as N decreases. Since biases of estimators can often be corrected, the comparativelysmall variance of the Bayes estimator is its main advantage over the natural estimator ofthe Shannon entropy.
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Figure 7.6: Comparison of three entropy estimators for M = 1024, N = 1000, and ~pderived from C.elegans. Grassberger's estimator again yields the highest estimates followedby the Bayes and then by the natural entropy estimator. All biases become larger witha decreasing sequence length N , as a comparison with Figures 5.4 and 5.5 reveals. Inparticular, the bias of the natural estimator becomes outstandingly large. However, recallthat our length correction formula can correct it even in this situation where N < M .
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Figure 7.7: Comparison of three entropy estimators for M = 1024, N = 1000, and ~p de-rived from C.elegans. These histograms show that the variances of the Bayes estimator iscomparable to the 
uctuations of Grassberger's entropy estimator, which both are signif-icantly smaller than the variance of the natural entropy estimates. Since we realize thatthe ratio of the variance of the natural entropy estimates and the variance of the Bayesestimates becomes larger for decreasing N , we highly recommend to substitute the naturalestimator by the Bayes estimator of the Shannon entropy in order to get more reliableestimates of the theoretical Shannon entropy in samples where N cannot be guaranteed tobe much greater than M .



101Even though we could reasonably motivate the selection of the probability vector ~pin our previous simulations, this does not free us from presenting more simulations withdi�erent ~p. However, instead of going this way and �lling the next pages with picturessimilar to the previous ones, we will design the following experiment.Instead of �xing the probability vector arbitrarily to any ~p, we also randomly pickthis vector from any point of the simplex given by the normalization constraint of thepi. In order not to overreach any probability vector, we assume an uniform probabilitydensity of the vectors ~p. Please note that this assumption does not mean that we simu-late with equidistributed pi. An uniform density on the ~p-simplex rather means that theequidistributed vector ~p = ( 1M ; 1M ; :::; 1M ) has the same right to get selected as the c.elegansprobability vector displayed in Figure 7.1 or any other imaginable probability vector ~p. Inmathematical terms, all probability vectors have the same probability P (~p) to get selectedfor our simulation experiment.The outcome of these simulations will then be an average distribution of the threeestimates introduced above. Remember that our original task was to evaluate our threeentropy estimators in terms of their statistical properties. What we have shown withour previous simulations was that the Bayes estimator should be preferred over the naturalestimator of the Shannon entropy in the particular case of rank-ordered distributions similarto Figure 7.1.Although this rank ordered distribution might count as a typical example representingthe 5-mer probabilities in eukaryotic DNA, we now ask the question what the distributionsof the entropy estimates look like in general, i.e., for randomly chosen ~p-vectors uniformlyspread upon the simplex. In our following simulation, we choose N = 1000, since, due totheir consistency, all estimators can be shown to converge to each other for increasing N .
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Figure 7.8: Comparison of three entropy estimators for M = 1024, N = 1000, and ~p ran-domly selected. From top to bottom, we display the estimates of Grassberger's estimator,the Bayes estimator, and the natural estimator of the 5-mer Shannon entropy, respectively.Please note that a symmetric distribution of the estimated entropies around the theoreticalvalues does not imply that the corresponding estimator is unbiased. It rather means thatthe estimator is sometimes positively biased and sometimes negatively such that the aver-age bias just vanishes. Applied to the Bayes estimator, this means that the cases wherewe systematically overestimate the theoretical Shannon entropy yield the same absolutedeviation from true as those cases in which we systematically underestimate the true value.Hence, two e�ects simultaneously contribute to the variance of the entropy estimates: theaverage variance over all �xed vectors ~p and the 
uctuations of the biases for di�erent ~p.
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Figure 7.9: Comparison of three entropy estimators for M = 1024, N = 1000, and ~prandomly selected. Studying these histograms belonging to Figure 5.8, we realize thatthe natural estimator is systematically underestimated on average. This result is notat all surprising, since we can show in chapter 6 that the natural entropy estimator isalways biased independently on the underlying vector ~p. In chapter 6, we also derive alength correction formula, which perfectly corresponds to this simulation. Grassberger'sestimator, on the other hand, systematically overestimates the theoretical entropy for all10,000 vectors ~p generated in this simulation. Finally, the Bayes estimator does not show asystematic deviation from the theoretical values on average, which does however not meanthat this estimator is unbiased (c.f. Figure 5.8). Regarding the variance of the estimates,the Bayes estimator has obviously to be preferred over the natural one independently onthe availability of powerful bias correction formulae.



1047.4 SummaryIn this chapter we derived the Bayes estimator of the Shannon entropy,Ĥ(~k) = MXi=1 ki + 1N +M N+MXj=ki+2 1j : (7.20)In section 7.1, we motivated the demand for an entropy estimator that has the desirableproperty to be very close to the theoretical Shannon entropy that we intend to determine.Since Bayes estimates have, in general, a smaller mean quadratic deviation from the theo-retical population parameter than the estimates of any other estimator, we tried to derivethe Bayes estimator of the Shannon entropy.Section 7.2 was entirely devoted to deriving the Bayes estimator of the Shannon entropyunder the prior assumption of a uniform distribution on the simplex of the underlyingprobability vectors. Please remember that this uniform prior does not mean that weprefer equidistributed probability vectors. Conversely, the assumption of a uniform prioris identical to the demand of equal rights for all possible probability vectors.In section 7.3, we compared the statistical properties of the natural entropy estimator,Grassberger's entropy estimator, which is de�ned as the entropy function of the Laplaceprobability estimator, and our in section 7.2 derived Bayes entropy estimator.These studies unambiguously revealed the strength of the Bayes entropy estimator,which were its small bias and, more importantly, the small 
uctuations of its estimates.Therefore, we recommend everybody who is confronted with the problem of estimatingentropies from �nite samples and has no idea about the underlying probability distributionto substitute all procedures that calculate the natural entropy estimates by subroutinescomputing their Bayes counterparts.Additionally, we could relate Grassberger's estimator to the Bayes estimator of theShannon entropy by showing that we obtain Grassberger's estimator if we substitute the�nite sum in eq. (7.20) by the corresponding de�nite integral. This �nding �nally allowedus to present the inequality that Grassberger's estimator is always greater than the Bayesestimator of the Shannon entropy.



Chapter 8Bayes Estimators of GeneralizedEntropiesOne practical and common problem in the analysis of experimental data is the estimationof probabilities or functions of probabilities from �nite sets of observed data. The �nite sizeof data sets can lead to serious systematic and statistical errors in numerical estimates.In this chapter we address the problem of estimating generalized entropies from �nitesamples, and we derive the Bayes estimator of the order-q Tsallis entropy, including theorder-1 (i.e., the Shannon) entropy, under the assumption of a uniform prior probabilitydensity. The Bayes estimator yields, in general, the smallest mean-quadratic deviationfrom the true parameter as compared to any other estimator. Exploiting the functionalrelationship between the Tsallis entropy Hq and the R�enyi entropy Kq, we use the Bayesestimator of Hq to estimate Kq. We compare the Bayes estimators with the frequency-count estimators forHq andKq. We �nd by numerical simulations that the Bayes estimatorreduces statistical errors of order-q entropy estimates for Bernoulli as well as for higher-order Markov processes derived from the complete genome of the prokaryote Haemophilusin
uenzae.8.1 IntroductionHere we address the estimation of these entropies from a �nite set of experimental data.Under the assumption of a stationary process generating the data, the data set is com-posed out of N data points chosen from M possible di�erent outcomes. The problem that



106arises when entropies are to be estimated from these �nite data sets is that the probabil-ities are a priori unknown. Naively replacing these probabilities by the sampled relativefrequencies produces large statistical and systematic deviations of estimates from the truevalue [Basharin 1959, Harris 1975]. This problem becomes severe when the number of datapoints N is in the order of magnitude of the number of di�erent states M , which occursin many practical applications, e.g. in the estimations of correlations and dimensions. Insuch cases, the choice of an estimator with small deviations from the true value becomesimportant. Several di�erent estimators have thus been developed, mainly devoted to theestimation of the Shannon entropy [22-27]. Speci�c estimators for the R�enyi entropy andfor the dimensions associated to them have also been derived, as well as for upper boundson entropy estimates [Grassberger 1988, Sch�urmann & Grassberger 1996].While one can, in principle, calculate the systematic errors arising from frequency-counts, less 
uctuating entropy estimates can only be obtained by employing a di�erententropy estimator. The estimator which possesses the optimal property to minimize themean-quadratic deviation of the estimate from the true value, subject to a certain priorassumption, is customarily referred to as the Bayes estimator. In this work, we derivethe Bayes estimator of the Tsallis entropy and discuss its statistical properties. We thenexploit this Bayes estimator to measure the R�enyi entropy.8.2 Tsallis Entropy EstimatorIn this section we focus upon the �rst task stated in the preceding section, by deriv-ing the Bayes estimator of the generalized Tsallis entropy Hq. The total number ofsymbols available in a sample for the estimation is given by N = PMi=1Ni. Let fur-ther P ( ~N j~p) = N ![QMi=1 pNii /Ni!] be the underlying conditional probability distributionto obtain the (multinomially distributed) observable-vector ~N with components Ni. Fi-nally, Q(~p) denotes the prior probability density of the probability-vector ~p. It satis-�es the constraint RS d~pQ(~p) = 1 where the integration extends over the whole simplexS � f~p j 8i pi � 0;PMi=1 pi = 1g. Then the Bayes estimator of Hq reads ascHq( ~N) = 1W ( ~N) ZS d~p Hq(~p) P ( ~N j~p) Q(~p) (8.1)where the normalization constant is given byW ( ~N) = ZS d~p P ( ~N j~p) Q(~p): (8.2)



107According to the Bayes theorem, P (~pj ~N) = P ( ~N j~p)Q(~p)/Q( ~N). Thus equation (8.1) isequivalent to cHq( ~N) = RS d~p Hq(~p)P (~pj ~N), which is the average of Hq(~p) over the posteriordistribution P (~pj ~N).In what follows, we will derive the Bayes estimator of Hq under the assumption of auniform prior probability density Q(~p) = const. That is to say, we regard all possibleprobability-vectors ~p 2 S to be relevant.If we write down the Bayes estimator of Hq ascHq( ~N) = 1ln 2 11� q hcZq( ~N)� 1i with cZq( ~N) = 1W ( ~N) ZS d~p MXi=1 pqi P ( ~N j~p) (8.3)then it can be seen that the derivation of cHq reduces to the derivation of the Bayes estimatorof the partition function Zq. The normalization constantW and the quantityW 0 (see later)will be evaluated in appendix B. Interchanging the integral with the �nite sum, cZq may becast into the formcZq( ~N) = �(N +M)QMj=1 �(Nj + 1) � ( MXi=1 ZS MYj=1dpj p(Nj+�ijq)j ): (8.4)Integrating over M � 1 of the M components, we obtaincZq( ~N) = �(N +M)QMj=1 �(Nj + 1) � (Z 1pi=0 dpi W 0(pi; ~N) pqi): (8.5)Evaluating the remaining integral, we arrive atcZq( ~N) = �(N +M)�(N +M + q) � " MXi=1 �(Ni + 1 + q)�(Ni + 1) # (8.6)and thus, composing all above expressions, we eventually obtaincHq( ~N) = 1ln 2 11� q ( �(N +M)�(N +M + q) � " MXi=1 �(Ni + 1 + q)�(Ni + 1) #� 1) : (8.7)Expression (8.7) constitutes a central result of this work: the Bayes estimator of the Tsallisentropy of order q. To illustrate the di�erences between the 
uctuations of the Bayes esti-mator and the frequency-count estimator of Hq, in the following we will simplify expression(8.7) for the special cases q = 1 and q = 2. The motivation for this parameter choice stemsfrom the following. We recall that Hq is indeed a generalization of H , providing upper andlower bounds for the Shannon entropy. As such, we wish to make contact with the Bayesestimator bH for the Shannon entropy. This is realized in the limit q ! 1. The second



108example, q = 2, plays an important role in the statistical analysis of non-linear dynam-ical systems. Here q = 2 gives rise to quantities like the correlation dimension and thesecond-order Kolmogorov entropy (see, e.g., [Ruelle 1989] and references therein) as wellas a generalization of the mutual information which preserves positivity [Pompe 1993].To obtain cH1, we introduce the auxiliary functionF (q) = " MXi=1 � (Ni + 1 + q]�(Ni + 1) #�� (N +M + q) : (8.8)This will become useful due to the necessary consideration of the limit q ! 1, sinceexpression (8.7) is not de�ned otherwise. Introducing �q = Ni+1+q and �q = N+M +q,we may write at the limit pointcH1( ~N) = limq!1 Ĥq( ~N) = ��(�0)ln 2 @F (q)@q ����q=1 (8.9)where @F (q)@q = MXi=1 ( � (�q)�(�0)� (�q)� (1)(�q)�  (1)(�q)�): (8.10)Here  (1)(z) = d ln �(z)=dz is the Digamma-function. Since �1 and �1 are integers, wemay express  (1)(z) in terms of the �nite harmonic sum  (1)(z) = Pz�1l=1 1=l � Ec, withEc = limR!1 (PRr=1 1=r � lnR) being Euler's constant. Inserting this expression intoequation (8.10), we get @F (1)@q = � MXi=18<: �(�1)�(�0)�(�1) 0@ �0Xl=�1 1l1A9=; (8.11)and hence we obtain cH1( ~N) = 1ln 2 24 MXi=1 Ni + 1N +M 0@ N+MXl=Ni+2 1l1A35 : (8.12)Equation (8.12) de�nes the Bayes estimator of the order-1 Tsallis entropy under a uni-form prior probability density. Comparing the above expression with results derived in[Wolpert & Wolf 1995] and [Grosse 1996], we verify the consistency of expression (8.7) inthe limit q ! 1. That is, the Bayes estimator of the order-1 Tsallis entropy is identical tothe Bayes estimator of the Shannon entropy: cH1 � bH.We now turn to the case q = 2. From equation (8.6) we can read o� the Bayes estimatorof pqi to be cpqi = �(N +M)�(N +M + q) � �(Ni + 1 + q)�(Ni + 1) : (8.13)



109Thus we write down cH2 in the formcH2( ~N) = 1ln 2�1� MXi=1cp2i� with cp2i = � Ni + 1N +M �� Ni + 2N +M + 1� : (8.14)In general, we �nd the following characteristics of the Bayes estimator to be noteworthy:1. cHq is de�ned in the parameter range q 2 (�1;1). Apparently, cases of particularinterest (and simplicity) are given when q takes on integer values n 2 N (set of non-negative integer numbers) which allow one to replace Gamma-functions by factorials.Similar simple expressions can also be obtained when q = (n + 1)=2.2. Given q = n, then equation (8.13) factorizes into a product of n terms, which takeson the following singled-out form:cpni = � Ni + 1N +M �� Ni + 2N +M + 1�� Ni + 3N +M + 2� � � �� Ni + nN +M � 1 + n�:As we have shown above, cHqjq=1 includes the Bayes estimator of the Shannon entropy.Setting now n = 1, we furthermore re-obtain Laplace's (successor rule) estimator (see,e.g., [Sch�urmann & Grassberger 1996]): cpni jn=1 = (Ni + 1)=(N +M). Moreover, forq = n the asymptotic approach cpni ! fin is realized by allowing N ! 1, i.e., dHnconverges towards the frequency-count estimator of Hn. Thus the Bayes estimator isconsistent.3. We note that the Bayes estimator of Hq is not equal to the estimator obtained byinserting the Bayes estimator of the probability-vector ~p, i.e., cHq( ~N) 6= Hq(b~p).8.3 R�enyi Entropy EstimatorIn this section, we consider the Bayes estimator of the R�enyi entropy Kq. Substituting Kqfor Hq in equation (8.1), the problem of deriving the estimator is the calculation of theintegral cKq( ~N) = 11� q 1W ( ~N) ZS d~p log2 Zq(~p) P ( ~N j~p) Q(~p): (8.15)Even in the simple case for M = 2, �nding the explicit analytical solution of the aboveintegral turns out to be very complicated. In appendix C we will show that the Bayesestimator of the binary R�enyi entropy (under the assumption of a uniform prior probability



110density) can be written ascKq(N1; N2) = 1ln 2 11� q 0@Iq (N1; N2)� q NXl=N1 1l+ 11A (8.16)for all N1 +N2 = N . In the above expression we have introduced the following notation:Iq (N1; N2) = �(N + 2)�(N1 + 1)�(N2 + 1) Z 10 dx xN2(1 + x)N+2 ln (1 + xq) : (8.17)Though the integrand in the above integral is well-de�ned and thus this integral exists forall q, we could not obtain a closed analytical expression for arbitrary given N1, N2 andq. This does also hold for the case M > 2. So the explicit evaluation of equation (8.15)remains a challenge.Although equation the binary case, c.f. equation (8.17), could be solved numerically togive cKq, we may seek another strategy which is of practical use also in the multi-variate caseM > 2. We recall that Hq and Kq are intimately related to each other via equation (5.5).Therefore, a natural way to estimate Kq would be to estimate Hq and then use relation(5.5) to compute Kq of corresponding order. Hence we may write down the (indirect)Bayes estimator fKq, c.f. equation (8.6), in the form1fKq( ~N) = 11� q log2( �(N +M)�(N +M + q) � " MXi=1 �(Ni + 1 + q)�(Ni + 1) #) : (8.18)Since limq!1 fKq = limq!1 cHq, the limit fK1 = bH holds and we again re-obtain the Bayesestimator of the Shannon entropy. The motivation to proceed in this way is lead by the factthat both cHq and fKq can be understood as entropies computed from the Bayes estimator ofthe partition function Zq. As such, we gain a signi�cant reduction of the entropy variancedue to cZq.8.4 Numerical TestsIn this section we compare the variances of the direct and indirect Bayes estimators, cHqand fKq, with the variances of the frequency-count estimators, �Hq and �Kq. To investi-gate and contrast the performance of the two di�erent estimators we choose m-step mem-ory Markov processes belonging to the following cases: (a) generated by a process with1Please note that we distinguish the indirect from the direct Bayes estimator by a tilde.



111no memory, i.e., m = 0, and (b) generated by a process with memory m = 5. In (a)we choose a process with equidistributed probabilities (henceforth denoted as Bernoulliprocess), whereas in the latter case we use the �fth-order transition probabilities takenfrom the complete 1; 830; 240 nucleotides long Haemophilus in
uenzae DNA sequence[Fleischman et al. 1995] to generate a Markov chain with �fth-order memory. Figure 2shows the rank ordered statistics obtained from the above DNA sequence and from a se-quence of same length derived from a Bernoulli process. It can be seen that the DNAsequence is far more inhomogeneous than the realization of the Bernoulli process. Thederived rank-order frequencies might count as a typical example representing hexamer dis-tributions in (prokaryotic) DNA. The entropy analysis of biosequences has received appli-cations in order to distinguish between coding and non-coding DNA [Fickett & Tung 1992],to detect repeated nucleotide sequences [Herzel et al. 1994b], and to characterize proteinsequences [Herzel 1988, Strait & Dewey 1996]. A prerequisite to the application of gener-alized entropies in biosequence analysis are reliable estimators. Therefore we consider aprobability-vector derived from a DNA sequence to test the performance of the Bayes esti-mators, given by the expressions (8.7) and (8.18), versus the frequency-counts estimators,which are obtained by de�ning �Zq !PMi=1 f qi with fi = Ni=N .Since we are particularly interested in the case where the size of the sequence lengthis in the order of magnitude of the cardinality of the alphabet, M = 46, we perform ournumerical simulations with N(a) = 4 � 103 and N(b) = 8 � 103. Then, according to theprobability-vector ~p � (p1; : : : ; p4096), a sequence S is randomly generated from which weestimate the entropy values. In both cases we can also compute the theoretical hexamerentropies (since we take the relative frequencies obtained from the DNA sequence as prob-abilities by de�nition). Hence, the di�erence between the estimated and the theoreticalvalues de�nes a random variable, which we de�ne as \entropy estimate deviation fromtrue". Generating an ensemble of 10; 000 sequences and estimating the entropies from eachsequence, we obtain the histograms displayed in �gures 3, 4 and 5. These studies demon-strate the merit of the Bayes order-2 entropy estimators as compared to the frequency-countestimators. Indeed, the variances of the Bayes estimates are signi�cantly smaller than thevariances of the frequency-count estimates for both Markov processes with memory m = 0and m = 5. In repeated simulations with di�erent sequence lengths and di�erent values ofq ranging from �1 to 50 we could observe similar results: the Bayes estimator of Hq andKq produces signi�cantly smaller variances than the frequency-count estimator.



112As analytical calculations and numerical simulations reveal, the Bayes estimator of Zq(and hence for Hq and Kq) is biased. As we will show in appendix A, this bias can beapproximated within O(1=N), by using a straightforward analytical approach.8.5 SummaryIn this chapter we derived the direct Bayes estimator cHq of the order-q Tsallis entropy andthe indirect Bayes estimators fKq of order-q R�enyi entropy of a �nite, discrete data set.Our approach of deriving the Bayes estimators of Hq and Kq has been been moti-vated by the requirement to estimate generalized entropies from realizations where thetotal sample size N available may only be in the order of magnitude of the cardinalityM . The central result of this work, namely the Bayes estimator of the Tsallis entropy Hq,is stated in expression (8.7). As we could not arrive at a closed form expression of thedirect Bayes estimator of the R�enyi entropy, we proposed an indirect Bayes estimator bythe transformation-formula which connects the Tsallis with the R�enyi entropy. In fact,both estimators, cHq and fKq, are based on the Bayes estimator of the partition functionZq, which may be exploited to estimate related quantities like generalized dimensions ororder-q Kolmogorov entropies. In the case of q = (n + 1)=2, n 2 N , these estimators areeasy to implement for numerical purposes.A comparative study of the accuracy by which both the Bayes and the frequency-countestimators extract the order-2 entropies of m-step memory Markov-chains demonstratedthe strength of the Bayes estimator. Over the whole parameter range q 2 (�1;1) theBayes estimator outperforms the frequency-count estimator by a signi�cantly smaller vari-ance of its estimates. This makes the Bayes estimator appropriate to measure generalizedentropies in a sample, whose size N may be as small as the cardinality M of the alphabet.The Bayes estimators cHq and fKq have been derived under the assumption of a uni-form prior probability density. Clearly, the speci�c choice of an assumption for the priorprobability density is application-dependent. Given no other constraint except ~p 2 S, weassumed a constant prior probability density over the simplex. Note that this does notmean that the probabilities pi are equidistributed, but rather that all probability-vectors~p on the simplex S are equiprobable. Nevertheless, the numerical simulations demonstratethat for the probability-vectors considered is this work, which are by no means equidis-tributed on the simplex, the Bayes estimator with Q(~p) = const leads to variances which



113are signi�cantly smaller as compared to the variances of the frequency-counts estimatorsof generalized entropies of order q.
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Figure 8.1: Comparison of the Bayes and the frequency-count estimator of the Shannonentropy, cH1 and �H1 respectively. We generate an ensemble of 10; 000 sequences, each ofwhich composed ofN = 250 data points chosen from an alphabet with cardinalityM = 256.The 256 possible outcomes were samples from a uniform distribution, pi = 1=M . Fromeach such sequence, the entropy is estimated by the Bayes estimator and the frequency-count estimator. Figure 1 displays the corresponding histograms of cH1 (right) and �H1(left). It can be seen that the variance of cH1 is about one order of magnitude smaller ascompared to the variance of �H1. Note that the signi�cant negative bias can, in principle,be approximated by length correction formulae. Therefore, it is the smaller variance of cH1that makes this estimator superior.
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Figure 8.2: The rank ordered hexamer distribution of the complete Haemophilus in
uenzaeDNA sequence displayed as a double-logarithmic plot (2). For a comparison, the rankordered hexamer distribution of a Bernoulli-sequence of same length has been included inthe �gure (4).
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Figure 8.3: Comparison of the entropy estimators cH2 (right) and �H2 (left) withM = 4096,N = 4000 and equidistributed pi = 1=M . We observe the small width of the variance ofthe Bayes estimator cH2 as compared to the frequency-count estimator �H2. Equation (12.3)predicts the entropy bias with �cH2 = �2:66 � 10�4 (bits/symbol), in good agreement tothe observed value. According to [Holste 1997], the bias of �H2 can be approximated tobe � �H1 = �0:36 � 10�3 (bits/symbol), which is in good agreement to the observed value,too. In samples where N is in the order of magnitude of M , the reliability of the Bayesestimator is signi�cantly higher than the reliability of the frequency-count estimator.



117

−1.2 −1.1 −1.0 −0.9 −0.8 −0.7
entropy estimate deviation from true

0

1000

2000

3000
ab

so
lu

te
 fr

eq
ue

nc
y

Figure 8.4: Comparison of the entropy estimators fK2 (right) and �K2 (left) withM = 4096,N = 4000 and equidistributed pi = 1=M . We observe that 
uctuations of the Bayes estima-tor fK2 are strongly suppressed as compared to the frequency-count estimator �K2. Equation(12.5) predicts the entropy bias with �fK2 = �0:81 (bits/symbol), in good agreement tothe observed value. According to [Holste 1997], the bias of �K2 can be approximated to be� �K2 = �1:02 (bits/symbol), which is in good agreement to the observed value as well
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Figure 8.5: Comparison of the entropy estimators cH2 (right) and �H2 (left) withM = 4096,N = 8000 and pi derived from the H. in
uenzae DNA sequence. We observe the smallervariance of the Bayes estimator cH2 as compared to the frequency-count estimator �H2.Equation (12.3) predicts the entropy bias with �cH2 = �0:38 � 10�4 (bits/symbol) and,according to [Holste 1997], the bias of �H2 can be approximated to be � �H1 = �0:18 � 10�3(bits/symbol).



Part C



Chapter 9Statistical Properties of theNatural Estimator of the ShannonEntropyThe following section is devoted to the derivation and discussion of certain statisticalproperties of the natural entropy estimator,Ĥ(~k) = MXi=1�kiN � ln�kiN � ; (9.1)such as its expectation value and variance.Remember that the estimate of a population parameter can be viewed as a randomvariable with a well de�ned probability distribution. The problem that occurs in practicalapplications is, however, that this probability distribution is often unknown and only hardto derive. Nevertheless, it can, in principle, be su�ciently described by all of its moments.Often its �rst two moments, namely its expectation value and its variance, su�ce to giveus a basic idea of what the distribution looks like.The bias of an estimator is, as we have learned in section 6.3, de�ned as the deviation ofthe expected value of its estimates from the real population parameter value. The varianceof the estimates, on the other hand, is de�ned as the mean quadratic distance from theexpectation value, and thus re
ects the magnitude of 
uctuations of this estimator. Wecommonly relate the term reliability with the second moment of the estimate's probabilitydistribution.



121Section 9.1 is devoted to showing that the natural entropy estimator is biased in allcases where our underlying probability distribution is not pathologically concentrated ina single point. In section 9.2, we then derive an approximation for this bias, which hasturned out to be fundamental for all statistical analyses of biological symbol sequences.Eventually, section 9.3 is dedicated to presenting an approximation for the variance of thenatural entropy estimates.Please note that neither the approximation of the expectation value nor the approxi-mation of the variance of the Shannon entropy are new. These and similar approximationscan be found in [Basharin 1957], [Harris 1975], [Pompe 1986], [Herzel 1988], [Li 1989],[Herzel 1994a], or [Levitin 1994].9.1 The Natural Entropy Estimator is BiasedIn this section, we will show that we systematically underestimate the Shannon entropyH(~p) by using the natural entropy estimator Ĥ(~k) independently on the underlying prob-ability distribution p1; p2; :::; pM.This bias of the natural entropy estimator is due to the nonlinearity, i.e., the convexity,of the entropy function and can easily be understood in the case of equidistributed pi.Let us imagine we are to estimate the Shannon entropyH(p) = � p � ln(p)� (1� p) � ln(1� p) (9.2)of a coin and assume p = 1=2. Let further be the sample size N = 2, i.e., we are tossingthe coin only twice.Then the possible outcomes of our tossing experiment are:1. We toss two heads, i.e., k = 2.2. We toss one head and one tail (or one tail and one head), i.e., k = 1.3. We obtain two tails, i.e., k = 0.In the �rst and the third case, we estimate the Shannon entropy of the coin be zero,which re
ects our estimates of the probability p̂ = 1 or p̂ = 0, respectively. In the secondcase, we estimate the probability p̂ = 1=2 and thus the entropy Ĥ = ln(2).Comparing all of our entropy estimates with the theoretical Shannon entropy H(p) =ln(2), we see that all estimates, which we also call the observed entropies, are smaller than



122or equal to the theoretical entropy. In our case, this only re
ects the well known statementthat a uniform distribution yields the highest possible entropy. Our realizations, however,cannot be more uniform than the underlying uniform probability distribution is. Moreover,they often deviate from uniformity, which happens in two of three cases in our example.Thus, it is not surprising that the expected value of the observed entropies, i.e., theensemble mean of all observed entropies, is smaller than the theoretical entropy value inour example:E(Ĥ) = P (k = 0jp = 1=2) � Ĥ(k = 0) + P (k = 1jp = 1=2) � Ĥ(k = 1)+ P (k = 2jp = 1=2) � Ĥ(k = 2) = 1=2 � ln(2) < ln(2) = H: (9.3)The question we are raising at this point is whether this inequality always holds. Letus, for example, consider the same experiment, but now under the assumption of p = 0:7.Again, we obtain the three possible estimates for Ĥ , namely 0, 1, and 0, for the threepossible outcomes k = 2, k = 1, and k = 0, respectively, of our tossing experiment.However, now we realize that the entropy observed in the second case is larger than thetheoretical value. Nevertheless, we can prove that the expected entropy (which we de�neas the expectation value of all observed entropies) is smaller than the theoretical entropy:E(Ĥ) = P (k = 0jp = 0:7) � Ĥ(k = 0) + P (k = 1jp = 0:7) � Ĥ(k = 1)+ P (k = 2jp = 0:7) � Ĥ(k = 2) = 2 � 0:7 � 0:3 � ln(2)< � 0:3 � ln(0:3)� 0:7 � ln(0:7) = H: (9.4)The interesting question that appears at this moment is whether the expected entropyis always smaller than the theoretical entropy independently on our assumption about theunderlying distribution and its dimensionality.The following section is devoted to deriving the theorem that the expected value of theobserved entropies is always smaller than the theoretical entropy.Let ~p = (p1; p2; :::; pM) be the vector containing the probabilities of anM -sided die andN be the given sample size. Let further �N~k � denote the multinomial coe�cient given by N~k! � N !k1! � k2! � � � kM ! : (9.5)



123Then the expected entropy reads asE �Ĥ(~k)� =Xf~kg P (~kj~p) � Ĥ(~k) (9.6)with P (~kj~p) =  N~k! MYi=1 pkii (9.7)and Ĥ(~k) = MXi=1�kiN � ln�kiN � : (9.8)Interchanging the �nite sum over all possible states ~k with the sum over all state indicesi yields E �Ĥ(~k)� = � MXi=1Xf~kg P (~kj~p) � kiN � ln�kiN� : (9.9)Now we exploit eq. (2.12), which we derive in appendix B by applying Jensen's inequal-ity to the function f(p) = � p � ln(p), and obtain�Xf~kg P (~kj~p) � kiN � ln�kiN� � �pi � ln(pi) (9.10)for all i = 1; 2; :::;M , since pi =Xf~kg P (~kj~p) � kiN : (9.11)By applying this result to eq. (9.9), we end up with the inequalityE �Ĥ(~k)� = � MXi=1Xf~kg P (~kj~p) � kiN � ln�kiN� (9.12)� � MXi=1 pi � ln(pi) = H(~p) (9.13)where equality holds only in the pathological case that P is concentrated in one point, i.e.,if one pi = 1 and all others be 0.In other words, the natural entropy estimator is always biased and on average under-estimates the theoretical Shannon entropy.



1249.2 The Entropy BiasIn the last section, we have shown that the natural entropy estimator is biased. Fur-thermore, we could show that this bias is always negative, i.e., we systematically under-estimate the theoretical entropy independently on the underlying probability distributionp1; p2; :::; pM. In this section, we will quantify this bias and derive a length correctionformula that approximates the bias in the order of 1=N .The expected value of the natural entropy estimates is given byE(Ĥ(~k)) =Xf~kg Ĥ(~k) � P (~kj~p): (9.14)We know that the vector ~k containing the absolute frequencies k1; k2; :::; kM is multi-nomially distributed according toP (~k; ~p;N) =  N~k ! � MYi=1 pkii : (9.15)However, we do neither know the distribution of Ĥ(~k) nor the expectation value of thisstatistic.But following [Harris 1975] and [Herzel, 1988], we can expand the function Ĥ(~k) ina Taylor series and thus derive �rst and second order approximations of the expectationvalue of Ĥ(~k).We de�ne the relative frequencies as the positive real variables x1; x2; :::; xM byxi � ki=N (9.16)for all i = 1; 2; :::;M and then compute the power series expansion of H(x1; x2; :::; xM)about the point (x1; x2; :::; xM) = (p1; p2; :::; pM).Since the partial derivatives read as@H@xi = � ln(xi)� 1 (9.17)@2H@xi@xj = 0 (9.18)@kH@xik = (�1)k�1 � (k � 2)!xk�1i (9.19)



125for all i; j = 1; 2; :::;M , j 6= i, and all k = 2; 3; :::;1, we obtain the following Taylor seriesfor the observed Shannon entropy H(x):~H(~x) = MXi=1�pi � ln(pi)� (ln(pi) + 1) � (xi � pi)+ 1Xk=2 (�1)k�1(k � 1) � k � 1pk�1i � (xi � pi)k (9.20)= MXi=1�pi � ln(pi)� ln(pi) � (xi � pi)+ 1Xk=2 (�1)k�1(k � 1) � k � 1pk�1i � (xi � pi)k: (9.21)Please realize that we denoted the limes of this power series by ~H and not by Hbecause we have not yet analyzed whether the function H(x) is indeed analytic, whichmeans, whether it is expressible by its Taylor series.We know that all power series in x about a point x0 converge in an open interval(x0 � r; x0 + r), where r is called the radius of convergence. Our next task will be todetermine the radius of convergence r of the series given above.The ratio test reveals that the radius of convergence r of a power series 1Pk=0 ak � xk canbe determined by r = limk!1 ���� akak+1 ���� : (9.22)Hence, we obtain, for the above series and k � 2,���� akak+1 ���� = k + 1k � 1 � pi ! pi (9.23)for k!1 and all i = 1; 2; :::;M .Since power series converge inside their convergence intervals, but diverge outside, theTaylor expansion derived above is only convergent on the whole interval (0; 1) in the casethat we are dealing with binary sequences in which the two symbols occur with the sameprobability 1=2. Let us incidentally remark that in this particular case, the series alsoconverges at the points x = 0 and x = 1 and that its limits are even identical to the valuesof the function H at this point. This means we may identify H with ~H in this case.In all other cases, the Taylor series becomes divergent in certain intervals, and the onlystatement we are allowed to derive is that the power series given above converges in theopen parallel epiped given by the two points (0; 0; :::; 0) and 2 � (p1; p2; :::; pM). Here we canthen prove H(x) = ~H(x).



126For all ~x that fall into this parallel epiped, the Taylor approximation can be improvedwith any higher order term whereas the opposite is the case for all other ~x. If we, however,keep in mind the probabilities by which vectors ~x appear in our sample of size N , then wewill realize that this Taylor approximation is a really good and valuable approach in manypractical situations. It only fails if the underlying statistics becomes extremely poor.For those situations, we present a di�erent approach in appendix G. There, we exploita technique derived from regression theory, which �nally provides us with a power seriesfor the Shannon entropy that converges in the entire interval [0; 1].Let us in this section continue with the Taylor approach and write down the expectationvalue of the natural entropy estimator H(x).E( ~H(~x)) = MXi=1�pi � ln(pi)� ln(pi) �E(xi � pi)+ 1Xk=2 (�1)k�1(k � 1) � k � 1pk�1i �E �(xi � pi)k� : (9.24)In Appendix I, we introduce generating functions and present a method by whichwe can, in principle, derive all moments of a multinomial distribution. For the sake ofsimplicity, we truncate the Taylor expansion after the quadratic term, i.e., we neglect allmoments higher than the second, and thus obtainE( ~H(~x)) = MXi=1�pi � ln(pi)� MXi=1 12 � pi � pi � (1� pi)N +O� 1N2� (9.25)= H(~p)� M � 12 �N + O� 1N2� (9.26)since E(xi � pi) = 0 (9.27)and E �(xi � pi)2� = pi � (1� pi)N (9.28)as derived in appendix I.In our previous section, we have learned that we always systematically underes-timate the Shannon entropy independently on the underlying probability distributionp1; p2; :::; pM. In this section, we could now derive the surprising result that the biasof the natural entropy estimatorE(Ĥ �H) = �M � 12 �N +O� 1N2� (9.29)



127does also not depend on the underlying probability distribution in a �rst order approxima-tion.However, this interesting �nding is not new and has only been presented here for ex-emplifying our basic approach. We highly recommend our readers to review the originalpapers mentioned above, where these so called �nite sample e�ects are studied and thevalue of the length correction formula corresponding to eq. (9.29) are perfectly illustrated.9.3 The Entropy VarianceIn this section, we will derive an approximation of the variance of the natural entropyestimates H(~k) where the random vector ~k is multinomially distributed according toP (~kj~p) =  N~k ! MYi=1 pkii : (9.30)In section 6.3, we have discussed some desirable properties of point estimators; namely,to be consistent and unbiased. Another, perhaps even more relevant question is whetherour estimator is also reliable. Whereas the question for the bias of a given estimatorconfronted us with calculating the expectation value of its estimates, we are now confrontedwith computing the mean sample variance of its estimated values.Fluctuations of their corresponding estimates are immanent for all estimators due toalways �nite sample sizes. The magnitude of these 
uctuations, however, is an importantcriterion to evaluate statistical measures and to determine their reliability.Since we can approximate the systematic sampling errors of all estimators consideredin this work and thus correct their bias, the remaining statistical errors decide about thepower of the considered estimators.In chapter 7, we have already discussed the variance of the natural entropy estimates.Let us here have a closer view on the size of the variance and compare it with analyticalresults derived below.The simulations performed here exactly correspond to those experiments carried outin section 7.3. However, instead of �xing the 1024-dimensional probability vector ~p tothe 5-mer probabilities derived from the C.elegans chromosome III, we simply choose ~p =( 1M ; 1M ; :::; 1M ) for our following simulations. We generate sequences ofN = 1000 5-mers andrepeat this experiment 10,000 times, which yields the following histogram of the observed



128Shannon entropy estimates Ĥ(~k) = � MXi=1 kiN � ln�kiN� : (9.31)Although we revealed an approximate value of the sample variance of the natural Shan-non entropy estimates, we have to admit that simulations of those statistics are tediousand lethal for any scienti�c progress in a long run. Thus our goal will be to derive ananalytic expression that approximates the variance of the natural entropy estimates as afunction of p1; p2; :::; pM, and N .A naive approach yields�2 �Ĥ(~n)� = �2 MXi=1�ni � ln (ni)! � MXi=1 �2 (�ni � ln (ni)) ; (9.32)if we assume the relative frequencies ni = ki=N be statistically independent.In a �rst order approximation, we obtain�ni � ln(ni) = �pi � ln(pi)� ln(pi) � (ni � pi) +O �(ni � pi)2� (9.33)for all i = 1; 2; :::;M and thus�2 � ^H(~n)� / MXi=1� ln2(pi) � �2 ((ni � pi)) : (9.34)In this linear approximation, we could obviously relate the 
uctuations of the Shannonentropy to the 
uctuations of the relative frequencies ni.Assuming equidistributed pi, we obtain�2 �Ĥ(~n)� / M � ln2(M) � (M � 1)N �M2 (9.35)since �2 ((ni � pi)) = pi � (1� pi)N : (9.36)Comparing this �rst order approximation, which yields�2 �Ĥ(~n)� / ln2(M)N � 0:05; (9.37)with Figure 9.1 reveals the shocking fact that our variance calculation is by a factor of 20too big.



129

-0.80 -0.70 -0.60 -0.50 -0.40
natural entropy estimates

0

500

1000

1500

ab
so

lu
te

 fr
eq

ue
nc

y

Variance of the Natural Entropy Estimates

Figure 9.1: Variance of the observed 5-gram entropies H5. We generated 10; 000 sequenceseach of which contained N = 1000 out of 1024 equidistributed 5-mers. The bias of the nat-ural Shannon entropy estimator of about � 0:58 is almost perfectly predicted by our linearapproximation M2�N . Note that the standard deviation of the natural entropy estimates,which we approximate by 0:05, is signi�cantly smaller than the their systematic error. Thevariance, i.e., the squared standard deviation, can be roughly estimated as 3 � 10�3.



130The serious question is whether this error was caused by the naive assumption all nibe independent or by our �rst order approximation.In the following, we will show which dramatic e�ect the constraint MPi=1ni = 1 imposeson the sum of the 
uctuations of the otherwise independent ni.To present this paradoxon as clearly as possible, let us consider the following example.We are rolling a normal six-sided die the faces of which show the six letters A;B; :::; F . Letour sample size N be 100, i.e., we are rolling the die 100 times and then count how oftenwe obtained an A, a B, a C, and so on. Eventually we are wondering whether the numberof As we rolled has anything to do with the number of Bs.The naive answer would be, that there is no statistical dependence between the fre-quency of rolling an A and the frequency of rolling a B. By de�nition, there is no correlationbetween the outcomes of our experiment!Nevertheless, we know about the normalization constraint, which requires the sum overall absolute frequencies be equal to N = 100, or the sum over the relative frequencies beequal to 1.In mathematical terms, the constraintMXi=1 ni = 1 (9.38)induces slight correlations between the random variables ni and thus our assumption ofstatistical independence between them is questionable.Let us in the following prove that these weak normalization correlations can indeeddramatically change our result obtained above.We still stick to the �rst order approximation given by eq. (9.33) and hence obtain�2 �Ĥ(~n)� = �2 MXi=1�ni � ln (ni)! / �2 MXi=1� ln(pi) � (ni � pi)! : (9.39)Assuming uniformity among the pi, i.e., pi = 1=M for all i = 1; 2; :::;M , yields�2 �Ĥ(~n)� = ln2(M) � 0 (9.40)since MXi=1 ni = MXi=1 pi = 1: (9.41)What we have just learned is that the weak correlations we induced by regardingthe normalization constraint for the observed frequencies destroy all 
uctuations of theobserved Shannon entropies in a linear approximation.



131This example was to serve as an illustration that the proper summation on the sim-plex given by eq. (9.38) cannot be substituted by a summation over all possible states ~kdisregarding their normalization constraint.In the remainder of this section, we will derive an analytic expression for the varianceof the observed entropies derived from a sample of size N for arbitrary p1; p2; :::; pM.Let us split this task according to�2 �Ĥ� = E ��Ĥ �H�2�� �E �Ĥ��H�2 (9.42)and start approximating the �rst term in the order of 1=N .SinceĤ(~n)�H(~p) = MXi=1� ln(pi) � (xi � pi) + 1Xk=2 (�1)k�1(k � 1) � k � 1pk�1i � (xi � pi)k; (9.43)we obtain �Ĥ(~n)�H(~p)�2 = MXi;j=1 ln(pi) � ln(pj) � (xi � pi) � (xj � pj) (9.44)+ h: o: t: (9.45)Calculating the expectation values of these terms yieldsE��Ĥ(~n)�H(~p)�2�= MXi;j=1 ln(pi) � ln(pj) �E ((ni � pi) � (nj � pj)) + E (h: o: t:) (9.46)= MXi=1 ln2(pi) �E �(ni � pi)2�+ MXi;j=1(1� �ij) � ln(pi) � ln(pj) �E ((ni � pi) � (nj � pj)) +E (h: o: t:) (9.47)= MXi=1 ln2(pi) � pi � (1� pi)N� MXi;j=1(1� �ij) � ln(pi) � ln(pj) � pi � pjN +E (h: o: t:) (9.48)= 1N MXi=1 ln2(pi) � pi� 1N MXi;j=1 ln(pi) � ln(pj) � pi � pj +E (h: o: t:) (9.49)



132= 1N MXi=1 pi � ln2(pi)� 1N  MXi=1 ln(pi) � pi!2 +E (h: o: t:) (9.50)= 1N  MXi=1 pi � ln2(pi)�H2!+ E (h: o: t:) : (9.51)Considering E (h: o: t:) reveals that all higher order terms only contribute 
uctuationsin the order of O �1=N2�.This is not at all trivial, which all readers might experience who derive an approximationfor the variance of the natural entropy estimates in the order of O �1=N2�. In that case, aTaylor expansion of H(~n) in the order of O �(~n� ~p)2� does not su�ce to collect all termscontributing to an 1=N2 approximation of �2(Ĥ).At this point, we renounce to display the second order approximation �2(Ĥ), but ratherrecommend the interested reader to study the wonderful review article by Harris [1975].Realizing that the square of the natural entropy estimator bias goes with (M � 1)24 �N2 +O �1=N3� and thus neglecting the term �E(Ĥ)�H�2 in our 1=N approximation of itsvariance leads to our �nal result:�2 �Ĥ� = 1N  MXi=1 pi � ln2(pi)�H2!+O� 1N2� : (9.52)At this point, we eventually understand why the 
uctuations of the observed entropiesare of negligible magnitude compared to the bias of the natural entropy estimator in ourintroductory example. If the probabilities pi approach an uniform distribution, the termMPi=1 pi � ln2(pi)�H2 vanishes.Finally, we will display this well known result in a new fashion, which might delight allreaders who can sometimes hear the harmonic cords of the great music that nature plays.Rewriting eq. (9.52) yields�2 �Ĥ� = 1N  MXi=1 pi � ln2(pi)�H2!+ O� 1N2� (9.53)= 1N � �E �ln2(pi)��E2 (ln(pi))�+ O� 1N2� ; (9.54)and hence, �2 �Ĥ� = 1N � �2 (ln(pi)) +O� 1N2� : (9.55)Theorem 9.1 The sample variance of the observed entropies is given by the populationvariance of the M numbers ln(pi) divided by the sample size N .



133Although this is a clear mathematical statement, we are far from intuitively under-standing the relation between the 
uctuations of the Shannon entropy estimates on theone hand and the variance of the logarithms of the theoretical probabilities on the otherhand.For equidistributed pi, we immediately realize�2 (ln(pi)) = �E �ln2(pi)�� E2 (ln(pi))� = 0; (9.56)which means that the sample variance of the Shannon entropy decays with 1=N2 in thiscase.



Chapter 10Statistical Properties of theNatural Estimator of the MutualInformationIn chapter 3, we introduced the mutual information as a correlation measure which pos-sesses the desirable property that it vanishes if, and only if, the considered random variablesare statistically independent.The estimation of this function from �nite samples will, however, again a�ect the precisedetermination of the hidden correlations. Hence, we are again confronted with the taskto derive some basic statistical properties of the mutual information estimator such as itsexpectation value and variance.In the following section we will show that the natural estimator of the mutual infor-mation is usually biased. However, unlike in the case of the natural entropy estimator,which always underestimates its theoretical Shannon entropy, the direction of the mutualinformation bias depends on the underlying probability distribution pij and the samplesize N .In section 10.2, we will derive a �rst order approximation of this bias and discuss �rstapplications of the corresponding correction formula. Finally, we will approximate thepopulation variance of the natural mutual information estimates in section 10.6.



13510.1 The Mutual Information Estimator is BiasedUnlike in section 9.1 where we could prove that the natural entropy estimator Ĥ alwaysunderestimates the theoretical Shannon entropy H , there is no such theorem for the mu-tual information. However, this does not imply that the natural estimator of the mutualinformation is unbiased. It rather means that the mutual information is overestimated byits natural estimator in some cases (i.e. for some probability distributions pij and somesample sizes N) and underestimated in others. The aim of this section is to develop anunderstanding of why there is no strict inequality about the direction of the bias (as in thecase of the natural entropy estimator) and to exemplify the two cases in which the naturalestimator typically overestimates and underestimates the mutual information.The reason why the natural entropy estimator always underestimates its theoreticalShannon entropy is the concavity of the entropy function H (~p) = �PMi=1 pi � ln (pi). Incontrast, the mutual informationI (p̂) = MXi;j=1 pij � ln pijpi � qj ! (10.1)is neither convex nor concave in its arguments pij . Here and in the following, p̂ denotes theM �M matrix containing the elements pij . Before we start to illustrate the local convexityand concavity of the mutual information I by two examples, let us see what we can learnfrom the relation I = HX +HY �H2 (10.2)about the convexity of I as a function of p̂.As we learned in section 9.1, the concavity of the Shannon entropy implies that theentropy of the arithmetic mean of two arbitrary probability vectors ~p1 and ~p2 is greaterthan the arithmetic mean of the corresponding Shannon entropies, i.e.H (�p) � H (~p1) +H (~p2)2 (10.3)where the arithmetic mean of the probability vectors ~p1 and ~p2 is denoted by�p � ~p1 + ~p22 : (10.4)Of course, the same statement holds for higher order entropies: let p̂1 and p̂2 be two ar-bitrary probability matrices withM rows andM columns, and let us denote the arithmetic



136mean of these probability matrices by �p � p̂1 + p̂22 : (10.5)Then the entropy of the average distribution, H (�p), is greater than the average over theentropies H (p̂1) and H (p̂2), i.e. H (�p) � H (p̂1) +H (p̂2)2 (10.6)for arbitrary p̂1 and p̂2.From eq. (10.4) we see that the mutual information of the average distribution, I (�p),is smaller than the average over the mutual information values I (p̂1) and I (p̂2), i.e.I (�p) � I (p̂1) + I (p̂2)2 (10.7)if the probability matrices p̂1 and ~p2 have the same marginal distributions.If, however, the marginal distributions of p̂1 and p̂2 are di�erent, then the marginalentropies HX and HY will increase by averaging, which diminishes (and possibly over-compensates) the increase of H2. As we will see in the following two examples, it dependson the underlying probability distributions p̂1 and p̂2 which of the two forces (HX + HYversus H2) wins over the other.Let us start with an example that illustrates the case in which we lose mutual in-formation in X about Y by averaging over two probability distributions. For the sake ofsimplicity, let X and Y be binary random variables, i.e., let p̂1 and p̂2 be two 2�2 matrices.Assume the matrices p̂1 and p̂2 be those for which the mutual information is exactly 1bit, i.e. p̂1 � 12 �  1 00 1 ! (10.8)and p̂2 � 12 �  0 11 0 ! : (10.9)In this case, the average distribution becomes�p � 12 � 12 �  1 00 1 !+ 12 �  0 11 0 !! = 14 �  1 11 1 ! : (10.10)The mutual information of this probability distribution is clearly zero, which we can intu-itively understand by the following information-theoretical considerations.



137Assume we have two binary sources and two perfect channels. The binary sources emitthe two input symbols x1 and x2 with the same probability p1 = p2 = 1=2. In channel1, the input symbol x1 is mapped to the output symbol y1, and the input symbol x2 ismapped to the output symbol y2. This yields the joint probability matrix p̂1. In channel2, x1 is mapped to y2, and x2 is mapped to y1, which yields the joint probability matrixp̂2. Since both channels are perfect, the mutual information between the input signal Xand the output signal Y is 1 bit in both cases.Now assume that we are to receive messages from both channels. If we can distinguishboth channels, i.e., if we know the channel through which the message was sent, then wecan uniquely reconstruct the input signal from the received signal. In this situation, themutual information per transmitted signal is exactly 1 bit, i.e.I (p̂1) + I (p̂2)2 = ln 2 = 1bit: (10.11)In a second experiment, we do not have knowledge about the channel through whichthe incoming message was sent. Somebody else is receiving the message from either of thetwo channels, and we are only told the received bit (y1 or y2), but we are not told thechannel from which the signal was received. In this situation, we do not have any clueabout the sent signal. If the received symbol is y1, the input signal was x1 with probability1=2 (transfer through channel 1) and x2 with probability 1=2 (transfer through channel2). If the received symbol is y2, the story is the same. In total, we do not obtain anyinformation about the sent symbol xi by obtaining yj . Hence, the mutual informationbetween X and Y is zero, i.e. I (�p1) = 0: (10.12)As we will see in later stages of this work, we usually lose mutual information byaveraging over probability matrices. This implies that we usually overestimate the mutualinformation from �nite samples. However, these statements are not strict, which we willillustrate by the following example.Let us now consider the matrices p̂1 �  1 00 0 ! (10.13)and p̂2 �  0 00 1 ! : (10.14)



138The mutual information between X and Y is exactly zero in both cases. However, byaveraging we obtain�p � 12 �   1 00 0 !+  0 00 1 !! = 12 �  1 00 1 ! ; (10.15)which yields a mutual information of 1 bit.We can again develop an intuitive understanding of this result by imagining two sendersof binary signals and two perfect channels. This time, sender 1 can only emit the inputsignal x1, while sender 2 can only emit the input signal x2. Both channels are perfect andmap x1 to y1 and x2 to y2. Each channel alone (coupled to its sender) cannot transmitany information. Therefore I (p̂1) + I (p̂2)2 = 0: (10.16)In contrast, the mutual information of the average probability distribution �p is greaterthan zero. Assume again that we (as the receiver) are not told the channel through whichthe message was sent. The possible output symbols are y1 and y2, both appearing withprobability q1 = q2 = 1=2. The input symbols are x1 and x2, and in our experiment theyare sent with equal probability p1 = p2 = 1=2.If we obtain y1, we know that this signal traveled through channel 1. Therefore weknow the input symbol must have been x1. If the output symbol is y2, we know the signaltraveled through channel 1. Then we know the input signal must have been x2. In bothcases we can uniquely reconstruct the input symbol; hence, the mutual information betweenX and Y is 1 bit, i.e. I (�p) = ln 2 = 1bit: (10.17)What we have illustrated so far is that the mutual information is neither convex norconcave. There are regions on the simplex of the joint probability distributions p̂ wherethe the mutual information I (p̂) is locally convex and there are other regions for which themutual information is locally concave. In the following we will study how this complicatedconvexity pattern in
uences the direction of the bias of the natural information estimator.The natural mutual information estimator is de�ned byÎ(p̂) � MXi;j=1 p̂ij � ln p̂ijp̂i � q̂j ! (10.18)where p̂ be the M �M matrix containing the elements p̂ij ,p̂ij = kijN (10.19)



139be the relative frequency to observe the symbol pair (xi; yj),p̂i = kiN = 1N MXj=1 kij = MXj=1 p̂ij (10.20)be the relative frequency to observe the symbol xi in the input sequence, andq̂j = ljN = 1N MXi=1 kij = MXi=1 p̂ij (10.21)be the relative frequency to observe the symbol yj in the output sequence.Now consider an ensemble of observers who estimate the mutual information from asample of size N . Let us in our �rst case assume the theoretical mutual information bezero, i.e., all joint probabilities pij factorize according to pij = pi � qj for all i; j = 1; 2; :::M .However, the estimated values of the mutual information are always greater than (or equalto) zero. Therefore, the mutual information of a Bernoulli-sequence is always overestimatedby its natural estimator.This theorem is easy to understand. Due to the �nite size N of the sample, mostrealizations mimic statistical dependences between the symbols xi and yj . Only thoserealization for which (by chance) the observed joint frequencies p̂ij factorize according top̂ij = p̂i � q̂j for all i; j = 1; 2; :::M yield a mutual information equal to zero, while all otherrealizations give a mutual information greater than zero. Therefore, the expected mutualinformation Iexp � E(Î) is always greater than zero for Bernoulli-sequences.In the case of weakly correlated sequences, this inequality remains the same. On av-erage, we systematically overestimate the mutual information in �nite sequences. Theintuitive reason for this behavior is that the contribution to the �nite size e�ect of thejoint entropy H2 still dominates over the contribution of the two marginal entropies HXand HY . However, let us in the following paragraphs analyze an extreme case in which thenatural mutual information estimates are always smaller than the true mutual informationvalue regardless of the sample size N .Assume the binary random process given by the joint probability matrixp̂ � 12 �  1 00 1 ! : (10.22)The theoretical mutual information in X about Y is 1 bit. Let us now study the ensemble ofpossible observations if we restrict the sample size to N = 1. The only two outcomes of thissampling experiment are: observing the pair (x1; y1) with probability 1=2 and: observing



140the pair (x2; y2) with probability 1=2. In case 1, the joint frequency matrix p̂1 estimatedfrom a sample of size N = 1 is p̂1 �  1 00 0 ! ; (10.23)while in case 2, the joint frequency matrix p̂2 isp̂2 �  0 00 1 ! : (10.24)In both cases the estimated mutual information is zero. Therefore, the expected mutualinformation Iexp is equal to zero. This result can be generalized to an alphabet of size Mand to arbitrary joint-probability distributions p̂: the expected mutual information drawnfrom a sample of size N = 1 is zero.Unfortunately, this result is only of pathological interest. Let us therefore study thechange of the expected mutual information with increasing sample size N . In our extremeexample, where the theoretical mutual information assumes its maximum of 1 bit, theexpected mutual information (i.e. the average over the observed mutual information values)is monotonically increasing with N and asymptotically approaching the theoretical mutualinformation from below.In all other cases (in which the theoretical mutual information does not assume itsmaximum), we will observe an interesting crossover e�ect. For small sample sizes N , thenatural estimator underestimates the mutual information, while for large sample sizes, itoverestimates the theoretical mutual information value. This crossover point lies at largeN when the theoretical mutual information I is large and at small N when I is small. Sincestatistical dependences between nucleotides in DNA sequences or between amino acids inprotein sequences are usually weak, we systematically overestimate the mutual informationof most DNA and protein sequences, even if they are as short as, say, 50 nucleotides oramino acids.In the next section, we will turn to the magnitude of this systematic error and try toapproximate the bias of the mutual information estimator.10.2 The Mutual Information BiasIn this section, we will derive a �rst order approximation of the expected mutual informa-tion, i.e., we will approximate the expectation value of the mutual information observed ina sample of size N .



141Since I(p̂) = �H2(p̂) +Hx(~p) +Hy(~q) (10.25)as shown in chapter 3, we obtainÎ(x̂) = �Ĥ2(x̂) + Ĥx(~x) + Ĥy(~y) (10.26)with I being the mutual information, H2 being the 2-gram Shannon entropy, Hx being the1-symbol Shannon entropy of the transmitter, Hy being the 1-symbol Shannon entropy ofthe receiver, Î , Ĥ2, Ĥx, Ĥy being their natural estimators based on a sample of size N ,p̂ being the joint probability matrix, ~p and ~q being its corresponding marginal probabilityvectors, and x̂, ~x, and ~y being their corresponding relative frequencies.Note that we are dealing with two sequences here, between which we want to estimatethe mutual information as a measure of how closely these two sequences are correlated.Therefore, we distinguish between the two marginal distributions ~p and ~q as well as between~x and ~y. In chapter 11, where we introduce correlation functions, we will specify all of ourresults for the case of dealing with correlations between di�erent sites within one sequence,i.e., for analyzing autocorrelations.Exploiting eq. (10.26) and our results from chapter 9, we obtainE �Î(x̂)� = �E �Ĥ2(x̂)�+E �Ĥx(~x)�+E �Ĥy(~y)� (10.27)= �H2(p̂) + M2 � 12 �N +O �1=N2�+ Hx(~p)� M � 12 �N +O �1=N2�+ Hy(~q)� M � 12 �N +O �1=N2� ; (10.28)and hence, E �Î(x̂)� = I(p̂) + (M � 1)22 �N +O �1=N2� : (10.29)In the following section, we want to analyze the 
uctuations of the observed mutualinformation values around their expectation value E �Î(x̂)�.10.3 The Mutual Information Variance - Part IIn this section, we will deliver a �rst order approximation of the mean quadratic deviationof the observed mutual information values Î(x̂) from their expectation value.



142According to eq. (10.26) and denoting the covariance between two random variables aand b by C(a; b), we obtain�2 �Î(x̂)� = �2 �Ĥ2(x̂)�+ �2 �Ĥx(x̂)�+ �2 �Ĥy(x̂)�� 2 �C(Ĥ2; Ĥx)� 2 � C(Ĥ2; Ĥy) + 2 �C(Ĥx; Ĥy) (10.30)for the mean sample variance of the mutual information between two sequences.Naively assuming Ĥ2, Ĥx, and Ĥy be mutually independent yields�2 �Î(x̂)� = �2 �Ĥ2(x̂)�+ �2 �Ĥx(x̂)�+ �2 �Ĥy(x̂)� (10.31)= 1N �0@ MXi;j=1 pij � ln2(pij)�H22(p̂)1A+O �1=N2�+ 1N � MXi=1 pi � ln2(pi)�H2x(~p)!+ O �1=N2�+ 1N �0@ MXj=1 qj � ln2(qj)�H2y (~q)1A+O �1=N2� ; (10.32)which, however, is much larger than the mutual information 
uctuations we really observe,e.g., in all three �gures displayed in chapter 13.Remember that we understood in section 9.3 why the 
uctuations of the observedShannon entropies were about twenty times smaller than naively expected. Now we areconfronted with the strange phenomenon that the real mutual information 
uctuations areagain smaller than the already tiny 
uctuations of Ĥ2(x̂).The arising question is whether the three occurring Shannon entropies are indeed mu-tually uncorrelated, i.e., whether the assumption all three covariances vanish is reasonableor not.In the following two sections, we will calculate C(Ĥ2; Ĥx), C(Ĥ2; Ĥy), as well asC(Ĥx; Ĥy) and show� that Ĥ2 and Ĥx as well as Ĥ2 and Ĥy are highly correlated,which �nally leads to the e�ect� that the variance of the mutual information estimates almost vanishes.



14310.4 Correlations between the 2-gram Shannon entropy Ĥ2and its marginal 1-symbol Shannon entropy Ĥ1Let us start in this section with deriving a �rst order approximation of the covarianceC(H2; Hx) between the 2-gram Shannon entropy H2 and the 1-symbol Shannon entropyHx. C(Ĥ2; Ĥx) = E �Ĥ2 � Ĥx��E(Ĥ2) �E(Ĥx) =E �(Ĥ2 �H2) � (Ĥx �Hx)��E(Ĥ2 �H2) �E(Ĥx �Hx) (10.33)Since the second termE(Ĥ2 �H2) �E(Ĥx �Hx) = (M2 � 1) � (M � 1)4 �N2 + O �1=N3� (10.34)is negligible in the order of 1=N , we concentrate on the �rst term and obtain:C(Ĥ2; Ĥx) / E0@ MXi;j=1 ln(pij) � (xij � pij) � MXk=1 ln(pk) � (xk � pk)1A (10.35)= MXi;j;k;l=1 ln(pij) � ln(pk) �E ((xij � pij) � (xkl � pkl)) (10.36)= MXi;j=1 ln(pij) � ln(pi) � pij � (1� pij)N� MXi;j;k;l=1(1� �ik) � (1� �jl) � ln(pij) � ln(pk) � pij � pklN (10.37)= 1N MXi;j=1 ln(pij) � ln(pi) � pij� 1N MXi;j;k;l=1 ln(pij) � ln(pk) � pij � pkl (10.38)= 1N MXi;j=1 pij � ln(pij) � ln(pi)� 1NH2 �Hx (10.39)= 1N �C (ln(p̂) � ln(~p)) (10.40)in surprising analogy to eq. (9.55), which relates the variance of the natural Shannonentropy estimates to the logarithmic variance of their underlying probabilities.



144Analogously, we obtainC(Ĥ2; Ĥy) = 1N � C (ln(p̂) � ln(~q)) +O �1=N2� : (10.41)In other words, the covariance between the observed 2-gram Shannon entropy and oneof its marginal 1-symbol Shannon entropy observed from the same sample of size N is, ina �rst order approximation, equal to the covariance between the logarithms of the jointprobabilities pij and the logarithms of their marginal symbol probabilities pi divided byN . Let us eventually derive an approximation for the correlation coe�cient r between Ĥ1and Ĥ2, which is de�ned as the normalized covariance:r(Ĥ1; Ĥ2) � C(Ĥ1; Ĥ2)q�2(Ĥ1) � �2(Ĥ2) (10.42)/ C(ln(~p; p̂))p�2(ln(~p)) � �2(ln(p̂)) (10.43)= r(ln(~p); ln(p̂)) (10.44)This is a really noticeable result, since the right hand side of this equality does notdepend on the sample size N . It states that the correlation coe�cient between the naturalestimates of the statistics H1 and H2 is independent of the number of sample points andgiven by the correlation coe�cient between the logarithm of the joint probabilities pij andthe logarithm of their marginal symbol probabilities pi.Although this is a clear mathematical result, we are again very far from intuitively un-derstanding the relation between the sample correlator on the one side and the populationcorrelator on the other side of the equality.10.5 Correlations between the two marginal 1-symbol Shan-non entropy estimates Ĥx and ĤyIn this section, we will derive a �rst order approximation for the covariance C(Ĥx; Ĥy)between the Shannon entropy estimates Ĥx and Ĥy .Since we again realize that the leading term of the bias is proportional to 1=N for bothestimators, Ĥx and Ĥy , we obtain:C(Ĥx; Ĥy) = E �(Ĥx �Hx) � (Ĥy �Hy)�



145� E(Ĥx �Hx) �E(Ĥy �Hy) (10.45)/ E0@ MXi=1 ln(pi) � (xi � pi) � MXj=1 ln(qj) � (xj � qj)1A (10.46)= MXi;j=1 ln(pi) � ln(qj) �E ((xi � pi) � (xj � qj)) (10.47)by neglecting all O(1=N2) terms.If we assume the two considered sequences be independent, we end up withC(Ĥx; Ĥy) = 0 +O �1=N2� (10.48)as expected.If we, however, consider the opposite limiting case, namely the two sequences be iden-tical, which occurs if we are interested in autocorrelations, then we obtain:C(Ĥx; Ĥy) = q�2(Ĥx) � �2(Ĥy) + O �1=N2� : (10.49)In the remainder of this section, we will derive a �rst order approximation for the generalcase where we analyze autocorrelations in a sequence of length N 0. Let the correlationlength in which we are interested be k. Then, our sample size reduces to N = N 0�k, sincewe do not want to introduce arti�cial correlations by applying cyclic boundary conditions.Hence, we count the �rst and the last k symbols in our given sequence once and theremaining N 0 � 2 � k symbols in the middle of the sequence twice, since we count N 0 � kpairs of symbols in total.How this partially overlapping counting a�ects the expectation value of correlationfunctions is presented in chapter 11.Here, we exploit the �ndingE ((xi � pi) � (yi � pi)) = N 0 � 2 � k(N 0 � k)2 � pi � (1� pi) (10.50)for all i = 1; 2; :::;M andE ((xi � pi) � (yj � pj)) = �N 0 � 2 � k(N 0 � k)2 � pi � pj (10.51)for all i; j = 1; 2; :::;M with i 6= j to obtainC(Ĥx; Ĥy) = N 0 � 2 � k(N 0 � k)2 MXi=1 ln2(pi) � pi � (1� pi) (10.52)



146� N 0 � 2 � k(N 0 � k)2 MXi;j=1(1� �ij) � ln(pi) � ln(pj) � pi � pj (10.53)= N 0 � 2 � k(N 0 � k)2 MXi=1 ln2(pi) � pi (10.54)� N 0 � 2 � k(N 0 � k)2 MXi;j=1 ln(pi) � ln(pi) � pi � pj (10.55)= N 0 � 2 � k(N 0 � k)2 �  MXi=1 pi � ln2(pi)�H21! (10.56)and thus C(Ĥx; Ĥy) = N 0 � 2 � k(N 0 � k)2 � �2 (ln(~p)) +O �1=N2� : (10.57)This result perfectly produces both of our limiting cases, namelyC(Ĥx; Ĥy) = �2 (ln(~p)) +O �1=N2� (10.58)for k=N 0 ! 0 and C(Ĥx; Ĥy) = 0 +O �1=N2� (10.59)for k � N 0=2.10.6 The Mutual Information Variance - Part IIIn section 10.4, we have seen that the observed 2-gram Shannon entropies are highlycorrelated with the corresponding 1-symbol Shannon entropy observations. This is thereason why the 
uctuations of the observed mutual information are by far smaller thannaively expected.In this section, we will �nish the derivation of the mutual information variance observedfrom a sample of size N , i.e., from a sequence of N units where the units might, for example,be amino acids in proteins or dicodons in the case of DNA sequences.According to eq. (10.30) and exploiting our results from sections 10.3, 10.4, and 10.5,we obtain: �2 �Î(x̂)�= �2 �Ĥ2(x̂)�+ �2 �Ĥx(x̂)�+ �2 �Ĥy(x̂)�� 2 � C(Ĥ2; Ĥx)� 2 �C(Ĥ2; Ĥy) + 2 � C(Ĥx; Ĥy) (10.60)



147/ 1N � �2 (ln(p̂)) + 1N � �2 (ln(~p)) + 1N � �2 (ln(~q)) (10.61)� 2N � C (ln(p̂); ln(~p))� 2N �C (ln(p̂); ln(~q)) + 2N �C (ln(~p); ln(~q)) (10.62)= 1N � �2 (ln(p̂)� ln(~p)� ln(~q)) (10.63)and thus �2 �Î(x̂)� = 1N � �2�ln� p̂~p � ~q��+O �1=N2� (10.64)for our limiting case k << N .10.7 Summary of Chapters 9 and 10Chapters 9 and 10 were entirely devoted to presenting approximations of statistical andsystematic errors that uncircumventably occur by estimating entropies or the mutual in-formation function from �nite samples.In both sections, we payed much e�ort to outline the conceptional techniques by whichwe analyzed these errors, since these concepts are, in principle, applicable to approximatestatistical and systematic errors of any measure of interest.The purpose of this summary is now to display the main results, in particular thosethat we found new, on two pages.Let ~p = (p1; p2; :::; pMX) and ~q = (q1; q2; :::; qMY ) be two probability vectors and P̂ theMX �MY matrix containing the elements Pij where i = 1; 2; :::MX and j = 1; 2; :::MY .Then the negative average logarithms of the probabilities pi, qj , and Pij are de�ned asthe Shannon entropies HX , HY , and H2, respectively.HX = �E (ln (~p)) (10.65)HY = �E (ln (~q)) (10.66)H2 = �E �ln �P̂�� (10.67)The natural estimators, ĤX , ĤY , and Ĥ2, of these Shannon entropies are de�ned asthe entropy function applied to the maximum likelihood estimators p̂i, q̂j , and P̂ij of thecorresponding probabilities pi, qj , and Pij .ĤX = �E (ln (p̂i)) (10.68)



148ĤY = �E (ln (q̂j)) (10.69)Ĥ2 = �E �ln �P̂ij�� (10.70)The biases, �ĤX , �ĤY , and �Ĥ2, of these entropy estimators are given by�ĤX = �MX � 12 �N (10.71)�ĤY = �MY � 12 �N (10.72)�Ĥ2 = �MX �MY � 12 �N (10.73)by neglecting O(1=N2) terms if N denotes the sample size.In the following, we will present all results in this �rst order approximation and thusdrop mentioning the higher order terms O(1=N2).The variances, �2 �ĤX�, �2 �ĤY �, and �2 �Ĥ2�, of the corresponding natural entropyestimators are given by the variances of the logarithms of the corresponding probabilities1divided by N . �2 �ĤX� = 1N � �2 (ln (~p)) (10.74)�2 �ĤY � = 1N � �2 (ln (~q)) (10.75)�2 �Ĥ2� = 1N � �2 �ln �P̂�� (10.76)Please note that the left hand side of the above equalities are functions of the sam-ple, whereas the variances of the logarithms of the probabilities on the right hand sideare functions of the population parameters pi, qj , or Pij , respectively, and thus samplingindependent.The only dependence of the right hand sides on the sample is introduced by the factor1=N , i.e., by dividing by the sample size.The covariances C �ĤX ; ĤY �, C �ĤX ; Ĥ2�, and C �ĤY ; Ĥ2� between the three entropyestimates ĤX , ĤY , and Ĥ2 are given by the covariances between the logarithms of the1The variance of the entropy estimates is really proportional to the variance of the logarithms of thecorresponding probabilities and not to the variance of the logarithms of the probability estimates. Theinteresting story about these equalities is that they relate the variance of estimates with the variance ofpopulation parameters.



149corresponding probabilities2 divided by N .C �ĤX ; ĤY � = 1N � C (ln (~p) ; ln (~q)) (10.77)C �ĤX ; Ĥ2� = 1N � C �ln (~p) ; ln �P̂�� (10.78)C �ĤY ; Ĥ2� = 1N � C �ln (~q) ; ln �P̂�� (10.79)The corresponding correlation coe�cients r �ĤX ; ĤY �, r �ĤX ; Ĥ2�, and r �ĤY ; Ĥ2�between the three entropy estimates ĤX , ĤY , and Ĥ2, which all are functions of the givensample, do not depend on the sample size N and are given by the correlation coe�cientsbetween the logarithms of the corresponding probabilities in a �rst order approximation.r �ĤX ; ĤY � = r (ln (~p) ; ln (~q)) (10.80)r �ĤX ; Ĥ2� = r �ln (~p) ; ln �P̂�� (10.81)r �ĤY ; Ĥ2� = r �ln (~q) ; ln �P̂�� (10.82)The mutual information I between two random variables X and Y is de�ned as theexpectation value of the numbers ln Pijpi � qj! ; (10.83)where we copy all denotations from above, i.e.,I = E  ln Pijpi � qj!! : (10.84)The natural estimator Î of the mutual information is de�ned as the mutual informa-tion function calculated from the maximum likelihood estimators p̂i, q̂j , and P̂ij of thecorresponding probabilities pi, qj , and Pij .Î = E  ln P̂ijp̂i � q̂j!! (10.85)The bias �Î of this estimator is given by�Î = (MX � 1) � (MY � 1)2 �N : (10.86)2Please note that we could again relate the covariance of estimates to the covariance of population pa-rameters, i.e., the covariances on the right hand side of the displayed equalities do not mean the covariancesof the logarithmic probability estimates.



150Please note the missing minus sign, i.e., we systematically overestimate the mutualinformation whereas we systematically underestimate all Shannon entropies.The variance of the mutual information estimates as a function of the given sample,i.e., the variance of the numbers E �ln� P̂ijp̂i�q̂j��, is equal to the variance of the numbersln � Pijpi�qj �, the expectation value of which is de�ned as the mutual information, divided bythe sample size N . �2 �Î� = 1N � �2 ln Pijpi � qj!! (10.87)Please remember at this point the valuable property that the right hand side of thisequality vanishes for random numbers X and Y that are statistically independent, whichimplies the disappearance of all mutual information 
uctuations in the order of 1=N .



Chapter 11Statistical Properties of NaturalEstimators of CorrelationFunctionsPower spectra, random walk studies, or the direct calculation of autocorrelation functionsmake up most of the tools commonly used to detect long-range correlations in time se-ries, natural texts, pieces of music, econometric data, or DNA sequences. However, sincethe power spectrum is de�ned as the Fourier transform of the corresponding correlationfunction and the growth of random walk 
uctuations corresponds to an integrated autocor-relation function [Stanley 1994], we will concentrate on statistical properties of correlationfunction estimators from �nite samples in this chapter.In analogy to our previous chapters 9 and 10, we will analyze the bias of the naturalcovariance estimator Ĉij(k) and the variance of its estimates.The covariance C(x; y) between two numerical random variables x and y is de�ned byC(x; y) � MXi;j=1xi � yj � P (xi; yj)� MXi=1 xi � p(xi) � MXj=1 yj � q(yj) (11.1)= E(x � y)� E(x) �E(y) = E ((x� E(x)) � (y � E(y))) ; (11.2)if the state space is discrete and M -dimensional for both variables x and y.Since we are interested in measuring correlations between symbols within one sequence,we will specify this de�nition in the following and introduce the dependence of the covari-ance on the integer number k denoting the correlation length.



152Let ai be the real numbers we assigned to the symbols Ai where i = 1; 2; :::;M andM be the alphabet size, e.g., M = 20 in amino acid sequences or M = 46 = 4096 if weconsider dicodons in DNA or RNA sequences.By formally identifying the position n in our sequence with the time t in a time seriesa(t), we can easily introduce the correlation functionC~a(k) � E(a(n) � a(n+ k))� E(a(n)) �E(a(n+ k)) (11.3)where the average is taken over all positions n, and k is the size of the gap between thetwo multiplied numbers.The subscript ~a is to remember that we originally want to analyze correlations withina symbolic sequence and just chose the projection vector ~a = (a1; a2; :::; aM) to assignnumbers to symbols in order to de�ne a correlation function.The deeper sense is that correlation functions are not invariant under coordinate trans-forms, i.e., if we change the assignment of numbers to symbols, we may (and in generaldo) obtain a di�erent correlation function.Before we are ready to rewrite eq. (11.3), we have to introduce the probabilities pito �nd the symbol Ai at any position in our given sequence as well as the probabilitiesPij(k) to �nd the symbol pair (Ai; Aj) in a distance k. Note that Pij(k = 1) re
ects theprobability to �nd the two adjacent symbols Ai and Aj at any position in our consideredsequence.If we now replace the sum over the entire sequence by the sum over all possible combi-nations of two symbols multiplied by their corresponding probabilities to occur, we obtain:C~a(k) = ~a � D̂(k) � ~aT (11.4)by de�ning D̂(k) as the M �M matrix containing the elementsDij(k) � Pij(k)� pi � pj : (11.5)The elements Dij(k) are often referred to as correlation functions between the symbolsAi and Aj , but in order not to mismatch Cij(k) and C~a(k), we denote the Cij(k) correlationfunctions by Dij(k) and call the matrix D̂(k) dependence matrix.Since all correlation functions C~a(k) are bilinear forms of the dependence matrix, wecan easily derive all statistical properties of the C~a(k) estimator, if we know the statisticalbehavior of the Dij(k) estimator.



153Let us thus de�ne the natural estimator D̂ij(k) of the matrix element Dij(k) byD̂ij(k) = P̂ij(k)� p̂i � p̂j (11.6)where P̂ij(k), p̂i, and p̂j are the maximum likelihood estimators the probabilities Pij(k),pi, and pj , respectively.Please note that we introduce some �nite size e�ects by identifying the estimates p̂iand p̂j : since we always deal with �nite sequences, the possible di�erence between thefrequency composition of the �rst and the last k symbols is not negligible.Hence, we prefer to distinguish between the probability pi to observe the symbol Ai`on the left hand side' and the probability qj to observe the symbol Aj `on the right handside' although we know pi = qj in all stationary sequences.We will see that this distinction is essential for understanding that the bias of thenatural D̂ij(k) estimator does not only depend on the sample size N , but also on thecorrelation distance k.In the following section, we will derive an exact analytic expression for the expectationvalue of the D̂ij(k) estimates and show that autocorrelations are always underestimatedwhereas crosscorrelations are always overestimated.Section 11.2 is then devoted to deriving a �rst order approximation of the D̂ij(k)variance.11.1 The Correlation Function BiasIn this section, we will derive an exact analytic expression for the expectation value ofthe natural correlation function estimates D̂ij(k) and show that the corresponding naturalestimators are always biased for k < N 0=2 where N 0 denotes the sequence length.Let Pij(k), pi, and qj be the probabilities de�ned in the previous section. Then theexpectation value | strictly speaking, the expectation function | of the natural correlationfunction estimates is given byE �D̂ij(k)� = E �P̂ij(k)��E (p̂i � q̂j) : (11.7)If we denote the number of symbol pairs we are counting byN = N 0 � k (11.8)



154for k < N , we obtain E �P̂ij(k)� = Pij(k) (11.9)and E (p̂i � q̂i)� pi � qi = N � 2 � k(N � k)2 � pi � (1� qi) (11.10)for all i = 1; 2; :::;M as well asE (p̂i � q̂j)� pi � qj = �N � 2 � k(N � k)2 � pi � qj (11.11)for all i; j = 1; 2; :::;M and i 6= j.Let us start the proof with denoting the absolute frequency by which we �nd the symbolpair (Ai; Aj) in our sequence of length N 0 by Nij(k). Then the absolute frequency N li ofobserving the symbol Ai on the left hand side is given byN li = MXj=1Nij(k) (11.12)and the frequency of the symbol Aj that we �nd on the right hand side isN rj = MXi=1Nij(k) (11.13)Since we count N 0 � 2 � k symbols twice, N li and N rj are not independent. It is exactlythis dependence that introduces the bias of the correlation function.To get a handle of this bias, let us decompose the frequencies N li and N rj into thefrequencies N0i and N0j of the symbols that we have counted twice and the frequenciesN l�0i and N r�0j corresponding to the �rst and last k symbols in our sequence.The following sketch might illustrate these de�nitions.ACCT| {z }N l�0: GTATACGGGTTATCCATACTGGT| {z }N0: CTGG| {z }Nr�0: (11.14)The length of this given DNA sequence is N 0 = 30 bp. Let us assume we are interestedin the correlation function between the nucleotides A and G and want to estimate its valuefor k = 4. Then, N = N 0 � k = 26, i.e., we have to count 26 symbol pairs, and therefore,we will count N 0 � 2 � k = 22 symbols twice.Hence, N l�0A = 1, N0A = 5, N0G = 6, and N r�0G = 2 in our example.



155Now we see:E �N li �N rj � = E �(N l�0i +N0i ) � (N r�0j +N0j )� (11.15)= E �N l�0i �N r�0j �+ E �N l�0i �N0j �+ E �N0i �N r�0j �+E �N0i �N0j � (11.16)= k2 � pi � qj + k � (N 0 � 2 � k) � pi � qj+ (N 0 � 2 � k) � k � pi � qj + (N 0 � 2 � k)2 � pi � qj+ (N 0 � 2 � k) �Qij (11.17)with Qij = �pi � qj (11.18)for all i; j = 1; 2; :::;M with i 6= j andQii = pi � (1� qi) (11.19)for all i = 1; 2; :::;M , which proves eqs. (11.10) and (11.11).Hence, we can state that the natural correlation function estimator is biased for allPij(k) where its bias is given byE �D̂ii(k)��Dii(k) = �N 0 � 2 � k(N 0 � k)2 � pi � (1� qi) (11.20)for all i = 1; 2; :::;M andE �D̂ij(k)��Dij(k) = N 0 � 2 � k(N 0 � k)2 � pi � qj (11.21)for all i; j = 1; 2; :::;M with i 6= j.In other words, all diagonal terms of any given auto-covariance matrix are systemati-cally underestimated whereas all non-diagonal terms are systematically overestimated.11.2 The Variance of the Natural Correlation Function Es-timatesIn this section, we will derive a �rst order approximation for the variance of the correlationfunctions Dij(k). We will learn that, in contrast to the mutual information variance, these
uctuations do not vanish as the Pij approach pi � qj . This qualitative di�erence will give



156rise to some important conclusions about the preferable measure of statistical dependenceswhen DNA sequences (which are known to exhibit only weak 2-point-correlations) are tobe analyzed.In the following, we will restrict ourselves to the limiting case k << N 0 and drop the kdependence for the sake of simplicity.Let us now start deriving the sample variance of the natural correlation function esti-mates by de�ning �Pij � P̂ij � Pij (11.22)�pi � p̂i � pi (11.23)�qj � q̂j � qj (11.24)for all i; j = 1; 2; :::;M , which denote the deviations between the relative frequencies ob-served in a sample of size N and their corresponding probabilities.The squared correlation estimate 
uctuations can be rewritten as�2 �D̂ij� = E �D̂ij �Dij�2 �E2 �D̂ij �Dij� (11.25)= E �P̂ij � Pij � (p̂i � q̂j � pi � qj)�2 + O �1=N2� ; (11.26)since the squared bias E2 �D̂ij �Dij� / 1N2 �Q2ij (11.27)is zero in the order of 1=N .This yields�2 �D̂ij� / E (�Pij � pi ��qj � qj ��pi ��pi ��qj)2/ E ��2Pij � 2 � pi ��Pij ��qj � 2 � qj ��Pij ��pi�+ E �p2i ��2qj + 2 � pi � qj ��pi ��qj + q2j ��2pi� ; (11.28)where the symbol / means that we neglect all terms in the order of 1=N2.From appendix I and by some simple arithmetics we obtain:E ��2Pij� = 1N � Pij � (1� Pij) (11.29)E ��2pi� = 1N � pi � (1� pi) (11.30)



157E ��2qj� = 1N � qj � (1� qj) (11.31)E (�Pij ��pi) = Xk 6=jE (�Pij ��Pik) +E (�Pij ��Pij)= Xk 6=i� 1N � Pij � Pik + 1N � Pij � (1� Pij)= 1N � Pij � (1� pi) (11.32)E (�Pij ��qj) = 1N � Pij � (1� qj) (11.33)E (�pi ��qj) = Xk 6=jE (�Pik ��qj) + E (�Pij ��qj)= Xk 6=jXl E (�Pik ��Plj) + E (�Pij ��qj)= Xk 6=jXl � 1N � Pik � Plj + 1N � Pij � (1� qj)= Xk 6=j� 1N � Pik � qj + 1N � Pij � (1� qj)= 1N � (Pij � pi � qj) = 1N �Dij (11.34)We derived eq. (11.33) in complete analogy to eq. (11.32), and we used eq. (11.33) to deriveeq. (11.34). Note that eq. (11.33) is similar to the equations we obtained for the varianceof the entropy and mutual information estimates in chapters 9 and 10: the covariancebetween the estimates of the probabilities pi and qj is equal to the covariance between thesymbols Ai and Aj divided by the sample size N . This implies that the covariance betweenthe estimates of the probabilities pi and qj vanishes in the order of 1=N if the symbols Aiand Aj are un-correlated, i.e., if Dij = 0 for all i; j = 1; 2; :::M .By summing up all terms in eq. (11.28) we obtain�2 �D̂ij� / 1N � (Pij � (1� Pij)� 2 � Pij � pi � (1� qj)� 2 � Pij � qj � (1� pi)+ p2i � qj � (1� qj) + q2j � pi � (1� pi) + 2 � pi � qj � (Dij)): (11.35)By eliminating Pij in favor of Dij and after some algebra we can express this result forthe variance of the correlation function estimates as follows:�2 �D̂ij� / 1N �Dij � ((1� 2 � pi) � (1� 2 � qj)�Dij)+ 1N � pi � qj � (1� pi) � (1� qj) (11.36)



158for all i; j = 1; 2; :::;M .For Bernoulli sequences, i.e. sequences for which Dij = 0 for all i; j = 1; 2; :::;M , thisresult simpli�es to�2 �D̂ij� = 1N � pi � qj � (1� pi) � (1� qj) + O �1=N2� (11.37)for all i; j = 1; 2; :::;M .In contrast to the 
uctuations of the mutual information function, which vanish in theorder of 1=N if the corresponding random variables approach statistical independence, the
uctuations of the correlation functions remain in the order of 1=pN even in the case ofstatistical independence.11.3 SummaryIn this chapter we investigated statistical properties, speci�cally the bias and the variance,of the natural estimator of correlation functions. We derived an exact analytic expressionof the correlation bias, and thus we could show that correlation functions are always biasedfor k < N=2. We derived a �rst-order approximation of the correlation variance, whichwill turn out to be of practical importance in later chapters, in which we will estimatecorrelation functions from experimental data sets, such as DNA and amino acid sequences.



Chapter 12Statistical Properties of NaturalEstimators of GeneralizedEntropies12.1 The Generalized Entropy BiasThis chapter is devoted to asymptotic length corrections of the entropy bias of cHq and fKq.As shown by numerical simulations in sections 4 and 5, though the variance is signi�cantlysmall both Bayes estimators produce biased entropy estimates. It is a general feature thatmany estimators, in particular those minimizing the variance, share this property of beingbiased. Consequently, the systematic deviation of the expectation value of the estimatedentropies from the true entropy value, namely the bias, has to be calculated and taken intoaccount in order to correct the bias of the observed estimates. Explicitly,�cHq = EcHq( ~N)�Hq (~p) = 1ln 2 11� q  MXi=1�cpqi! (12.1)de�nes the bias of the estimator cHq. Here by E we denote the expectation value with re-spect to the multinomial distribution: E(�) = P(N1;:::;NM )P ( ~N j~p)(�)�(PMi=1Ni�N). Clearly,an unbiased statistic satis�es �(�) = 0.The problem encountered in deriving the bias of entropy estimators is that it is dif-�cult to obtain a closed form expression. However, in this case one may still obtain anapproximation to the exact bias, for example, by expanding a power-series around the true159



160values of cpqi and applying E to each individual term within this series. The underlyingidea exploits the fact that any probability distribution can, in principle, be extensivelydescribed by all of its moments. For the Bayes estimators derived in this work, this appliesto q = n; n > 1. Expanding the exact entropy bias as a series in terms of (1=N)d withd = 1; 2; : : :, we arrive at a d = 1 approximation by Taylor-expanding the entropies inpowers of (fi � pi)m, m 2 N , and truncating this series after the quadratic term.As principles of this technique have been discussed in detail, e.g. in [Harris 1975,Holste 1997], we will not elaborate on this in further detail here, but only present the �nalresults of the O(1=N) approximation of the entropy bias for the case q = 2. Since�cpqi jq=2 = h2 (2Npi + 1)� (2N +M)Mp2i i. (N +M)2 (12.2)we obtain the entropy bias of the order-2 Tsallis entropy as�cH2 = � 1ln 2 (2N +M) (2�MZ2)(N +M)2 (12.3)(note: the approximation is exact for the case q = 2). In order to obtain order-2 Tsallisentropy estimates that are unbiased in O(1=N), we de�ne the estimatorcH2(d=1) = cH2 + 1ln 2 (2N +M)(2�McZ2)(N +M)2 : (12.4)For the Bayes estimator of the R�enyi entropy it is more di�cult to calculate the entropybias. Given equidistributed states, we �nd that E log(�) � log E(�) holds, and thus we canget an approximation to the bias of fK2, which reads as:�fK2 = � log2 "N2 + 2 (2N +M) /Z2(N +M)2 # + O� 1N2� : (12.5)And hence, in analogy to equation (12.4), we obtain R�enyi entropy estimates cK2(1) thatare unbiased in O(1=N). For non-Bernoullian distributions 
uctuations increase, whichrender the above approximation to be, in general, no longer reliable. In this case, unbiasedestimates of K2 (in the order of O(1=N)) may be obtained by a transformation of theunbiased Tsallis entropy cH2(1).According to the correction terms, c.f. expressions (12.3) and (12.5), the systematicerror depends on the individual probability components pi as well as the cardinality ofthe alphabet M . Since the simulation performed in this investigation are not aimed ata detailed analysis of �nite-size e�ects but rather a study of the variances of the Bayes



161entropy estimator versus the frequency-count estimator, we insert the theoretical values ofpi in the above correction terms, i.e., we set p̂i = pi. In any attempt to estimate thesequantities from a sample of data points, it is crucial to the entropy bias by which methodwe estimate the unknown variables pi (see, e.g., [Schmitt et al. 1993]). A study of thequanti�cation of the order-q entropy bias, using asymptotic length corrections, deservesfurther investigations and will be undertaken in forthcoming work.



Part D



Chapter 13Long-Range Correlations in DNASequences and the Pseudo-ExonModelIn this chapter we study the mutual information function introduced in chapter 3 as well ascorrelation functions to DNA sequences. We �nd long-range period-3 oscillations of boththe mutual information function and several autocorrelation functions in genomic DNA ofyeast. We hypothesize that these triplet periodicities are caused by the nonuniformity ofthe codon frequency distribution in coding DNA, and we test this hypothesis by a simplestochastic model, which we term pseudo-exon model. The pseudo-exon model concatenatescodons that are drawn statistically independently from a given (nonuniform) probabilitydistribution. We show that this simple model is su�cient to reproduce (even quantitatively)the period-3 oscillations observed in the mutual information function and autocorrelationfunctions of genomic DNA from yeast.13.1 IntroductionAs pointed out in chapter 4, six autocorrelation functions and three crosscorrelation func-tions are required to detect all statistical dependences in quaternary sequences. Weemphasize that the mutual information function may serve as a natural and conve-nient alternative or supplement to correlation functions [Ebeling et al. 1987, Herzel 1988,Herzel et al. 1994a, Herzel et al. 1995]. With the aid of mutual information, a pronounced



164period three has been found at distances of more than 1000 base pairs in [Herzel et al. 1995].Traditionally, long-range correlations are quanti�ed by a power-law decay of the auto-correlation functions C(k) / k�
 ; (13.1)the intimately related 1=f -spectra, or by anomalous di�usion. (These tools are reviewedin [Stanley et al. 1994].) For DNA sequences, long-range correlations are relatively weak[Herzel et al. 1994a], and therefore, we expand the mutual information in terms of ourDij(k) that measure the deviations from statistical independence:pij(k) = pi � pj +Dij(k): (13.2)With the normalization (7), we obtain from a Taylor expansionI(k) = 12 � ln 2 �Xi;j=1 Dij(k)2pi � pj + O(D3ij): (13.3)The linear terms vanish, since I(k) exhibits a minimum at Dij(k) = 0. Therefore, absolutevalues of the mutual information are often very small compared to autocorrelation functions[Herzel et al. 1994a]. In order to interpret these small values, a careful analysis of statisticaland systematic errors is required [Herzel et al. 1994a].Autocorrelation functions are just bilinear forms of the matrix D̂(k) according to eq. (4),and consequently, a power-law (60) together with eq. (62) impliesI(k) / k�2
 : (13.4)Hence, long-range correlations can easily be quanti�ed by the mutual information aswell. Moreover, mutual information functions have been used to calculate symbolic spec-tra, and an integrated version of I(k) has been studied [Herzel et al. 1995] in analogy torandom walk studies, which are directly related to integrated autocorrelation functions[Peng et al. 1992].Long-range power-law correlations in DNA sequences have been found in introns andintergenic regions, which do not code for proteins [Peng et al. 1992, Stanley et al. 1994].Their interpretation in terms of biological structure and function is, however, still debated[Herzel et al. 1995, Stanley et al. 1994, Li et al. 1994, Grosberg 1993].



16513.2 Nonuniform Codon UsageIn the remainder of this chapter, we focus on the role of a nonuniform codon usage inexons and demonstrate that, in sequences with long protein-coding segments (e.g., in yeastDNA), the resulting periodicity plays a signi�cant role.Let us recall some well-known facts about the genetic code [Lewin 1997,Watson et al. 1992, Berg & Singer 1992, Kolchanov & Lim 1994]: 61 codons (3-symbol-words) of the possible 64 encode 20 di�erent amino acids whereas the remaining 3 are usedas stop codons. For several reasons, the codon distribution is very nonuniform in exons(e.g. p(CGA)=0.4% and p(CTG)=3.3% according to [Staden 1984]):� The number of triplets coding for an amino acid is di�erent. (For instance, Tryp-tophan is coded only by TGG whereas Leucine, Serine, and Arginine are coded byeven six codons.)� There are speci�c amino acid compositions for proteins.� For any amino acid, a preference for certain codons with respect to others exists.(These preferences are assumed to be related to the availability of t-RNAs and cor-relate with the expression rate of genes.)The di�erent codon usage in exons and introns is widely exploited to detect protein-coding segments in unknown DNA [Fickett 1982, Staden 1984, Lapedes et al. 1990,Uberbacher & Mural 1991, Fickett & Tung 1992]. In the following we discuss the implica-tions of a speci�c codon usage on correlation measures.13.3 Positional Nucleotide FrequenciesA nonuniform codon usage introduces in general peculiarities of the base composition atdi�erent positions in the reading frame. For example, the nucleotide G is more frequent atposition 1 (referring to the �rst symbol of codons) than at position 2 according to the tablesin [Staden 1984]. In order to demonstrate the e�ect of the reading frame on autocorrela-tions and mutual information, we start with a representative table of relative frequenciesof A, C, G, and T in the three positions of the frame.



166position 1 position 2 position 3A 0:326 0:337 0:335C 0:179 0:217 0:164G 0:262 0:100 0:171T 0:233 0:346 0:330These relative frequencies are obtained from a 6324 base pair long exon of the yeastchromosome III [Oliver et al. 1992]. Obviously, there is only a week dependence of A onthe position, but a signi�cant one of G and T. In the following the frequency of the i-thnucleotide at the l-th position is denoted by p(l)i . The overall probability of symbol i followsdirectly by averaging over the three positionspi = p(1)i + p(2)i + p(3)i3 (i = 1:::4): (13.5)13.4 Pseudo-exon modelIn order to estimate the e�ect of a nonuniform codon usage on correlation measures, wemake the simplifying assumption that subsequent codons are statistically independent.This allows the direct calculation of the joint probabilities pij(k) from tables as shownabove. For k � 3, the corresponding probabilities factorize due to our assumption ofindependence. First we consider k = 3; 6; 9; :::, i.e., the two symbols are in the sameposition within the frame: pij(k) = p(1)i p(1)j + p(2)i p(2)j + p(3)i p(3)j3 : (13.6)For k = 4; 7; 10; ::: we obtainpij(k) = p(1)i p(2)j + p(2)i p(3)j + p(3)i p(1)j3 ; (13.7)and distances k = 5; 8; 11; ::: lead topij(k) = p(1)i p(3)j + p(2)i p(1)j + p(3)i p(2)j3 : (13.8)



167Inspection of the last two expressions reveals thatpij(k = 4; 7; :::) = pji(k = 5; 8; :::): (13.9)Consequently, the values of the mutual information at these positions are identical. Hence,the mutual information function exhibits a rather speci�c feature: It oscillates between thetwo values I(3) = I(6) = I(9) = ::: and I(4) = I(5) = I(7) = I(8) = I(10) = ::: . Such aperiod three of probabilities pij(k) [Fickett 1982] and of the mutual information has indeedbeen observed in DNA sequences [Ebeling et al. 1987, Herzel et al. 1995]. It follows fromeqs. (64)-(68) that Dij(k) +Dij(k + 1) +Dij(k + 2) = 0 (13.10)for all i and j and for all k � 3. Consequently, the sum over three consecutive valuesof any correlation function vanishes, if the distance k is longer than or equal to three,i.e., correlation and anticorrelation counterbalance each other within one period of threenucleotides. This is relevant for random walk studies [Peng et al. 1992, Stanley et al. 1994],which are related to integrated correlation functions.13.5 Analysis of Yeast DNAFrom the table given above, we obtainI(k = 3; 6; :::) = 7:9 � 10�4 (13.11)and I(k = 4; 5; 7; 8; :::) = 2:9 � 10�4: (13.12)Figure 13.5 shows results of a Monte-Carlo simulation of a pseudo-exon generated byconcatenating independent codons. This is a Bernoulli-like process with 61 non-vanishingprobabilities corresponding to the relative frequencies of codons in the exon chosen togenerate the above table.The graphs clearly demonstrate the expected periodicity of the GG-correlation function,the small amplitude of the \non-biological" AC-GT-function, and the predicted feature ofthe mutual information (high-low-low). The GG-autocorrelation function demonstrateseq. (69): the sum over three consecutive k vanishes for k � 3. Due to �nite sample e�ects,there are random 
uctuations around the analytical values given in eqs. (70) and (71) (cf.Appendix II).
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Figure 13.1: Two autocorrelation functions and the mutual information for a pseudo-exon without codon-codon-interactions. We chose the 6324 base pair long exon startingat position 278851 on chromosome III of the yeast Saccharomyces cerevisiae to derivea representative codon usage table for yeast DNA. Then, we generated a 300000 basepair long pseudo-exon by a random concatenation of 100000 codons according to thistable. The GG-autocorrelation function (upper graph) exposes a very strong periodicity,since the probability to �nd the nucleotide G varies tremendously with its position in thereading frame. The \non-biological" AC-GT-autocorrelation (middle graph) reveals only afaint periodicity due to the fact that the corresponding probabilities are almost uniformlydistributed over the three possible positions in the frame. The pronounced periodicityexhibited by the mutual information corresponds exactly to the predicted behavior. Notethat, despite the absolute values of the mutual information are really tiny, the di�erencesbetween the maxima at k = 3; 6; ::: and the minima at k = 4; 5; 7; 8; ::: are by far higherthan random 
uctuations.



16913.6 DiscussionA nonuniform codon usage implies (even for independent codons) a persistent oscillationof the joint probabilities pij(k), and hence, of the correlation functions and the mutualinformation. These oscillations can be used to design algorithms that discriminate codingfrom noncoding sequences. A widely used technique considers the maximal and minimalfrequencies of A, C, G, and T in all three frames [Fickett 1982]. We emphasize that themutual information has some striking advantages compared to traditional methods:� It detects any deviation from statistical independence.� It takes into account all 16 joint probabilities.� Due to the above properties of I(k), a single number can be chosen for classi�cation:the di�erence between I(k) for k = 3; 6; 9; ::: and the remaining values.� The statistical properties (bias, variance) of entropy-estimators have been extensivelystudied (see Appendix II).However, as shown below, correlation functions usually oscillate with larger amplitudesthan the mutual information function.The period-three oscillations induced by the reading frame have consequences for theinterpretation of long-range correlations. Strictly speaking, DNA sequences are not sta-tionary within exons since the probabilities pi depend on the position in the reading frame(comparable to seasonal periodicities in climatic data). For distances much longer thanexons they should vanish, but protein-coding segments may extend over thousands of basepairs, a distance which is typically analyzed in the context of long-range correlations[Stanley et al. 1994, Li et al. 1994]. However, there are also other sources of long-rangecorrelations since they have been found in introns as well [Peng et al. 1992].Finally, we exemplify that the theoretical results mentioned above are indeed rele-vant for DNA sequences. For this purpose we present correlation functions and mu-tual information derived from the complete DNA sequence of the yeast chromosome III[Oliver et al. 1992].Figure 13.6 demonstrates that the shape of the mutual information and autocorrelationfunctions of real DNA sequences is dominated by period-3-oscillations. As pointed out inthis section and illustrated in Figure 13.5, these oscillations are due to a nonuniform codon



170usage. We realize that the high speci�city of autocorrelation functions and their dependenceon the chosen projection is not only of theoretical interest but also of practical importancefor analyzing biological sequences.
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Figure 13.2: Correlations of the 315338 base pair long DNA sequence of the yeast Sac-charomyces cerevisiae chromosome III for distances k between 1 and 100 base pairs. Thedominating triplet-periodicity that is induced by the nonuniform codon usage in yeast caneasily be observed. The comparison of the upper two graphs reveals that the A+C contentis indeed a poor indicator for a nonuniform codon usage. The mutual information functiondisplays its typical high-low-low-pattern, which can be exploited to discriminate exons fromintrons. Note that the peak at k = 3 reveals correlations between neighboring codons inyeast DNA.Figure 13.6 also reveals the interesting �nding that the AC-GT-autocorrelation func-tion (middle graph) shows a much weaker performance than, for instance, the GG-autocorrelation function (upper graph), which is biologically interpretable. The predictedperiodicity of the mutual information function (high-low-low) is strikingly con�rmed bythe lower graph (cf. Figure 1). In addition to those features of autocorrelations and themutual information function that are caused by a nonuniform codon usage, we can easilyobserve further biological correlations. The high I(3)-value indicates, for example, existing



171correlations between adjacent codons in yeast DNA.The decay of the envelopes of the mutual information and the autocorrelation func-tions indicate biologically relevant correlations that, however, diminish with an increasingdistance k.By increasing the correlation length k, we realize that all of the features discussedabove stay persistent up to distances of about 1000 base pairs. Figure 3 illustrates that theoscillation behavior typical for exonic sequences is still observable at these length scales.
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Figure 13.3: Correlations of the complete DNA sequence of yeast chromosome III fordistances k between 900 and 1000 base pairs. The GG-autocorrelation function as well asthe mutual information maintain their dominating period-3-oscillations up to 1000 basepairs. Remember that the reduced amplitudes are due to the small number of exons longerthan 1000 base pairs.However, the absolute values of the mutual information derived from the DNA of yeastchromosome III are by far lower than the theoretical values calculated in eqs. (70) and(71). This can easily be understood if one takes into account that there are only a fewexons on the considered chromosome which are longer than 1000 base pairs. Hence, only asmall percentage of all coding regions contribute to the explained periodicity of the mutualinformation function for these distances.



172Both, Figure 2 and Figure 3 clearly demonstrate that the nonuniform codon usage incoding regions yields the main contribution to correlations in yeast DNA, since its inducedperiod-3-oscillations are the dominating pattern on almost all length scales.13.7 SummaryWe derived that a power-law decay of autocorrelation functions corresponds to a power-lawdecay of the mutual information, where the exponent � in the mutual information functionis twice the exponent 
 of the autocorrelation functions.We studied the mutual information function of protein-coding sequences, which arecharacterized by speci�c codon usage tables. We showed that these tables allow the an-alytical calculation of correlation measures under the assumption of independent codons.We con�rmed the predicted triplet-peak structure by direct analyses of yeast DNA. Wefound that the nonuniform codon usage induces persistent oscillations up to scales of themaximum exon length, which extends over thousands of base pairs.



Chapter 14Correlations in DNA Sequences {the Role of Protein CodingSegmentsIn this chapter we propose one possible explanation for the recent observation of long-rangecorrelations in genomic DNA sequences. Protein coding segments (exons) exhibit persistentcorrelations between their nucleotides with a pronounced period three. We show that thisperiodicity, which is induced by the nonuniform codon usage, implies long-range correlationover hundreds of base pairs if the length distribution of exons is taken into account. Wederive analytic expressions which relate the length distribution of exons to the correlationdecay, and we �nd agreement with numerical simulations. Finally, we analyze the decay ofthe mutual information function in yeast chromosomes, in an E. coli chromosome region,and in myosin heavy chain genes as representative examples. It turns out that in thesecases we can explain most of the long-range statistical dependences even quantitatively.14.1 IntroductionThe statistical analysis of DNA sequences is of importance for understanding the struc-ture and function of genomes [Gatlin 1972, Trifonov & Brendel 1986, von Heijne 1987,Bell & Marr 1990, Watson et al. 1992, Yockey 1992, Kolchanov & Lim 1994, Lewin 1997].Statistical dependences between nucleotides have been analyzed for decades in variouscontexts [Shepherd 1981, Fickett 1982, Ebeling et al. 1987, Herzel 1988, Trifonov 1989,



174Fickett et al. 1992, Grosse 1999]. Among physicists the detection of long-range correlationshas attracted much attention during the past years [Li & Kaneko 1992, Peng et al. 1992,Voss 1992, Bor�stnik et al. 1993, Herzel et al. 1994a, Arneodo 1995, Herzel & Grosse 1995,Herzel et al. 1995]. Using mutual information functions [Li & Kaneko 1992,Herzel et al. 1994a, Herzel et al. 1995], autocorrelation functions [Bor�stnik et al. 1993,Herzel & Grosse 1995], spectra [Voss 1992, Chechetkin & Turygin 1994], and random walkanalyses [Peng et al. 1992, Dreismann & Larhammer 1993, Stanley et al. 1994], correla-tions ranging from a few base pairs (bp) up to 104 bp have been analyzed. However,the biological interpretation of most of these �ndings remains still speculative.From a molecular biological point of view, long-range correlations are not surprisingsince the complex organizationof genomes involves many di�erent scales. In fact, large variations in base compositionon scales of thousands of base pairs have been discussed extensively in the literature (see,e.g., [Elton 1974, Bernardi et al. 1985, Korenberg & Rykowski 1988, Bernardi et al. 1985,Ikemura et al. 1990, Fickett et al. 1992, Karlin & Brendel 1993]). For example, Elton[Elton 1974] reviews experimental data showing that DNA fragments up to 104 bp haverather large variances of the G+C content. He points out that these variations cannot be ex-plained by short-correlated 
uctuations. In this way, long-range correlations have been in-dicated already decades ago. Explicit examples of pronounced 
uctuations of the G+C con-tent together with the gene distribution with an approximate period of 105 bp were providedby the recent sequencing of yeast chromosomes [Feldmann et al. 1994, Dujon et al. 1994].It has been pointed out by several authors that the mosaic structure of genomes is pre-sumably responsible for long-range correlations [Herzel et al. 1994a, Bernardi et al. 1985,Karlin & Brendel 1993]. Indeed, the organization of the genome is very complex: eu-karyotic genes usually consist of several protein coding segments (exons) interrupted byintervening sequences (introns). Moreover, there are regulatory elements such as promot-ers, splice sites, enhancers, and silencers, which are sometimes up to thousands of basepairs away from exons. Genomes of higher eukaryotes also comprise long stretches of DNAwithout any obvious biological function containing, e.g., pseudo genes and various types ofrepeats [Lewin 1997, Herzel et al. 1995, Herzel et al. 1994b].There are several models of DNA where a segmentational structure is postulated[Elton 1974, Fickett et al. 1992, Churchill 1989, Buldyrev et al. 1993, Li et al. 1994]. El-ton discusses, for example, the variance of the G+C content for a model with constant and



175exponentially distributed fragments [Elton 1974], and Buldyrev et al. study a L�evy-walkmodel [Buldyrev et al. 1993]. However, hypothetical length distributions of fragments haveto be postulated in these papers.Contrarily, we will show in this chapter that already the well-known length distributionof exons generates long-ranging correlations. As a �rst step we demonstrate in section IIIthat a nonuniform codon usage in protein coding segments induces persistent period-threeoscillations. In that section we introduce a model by which we generate arti�cial DNAsequences called pseudo-exons|a concatenation of statistically independent codons chosenrandomly from a given codon usage probability table. In sections IV and V, we emphasizethe central role of the length distribution of exons. We derive analytic expressions whichrelate the exon length distribution to the correlation decay and show that these analyticresults are in perfect agreement with numerical simulations. In section VI, we apply thesetheoretical considerations to several DNA sequences (yeast chromosomes, E. coli DNA, anda myosin heavy chain gene).We show that correlations on scales of hundreds of base pairs can be simulated evenquantitatively by taking into account solely the non-uniformity of the codon usage and thelength distribution of exons. In this way we relate well known biological facts to observedlong-range correlations between nucleotides.14.2 Correlation measuresDNA sequences can be viewed as symbolic strings composed of the four \letters"(A1; A2; A3; A4) � (A;C;G;T ) referring to the nucleotides adenine, cytosine, guanine,and thymine. The probability to �nd the nucleotide Ai is denoted by pi (i = 1; 2; 3; 4).Pair correlations within sequences can be measured by the joint probabilities pij(k) to �ndthe symbol Ai and k letters downstream the symbol Aj . Then, statistical independenceof symbols in a distance k is de�ned by pij(k) = pi � pj , which leads to the mutual in-formation function I(k) [Yockey 1992, Herzel 1988, Herzel & Grosse 1995, Kullback 1959,Herzel & Ebeling 1985, Li 1990] as a measure of statistical dependence:I(k) = 4Xi;j=1 pij(k) log2 pij(k)pi � pj : (14.1)By choosing the logarithm to base 2, I(k) is measured in bit and gives the informationon the letter Aj knowing the letter Ai. The mutual information I(k) vanishes if, and



176only if, statistical independence holds, i.e., if all 16 joint probabilities pij(k) factorize.Consequently, the mutual information allows to detect any pair correlation.More speci�c indicators of dependences are correlation functions. Their de�nition re-quires an assignment of numbers ai to the corresponding symbols Ai. Assuming ergodicityand stationarity, the usual estimation of autocorrelation functions via averages over thesequence C(k) = ha(n) a(n+ k)i � ha(n)i ha(n+ k)i (14.2)can be written in terms of the probabilities de�ned above:C(k) = ( 4Xi;j=1 pij(k) � ai � aj)� ( 4Xi=1 pi ai)( 4Xj=1 pj aj)= 4Xi;j=1(pij(k)� pi � pj) � ai � aj : (14.3)By de�nition, correlation functions measure only linear dependences. However, for quater-nary sequences such as DNA, six properly chosen autocorrelation functions and three cross-correlation functions can guarantee the statistical independence between all nucleotide-pairs [Herzel & Grosse 1995].Long-range correlations are often characterized by power-lawsC(k) / k�
 : (14.4)Such a scaling behavior can also be analyzed by using power-spectra or the random walkapproach with related scaling exponents [Stanley et al. 1994]. A power-law (4) implies alsoa power-law decay of the mutual information function:I(k) / k�2
 : (14.5)This can be easily derived using a Taylor expansion in terms ofDij(k) = pij(k)� pi � pj ; (14.6)which measure deviations from statistical independence. Since I(k) has a minimum atDij � 0, the sum over all linear terms vanishes, and we obtainI(k) = 12 � ln 2 4Xi;j=1 D2ij(k)pi � pj +O(D3ij): (14.7)



177In the Appendix we use this relation to discuss �nite sample e�ects. Equation 7 illustratesthat the mutual information I(k) accumulates all pair correlations in a distance k. ForDNA sequences, the above 2nd order approximation is extremely close to the actual mutualinformation because of the weakness of correlations (see, e.g., Figure 1). Since correlationfunctions can be written as quadratic forms of the dependence matrix Dij (cf. Eq. (3) and(6)), a scaling exponent 
 of correlation functions leads to an exponent 2
 for the mutualinformation.
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Figure 14.1: Mutual information function of the yeast chromosome XI (666,448 bp). Theperiodicity due to the triplet code is visible even for distances above 1000 bp. The dashedline marks the bias according to Eq.(8).In this chapter we study mainly the decay of the mutual information function asan overall measure of statistical dependences. In contrast to entropies of long \words"



178[Herzel et al. 1994a, Herzel et al. 1994b] the statistical and systematic errors of the mu-tual information are relatively small since only 16 probabilities have to be estimated fromsamples of thousands of nucleotides. For example, the bias of the mutual information fora sample of size N has been calculated [Herzel 1988, Herzel & Grosse 1995] to be�I = 92 ln 2 N ; (14.8)which is marked in some �gures by a dashed line. Though this bias is small, it becomesrelevant for very weak correlations. Therefore, we discuss �nite sample e�ects in somedetail in an Appendix.
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Figure 14.2: Period-three oscillations of the mutual information for a chromosome regionof Escherichia coli (strain K-12, 111,401 bp).
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Figure 14.3: Mutual information function of the HUMBMYH7 gene (20,855 bp from the�rst to the last exon). The mean exon length is about 150 bp which is the characteristiclength of the decay of the pronounced period-three oscillations.



18014.3 E�ects of a Nonuniform Codon UsageAnalyses of DNA sequences revealed that their correlation functions often exhibitstrong period-three components, which are induced by the genetic code [Shepherd 1981,Fickett 1982, Ebeling et al. 1987, Chechetkin & Turygin 1994, Luo & Li 1991]. Figures 1-3 exemplify these periodicities for yeast chromosome XI, an E. coli chromosome region,and a myosin heavy chain gene.In protein coding segments, 61 of the possible 64 codons (3-symbol-words) encode 20di�erent amino acids whereas the remaining 3 are used as stop codons. It has been discussed[Bernardi et al. 1985, Ikemura 1981, Staden 1984, Sharp & Li 1987] that these codons areused with quite di�erent frequencies for several reasons:� There are speci�c amino acid compositions for proteins.� The number of triplets encoding an amino acid is di�erent.� For any amino acid, a preference of certain codons over others exists.� The G+C content of the third codon position is correlated to the G+C content ofthe surrounding DNA region [Dujon et al. 1994].In general, a nonuniform codon usage causes the concentration of each nucleotide tobe di�erent in all three positions of the reading frame. As we will show in the following,it is exactly this position asymmetry of all 4 nucleotides that introduces the pronouncedperiod-three pattern of correlation functions as well as the mutual information function.In order to quantify the e�ect of a nonuniform codon usage on correlation measures,we introduce a stochastic model that randomly concatenates subsequent codons. In thefollowing, we term the model sequences of independent codons chosen from a given codonusage table pseudo-exon. As we will see, these pseudo-exons, which consist of statisticallyindependent codons, display periodic long-range correlations between their nucleotides.Our next task is to analytically calculate the strength of these correlations, which wasshown to be a prominent long-range correlation pattern of real DNA (cf. Figures 1-3).Let us start with the calculation of the mutual information of an in�nitely long pseudo-exon generated by such a Bernoulli-like process on the level of codons.We denote the frequency of the i-th nucleotide at them-th position by p(m)i (m = 1; 2; 3).



181The overall probability of symbol i follows directly by averaging over the three positionspi = p(1)i + p(2)i + p(3)i3 (i = 1:::4): (14.9)The following table displays the 12 frequencies p(m)i , which are obtained from the5805 bp of the protein coding segments from the intensively studied [Grosse 1999,Buldyrev et al. 1993] human beta-myosin heavy chain (HUMBMYH7) gene.position 1 position 2 position 3A 0.296 0.437 0.079C 0.248 0.184 0.343G 0.351 0.123 0.471T 0.105 0.256 0.107The joint probabilities pij(k) can be obtained directly from tables as shown above. Fork � 3, the corresponding probabilities factorize due to our assumption of independence.First we consider k = 3; 6; 9; :::, i.e., the two symbols of the pair are in the same positionwithin the frame: pij(k) = p(1)i p(1)j + p(2)i p(2)j + p(3)i p(3)j3 : (14.10)For k = 4; 7; 10; ::: we obtainpij(k) = p(1)i p(2)j + p(2)i p(3)j + p(3)i p(1)j3 ; (14.11)and distances k = 5; 8; 11; ::: lead topij(k) = p(1)i p(3)j + p(2)i p(1)j + p(3)i p(2)j3 : (14.12)Inspection of the last two expressions reveals that pij(k = 4; 7; :::) = pji(k = 5; 8; :::).Consequently, the values of the mutual information at these positions are identical. Theabove expressions allow us to calculate the in-frame mutual informationIin � I(k = 3; 6; 9; :::) (14.13)and the out-of-frame mutual informationIout � I(k = 4; 5; 7; 8; 10; 11; :::): (14.14)
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Figure 14.4: Dashed line: Mutual information of a concatenation of all 40 exons (5,805bp) of the HUMBMYH7 gene (compare Figure 3). Full line: Corresponding pseudo-exon(5,805 bp) generated from the codon usage table of the HUMBMYH7 gene.



183For example, the table given above yieldsIin = 0:0247;Iout = 0:0083:The corresponding high-low-low pattern is indeed obvious in the examples graphed inFigures 1-4. Figure 4 displays the period-three oscillations of a pseudo-exon that is indeedquite similar to the mutual information of the corresponding exons.In summary, for a single protein coding segment, a given codon usage table allows usto analytically calculate the resulting period-three oscillations. However, genomes containmany exons, introns, and intergenic sequences. Moreover, protein coding segments arefound in all three reading frames and on both DNA strands. Therefore, we are not surprisedby the fact that the mutual information function plotted in Figures 1-3 are decaying andthus deviate from a purely repeated high-low-low pattern.The next section is devoted to the role of the length distribution of exons, which indeedstrongly a�ects the decay properties of correlation measures. Taking into account theselength distributions, we can generalize the pseudo-exon model to stochastic models of genesand even of whole chromosomes termed pseudo-chromosomes.14.4 Length Distribution of ExonsWe have discussed in the preceding section that the joint probabilities p(k)ij calculated withinan exon re
ect the nonuniform codon usage. Since long stretches of DNA include manydi�erent exons, only a fraction of pairs Ai and Aj are located on the same exon. Moreprecisely, an exon of length l contains l� k pairs contributing to the codon usage inducedperiodicity. Consequently, the length distribution �(l) of exons in a given DNA will beconsidered in this section.We de�ne �(l) as the probability distribution that an exon has a length l. In the nextsection we discuss, for instance, a �xed length l = L, exponential, and power-law distri-butions �(l). Figure 5 shows a histogram of the lengths of exons for yeast chromosomes.It can be seen that there are rather long protein coding segments. Regression reveals thatthe empirical distribution can be approximated by an exponential decay (full line) and bya power-law (dashed line) as well. Hence we discuss both cases in some detail.For the sake of simplicity, we assume below that all exons are characterized by a single
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Figure 14.5: Histogram of open reading frames (ORF's) longer than 500 bp from the yeastchromosomes III, IX, and XI. Regression by an exponential function and a power-law decayare indicated by full and dashed lines, respectively.



185codon usage table. This is, of course, a strong assumption since it is known that the codonusage depends, e.g., on the degree of gene expression [Ikemura 1981, Sharp & Li 1987].However, Sharp and Li claim that \within species the di�erences are largely in the degreerather than the direction of codon usage bias" [Sharp & Li 1987]. If whole chromosomes areanalyzed, one has to take into account that genes are located on both strands. Therefore weuse in our simulations of pseudo-chromosomes (see section VI) also complementary codonusage tables.As discussed in the preceding section the nonuniform codon usage leads to speci�cstatistical dependences within exons. These are quanti�ed below by the dependence matrixDexonij (k) = pexonij (k)� pexoni � pexonj (14.15)In the following we denote the total fraction of protein coding sequences in a givenDNA sequence by F . For the yeast chromosomes we have, for example, F � 0:7[Feldmann et al. 1994]. The task is now to estimate the correlation decay for a givensequence length N , fraction of coding segments F , and probability distribution �(l).The mean exon length is given by�l =Xl l � �(l): (14.16)For yeast DNA, where genes exhibit only a few introns, the mean exon length is about 1400bp. The typical length scale of human exons is a few hundred base pairs. However, thereare also exons with a length of several thousand base pairs (e.g. exon 11 of the BCRA1gene comprises 3426 bp).The expectation value �n of the number of exons in a sequence of length N and an exonfraction F is �n = F �N�l : (14.17)Consequently, the average number of exons with a length l is given byn(l) = �(l) � �n = F �N � �(l)Pl l � �(l) : (14.18)Since we focus in this chapter on correlations due to the nonuniform codon usage, weneglect statistical dependences of pairs Ai and Aj which are not within the same exon.This implies, for example, that the base composition in exons and introns is considered tobe the same. Generalizations of this simpli�ed approach are discussed in the �nal section.



186Since every exon contributes l� k pairs, we obtain the number Z(k) of pairs which arelocated in the same exon: Z(k) = lmaxXl=k+1(l� k) n(l): (14.19)Here, overlaps of protein coding segments have been neglected. The total number ofpairs in a distance k is N � k, and hence, the overall deviations Dij(k) from statisticalindependence are given by Dij(k) = Z(k)N � k �Dexonij (k): (14.20)This result can now explain the decay of correlation functions and the mutual infor-mation function, since both measures can be obtained from the decay of the Dij(k) (cf.Eqs.(3)-(7)). It can be seen that beside the internal period-3 oscillations described byDexonij (k) we obtain a k-dependent pre-factor related via Z(k) to the exon length distri-bution. Since we are primarily interested in the long-ranging correlations, we focus in thefollowing on the envelope E(k) /Xl l � kN � k � n(l): (14.21)This formula is a central result of this chapter. It elucidates the immediate e�ect of thelength distribution of exons on the decay properties of correlation measures, which we willexemplify in the following section.14.5 Models of Length DistributionsNow we illustrate the considerations of the preceding section for 3 representative probabilitydistributions �(l), namely a uniform, an exponential, and a power-law distribution.We analytically derive the corresponding decay laws and test the predictions usingpseudo-genes1. These consist of interspersed pseudo-exons within a random sea, i.e., sta-tistically independent letters with the same base composition as the pseudo-exons. Thelength of each exon is chosen randomly from the distribution �(l) under consideration. Inall simulations in this section we have chosen the codon usage table of the HUMBMYH7gene studied in section III. Details of the simulations are described in the �gure captions.1We use this terminus in analogy to pseudo-exons and pseudo-chromosomes for corresponding stochasticmodel sequences. It should not be confused with knocked out genes which are termed pseudo genes as well.
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Figure 14.6: Mutual information of a 106 bp long random sequence. Within a \randomsea" of independent letters A, C, G, and T, 1000 pseudo-exons of a length 600 bp havebeen interspersed. For small k, we observe the expected period-three oscillations betweenF 2Iin and F 2Iout (see Eqs. (7) and (20)). Please note that Eq. (24) predicts exactly theparabolic decay between k = 0 and k = 600.



188As a �rst model we discuss a �xed length of all protein coding segments l = L,�(l) = �lL: (14.22)This yields �n = n(L) = F �NL : (14.23)For k < L we obtain essentially a linear decay of the envelope E(k):E(k) / F �NN � k L� kL � F � L� kL : (14.24)The k-dependence of the denominator can be neglected for N � L. The resulting lineardecay of Dij(k) implies a quadratic decay of the mutual information function (cf. Eq. (7)).Such a parabola is seen in Figure 6 for a pseudo-gene with constant exon length.Of course, it is more realistic to assume an exponentially decaying length distribution(compare Figure 5). As above in Eq. (24), we neglect the k-dependence of the denominator.For the sake of simplicity, we further replace the summation in Eq. (21) by an integrationfrom k to in�nity. Then an exponential length distribution�(l) = � exp (�� l) (14.25)gives an exponential decay of the envelope:E(k) / F � � Z 1k (l � k) � �(l) dl = F exp (�� k): (14.26)Figure 7 displays the results for a corresponding simulation of a pseudo-gene.As a last example we consider a power-law decay from a lower cut-o� length Lmin withan exponent � > 2: �(l) = (� � 1) L��1min l�� for l � Lmin (14.27)and zero otherwise. The mean value of the length is then given by�l = � � 1� � 2 Lmin: (14.28)After integration we obtain a power-law decay of the envelope for k > Lmin:E(k) / F �L��2� � 1 k2��: (14.29)The log-log presentation of the mutual information in Figure 8 indicates indeed a power-lawfor a simulation of a corresponding pseudo-gene.
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Figure 14.7: Mutual information of a 106 bp long sequence containing 1000 pseudo-exonswith exponentially distributed lengths (mean value 600 bp). The logarithmic vertical scalereveals the predicted exponential decay.
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Figure 14.8: Mutual information of a 7 �106 bp long sequence with 7000 pseudo-exons. Theparameters of the exon length distribution are Lmin = 150 and � = 94 .



191These examples show how the length distribution of exons a�ects the decay of corre-lations, which are due the nonuniform codon usage. In the next section we show that ourconsiderations apply to DNA sequences and that a considerable amount of observed cor-relations can be predicted just by knowing codon usage tables and the length distributionof exons.14.6 Applications to DNA SequencesIn this section we apply our concept to representative DNA sequences. It was alreadydemonstrated in Figure 1 that the periodicity due to the nonuniform codon usage plays asigni�cant role in yeast DNA. This is due to large fraction of coding sequences (F � 0:7)and rather long exons (compare Figure 5). In order to quantify the e�ect of exons on cor-relations we generate pseudo-chromosomes as follows: codon usage tables are taken fromlong yeast genes as a basis for the simulation of pseudo-exons (see section III). In orderto simulate strand symmetry, 50 % of the pseudo-exons are generated with the comple-mentary codon usage table. The empirical histogram from the corresponding chromosomeis taken as length distribution for the interspersed pseudo-exons. In between the pseudo-exons Bernoulli sequences with the same base composition are inserted. In this way astochastic model of a chromosome is de�ned which incorporates only well-known features{ the nonuniform codon usage and the alternation of coding segments and interveningsequences.Figure 9 reveals that the decay for the pseudo-chromosomes is quite similar to theactual decay for the yeast chromosomes. Only for small k additional correlations can beseen which are discussed in the �nal section.Similar agreement was also found for codon usage tables from other protein codingsegments and for some strand asymmetry.Signi�cant long-range correlations in the yeast chromosome III up to several kilo basepairs have been reported by Munson et al. [Munson 1992]. The existence of such corre-lations is indeed corroborated by our mutual information analysis. However, they existalso in a pseudo-chromosome (see Figure 9), and hence, the length distribution of exons issu�cient to explain these correlations.In the same way as for the yeast chromosome, we generated a stochastic model of a DNAregion of E. coli (see Figure 2). Figure 10 shows a comparison of the mutual information
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Figure 14.9: Decay of the mutual information function for yeast chromosomes (thin lines)and the corresponding pseudo-chromosomes (thick lines). In order to reduce the strong
uctuations (compare Figure 1) and to focus on the decay we have applied a 99 bp run-ning average. Upper graph: Chromosome III. The codon usage table was taken from thetemperature-sensitive lethal TSM1 protein (4,221 bp). Lower graph: Chromosome XI,table from the ORF which encodes dynein (12,276 bp).
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Figure 14.10: Mutual information decay for the E. coli chromosome region (thin line) anda corresponding pseudo-region with the same length distribution of pseudo-exons. Thecodon usage table was taken from the isoleucil-tRNA ligase (2,811 bp). As in Figure 9 a99 bp running average was applied.Finally, we discuss the correlation decay in the myosin heavy chain gene M74000 ofBrugia malayi. We have chosen this gene since the 15 exons constitute about 68 % of thetotal gene. Consequently, the correlations due to the exons and their length distribution aremore pronounced then in genes with only a few percent of exons.2 The codon usage-tableand empirical length distribution of the analyzed gene are taken to generate a pseudo-2In fact, the decay for the human myosin heavy chain depicted in Figure 3 is also strongly in
uenced bycorrelations within its introns.



194gene as described in section V. Since there are fairly long exons in this gene, Figure 11displays the expected long tail of the envelope. Quite similar correlations are found inthe corresponding pseudo-gene (thick line) pointing to the fact that most correlations aresolely due to the length distribution of exons.It turns out that for such relatively short DNA sequences a careful calculation of thebias (dashed line in Figure 11) is necessary for a correct interpretation of the decay.
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Figure 14.11: Comparison of the smoothed mutual information (99 bp running average)of Brugia malayi myosin heavy chain gene (8,600 bp from the �rst to the last exon) and acorresponding random sequence with the same exon length distribution and codon usage.Since the sample size decreases with the distance there is a clear increase of the bias (seealso the Appendix).



19514.7 Summary and DiscussionThis chapter was devoted to relate a signi�cant part of observed long-range correlationsto the pattern of protein coding segments. We have shown that the triplet code inducesvia a nonuniform codon usage persistent oscillations of correlation measures. By takinginto account the length distributions of exons, a long-ranging decay of the mutual infor-mation function and correlation functions could be predicted. For example, a power-lawdistribution of the exon length implies a power-law decay of correlation measures.Pseudo-chromosomes based on the empirical length distribution in yeast chromosomesexhibit a quite similar decay of correlations and, therefore, most of the correlations inyeast DNA could be traced back to a simple origin. Our considerations apply to all partsof genomes where coding segments constitute a signi�cant portion of the DNA such asbacteria or retroviruses. This was exempli�ed for a DNA region of E. coli and for a myosinheavy chain gene with a large fraction of exons.Typically, in higher eukaryotes only a few percent of the DNA are protein codingregions. Consequently, observed long-range correlation in DNA as the human �-globinregion [Peng et al. 1992] or in genes with very long introns [Li & Kaneko 1992] cannot beexplained simply by the nonuniform codon usage within exons. Moreover, the well-knowncompositional variations along chromosomes on scales above 105 bp [Bernardi et al. 1985,Feldmann et al. 1994, Dujon et al. 1994] are beyond the scope of our analysis.Our concept is however more generally applicable. It can be formulated as follows:� look for fragments of di�ering statistical properties,� analyze its length distribution,� de�ne appropriate (stochastic) pseudo-sequences,� analyze their correlation decay,� compare it with the empirical mutual information.Related stochastic models of the DNA heterogeneity have a long tradition [Elton 1974,Fickett et al. 1992, Herzel et al. 1994b, Buldyrev et al. 1993], but these models are basedon hypothetical length distributions of fragments. Contrarily, our approach simply exploitsthe well-known length distribution of exons.
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Figure 14.12: Mutual information of yeast chromosomes III (full line), IX (dashed line), XI(dotted line) for short distances. In order to eliminate the dominating period-three oscilla-tions, we apply a running average over 3 bp. The comparison with a pseudo-chromosome(thick line) reveals additional correlations (in particular a 10-11 bp period).



197As a �rst step of a more general approach, Schmitt et al. [Schmitt et al. 1996] recentlystudied length distributions of over-represented \words" termed modules. We suggest toanalyze also length distributions of{for example{isochores [Bernardi 1989], gene clusters,dispersed repeats, simple-sequence DNA, or CpG islands. If one takes into account di�erentcompositions of exons and introns, the length distribution of introns comes into play aswell. We expect that stochastic models which include the actual length distributions ofall these segments can relate most observed long-range correlations to known biologicalstructures.Though we have quantitatively explained the origin of long-range correlations inmostly protein coding sequences, many questions remain open. For example, correla-tions within introns and intergenic sequences were not the subject of this chapter. More-over, we have seen in Figure 9 additional correlations in yeast DNA for small distances,which cannot be explained by our pseudo-exon concept. Figure 12 displays an exam-ple of such a peak structure with a periodicity of about 10 bp. These peaks may re-
ect the pitch of DNA, i.e., a 10.5 bp periodicity that has been found in curved DNA[Trifonov & Sussman 1980, Konopka & Smythers 1987] and DNA folded into nucleosomes[Ioshikhes et al. 1992]. Additionally, the well-known 3-4 amino acid periodicities in �-helical proteins [Herzel 1988, Kanehisa & Tsong 1980, White 1994, Schmitt et al. 1997] area possible source of the observed peak structure.In summary, we have shown in this chapter that the length distribution of exons in realDNA induces long-range correlations which can be described by appropriate stochasticmodels. We stress, �nally, that beyond these correlations other DNA base-pair 
uctua-tions exist on various scales [Trifonov 1989, Li & Kaneko 1992, Peng et al. 1992, Voss 1992,Bernardi 1989, Dujon et al. 1994]. Their role for the chromosome organization and geneexpression has still to be explored.



Chapter 15Interpreting Correlations in DNAand Protein SequencesUnderstanding the complex organization of genomes as well as predicting the location ofgenes and the possible structure of the gene products are some of the most important prob-lems in current molecular biology. Many statistical techniques are used to address theseissues. A central role among them play correlation functions. In this chapter we study thedecay of the entire 4� 4 dimensional covariance matrix of DNA sequences. We apply thiscovariance analysis to human chromosomal regions, yeast DNA, and bacterial genomes,and we interpret the three most pronounced statistical features { long-range correlations, aperiod 3, and a period 10-11 { using known biological facts about the structure of genomes.For example, we relate the slowly decaying long-range G+C correlations to dispersed re-peats and CpG islands. We show quantitatively that the 3-base-pair-periodicity is causedto a signi�cant degree by the nonuniformity of the codon usage in protein coding segments.We also show that periodicities of 10-11 base-pairs in yeast DNA may possibly originatefrom an alternation of hydrophobic and hydrophilic amino acids in their correspondingprotein sequences.15.1 IntroductionCorrelation functions of DNA and protein sequences have been widely studied in order tounderstand the complex organization of genomes. Many correlation measures, such as bi-nary correlation functions [Trifonov & Sussman 1980, Shepherd et al. 1981], power spectra



199[Voss 1992], random walk variances [Peng et al. 1992], or the mutual information function[Ebeling et al. 1987, Li & Kaneko 1992] have been employed to address these questions.Correlation functions of DNA sequences (as well as power spectra or the intimately re-lated random walk approaches [Stanley et al. 1994]) are based on the assignment of num-bers to the nucleotides A, C, G, and T. Analyzing only single mappings of numbers tosymbols limits the utility of those approaches. In particular, it can be shown that eventhe in�nite set of all possible autocorrelation functions of a given quaternary sequencecannot measure all statistical dependences between the four symbols A, C, G, and T. Aspointed out in [Herzel & Grosse 1995], it is necessary to analyze at least three crosscorre-lation functions in addition to at least six autocorrelation functions, in order to gather allinformation about statistical dependences in quaternary sequences. Therefore, we studythe full spectrum of 16 elementary correlation functions and emphasize in this chapterthat the comparison of di�erent correlation functions can give insight into the biologicalmeaning of observed correlations.First, we discuss long-range correlations in long human DNA sequences. It turns outthat the correlation decay depends strongly on the parameters of the chosen correlationfunction.For the interpretation of observed periodicities of 10-11 base-pairs (bp), a comparisonof di�erent correlation functions points to their biological origin: an alternation of hy-drophobic and hydrophilic amino acids, which induces speci�c periodicities in correlationfunctions.15.2 Symbols and De�nitionsCorrelation functions of numerical time series fx`g are de�ned byCxx(k) = hx`x`+ki � hx`ihx`+ki; (15.1)where h:::i denotes the time average over the entire sequence fx`g. In case of analyzingsymbolic sequences, e.g. if x` 2 fA, C, G, Tg, it is necessary to map those symbols fx`gto numbers fy`g, before these numbers fy`g can then be multiplied. In the following, wewill denote these symbol-to-number-assignments by the vectors ~a � (a; c; g; t) or ~b, wherea stands for the real number mapped to nucleotide A, etc.In our �gures we present, for example, adenine (A) autocorrelation functions CAA(k)with ~a = ~b = (1; 0; 0; 0), crosscorrelation functions CAT (k) with ~a = (1; 0; 0; 0) and ~b =



200(0; 0; 0; 1), autocorrelation functions of the weakly binding nucleotides (A and T) CWWwith ~a = ~b = (1; 0; 0; 1), or purine autocorrelation functions CRR with ~a = ~b = (1; 0; 1; 0).In order to express the autocorrelation function of a given sequence fx`g and a givenmapping ~a = ~b in terms of the statistical dependences between all 4�4 pairs of nucleotides,let us denote the probability of a nucleotide to occur in the sequence fx`g by pi (i =1; 2; 3; 4) and the pair probability to �nd nucleotide i at a certain position and the nucleotidej exactly k nucleotides downstream by pij(k) (i; j = 1; 2; 3; 4).Then, the statistical dependences between all nucleotides can be quanti�ed by the4 � 4 numbers Dij(k) � pij(k) � pipj , which form the so called \dependence matrix"[Herzel & Grosse 1995].Using these notations, any correlation function C~a~b(k) can be expressed as a bilinearform of the dependence matrix, i.e. [Weiss & Herzel 1997]C~a~b(k) = 4Xi;j=1aibjpij(k)� ( 4Xi=1 aipi)( 4Xj=1 bjpj) = 4Xi;j=1 aibjDij(k): (15.2)Another measure of pair correlations, which has the mathematical property to map allstatistical dependences onto a single number, is the mutual information [Kullback 1959].Here we de�ne the mutual information function as the amount of information (in bit)that one obtains about a hidden nucleotide by getting to know the nucleotide k positionsupstream. In mathematical terms, the mutual information function I(k) is de�ned byI(k) = 4Xi;j=1 pij(k) log2 pij(k)pipj (15.3)This function vanishes if and only if all Dij(k) are equal to zero. Therefore, I(k) � 0implies the statistical independence of all nucleotides in all distances k.By Taylor expanding the mutual information function I(k) as a function of the jointprobabilities pij(k) about the points of statistical independence pi � pj , we can establish ananalytic relation between I(k) and the covariance functions Dij(k):I(k) = 12 � ln 2 4Xi;j=1 Dij(k)2pipj +O(Dij(k)3) (15.4)Since statistical dependences are usually extremely weak in biosequences, theO(Dij(k)3) terms can be neglected. This means that the mutual information functionis approximately equal to the weighed sum over the squares of all 16 covariances.



20115.3 Long-range correlations in human DNAThis section is devoted to the analysis of correlations in two long chromosome regions:HSFLNG6PD (219,447 bp) { a chromosome X region { and HUMTCRB (684,973 bp) { thehuman T-cell receptor beta locus. We exemplify, that di�erent \alphabets", i.e. di�erentassignments of numbers to nucleotides, lead to quite di�erent correlation functions in singlesequences. A particular feature, the slow decay of the G+C correlations is related to well-known biological structures.Earlier studies of chromosome regions (e. g. [Peng et al. 1992, Peng et al. 1994]) usingthe random walk approach provided indications of a power law decay:CRR(k) � k�
 (15.5)In [Peng et al. 1992], autocorrelations corresponding to our notation ~a = ~b = (1; 0; 1; 0)have been analyzed. Since the random walk exponent � [Peng et al. 1992] is intimatelyrelated to 
 via 
 = 2� 2�; (15.6)we can directly compare their observations with correlation patterns of CRR(k).Consequently, values of � = 0:61 (human T-cell receptor alpha/delta locus[Peng et al. 1994]) or � = 0:71 (human beta-globin region [Peng et al. 1992]) correspondto 
 = 0:78 or 
 = 0:58 respectively. According to Eq. (15.4) one expects the mutualinformation to have a power-law exponent of 2
, since I(k) is in a good approximationthe sum of squared correlation functions. The upper curve in Figure 1, however, revealsthat the mutual information function decays relatively slowly (corresponding to 
 � 0:35).In order to understand which correlations govern the decay of the mutual information,we analyze all 16 auto- and crosscorrelations. It turns out that their decay di�ers dras-tically. In Figure 1 two representative examples are shown: In accordance with earlierstudies [Peng et al. 1992, Peng et al. 1994] the correlation function CRR decays relativelyfast (
 � 0:66), whereas CWW decays slowly (
 � 0:29). Similarly, the T-cell receptor betalocus exhibits a wide range of exponents for di�erent entries of the covariance matrix, suchas 
 � 0:49 for CWW , 
 � 0:70 for CRR, and 
 � 0:48 for I(k). Obviously, the decay ofthe mutual information is dominated by the slow decay of CWW , i. e. autocorrelations ofthe A+T or { equivalently { the G+C content.The observed slow decay of the G+C correlations quanti�es various earlier indica-tions of long-ranging variations of the G+C content in DNA sequences [Elton 1974,



202Bernardi et al. 1985, Fickett et al. 1992, Bettecken et al. 1992]. There are many well-known sources of G+C variations in human DNA:� di�erence in G+C content in coding and noncoding regions [Fickett 1982]� Alu repeats (G+C rich, up to 300 bp long [Korenberg & Rykowski 1988])� L1 repeats (G+C poor, up to 6400 bp long [Korenberg & Rykowski 1988])� CpG islands (typically 500-2000 bp long [Clay et al. 1995])The length distribution of these structures and their clustering in isochores[Bernardi et al. 1985, Korenberg & Rykowski 1988, Ikemura et al. 1990] induce long-ranging 
uctuations of the G+C content. Using the documentation of the chromosomeregions studied, we can discuss these features more speci�cally: The G+C rich chromo-some X region from which Figure 1 is derived contains more than 300 Alu repeats and 17CpG islands with a mean length of about 1000 bp. These regions can easily explain theslow decay of the CWW correlation function.15.4 Periodicities in yeast and bacterial DNAIn the following we will show that the comparison of di�erent correlation functions isalso helpful to understand short-range periodicities of DNA sequences. It is well knownthat correlation functions of coding segments exhibit pronounced period-three oscilla-tions [Trifonov & Sussman 1980, Shepherd et al. 1981]. This is a simple consequence ofthe nonuniform frame dependent nucleotide probabilities, which in turn is caused by thenonuniform codon usage. In particular, there is typically an excess of guanine (G) in theposition 1 of the reading frame [Staden 1984] which leads to strong period-3-oscillationsof the GG-autocorrelation (compare Figure 2). If the open reading frame is not inter-rupted by introns the period-three oscillations may extend over thousands of base-pairs[Herzel & Grosse 1995]. The decay of the envelope can be calculated from the lengthdistribution of coding segments. It was shown in [Herzel & Grosse 1997] that long-rangecorrelations in yeast DNA can be explained by the long tail in the exon length distribution.In addition to the period 3, an oscillation of the mutual information with a pe-riod of 10-11 base pairs has recently been detected in several yeast chromosomes[Herzel & Grosse 1997]. These periodicities become visible in Figure 2 after applying 3



203bp running averages leading to the thick lines. It turns out that the 10-11 bp periodicity isstrong in CAA (or CTT) autocorrelation functions but weak in the CGG (or CCC) functions.Moreover, the crosscorrelation function CAT exhibits a phase shift of half a period. Wewill discuss these features in the next section in connection with protein sequences.Since the autocorrelation function of weak the nucleotides A and T can be written asCWW = CAA + CTT + CAT + CTA (15.7)one expects particularly strong oscillations for CWW . Indeed, we �nd a rather strongperiodicity in bacterial sequences, which is illustrated by Fig 3.In [Herzel & Grosse 1997] possible explanations for the observed 10-11 bp periodicitieshave been proposed: DNA bending [Trifonov & Sussman 1980] or nucleosomal signals (see[Marini et al. 1982, Ioshikhes et al. 1996] for details) or periodicities of the correspond-ing protein sequences [Weiss & Herzel 1997, Kanehisa & Tsong 1980, Schmitt et al. 1997,Zhurkin 1981]. If the nucleosomal pattern would be the major source of the 10-11 base-pairoscillation, they should be detectable in noncoding DNA as well. Since we �nd no pro-nounced peaks 10,11 or 21 bp in introns or human chromosome regions (compare Figure1), we now test the hypothesis [Zhurkin 1981] that the observed periodicities are inducedby correlations in protein sequences.15.5 Correlations in protein sequencesProteins are composed of 20 amino acids. Therefore, correlations can be characterizedby a dependence matrix Dij(k) with 20 � 20 entries. After taking into account normal-ization constraints for the elements Dij(k), still 19� 19 of those Dij can be independent[Herzel & Grosse 1995].Consequently, there is a lot of freedom in the choice of the assignment vectors ~a and~b, and correlations depend strongly on the chosen vectors ~a and ~b. If ~a and ~b containonly zeros and ones, any vector can be considered as a classi�cation of the 20 amino acidsinto two groups. In [Weiss & Herzel 1997] correlation functions of 107 classi�cations havebeen studied. It turned out that the strongest correlation signals are associated with twogroups of amino acids: L, I, V, F, M (mostly hydrophobic and non-polar) and E, K, D, R,Q (hydrophilic and polar). In Figure 4 the corresponding auto- and crosscorrelations areshown for a global set of 2912 proteins [White 1994].



204Averaging over many protein sequences reduces statistical 
uctuations and reveals rep-resentative correlation patterns. It can be seen in Figure 4 that there are signi�cant auto-correlations at 3 and 4 residues. This means that hydrophobic (and {likewise{ hydrophilic)amino acids have a preferred distance of 3-4 amino acids. The peak of the crosscorrelationat k = 2 indicates that there is a tendency of L, I, V, F, M to alternate with E, K, D, R, Q.These patterns are related to �-helices - a frequent secondary structure element of foldedproteins [Schmitt et al. 1997]. A typical �-helix has a helical repeat of about 3.6 residues[Creighton 1993]. If the helix would have, say, hydrophobic residues preferentially on oneside, the corresponding protein sequence would have a 3.6 residue periodicity correspondingto a 10:8 nucleotides in the associated DNA sequence.The genetic code is strongly degenerated, since 64 triplets of nucleotides are mappedonto stop signals plus 20 amino acids. For example, leucine is encoded by 6 di�erent codons.It is therefore not evident that the relatively weak correlations of protein sequences caninduce signi�cant periodicities in the corresponding DNA sequences. It turns out that themiddle letter of the codons is closely related to the biochemical properties of the aminoacid. More speci�cally, all �ve amino acids L, I, V, F, and M have at that position a T andE, K, D, and Q posses an A in the middle of all their codons. Consequently, a distance of3 hydrophobic (or hydrophilic) amino acids implies an occurrence of an TT (or AA) pairin a distance of k = 9 nucleotides. Note that there is indeed a peak at k = 9 in CAA inFigure 1. Moreover, an alternation of hydrophobic and hydrophilic amino acids implies aphase shifted oscillation of CAT as in Figure 1.In order to test the hypothesis that the observed periodicities in DNA sequences (seeFigures 2, 3) are caused by the correlations in the amino acid sequences of the expressedproteins, we design the following experiment: We start with the global set of 2912 proteinsequences, and translate the amino acid sequences back to pseudo-DNA sequences by usinga uniform codon usage, i. e. codons are selected randomly with equal probability for eachcodon. In this way we guarantee that no additional correlation (e. g. another overlappingcode in the third position) is introduced. Therefore, the resulting periodicities will be aconsequence of the correlations in the protein sequences only.The resulting Figure 5 resembles clearly the periodicities shown in Figure 2. The strongperiod-three oscillations of CGG, the 10-11 bp periodicities of CAA and CAT , and even thephase shift of CAA and CAT (that we observed in real DNA) are reproduced. This providesa strong indication that the observed oscillations of 10-11 bp are mainly due to correlations



205in protein sequences.15.6 DiscussionWe demonstrated that an analysis of speci�c correlation functions of biosequences al-lows the interpretation of several observed correlations in terms of well-known biologicalstructures. A careful detection of speci�c correlation patterns provides also a basis forthe detection of structural elements. For example, a quanti�cation of the period threeby the mutual information function allows to distinguish coding from noncoding regions[Grosse et al. 1999]. Correlations in protein sequences can be exploited to predict thestructural class of protein [Weiss & Herzel 1997].A central result of this chapter is the explanation of the 10-11 base-pair periodicitiesin yeast and bacterial DNA. The close relation of the middle nucleotide of the codon tothe biochemical properties hydrophobicity and polarity induces a direct correspondencebetween hydrophobicity oscillations of protein sequences and correlations of protein codingDNA sequences.Interestingly, it has been found that nucleosomal patterns are quite similar to theprotein-induced correlation patterns [Ioshikhes et al. 1996, Denisov et al. 1997]: there isa preference of AA and TT pairs in a distance of about 10.3 bp and a phase shift of5-6 nucleotides between A and T to assist bending around nucleosomes. This impliesthat nucleosomes can use nucleotide patterns induced by the encoded proteins for theirpositioning. This coincidence might re
ect a coevolution of packaging DNA into chromatinand the amino acid and codon usage.So far we have not found signi�cant periodicities of 10-11 bases in introns. This wouldbe an indication against the nucleosome formation in the intron regions of genomic DNA.However, since introns constitute a substantial proportion of the genomic DNA, and mostof the genomic DNA is packed in chromatin [Holde 1988], the nucleosomes must also formin the intron regions. Experimental work on the reconstruction of chromatin on cDNAhas demonstrated that the cDNA fails to fold into a unique organized chromatin struc-ture [Liu et al. 1995]. There is the following explanation of this apparent contradictionbetween the presence of the nucleosomes on the intronic sequences and the absence ofa corresponding sequence pattern: the nucleosome sequence pattern is very weak. Only3 - 5 dinucleotides AA and TT, properly distributed along the sequence, are su�cient



206to direct the nucleosome to its position [Bolshoy et al. 1996]. These signal dinucleotidesmay occupy any 3 - 5 positions of 12 available preferred positions for AA and 12 for TT[Ioshikhes et al. 1996]. Actually, such a weak and degenerate pattern is not infrequenteven in random sequences. This means that even without speci�c sequence biases intronicregions of DNA may (and do) contain many sites with su�cient nucleosome speci�cities.An analysis of the sequence patterns in a large database of nucleosome sequences experi-mentally mapped in the introns may eventually clarify this point.The similarity between Figure 2 from yeast DNA and Figure 5 from protein sequences isa strong indication that the amino acid correlations are the dominating origin of the 10-11bp periodicities in yeast. The oscillations in Figure 4 from prokaryotes exhibit somewhatdi�erent features: They are stronger, persist over more than 100 bp, and have a slightlylarger period of about 11 bp. Consequently, additional sources of these periodicities haveto be taken into account.One attractive explanation could be that the period 11 re
ects folding of the naturallysupercoiled prokaryotic DNA. The inter-wound right-handed super-helices in bacteria havea normal super-helical density of 0.04 - 0.05 which corresponds to 200 - 250 base pairsper one super-helical turn [Vologodskii 1992]. In order to stabilize and/or synchronizethis writhe, the prokaryotic DNA molecules may contain regions of intrinsically curvedand twisted DNA with corresponding periodic biases. The right-handed super-helix wouldrequire a sequence period higher than the helical repeat of free DNA, very much likethe left-handed super-helix of the nucleosomal DNA requires a period lower than the freeDNA helical repeat [Ulanovsky & Trifonov 1983]. The actual excess would depend on theparticular geometry of the super-helix, which, however, is largely unknown.While we restricted ourselves in this chapter to the analysis and explanation of knowncorrelation features, it is our hope that this conceptual approach might help to �nd yetunknown patterns in DNA and protein sequences.



Part E



Chapter 16Species Independence of MutualInformation in Coding andNoncoding DNAWe explore if there exist universal statistical patterns that are di�erent in coding andnoncoding DNA and can be found in all living organisms, regardless of their phylogeneticorigin. We �nd that (i) the mutual information function I has a signi�cantly di�erentfunctional form in coding and noncoding DNA. We further �nd that (ii) the probabil-ity distributions of the average mutual information I are signi�cantly di�erent in codingand noncoding DNA, while (iii) they are almost the same for organisms of all taxonomicclasses. Surprisingly, we �nd that I is capable of predicting coding regions as accuratelyas organism-speci�c coding measures.16.1 IntroductionDNA carries the genetic information of most living organisms, and the goal of genomeprojects is to uncover that genetic information. Hence, genomes of many di�erent species,ranging from simple bacteria to complex vertebrates, are currently being sequenced. Asautomated sequencing techniques have started to produce a rapidly growing amount ofraw DNA sequences, the extraction of information from these sequences becomes a scien-ti�c challenge. A large fraction of an organism's DNA is not used for encoding proteins[Lewin 1997, Lodish et al. 1995, Alberts et al. 1994]. Hence, one basic task in the analysis



209of DNA sequences is the identi�cation of coding regions. Since biochemical techniquesalone are not su�cient for identifying all coding regions in every genome, researchers frommany �elds have been attempting to �nd statistical patterns that are di�erent in codingand noncoding DNA [Fickett 1982, Staden 1982, Guig�o et al. 1992, Fickett & Tung 1992,Fickett 1996, Burset & Guig�o 1996, Claverie 1997]. Such patterns have been found, butnone seems to be species independent. Hence, traditional coding measures [Comment 1]based on these patterns need to be trained on organism-speci�c data sets before they canbe applied to identify coding DNA. This training-set dependence limits the applicabilityof traditional coding measures, as many new genomes are currently being sequenced forwhich training sets do not exist.16.2 Mutual Information FunctionIn search for species-independent statistical patterns that are di�erent in coding and non-coding DNA, we study the mutual information function I(k), which quanti�es the amountof information (in units of bits) that can be obtained from one nucleotide X about anothernucleotide Y that is located k nucleotides downstream from X [Comment 2]. Within theframework of statistical mechanics I can be interpreted as follows. Consider a compoundsystem (X; Y ) consisting of the two subsystems X and Y . Let pi denote the probabilityof �nding system X in state i, let qj denote the probability of �nding system Y in statej, and let Pij denote the joint probability of �nding the compound system (X; Y ) in state(i; j). Then the entropies of the systems X , Y , and (X; Y ) are de�ned byH[X ] � �kBXi pi ln pi;H[Y ] � �kBXj qj ln qj ; andH[X; Y ] � �kBXi;j Pij ln Pij ;where kB denotes the Boltzmann constant. If X and Y are statistically independent, thenH[X ] + H[Y ] = H[X; Y ], since the Boltzmann entropy is extensive. If X and Y arestatistically dependent, then the sum of the entropies of the subsystems X and Y is strictlygreater than the entropy of the compound system (X; Y ), i. e. H[X ] + H[Y ] > H[X; Y ].The mutual information I[X; Y ] is de�ned as the di�erence of the sum of the entropies of



210the subsystems and the entropy of the compound system,I[X; Y ] � H[X ] +H[Y ]� H[X; Y ]:If kB is replaced by 1= ln 2, then I[X; Y ] quanti�es the amount of information in X aboutY in units of bits [Shannon 1948].The following two examples may serve to illustrate the intuitive (and information theo-retic) meaning of I(k). Consider a random, uncorrelated sequence, in which each nucleotideoccurs independently of any other nucleotide in the sequence. Intuitively it is clear thatwe cannot obtain any information from any nucleotide X about any nucleotide Y , so I(k)should be zero for all distances k. Indeed I(k) = 0 for all k according to Eq. (16.1), sincethe statement that all nucleotides are statistically independent can be mathematically for-mulated by the set of equalities: Pij(k) = pj � pj for all i, j, and k. From these equalitiesit follows that all the logarithms appearing in Eq. (16.1) are zero, and hence the sum inEq. (16.1) is equal to zero.As a second example consider a sequence in which each nucleotide occurring with equalprobability pi = 1=4 is determined by the previous nucleotide. In this case we will be ableto determine the identity of nucleotide Y by learning the identity of X . Intuitively we saywe obtain an information of 2 bits about Y by learning the identity of X . Indeed I(k) = 2by Eq. (16.1), so again Eq. (16.1) agrees with our intuition. For quaternary sequences I(k)always ranges from 0 to 2, and for most DNA sequences I(k) is close to 0, which states thatin a typical DNA sequence the information in nucleotide X about nucleotide Y is small.If I(k) is monotonically decreasing with k, it means that the information in nucleotide Xabout nucleotide Y gets smaller as the distance k between X and Y increases.Two obvious but noteworthy properties of I[X; Y ] are (i) I[X; Y ] = I[Y;X ], so theamount of information in X about Y is equal to the amount of information in Y about X ,and (ii) I[X; Y ] � 0, so the amount of information is always non-negative, and it is equalto zero if and only if X and Y are statistically independent. We choose Pij(k) to denotethe joint probability of �nding the pair of nucleotides ni and nj (ni; nj 2 fA;C;G; Tg)spaced by a gap of k � 1 nucleotides, and we de�ne pi � Pj Pij(k) and qj � Pi Pij(k).Then I(k) � 4Xi;j=1Pij(k) log2 Pij(k)piqj (16.1)quanti�es the degree of statistical dependence between the nucleotides X and Y spaced bya gap of k � 1 nucleotides, and we study I as a function of k for coding and noncoding



211DNA of all eukaryotic organisms available in GenBank release 111 [Comment 3].Figure 1 shows I(k) for coding and noncoding human DNA. We �nd that for noncodingDNA I(k) decays to zero, whereas for coding DNA I(k) oscillates between two values, thein-frame mutual information Iin at distances k that are multiples of 3 and the out-of-framemutual information Iout at all other values of k.16.3 Average Mutual InformationThe oscillatory behavior of I(k) in coding DNA is a consequence of the presence of thegenetic code (which maps non-overlapping nucleotide triplets (codons) to amino acids)and the non-uniformity of the codon frequency distribution. The fact that the codonfrequencies are non-uniformly distributed in almost all genes of all organisms is wellknown to biologists, and arises because (i) the frequency distribution of amino acidsis non-uniform, (ii) the number of synonymous codons [Comment 4] that encode oneamino acid varies from 1 to 6, and (iii) the frequency distribution of synonymous codonsis non-uniform [Ikemura 1981]. A simple model that re
ects the non-uniformity of thecodon frequency distribution, but neglects any other correlation, is the pseudo-exon model[Herzel et al. 1995], which concatenates codons randomly chosen from a given probabil-ity distribution (QAAA; :::; OTTT), where QXY Z denotes the probability of codon XY Z(X; Y; Z 2 fA;C;G; Tg). As the pseudo-exon model has been shown to reproduce theperiod-3 oscillations in genomic DNA [Herzel et al. 1995], we use the model assumptionof neglecting weak correlations between codons in order to express the joint probabilitiesPij(k) in terms of the 12 positional nucleotide probabilities p(m)i [Comment 5] of �ndingnucleotide ni at position m 2 f1; 2; 3g in an arbitrarily chosen reading frame [Comment 6]as follows [Staden 1982, Herzel et al. 1995]:Pij(k) = 13 �8>><>>: p(1)i p(1)j + p(2)i p(2)j + p(3)i p(3)j for k = 3; 6; 9; :::p(1)i p(2)j + p(2)i p(3)j + p(3)i p(1)j for k = 4; 7; 10; :::p(1)i p(3)j + p(2)i p(1)j + p(3)i p(2)j for k = 5; 8; 11; ::: : (16.2)It is clear that Pij(k) is invariant under shifts of the reading frame, because the expressionson the r. h. s. of Eq. (16.2) are invariant under cyclic permutations of the upper indices(1; 2; 3). Since the second and third line on the r. h. s. of Eq. (16.2) are identical aftertransposition of the lower indices (i; j), we obtain Pij(k = 4; 7; 10; :::) = Pji(k = 5; 8; 11; :::),which implies that I(k) computed from Pij(k) of Eq. (16.2) will assume only two di�erent
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Figure 16.1: Mutual information function, I(k), of coding (thin line) and noncoding (thickline) human DNA, from GenBank release 111 [Comment 3]. We cut all human, non-mitochondrial DNA sequences into non-overlapping fragments of length 500 bp, starting atthe 5'-end. We compute the mutual information function of each fragment, correct for the�nite length e�ect [Herzel et al. 1995], and display the average over all mutual informationfunctions (of coding and noncoding DNA separately). While I(k) for noncoding DNAmonotonically decays to zero as k increases, I(k) of coding DNA shows persistent period-3oscillations.



213values, Iin = I(3; 6; 9; :::) and Iin = I(4; 5; 7; 8; 10; 11; :::).In order to construct a coding measure that can predict whether a single sequenceis coding or noncoding, we sample from each sequence the 12 frequencies p(m)i , computePij(k) from p(m)i by using Eq. (16.2), and then computeIin � I(3) and Iout � I(4) = I(5) (16.3)by plugging Pij(k) and pi = (p(1)i + p(2)i + p(3)i )=3 into Eq. (16.1).We �nd that ln (Iin) and ln (Iout) are almost linearly dependent, and are thus highlycorrelated (correlation coe�cient C = 0:96 for both coding and noncoding DNA). Thissimpli�es the question of how to combine Iin and Iout into a single quantity, as almostany combination will yield approximately the same accuracy. For the sake of obtaining asimple coding measure with a natural and intuitive interpretation, we compute from Iinand Iout the average mutual informationI � Pin � Iin + Pout � Iout; (16.4)where Pin = 1=3 and Pout = 2=3 denote the occurrence probabilities of Iin and Iout. Iquanti�es the average amount of information one obtains about a nucleotide X by learningboth the identity of any other nucleotide Y in the same DNA sequence and whether thedistance k between X and Y is a multiple of 3. We expect that due to the presence of thegenetic code I will be typically greater in coding than in noncoding DNA.The practical implementation of the algorithm looks as follows:1. Count the number of occurrences of nucleotide ni 2 fA;C;G; Tg in position m 2f1; 2; 3g of an arbitrarily chosen reading frame in a given DNA sequence of length1N . Denote that number by N (m)i .2. Divide N (m)i by N=3, the total number of nucleotides occurring in position m, andde�ne the positional nucleotide frequency p(m)i � 3 �N (m)i =N . Note that the positionalnucleotide frequencies are normalized to 1, that is P4i=1 p(m)i = 1 for all m.3. Compute Pij(3) and Pij(4) from p(m)i by using Eq. (16.2).4. De�ne pi � P3m=1 p(m)i =3, which is the overall, normalized frequency of nucleotideni.1For the sake of simplicity, assume N be a multiple of 3.



2145. Compute I(3) and I(4) from Pij(3), Pij(4), and pi by using Eq. (16.1). De�neIin � I(3) and Iout � I(4) as well as Pin � 1=3 and Pout � 2=3.6. Compute the average mutual information (AMI) by using Eq. (16.4).The source code is available upon request from ivo@bu.edu.16.4 Accuracy of the Average Mutual InformationFirst, we investigate how accurately I can distinguish coding from noncoding DNA. Inorder to compare the accuracy by which I can distinguish coding from noncoding DNAwith the accuracy of traditional coding measures, we use the standard benchmark test anddata sets of Fickett and Tung [Fickett & Tung 1992]. Figure 2 shows the I-histogramsfor coding and noncoding human DNA sequences of length 108 bp from the data sets ofFickett and Tung [Fickett & Tung 1992]. Since I does not require prior training, we showthe I-histograms for both the training and the test set. We �nd that for both data setsthe AMI distributions are signi�cantly di�erent for coding and noncoding DNA.The accuracy A is de�ned as follows: Denote by �c(I) and �n(I) the probability densityfunctions of I for coding and noncoding DNA (see Figure 16.4). De�ne the overlap integralO(I) � RM(I)dI, where M(I) denotes the maximum of the two values �c(I) and �n(I)at position I. In statistical terms, O(I) can be expressed as the sum of Tp and Tn,O(I) = Tp+ Tn, where Tp (Tn) denotes the fraction of true positives (true negatives) overall positives (all negatives) [Comment 8]. Hence, the accuracy, de�ned by A(I) � O(I)=2,ranges from from 1=2 (no discrimination) to 1 (perfect discrimination) [Comment 9].Table 1 shows the accuracy of the top 8 phase-independent coding measures as rankedin Fickett and Tung [Fickett & Tung 1992] and the accuracy of I computed on exactly thesame data sets.We �nd that the AMI is as accurate as many of the traditional coding measures, whichare trained on organism-speci�c data sets [Fickett & Tung 1992], in contrast to the AMI,which does not require prior training.We �nd that the accuracy of I (A(I) = 0:69; 0:76; 0:81 for human DNA sequences oflengths N = 54; 108; 162 bp) is higher than the accuracy of many of the 21 traditional cod-ing measures from Ref. [Fickett & Tung 1992]. In particular, A(I) is comparable to the ac-curacy of the hexamer measure H , (A(H) = 0:70; 0:73; 0:74), which is the most accurate ofthe 21 frame-independent [Comment 6] coding measures from Ref. [Fickett & Tung 1992].
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Figure 16.2: I-distributions of data sets humg108a (solid lines) and humg108b (dashed lines)of Fickett and Tung [Fickett & Tung 1992] for coding DNA (thin lines) and noncodingDNA (thick lines). In both data sets the I-distribution of noncoding DNA is centeredat signi�cantly smaller values than the I-distribution of coding DNA. The cumulativedistribution functions of I presented in the inset show that I allows a discrimination ofcoding and noncoding DNA with an accuracy of approximately 76%.



216Coding Measure 54 bp 108 bp 162 bp1. Hexamer 70.5% 73.1% 74.2%2. Position Asymmetry 70.2% 76.6% 80.6%3. Dicodon Usage 70.2% 72.9% 73.9%4. Fourier 69.9% 76.5% 80.8%5. Hexamer-1 69.9% 72.6% 73.8%6. Hexamer-2 69.9% 72.6% 73.8%7. Run 66.6% 70.3% 71.3%8. Codon Usage 65.2% 68.0% 69.5%9. AMI 69.2% 76.1% 80.7%Table 16.1: Accuracy of 8 coding measures and the AMI. We compare the accuraciesof the best 8 phase-independent coding measures as evaluated by Fickett and Tung[Fickett & Tung 1992] to the accuracy of the AMI for three sets of coding and noncod-ing human DNA sequences of lengths 54 bp, 108 bp, and 162 bp. We �nd that, on allthree length scales, the accuracy of the AMI (without prior training) is comparable to theaccuracy of traditional coding measures (after prior training).This �nding is interesting, because H (like all other 20 traditional coding measures) istrained on species-speci�c data sets, and I is not. If the I-distributions turn out to bespecies independent, then I could be used without prior training to distinguish codingfrom noncoding DNA in all species, regardless of their taxonomic origin.16.5 Species Independence of the Average Mutual Informa-tionAfter having found that|without prior training|the AMI can distinguish coding fromnoncoding DNA as accurately as traditional coding measures, the question arises if theprobability distribution functions of the AMI are species-independent. Figure 2 showsthe I-distributions for coding and noncoding DNA sequences from species of di�erenttaxonomic orders, phyla, and kingdoms. We �nd that the I-distributions are signi�cantlydi�erent for coding and noncoding DNA, while they are almost identical for all taxonomicsets. In order to supplement this qualitative �nding by a quantitative analysis, we presentin Table 1 the means and variances of log10 I. Table 1 shows that the means are signi�cantly



217Table 16.2: Means (variances) of log10 I for coding and noncoding DNA of 6 taxonomicsets. While the means of log10 I are signi�cantly di�erent in coding and noncoding DNA,they are almost the same for all taxonomic sets. Also the variances of log10 I are almostthe same for all taxonomic sets, supplementing the visual �nding from Figure 2 that theI-distributions are nearly species-independent.noncoding codingprimates -2.52 (0.31) -2.04 (0.30)non-primate vertebrates -2.54 (0.39) -2.06 (0.30)vertebrates -2.53 (0.34) -2.05 (0.30)invertebrates -2.50 (0.33) -2.04 (0.32)animals -2.52 (0.34) -2.05 (0.31)plants -2.48 (0.31) -2.09 (0.31)di�erent for coding and noncoding DNA, and that the means and variances are almost thesame for all species. This �nding is in agreement with the visual �nding based on Figure 2that the I-distributions are species independent and signi�cantly di�erent in coding andnoncoding DNA.16.6 Quanti�cation of the Species IndependenceIn order to quantitatively compare the \species independence" of the AMI to the \speciesindependence" of the codon usage, we introduce a quantity that we call the degree ofspecies dependence (DSD). De�ne xi and yi (i = 1; : : : ;M) to be the usage frequencies ofthe M = 64 codons for two non-overlapping sets of 1024 DNA sequences of length 108 bp.Denote by �2(X; Y ) � MXi=1 (xi � yi)2xi + yi � (M + 1) (16.5)the normalized \distance" between two histograms X � (x1; : : : ; xM) and Y �(y1; : : : ; yM). Let Ac, An, Bc, and Bn denote the four possible histograms for codingand noncoding DNA from the taxonomic groups A and B. We de�ne the DSD to be theratio of the average distance between species and the average distance between coding andnoncoding DNA, DSD � �2(Ac; Bc) + �2(An; Bn)�2(Ac; An) + �2(Bc; Bn) : (16.6)We analyze the degree of species dependence of the codon usage on four taxonomic
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Figure 16.3: I-distributions of coding DNA (thin lines) and noncoding DNA (thick lines)from all eukaryotic DNA sequences in GenBank release 111 [Comment 3]. We cut allsequences into non-overlapping fragments of length 54 bp [Comment 7], starting at the5'-end. We compute I of each DNA fragment and show the I-histograms for codingand noncoding DNA, for each of the 4 disjoint taxonomic sets (primates, non-primatevertebrates, invertebrates, plants) separately. We �nd that (i) for all taxonomic sets �n(I)is centered at signi�cantly smaller values than �c(I), while (ii) �c(I) and �n(I) of di�erenttaxonomic sets are almost identical. The close similarity of the I-distributions for di�erenttaxonomic classes, phyla, and kingdoms illustrates the species independence of �c(I) and�n(I).



219levels by comparing primates with non-primate mammals, mammals with non-mammalianvertebrates, vertebrates with invertebrates, and animals with plants. We randomly parti-tion the set of all GenBank-111 sequences into non-overlapping blocks of 1024 sequences,and compare all possible combinations of these blocks. Table 2 shows the average DSDover these combinations.Table 16.3: The degree of species dependence of the codon usage and the AMI. Column 1displays the DSD of the codon usage; the value of 0.01 in row 1 states that the codon usagedi�erences between primates and non-primate mammals are only 1% of the di�erencesbetween coding and noncoding DNA. When DNA is analyzed from species belonging todi�erent taxonomic classes, phyla, or kingdoms (rows 2, 3, and 4), the DSD becomes larger,which quanti�es the well-known fact that the codon usage is strongly species dependent.Columns 2 displays the degree of species dependence of the AMI, which we compute inthe same way (and for the same sets of sequences) as for the codon usage. The degree ofspecies dependence of the AMI never exceeds 0.02, quantifying the �nding from Figure 3that the AMI distributions are species independent.class of organism codon usage AMIprimates { non-primate mammals 0.01 0.01mammals { non-mammalian vertebrates 0.10 0.01vertebrates { invertebrates 0.69 0.01animals { plants 0.58 0.02Column 1 of Table 2 shows that the degree of species dependence of the codonusage is quite small (0.01) when primates are compared to non-primate mammals.This states that the codon usage is not identical in primates and non-primate mam-mals, but it is so similar that the codon usage di�erences between primates and non-primate mammals is about 100 times smaller than the di�erences between exons andintrons. When we compare vertebrates to invertebrates, the degree of species de-pendence increases to about 0.69, which states that the di�erences between speciesare approximately 2/3 as large as the di�erences between exons and introns. Thedata from column 1 are consistent with the well-known fact that the codon usage isspecies dependent [Fiers & Grosjean 1979, Ikemura 1981, Sharp & Li 1987, Bulmer 1987,Bernardi 1989, Nakamura et al. 1996, Karlin & Mrazek 1997].



220Next, we analyze the degree of species dependence of the AMI by discretizing thecontinuous AMI distributions as follows: when comparing two AMI distributions X andY (see Figure 3), we map the AMI values into M = 64 bins in such a way that each bini 2 f1; : : : ;Mg contains the same number of data points xi + yi. We then compute theDSD of these discretized AMI distributions X and Y for the same blocks of 1024 sequencesof length 108 bp as we used to calculate the DSD of the codon usage distributions.We �nd (column 2 of Table 2) that the AMI di�erences between primates and non-primate mammals are about 100 times smaller than the AMI di�erences between exonsand introns. It is surprising that the degree of species dependence remains of the orderof 0.01 when mammals are compared to non-mammalian vertebrates, or when vertebratesare compared to invertebrates. Even when DNA from animals is compared to DNA fromplants, the AMI yields a degree of species dependence of only 0.02. The data from column2 are in agreement with the observation, based on Figure 2 and Figure 3, that the AMIdistributions are species independent. This species independence, in connection with the�nding that the accuracy of the AMI is comparable to the accuracy of traditional codingmeasures, suggests that the AMI might possibly be useful for the recognition of protein-coding regions in genomes for which training sets do not exist.In search for a possible origin of the observed species independence, we attempt todevelop simple models that are able to reproduce the I-distributions for coding and non-coding DNA.16.7 Understanding the Species Dependence for NoncodingDNAWe �rst present a model that reproduces the I-distributions for noncoding DNA. For arandom, uncorrelated sequence of arbitrary composition (p1; p2; :::; p4), we can derive theasymptotic form of the probability density function �(I) as follows: expand I(k) aboutPij(k)� pipj , and truncate the Taylor series after the quadratic term. The constant termvanishes because I(k) = 0 at Pij(k) = pipj , and the linear terms vanish because I(k)achieves its minimum at Pij(k) = pipj . Hence, we obtainI(k) / 1ln 2Xi;j (Pij(k)� pipj)22pipj ; (16.7)



221where the symbol / indicates that we neglect terms of O �(Pij � pipj)3�. SubstitutingPij(k) (for k = 3; 4; 5) by the expressions on the r. h. s. of Eq. (16.2) and expressingI � (I(3) + I(4) + I(5))=3 in terms of p(m)i yieldsI / 1ln 2 0@Xi;m (p(m)i � pi)22pi 1A2 : (16.8)For a random, uncorrelated sequencethe probability density function of NPi;m (p(m)i � pi)2=pi converges, for asymptoticallylarge sequence length N , to a �2-distribution with 6 degrees of freedom [Cramer 1946].Hence, we obtain that �(I) converges, for asymptotically large N , to�(I) = (Npln 2)34 �pI � e�Npln 2pI : (16.9)Figure 3(a) shows �(I) from Eq. (16.9) and the I-histograms for noncoding human DNAfor N = 54 bp, 108 bp, and 162 bp. We �nd that (i) the I-distributions for noncodingDNA collapse after rescaling with a factor of N2, and that (ii) the I-distributions canbe approximated by Eq. (16.9). The agreement of the theoretical with the experimentalI-distributions states that the species independence of the I-distributions for noncodingDNA may be attributed to the absence of the genetic code in noncoding DNA of all livingspecies.16.8 Understanding the Species Dependence for CodingDNAWe now test if the species-independence of the I-distributions for coding DNA may bereproduced by a simple model that incorporates the presence of a reading frame. Wegenerate a random, uncorrelated sequence where the probability of obtaining nucleotide niat position m is given by p(m)i [Comment 10]. Figure 3(b) shows the I-histograms for themodel sequences and for human coding DNA sequences of length N = 54 bp. We �nd thatthe I-distribution of the model sequences is signi�cantly di�erent from the I-distributionof human coding DNA sequences. We perform the same analyses for di�erent organisms,ranging from simple bacteria to complex vertebrates, as well as for di�erent N , and we�nd that in all cases the modeled I-distributions cannot reproduce the I-distributionsof experimental, coding DNA. This result shows that the presence of a reading frame in
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223coding DNA is not su�cient to reproduce the I-distributions of experimental, coding DNA,and thus cannot explain the observed species-independence for coding DNA. This �ndingleads us to the conclusion that there must exist additional correlations or inhomogeneities[Comment 11] in coding DNA, which are responsible for the observed species-independenceof the I-distributions.16.9 ConclusionsWe reported the �nding of a species-independent statistical quantity, the average mutualinformation I, whose probability distribution function is signi�cantly di�erent in codingand noncoding DNA. We showed that I can distinguish coding from noncoding DNAas accurately as traditional coding measures, which all require prior training on species-speci�c DNA data sets. The capability of I to distinguish coding from noncoding DNAwithout prior training and irrespective of its phylogenetic origin suggests that I mightbe useful to identify coding regions in genomes for which training sets do not exist. Inan attempt to understand the origin of the observed species-independence of I, we foundthat the species-independence of �n(I) may result from the absence of a reading frame innoncoding DNA. We derived analytically the I-distribution for an ensemble of random,uncorrelated sequences of arbitrary composition, and we showed that this distributionis consistent with the observed I-distribution of noncoding DNA for all species and allsequence lengths N . For coding DNA, we could show that the presence of a reading framein coding DNA sequences is not su�cient to reproduce the observed I-distributions ofcoding DNA. This �nding makes it tempting to conjecture that additional correlations orinhomogeneities are a vital and species-independent ingredient of coding DNA sequencesof any living organism.



Chapter 17Optimization of Coding MeasuresUsing Positional Dependence ofNucleotide FrequenciesIn this chapter we study the discrimination accuracy of coding measures based on thepositional dependence of nucleotide frequencies, and we analyze the statistical dependencesbetween coding measures and di�erent A+T content. We introduce two generalized codingmeasures, the position asymmetry Dp and the position information function Iq, and westudy how accurately Dp and Iq can distinguish coding from non-coding DNA as a functionof the parameters p and q. We determine the parameter values p� and q� for which Dp andIq distinguish coding from non-coding DNA most accurately. We �nd that p� and q� varyonly little with the length of the studied DNA sequence. Moreover, we �nd that Dp� andIq� yield accuracies comparable to the accuracy of customarily employed coding measures.17.1 IntroductionRecognition of protein-coding regions in novel sequenced DNA by statistical andinformation-theoretic means constitutes a challenging problem in computational molec-ular biology (Fickett 1996; Searls, 1998). This task has received considerable attention inthe last decade, as large-scale sequencing projects generate primary un-annotated DNAsequences in an exponentially increasing amount. Genes of higher eukaryotes consist ofexpressed regions (exons) which are interrupted by intragenic regions (introns). Exons and



225introns, respectively, posses distinctive statistical features which can be exploited to dis-criminate protein-coding versus non-coding DNA. Conventional algorithms for gene-�ndingintegrate heterogeneous types of information, namely the search by content and the searchby signal. A third type of information is derived from database similarity searches. Genesearch by content signi�es for a given sequence the potential to which it is coding. Genesearch by signal involves the detection of binding sites and other signals in the surround-ings of a gene, such as promoters, splice sites, translation initiation and termination sites,and poly(A)-sites. To predict the most likely gene structure from the primary transcriptgene search by content is typically combined with the search by signal using probabilis-tic (hidden Markov) models of DNA, discriminant analysis, or neural networks. Severalpertinent models have been proposed and applied to the gene-identi�cation problem in acomputer program. Some examples of such programs include GeneID (Guig�o et al. 1992),GeneParser (Snyder & Stormo 1993), GENMARK (Borodovsky & McIninch 1993), Gen-Lang (Dong & Searls 1994), FGENEH (Solovyev et al. 1994), GRAIL II (Xu et al. 1994),MZEF (Zhang 1997); GENSCAN (Burge & Karlin 1997), GeneGenerator (Kle�e et al.1998), GLIMMER (Salzberg et al. 1998). The advantages and disadvantages of severalgene-identi�cation algorithms have been evaluated recently (Fickett 1996; Burset & Guig�o1996; Claverie 1997) as well as the application of algorithms in conjunction (Murakami& Takagi 1998). Computer-based prediction is nowadays customarily used to provide theinitial annotation of genes (Fleischman et al. 1995; Nelson et al. 1999).The most prominent statistical feature in exons is the existence of a reading framewith an associated codon usage. The reading frame induces a triplet periodicity in codingsequences, while it is absent in non-coding sequences. In general, a nonuniform codon usagegives rise to a di�erent concentration of each nucleotide in the positions of the readingframe. Possible reasons for the nonuniformity of the codon usage are (i) the nonuniformamino acid composition of proteins, (ii) the unequal number of codons encoding di�erentamino acids, and (iii) the nonuniform distribution of synonymous codons.We study coding measures based on the positional dependence of nucleotide frequen-cies. Coding measures correlate with the likelihood that a certain region in DNA is protein-coding and, apart from gene identi�cation, they are applicable to shotgun sequencing exper-iment (whether non-assembled DNA fragments occur in coding regions) and mRNA/cDNAmatching analysis (whether pieces of cDNA from expressed mRNAs occur in the trans-lated segment of mRNA). Evaluated coding measures can be applied to DNA sequences



226without prior training. We show that coding measures can be directly derived from thecorresponding DNA sequence. The the number of variables used to discriminate codingversus non-coding DNA is 4 � 3 (nucleotide � triplet position). On the one hand, thishas the advantage to overcome statistical noise, but on the other hand the disadvantage toneglect information not encoded in the codon composition, such as codon-codon interac-tions. Various coding measures have been developed to quantify the positional dependenceof nucleotide frequencies and applied in computer programs. Some of them include theprevalence for the use of codons of the form RNY (here R = purine, Y = pyrimidine,and N = any nucleotide) (Shepherd 1981), the nonuniform positional nucleotide usage(Fickett 1982; Staden 1984; Fickett & Tung 1992), the di�erent G+C content (Bibb et al.1984), the detection of characteristic periodicities (Silvermann & Linsker 1986; Tiwari etal. 1997), the higher concentration of G in the �rst codon position (Trifonov 1987), thepositional dependence of entropy (Amalgor 1985; Grosse et al., 1999a) and of nucleotidepair correlations (Grosse et al. 1999b).We introduce generalized coding measures and study how accurately the position asym-metry function Dp and the position information function Iq distinguish coding from non-coding DNA in dependence on the parameter values p and q. We search for parametervalues which maximize the discrimination accuracy, and we contrast and compare theseoptimum parameters with conventionally used parameters. Our study shows that exonrecognition with optimum parameters yields comparable results in accuracy as currentlyemployed coding measures, some of which require a much higher number of parameters.We make use of two di�erent sequence data sets to evaluate the accuracy: (i) to connectour studies to previous work we use data from standardized benchmarks of Fickett & Tung(1992), and in addition (ii) we use recent data from GenBank (release 111 1999). Since thediscrimination accuracy of many coding measures has been shown to depend strongly onthe A+T content (Guig�o & Fickett 1995), we examine also the statistical dependences ofcoding measure functions on di�erent A+T content of DNA sequences. We conduct thisanalysis using graphical methods and tests for non-linear and linear statistical dependences.The content of this study is as follows. In section 2 we introduce the frame dependencematrix from which we derive current coding measures. We discuss how a certain measurecaptures the positional dependence of nucleotide frequencies and supplement the discussionby an example. In this context, we examine the statistical dependence of coding measureson the A+T content of the query sequence. In section 3 we introduce the data sets prepared.



227We turn to the performance of coding measures and evaluate explicitly the discriminationaccuracy of the positional information measure I1. In section 4 we introduce generalizedcoding measures as function of parameters. We discuss properties of these functions andevaluate the discrimination accuracy as a parameter-dependent function. We search forthose parameters which extract optimally the discriminating features to distinguish codingversus non-coding DNA. We contrast and compare our results with conventionally usedparameter values and with the performance of established coding measures.17.2 Currently Applied Coding MeasuresWe consider a moving window of length 3 � N along a DNA sequence and decomposethe window into N successive non-overlapping triplets. Let F (bjl) denote the numberof occurrences of base b (= 1; 2; 3; 4 � A;C;G;T) at the triplet position l 2 (1; 2; 3).The corresponding relative frequencies are de�ned by f(bjl) = F (bjl)=N . Let the framedependence matrix F be the matrix in which each element contains f(bjl). Then, F has4� 3 elements where due to normalization 9 su�ce to fully determine it. Furthermore, weseparate the mean f(b) of base b according to f(bjl) = f(b) + d(bjl) as the elements of thevector f . The mean of base b is calculated from f(b) =P3l=1 f(bjl)/3. The residuals d(bjl)enter as elements of the matrix D. The entries of D represent the positional deviationsfrom occurrences expected by chance. Obviously, F is complementary to D and f .The notations are visualized in the following sketch, in which the data are obtainedfrom the 5085 bp long protein-coding sequence from the intensively studied (Buldyrev etal. 1993) human beta-myosin heavy chain (HUMBMYH7) gene:DNA sequence segment containing 5085 basepairs (bp)z }| {atg ggagattcggagatggcagtctttggggctgccgccccctacctgcgcaagtca| {z }Moving window of length 54 bp gag : : : : : :ttgaatgaggaggga gat tcg gag : : : : : :aag tca| {z }N=18 triplets of the above windowGly Asp Ser Glu : : : : : :Lys Ser| {z }Amino acid sequenceFrom the decomposition we calculate the elements f(bjl), f(b), and d(bjl). For the above



228window they read (for illustrative purposes the elements have round-o� errors of 0:01):F = 0BBBB@ 0:11 0:22 0:170:17 0:39 0:390:50 0:17 0:330:22 0:22 0:11 1CCCCA ; f = 0BBBB@ 0:170:320:330:18 1CCCCA ; and D = 0BBBB@ �0:06 0:05 0:00�0:15 0:07 0:070:17 �0:16 0:000:04 0:04 �0:07 1CCCCA :Note that in this way, e.g., the excess (lack) of G in the �rst (second) codon position aswell as the high G+C content in the third codon position become apparent.At this stage, we brie
y reconsider currently applied coding measures proposed tocapture the discriminating features in F, orD and f , in a single scalar coding potential. Weoutline the mechanism concerning how a nonuniform codon usage a�ects a certain measure.Later on this will allow us to introduce a framework of generalized coding measures. Forillustration, we include calculations for the above window.� TestCode (Fickett 1982). The base compositional asymmetry is quanti�ed in a linearweighted sum containing eight parameters, four of them are given by f(b). Theasymmetry A(b) of base b is de�ned by the ratios of the maximal and minimal valuesof F (bjl). The resulting weighted overall coding measure is calculated to beA = 4Xb=1�W (b) � maxl2(1;2;3)fF (bjl)gminl2(1;2;3)fF (bjl)g+ 1 + w(b) � f(b)� (17.1)where the weightsW (b) and w(b) are determined by training sets of exons and introns,and the additional 1 in the denominator has been introduced to avoid the divergencein the case F (bjl) = 0. In order to construct a parameter-independent measure, weset W (b) � 1 and w(b) � 0. Then,A = 4Xb=1� f(b) + maxl2(1;2;3)fd(bjl)gf(b) + minl2(1;2;3)fd(bjl)g+ 1=N � (17.2)measures the largest positional deviation from the mean. If we substitute the valuesfrom f and D according to the window given above, we obtain A = 9:23 as a measurefor its coding potential.� Uneven positional base frequencies (Staden 1984). The deviation of the positionalbase concentration from its mean are used to de�ne the distances jd(bjl)j. Thiscoding measure reads D1 = 4Xb=1 3Xl=1 jd(bjl)j : (17.3)



229The introduction of the index \1" will become clear in the context later on. Sub-stituting the values from the sample window, we obtain D1 = 0:88. To contrastthis outcome with non-coding DNA, we make the simplifying assumption that eachbase b shows no dependence on the triplet position, f(bj1) = f(bj2) = f(bj3). Henced(bjl) = 0 due to the absence of any frame dependence, and the coding potentialaccording to this model vanishes.� Position asymmetry (Fickett & Tung 1992). The sample variance is used to quantifythe positional spread of the mean frequencies f(b), usingD2 = 4Xb=1 3Xl=1 d2(bjl): (17.4)Obviously, this coding measure is closely related to the one proposed by Staden(1984). Applying eqn (17.4) to the sample window yields D2 = 0:10, and for themodel of non-coding sequences D2 = 0.� Fourier measure (Silverman & Linsker 1986). The square of the Fourier transform(the power spectrum) is derived from 4 (each for one base) binary translated DNAsequences. Assigning some base b at the nth window position Un(b) = �a;b (where�ab = 1 if a = b, and it is 0 otherwise), the power spectrum can be calculated fromP (f) = 4Xb=1 �����P3�Nn=1 Un(b) � e�i�2�f �n3 �N �����2 (17.5)where f = m3�N with m = 1; : : : ; 3�N2 . Commonly m = N is used to extract onescalar coding measure P (13) from the spectrum signifying the period-3 amplitude.Interestingly, it has been observed (Guig�o 1999) that P (13) and D2 measure the samecoding potential. Since 13�N �P3�Nn=1 Un(b) = f(b), it can be analytically shown that byusing e�i 2�3 as weights, P (13) is up to a constant equal to D2 (Grosse, unpublished).Consequently, P (13) can be derived from the frame dependence matrix F. The fullspectrum can in fact be used to overcome statistical noise (Tiwari et al. 1997) usingthe ratio P ( 13 )hP (f)i , where the average hP (f)i can computed from f2(b).� Positional information. For each position l, the position entropy H1(l) can be calcu-lated from f(bjl) (Shannon 1948; Schneider 1997). Likewise, the entropy correspond-ing to the mean H1 can be calculated from f(b). Considering each H1(l) in isolation(Amalgor 1985) results to poor discrimination accuracy (Fickett&Tung 1992). To



230obtain an accurate coding measure it turns out that di�erence between H1 and theaverage of H1(l) is appropriate, de�ning the positional information as (Grosse et al.1999a) I1 = H1 � 13 � 3Xl=1H1(l)= � 4Xb=1 f(b) � log2 f(b) + 13 � 3Xl=1 4Xb=1 f(bjl) � log2 f(bjl): (17.6)If we use the relation f(b; l) = f(bjl) � f(l) and introduce f(l) = P4b=1 f(b; l) as therelative frequency to �nd b at the lth triplet position, the positional information canbe written as a mutual information between positional nucleotides. This gives rise toI1 = 4Xb=1 3Xl=1 f(b; l) � log2� f(b; l)f(b) � f(l)� : (17.7)I1 is the average information in base b about the position l (and vice versa) measuredin units of bits. In case of the window above, we obtain I1 = 0:09 (bits/bp). Fornon-coding DNA, f(b; l) factorizes to f(b) � f(l), and I1 = 0 vanishes.� Average mutual information (Grosse et al. 1999b). The mutual information I(k)as a function of the base pair (a; b) separated by a distance k is used. Under thesimplifying assumption that the DNA sequence consists of statistically independentcodons (Herzel & Grosse 1995), the corresponding frequencies fk(a; b) factorize andcan be obtained from F according tofk(a; b) = 13 �8>><>>: f(aj1) � f(bj1)+ f(aj2) � f(bj2) + f(aj3) � f(bj3) k = 3; 6; 9; : : :f(aj1) � f(bj2)+ f(aj2) � f(bj3) + f(aj3) � f(bj1) k = 4; 7; 10; : : :f(aj1) � f(bj3)+ f(aj2) � f(bj1) + f(aj3) � f(bj2) k = 5; 8; 11; : : :Transposition of the subscripts a and b shows that fk(a; b) = fk+1(b; a) for k =4; 7; 10; : : : and, consequently, I(k) assumes only two values: the in-frame and theout-of-frame mutual information, Iin for k = 3; 6; 9 : : : and Iout for k = 4; 5; 7; 8; : : :.The average is used to de�ne �I = Iin + 2 � Iout3 : (17.8)Eqn (17.8) quanti�es the average mutual information shared by a and b given thedistance k between a and b is a multiple of 3. For the window above, the overall



231result is calculated to be �I = 0:005 (bits/bp), whereas we �nd �I = 0 (bits/bp) fornon-coding DNA.In the following section we will evaluate how accurate the coding measure I1 distin-guishes coding versus non-coding DNA. We introduce the data on which this study will beconducted, sketch the evaluation technique, and study the statistical dependence of I1 ondi�erent A+T content.17.3 Discrimination Accuracy of Positional InformationIf we apply a coding measure to sets of exons and introns, we can derive histograms asestimates for the associated probability distributions. A perfect coding measure wouldgenerate two non-overlapping histograms. In practical applications, however, histogramsoverlap due to the �nite length of windows. We evaluate the performance of coding mea-sures as follows:1. Using the abbreviations T (true), F (false), P (positives), and N (negatives), wedenote the relative number of coding sequences correctly predicted as coding by thesensitivity Sn = TPTP+FN . In the same manner, we denote for non-coding sequencesthe speci�city Sp = TNTN+FP .2. We determine the threshold above which a sample window is assigned to the exonclass or the intron class by imposing equal relative errors on exons and on introns,writing Sn = Sp.3. Eventually, we quantify the accuracy of a coding measure to yield correct predictionsas Sn+Sp2 , ranging from 12 (no discrimination) to 1 (perfect discrimination).To compare the accuracy by which the positional information I1 can distinguish codingversus non-coding DNA with the accuracy of other coding measures, we use standardbenchmarks and recent data sets of human DNA. By set A, we refer to sequences from theFickett & Tung (1992) benchmark data set (extracted from GenBank databases in 1992).Since I1 does not require prior training, we evaluate I1 for both the training (Atraining)and the test set (Atest). Recently, this data set has been used by Yan et al. (1998) to re-evaluate the accuracy of the Fourier measure using a length-shu�ed version. Instead of thecomplete benchmark data, there a subset of 1000 (500 coding, 500 non-coding) sequencesfor training and (500, 500) for testing was used. In order to avoid the possibility that



232one data set might not re
ect real performance, we make use of an additional sequenceset B, by which we refer all human sequence �les extracted from GenBank release 111.For this application, non-overlapping fully protein-coding and fully non-coding sequencewindows of length L bp were obtained by partitioning the above sequences longer than Linto windows1 of length L. When Fickett & Tung (1992) evaluated the accuracy of theentropy measure H1(l) (Amalgor 1985), it performed only moderately in distinguishingcoding versus non-coding DNA. We already mentioned in the previous section that this ismainly due to the use ofH1(l) in isolation, rather than to consider I1, namely the di�erenceH1 � hH1(l)il. In this section, we will show that the positional information I1 is superiorto the entropy H1(l) by evaluating the accuracy of I1 on datasets Atraining, Atest, and B.I1 varies from one window to another. We estimate the probability density functionP(I1) (Q(I1)) by applying I1 to coding (non-coding) DNA. Figure 1 shows the resulting I1-histograms for sets Atraining, Atest, and B. We �nd that both coding and non-coding DNAhave unimodal I1-histograms with distinct maxima. We detect that for either data setthe I1-histograms are signi�cantly di�erent for coding and non-coding DNA, although thehistograms overlap owing to the �nite window length. In each data set I1-histograms fornon-coding DNA are centered at signi�cantly smaller values than the histograms of codingDNA. Figure 1 also shows that the I1 histograms for sets Atraning, Atest, and B are similar.Hence, the accuracy by which I1 distinguishes between coding and non-coding DNA doesnot sensitively vary when evaluated on human DNA sequences from GenBank releases in1992 and 1999. Fickett & Tung (1992) state the accuracy of the entropy measure H1(l)for windows of length 108 bp with 63.1%. The inset shows that I1 allows a discriminationof coding versus non-coding DNA with an accuracy of approximately 76% evidencing thata novel application of entropy constitutes indeed a powerful coding measure (Grosse et al.1999a). We also evaluate the accuracy of the coding measures A; �I;D1, and D2 discussedin the previous section. Table 1 shows in part (a) the accuracy as obtained by applicationto Atraning, Atest, and B.In Figure 1, we observe for coding sequences a small but detectable shift causing theoverlap between P(I1) and Q(I1) to become larger when using set B. We examine whether1Number of coding (non-coding) windows: Atraining 54 bp: 20,456 (125,132), 108 bp: 7,086 (58,118), and162 bp: 3,512 (36,502). Atest 54 bp: 22,902 (122,138), 108 bp: 8,192 (57,032), and 162 bp: 4,266 (35,602).Set B 54 bp: 595,194 (171,677), 108 bp: 282,876 (81,110), 162 bp: 178,520 (51,078), and 1080 bp: 4482(15,984).



233this slight decrease in accuracy is possibly related to a biased A+T content toward lowregions. This would signify the sensibility of the performance of I1 with respect to A+Tcontent variations in databases. Figure 2 shows the A+T content of the data sets anddisplays mean and variance of I1 binned to 20 intervals. From the �gure we can concludethat one possible explanation for the worsening in accuracy is indeed the di�erence in theindividual A+T content of the data sets. A comparison of the top graphs shows that set Bcontains more sequences with high A+T content as compared to sets Atraining or Atest. Thebottom graphs show that the discrimination is more accurate for sequences with low A+Tcontent. It is a general feature that many coding measures share this property of beingdependent on the A+T content (see, e.g., Guig�o & Fickett 1995). While I1 is practicallyindependent on the A+T content of non-coding sequences, it shows a dependence on theA+T content of coding sequences and decays with increasing content.The linear and non-linear statistical dependences captured by Figure 2, which is inessence a scatter plot binned to 20 ranges, can be quanti�ed. We therefore calculate thecorrelation coe�cient C(X; Y ) between I1 (=X) and the window A+T content (=Y ) tomeasure linear correlations. Nonlinear correlations can be quanti�ed by calculating theuncertainty coe�cient U(X; Y ). Details for the calculation of correlation and uncertaintycoe�cients are consigned to the Appendix. Table 2 shows in part (a) results of C(X; Y ) andin part (b) results of U(X; Y ) applied to data samples derived from X = A; �I;D1, D2, andI1. We observe for all coding measures weak linear and non-linear dependences for introns,whereas we observe clear linear anti-correlations and higher non-linear correlation for exons.Because U(X; Y ) accumulates all pair correlations (Herzel & Grosse 1997), the weaknessof correlations between introns and A+T content implies that U(X; Y ) / C2(X; Y ). Wealso note that values of C(X; Y ) and U(X; Y ) are in general higher for sets Atraining orAtest than for set B, a feature related to the lower overall A+T content of set B.17.4 Optimization of Coding MeasuresIn this section, we introduce generalized coding measures. Inspecting the measures D1 andD2, as de�ned in eqn (17.3) and (17.4), we realize that these are actually just two specialvalues of the coding measure functionDp = 4Xb=1 3Xl=1 jd(bjl)jp ; (17.9)



234where p can take on any real number. Dp recovers the measure of Staden (1984) for p = 1and the measure of Fickett&Tung (1992) for p = 2. We refer to eqn (17.9) as positionasymmetry function.Another coding measure function is obtained in the realm of entropy. Recall that I1can be expressed as the di�erence H1 � hH1(l)il. According to R�enyi (1970), there existsa natural extension of the ordinary entropy to entropies Hq characterized by a parameterq which can take on any real number. Introducing Zq = P4b=1 f q(b), the R�enyi entropiesare de�ned as Hq = log2 Zq1�q . If we now substitute Hq for H1 in eqn (17.6), we de�ne theposition information function asIq = Hq � 13 � 3Xl=1Hq(l)= log2 �P4b=1 f q(b)�1� q � 13 � 3Xl=1 log2 �P4b=1 f q(bjl)�1� q : (17.10)Equivalently, we can write the above expression using f(l) asIq = 11� q � 3Xl=1 f(l) � log2  P4b=1 f q(b) � f q(l)P4b f q(b; l) ! : (17.11)Taking the limit q ! 1, Iq recovers the positional information I1 as de�ned in eqn (17.7).The generalizations Dp and Iq comprise the focus of the remaining studies. The moti-vation to introduce coding measure functions stems from the insight that up until now thecoding potential of most DNA sequences has been studied by computing, e.g., D1, D2, andI1. That is, just one or two points in an in�nite spectrum of discriminating functions Dpand Iq. Hence, one is e�ectively neglecting discriminating features which may be presentin the whole spectrum of Dp and Iq. Here we generalize the method of coding measures insuch a way that all coding measures Dp and Iq can be computed from a sequence window.We study the discrimination accuracy of Dp (Iq) as a function of p (q) and evaluate optimalparameters which distinguish coding versus non-coding DNA most accurately.Note the mechanism of how a parameter change a�ects a coding measure. Consider, forinstance, Iq. The parameter q plays a role similar to a weight. A change of q will changethe relative weight that f(b) and f(bjl) contribute to the coding potential. The higher q,the more heavily the larger frequencies contribute, and vice versa. In the limit q ! 1,only the highest frequencies contribute. On the other hand, q < 0 weights the contributionof lower frequencies. Hence, varying q allows for all discriminant features captured by



235the compositional bias of codon positions in Iq. In a similar manner, the same reasoningapplies to Dp by considering moments of order p.We study the discrimination accuracy of coding measure functions by applying Dp andIq to Atraining, Atest, and B. We compute the accuracy as a function of p and q, respectively,and compare the results with the accuracy of current coding measures. In order to comparethe accuracy with previously obtained results on benchmarks, in this evaluation windowshave lengths 54, 108, and 162 bp. Figure shows the accuracy for Dp s a function ofp 2 [�10; 10] and Figure 4 for Iq a and q 2 [�10; 10] for windows of length 108 bp. Theaccuracy exhibits in either case a strong dependence on the parameters values, Both Dpand Iq have a signi�cant higher accuracy for p; q > 0 as compared to p; q < 0. After passingthrough zero, the accuracy of Dp attains its global maximum and then varies only littlefor p 2 [0; 10]. The accuracy of Iq shows a pronounced peak at about q = 2 and decayssteeply when q increases. If we consider Dp and Iq as coding measure functions of integerparameters, we �nd that D2 and I2 yield the maximum accuracy with I2 being the mostaccurate measure. While p = 2 regains the position asymmetry (Fickett & Tung 1992)as the most e�ective Dp coding measure, for q = 2, we obtain that I2 constitutes a novelcoding measures.In numerical experiments with windows of length 54 and 162 bp we could observe qual-itatively similar results. Table 1 summarizes our �ndings. Part (a) shows the accuracyof current and generalized coding measures using positional dependence of nucleotide fre-quencies for distinguishing coding versus non-coding DNA for the three di�erent windowsizes. Part (b) lists the most e�ective (phase-independent) coding measures after priortraining on set Atraining for set Atest according to Fickett & Tung (1992). Part (b) alsoshows the number of parameters required for discrimination (for the Fourier it dependson the number of spectral lines used from the total spectrum, and for the Run measure itdepends on the number of runs of \non-trivial" subsets). The results point out that bothDp and Iq yield a comparable accuracy as customarily used coding measures after priortraining, some of which require a much higher number of parameters. Since Dp and Iq canbe computed e�ciently (we extract 12 positional nucleotide frequencies from a window)and need not be trained on prior data sets, generalizations of coding measures could easilybe incorporated into existing algorithms.Having determined the optimal parameters popt and qopt, we examine the statisticaldependence of Dp and Iq at popt and qopt on the A+T content. Table 2 shows for several



236parameter values adjacent to popt and qopt in part (a) linear and in part (b) non-linearstatistical dependences of Dp and Iq on the A+T content. Dp shows overall weak correla-tions for non-coding DNA, but persistent anti-correlations for coding DNA. On the otherhand, Iq correlates in the linear realm lesser with coding DNA when q is increased, albeitcorrelations decrease in the non-linear realm for non-coding DNA.We further investigate the dependence of the maximum accuracy at popt(N) and qopt(N)on the number of triplets N in a window. To conduct this study we evaluate the accuracyof Dp (Iq) as a function of p (q) in consideration of the length N . We partition all humansequences from GenBank into non-overlapping fully protein-coding and fully non-codingsequences longer than 1080 bp into windows of 1080 bp. We then study the accuracyfor windows of length which di�er two orders of magnitude, ranging from 1080 to 27bp, while keeping the overall number of bases constant. Figures 5 and 6 represent our�ndings. Figure 5 shows that popt is approximately independent on N , while Figure 6shows this approximate independence for qopt. We note, however, that the sharp accuracypro�le derived from Iq becomes less pronounced with increasing length N , re
ecting that Iqbecomes practically parameter-independent in the limit of large window length. As such,usage of qopt plays an important role when using a window with only moderate length,e.g. in the order of N � 100 bp. Indeed, this situation is quite relevant, for human DNAsequences have an average exon length of �150 bp and have even been reported to rangedown to the order of 10 bp (Deutsch & Long,1999).17.5 ConclusionsWe generalized coding measures as functions of parameters. We study the position asym-metry function, Dp, and the position information function, Iq. Within this framework, forspecial values of p and q the functions Dp and Iq include several current coding measures:the uneven positional frequency (p = 1), the position asymmetry (p = 2), respectively theFourier measure, and the position entropy (q = 1).We study the discrimination accuracy of Dp and Iq as a function of the parameters pand q. We �nd that the accuracy of how well Dp and Iq distinguish protein-coding versusnon-coding DNA shows a strong dependence on p and q. Our �ndings reveal that theaccuracy of Dp (Iq) as a function of p (q) can be used to search for optimal parametersthat extract most discriminating features to distinguish coding versus non-coding DNA.



237The accuracy of coding measures presented here can thus be maximized using optimalparameters popt or qopt. In integer parameter space we �nd D2 and I2 to be the mostaccurate coding measures, where I2 � P3l=1 f(l) � log2 hP4b=1 f2(b; l)/P4b=1 (f(b) � f(l))2i.Whereas D2 establishes the position asymmetry as the most accurate coding measure, I2constitutes a novel coding measure.It has been noted that DNA sequences available in current databases are biased, e.g.towards atypical codon usage or low A+T compositional samples as shown in Figure 1,and this in turn could a�ect the performance of gene identi�cation algorithms. In this re-gard, coding measures using positional dependent nucleotide frequencies are advantageousin that they can be applied without prior training. To access the A+T content dependence,we examine linear and non-linear statistical relationships between coding measures and theA+T content of windows extracted from recent data. We �nd both current and generalizedcoding measures Dq and Iq (at popt and qopt) relatively insensitive to the A+T content ofnon-coding sequences and clearly anti-correlated to the A+T content of coding sequences.While Dp exhibits persistent correlations between the A+T content and parameter valuesadjacent to popt, linear (non-linear) correlations between the A+T content and Iq decrease(increase) for parameter values q > qopt. Further research directions will include a com-prehensive analysis of the dependence of coding measures on the A+T content of modeland database sequence sets. The applied combination of linear and non-linear analysis caneasily be used to detect statistical dependences in more sophisticated coding measures, e.g.based on dicodon interrelations.We study the accuracy pro�le of Dp (Iq) at their optimal parameters popt (qopt) as afunction of the number of triplets N used to evaluate the coding potential. Our �ndingsshow popt(N) � popt and qopt(N) � qopt approximately independent on N , thus avoidingthe expendable �ne-tuning of parameters. The computation of Dp and Iq is e�cient andcan be supplemented by existing algorithms that search for gene signals, e.g., start andstop codons, splice junctions, and promoter sequences. The coding measures presented hereare universal in that they are not species-speci�c in detecting positional dependences ofnucleotide frequencies from F. The optimization of Dp and Iq does not sensitively dependon any prede�ned window length and perform reasonably well for window sizes as moderateas 54 bp.
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Figure 17.1: Histograms of I1 for human exons (right) and introns (left) of length 108bp. The corresponding cumulative distributions are shown in the inset. While the valuesof I1 
uctuate from window to window, their distribution is almost the same irrespectiveof Atraining, Atest, or B. For all three data sets, the I1-histograms of non-coding DNAare centered at signi�cantly smaller values as compared to coding DNA. For Atraining themean � and standard deviation � for exons (introns) are �(log I1) = �2:39 (�3:36) and�(log I1) = 0:70 (0:68), for Atest �(log I1) = �2:41 (�3:38) and �(log I1) = 0:74 (0:69),and for B �(log I1) = �2:52 (�3:41) and �(log I1) = 0:69 (0:66). For coding DNA, weobserve a small but signi�cant shift of set B with respect to both Atraining and Atest. Bothdistributions show an overlap, the enclosed area of which speci�es how accurately we candistinguish coding versus non-coding DNA. The inset shows that I1 performs on Atrainingand Atest with approximately 76%, and on set B with approximately 75% accuracy.
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Figure 17.2: We study the dependence of I1 on the A+T content for exons (thick graph)and introns (thin) in Atraining (a), Atest (b), and B (c). To calibrate error bars, we equatethe number of coding sequences with the number of non-coding sequences in all three�gures (each class comprising 7000 sequences). In the top, we display the histograms ofthe overall A+T content as derived from the data sets. The overall A+T content of exonsis approximately 45% in Atraining, 43% in Atest, and 47% in B. For introns, it is 52%, 51%,and 54%. In the bottom, we show the dependence of log I1 on the A+T content, by binningthe A+T values to 20 bins and computing the mean and standard deviation of I1 per bin.The overlap of error bars indicates that the discrimination of exons from introns is lessaccurate for high A+T content.
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246Tab. 1. Performance of coding measures - human DNAa. Coding measures based on positional dependence of nucleotide frequencies54 bp 108 bp 162 bp 54 bp 108 bp 162 bp 54 bp 108 bp 162 bpA 68.9 75.9 79.6 68.3 75.1 79.3 66.9 74.2 79.3D1 69.9 76.6 80.9 69.4 76.3 79.8 68.0 75.1 79.4D2 70.2 76.8 80.8 70.0 76.6 80.1 68.0 75.5 80.5D3 69.8 76.7 80.4 69.9 76.7 80.3 68.1 75.3 80.3D4 69.5 76.4 80.1 69.5 76.3 80.0 67.9 75.1 80.0�I 69.7 76.4 80.6 69.6 76.1 80.1 67.6 75.2 80.3I1 69.2 76.6 80.7 69.0 75.9 80.0 67.1 75.1 80.2I2 70.6 77.2 81.1 70.2 76.9 80.6 69.1 76.2 80.9I3 69.6 76.6 80.4 68.9 75.2 79.2 68.4 75.3 79.9I4 68.7 75.1 78.8 67.9 73.6 77.2 67.6 73.9 78.2b. Most accurate coding measuresCoding measure Number of input Set Atestparameters 54 bp 108 bp 162 bpHexamer 4096 70.5 73.1 74.2Position asymmetry 12 70.2 76.6 80.6Dicodon usage 4096 70.2 72.9 73.9Fourier 8 69.9 76.5 80.8Hexamer-1 4096 69.9 72.6 73.8Hexamer-2 4096 69.9 72.6 73.8Run 6 66.6 70.3 71.3Codon usage 64 65.2 68.0 69.5Comparison of the generalized coding measures, Dp and Iq with currently used algorithms.Part (a) shows the accuracy as obtained by applying current (A, �I) and generalized (Dp,Iq) coding measures evaluated on the benchmark test of Fickett & Tung (1992) for threedi�erent window sizes. Since these measures require no prior training, we also apply themto the training set. Part (b) shows the percentage average of correctly predicted codingand non-coding DNA regions for 8 coding measures evaluated in Fickett & Tung (1992)as the most accurate discriminator of coding versus non-coding windows of lengths equal



247to 54, 108, and 162 bp. The corresponding number of parameters is given. Note that foroptimum parameters, popt and qopt, Dp and Iq are as accurate as conventional measures(after prior training).



248Tab. 2. Statistical dependences on the A+T contenta. Correlation coe�cientData set A D1 D2 D3 D4 �I I1 I2 I3 I4Atraining -0.39 -0.31 -0.31 -0.31 -0.31 -0.35 -0.36 -0.20 -0.08 0.000.01 -0.02 -0.03 -0.03 -0.03 0.00 0.00 -0.04 -0.05 -0.06Atest -0.42 -0.33 -0.35 -0.36 -0.35 -0.37 -0.38 -0.22 -0.07 -0.02-0.03 -0.05 -0.05 -0.05 -0.05 -0.04 -0.04 -0.05 -0.03 -0.02B -0.23 -0.20 -0.20 -0.20 -0.20 -0.21 -0.22 -0.14 -0.07 -0.030.03 -0.04 -0.04 -0.04 -0.04 -0.01 0.00 -0.13 -0.20 -0.23b. Uncertainty coe�cientData set A D1 D2 D3 D4 �I I1 I2 I3 I4Atraining 0.06 0.04 0.04 0.04 0.04 0.05 0.05 0.03 0.03 0.030.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04Atest 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04B 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.01 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04Linear (a) and non-linear (b) statistical dependences of current and generalized codingmeasures on the A+T content evaluated for exons and introns of length 108 bp fromAtraining, Atest, and B. For each set we choose for each class a subset of 7000 sequences.We state results within 0.01 precision (jC(X; Y )j or jU(X; Y )j < 0:01 are stated as zero),and the calculation of the uncertainty coe�cient was performed by distributing the dataon an array covered byM = 4�4 bins. We note that all currently applied coding measurescorrelate only weakly to the A+T content of non-coding sequences, while they show clearanti-correlations to the A+T content of coding sequences. The statistical dependence of Dpremains approximately persistent for parameter values adjacent to popt. Linear correlationsbetween Iq and the A+T content of coding sequences decay, whereas non-linear correlationsbetween Iq and the A+T content of non-coding sequences rise for q > qopt.



Chapter 18Identi�cation of Protein-CodingRegions in DNA Sequences usingan Entropic Segmentation MethodIn this chapter we present a new approach to the problem of the statistical identi�cationof DNA coding regions. This approach has two features: (i) DNA sequences are describedby using a 12-letter alphabet instead of the usual 4-letter alphabet, and (ii) compositionaldomains are used instead of moving windows. We �nd that this method is highly accuratein �nding borders between coding and noncoding regions and requires no \prior training"on known data sets. We also obtain more accurate results than those obtained with movingwindows in the discrimination of coding from noncoding DNA.18.1 IntroductionWith the availability of the complete genomes of great number of prokaryotic organismsand several eukaryotic ones (yeast, worm), the second phase of genome projects is starting:the functional genomics, i.e. the search for the di�erent functional elements which makeup the DNA sequences [McKusick 1998]. The computational identi�cation of functionalregions (genes, exons, promoters, enhancers, etc.) is an arduous task and the predictiveaccuracy of current methods, although adequate in genomes for which a signi�cant fractionof genes are previously known [Burset & Guig�o 1996], remains rather low when faced withthe large anonymous genomic sequences now being generated by genome projects. So, new



250strategies are needed.A variety of information is used by current gene identi�cation methods, as potentialsequence signals involved in gene speci�cation or sequence similarity database searches.In addition, and more importantly, at the core of all gene identi�cation programs, alwaysexist one or more coding measures (see [Fickett 1998, Guig�o 1999] for reviews). Thesemeasures are typically computed on a moving window, which slides along the sequence.The window length and the step size become thus critical parameters for gene identi�cation.Unfortunately, there do not exist criteria to choose appropriate values for these parameters.Whether a larger window is more or less statistically signi�cant than a shorter one cannot bedecided, and the same is true for the step. Consequently, �xing both parameters introducesan unavoidable subjectivity in the analysis.18.2 Entropic Segmentation AlgorithmWe propose here a new method for the computational recognition of protein coding re-gions in genomic sequences, based on the compositional segmentation of the sequence[Bernaola-Galv�an et al. 1996, Rom�an-Rold�an et al. 1998, Oliver et al. 1999]. The compo-sitional domains obtained are homogeneous and are de�ned statistically, so they lack thearbitrariness of moving windows. Once domains are obtained, any of the existing standardmethods of discriminating coding from noncoding DNA can be applied.One of the most relevant and well-known statistical features of coding regions is thenonuniform codon usage [Grantham et al. 1981]. This means that inside coding regions notall triplets of nucleotides (called codons) occur with the same probability. In particularthe probability of appearance of a nucleotide is di�erent in each of the three positions ofthe triplets [Shepherd et al. 1981, Staden 1982, Fickett 1982, Herzel & Grosse 1995]. Thismay be due to the restrictions imposed by the genetic code and also probably to somekind of preferences in the synonymous codon usage, but no matter what its origin is,this feature is not present in noncoding DNA, so this property can be used to distinguishbetween coding and noncoding DNA. In fact, based on these di�erences, the �rst generationof gene prediction programs, designed to identify approximate locations of coding regionsin genomic DNA were developed [Staden 1982, Fickett 1982].Here we develop a segmentation algorithm based on a 12-symbol alphabet. We de�nethe phase of position, i, of a nucleotide to the number j = i mod 3, where j 2 f0; 1; 2g. So,



251each of the nucleotides of the DNA sequences can be substituted by one of the followingsymbols: A12 = fA0; A1; A2; T0; T1; T2; C0; C1; C2; G0; G1; G2g; where, for example, T2means that we have found a nucleotide T with phase = 2.Our aim is to divide a DNA sequence into segments in such a way as to maximizethe di�erence in composition between them, and where the composition is measured bythe frequency vector related to this 12-symbol alphabet. We hope these segments willcorrespond to alternating coding and noncoding regions. The method we describe hereis the same introduced in [Bernaola-Galv�an et al. 1996] with several improvements. Thismethod has been used to de�ne a measure of DNA sequence compositional complexity[Rom�an-Rold�an et al. 1998], to describe the complexity of several DNA sequence models[Bernaola-Galv�an et al. 1999], to study the compositional structure of the sixteen chromo-somes of Yeast [Li et al. 1998] and, recently, to determine statistically the mobility edge ofone-dimensional disordered materials [Carpena & Bernaola-Galv�an 1999].To compute the di�erence in composition between two regions of DNA, in order todecide whether they are di�erent domains or not we use the Jensen-Shannon measure(JS).Consider a DNA sequence composed of symbols belonging to A12, and de�ne the 12-symbol frequency vector F � ff`;jg, where ` 2 fA; T; C;Gg and j 2 f0; 1; 2g, where f`;j isthe relative number of nucleotides of type ` with phase j. Given two sequences of lengthsn1 and n2 with frequency vectors F1 and F2 , the JS is de�ned as:JS (F1;F2) = H (F)� �n1N H (F1) + n2N H (F2)� ; (18.1)where N = n1 + n2, F = n1N F1 + n2N F2 is the frequency vector of the entire sequenceobtained concatenating both subsequences, and H (F) is the Shannon entropy, de�ned by:H (F) = �X̀;i f`;j log2f`;j : (18.2)Among other interesting properties [Bernaola-Galv�an et al. 1996], JS is almost not af-fected by the di�erent size of the sequences being compared.18.3 Applications to DNA SequencesTo test the ability of JS to separate coding from noncoding DNA, we do the following controlexperiments. First we take a known coding DNA sequence and a known noncoding one,



252concatenate them, and go along the resulting sequence with a moving pointer, computingJS for the subsequence at the left and the subsequence at the right of the pointer. Theresults are shown in Figure 18.1(a) (solid line). Note that the maximum is clearly obtainedin the boundary between both regions (vertical dashed line). We also test the e�ect ofinserting one and two nucleotides between the original sequences. This does not a�ect theglobal composition but changes the phase of the nucleotides of the second sequence andhence, the resulting frequency vector F of the right hand side sequence can be considerablydi�erent from the original. As can be seen, the maximum value of JS is again obtainedin the boundary between the two subsequences and the values are very close to the onesobtained without shift. This is due to the fact that in noncoding DNA all three phases arealmost indistinguishable.Sometimes, especially in prokaryotic genomes, the coding regions are separated by avery small noncoding region, too small to be separately identi�ed on an statistical basis.JS is able to distinguish such coding regions, provided they are in di�erent phases, evenif they are in consecutive subregions. The only drawback is that if the regions are in thesame phase they would be identi�ed as only one coding region, but they could be easilyseparated by other methods. To show this, we analyze in Figure 18.1(b) two coding DNAregions, following the same as in Figure 18.1(a). The solid line (the two regions are inphase) reach very low values and does not seem to present a maximum in the boundary ofboth regions (vertical dashed line). On the other hand, when we introduce a phase shift(dashed and dotted line) we obtain very high values of JS and the maximum is clearlyreached in the vicinity of the boundary.To partition a natural DNA sequence which, in general, will be composed of severalcoding and noncoding regions, we search for the partition that maximizes the compo-sitional di�erence between segments, as measured by JS. If the number of such regionsis large, the problem presents high complexity, so we can use the heuristic algorithm[Rom�an-Rold�an et al. 1998]. In brief the procedure works as follows: we move a slidingpointer along the sequence which divides at each position the sequence into two subse-quences and we compute JS. We select the point at which JS reaches its maximum value(JSmax) and compute its statistical signi�cance (see below). If this signi�cance exceeds agiven threshold s, then the sequence is cut at this point. Otherwise the sequence remainsundivided. The procedure continues recursively for each of the two resulting subsequencescreated by each cut. Before a new cut is accepted, we check that the subsequences formed
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Figure 18.1: (a) JS vs. cutting position for a sequence obtained by joining a coding region(gene carB of bacteria E. coli, 3,222 bp long) and a noncoding region (intergenic regionbetween genes leuO and ilvI of bacterium E. coli, 389 bp long); the dashed vertical line isthe border between both regions. (b) JS vs. cutting position for a sequence obtained byjoining two coding regions: genes carB (3,222 bp) and polB (2,463 bp) of the bacterium E.coli. The dashed vertical line is the boundary between the two regions.
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Figure 18.2: Comparison between the known coding regions of Rickettsia (shaded areas)and the cuts obtained at signi�cance level s = 99% (dotted lines).by the cut remain signi�cantly di�erent from their neighbors. The process stops whennone of the possible cutting points has a signi�cance level exceeding s. We say that sucha sequence is segmented at the \s signi�cance level."The signi�cance level smax(x) of a possible cutting point with JSmax = x is de�ned asthe probability of obtaining this value or lower within a random sequence:smax(x) = Prob fJSmax � xg : (18.3)As smax(x) does not seem to admit an easy analytical expression, we have obtained anapproximation [Comment 12].In Figure 18.2 we show the results of the segmentation of a region of the genome ofthe bacterium Rickettsia prowazekii. The shaded areas correspond to the coding regionsobtained from annotations (GenBank acc. AJ235269 [Anderson et al. 1998]), and the ver-tical dotted lines are the positions of the cuts produced by the segmentation algorithm.



255Note the good agreement between cuts and known coding region borders. Note also that,as can be inferred from Figure 18.1(b), the algorithm does not detect the border betweentwo very close coding regions in the same phase (marked with an arrow in Figure 18.2).In order to quantify the coincidence between cuts obtained using the segmentationalgorithm and known borders between coding and noncoding regions, we introduce thefollowing quantity: D � 12 24Xi minj jbi � cj jNT +Xj mini jbi � cj jNT 35 ; (18.4)where fbig is the set of all borders between coding and noncoding regions, and fcjg is theset of all cuts produced by the segmentation, and NT the total length of the sequence. The�rst summation measures the discrepancy between cuts and borders by adding for each realborder the distance to the closest cut. The second summation performs the same operationbut now including for each cut the distance to the closest real border. Both summations areneeded to take into account not only the correctness in the position of the cuts (D wouldbe zero just when cuts and borders coincide), but also the di�erent number of borders andcuts. For instance, if the number of cuts is large, the �rst summation would be very small(because it would be easy to �nd a cut near any border) but the second summation wouldbe very big. On the contrary, if the number of cuts is very small, the second summationwould be also small (one has to sum just a few terms) but the �rst one would reach a verybig value. D can be viewed as an average of the error in the determination of the correctboundaries between coding and noncoding regions, so (1� D) is a reasonable measure ofthe accuracy of the method.Figure 18.3 plots 100(1�D) for the segmentations of three bacterial complete genomesat several signi�cance levels. The accuracy of the method is reasonably good (between70{80%), especially since the method cannot separate adjacent phase-coding regions (seeFigure 18.2).18.4 DiscussionFor the sake of comparison with other methods, we also include results obtained for thesame bacterium with a sliding window, which moves along the sequence and, at eachposition, some discriminant function is evaluated [Comment 13]. The central nucleotide ofthe window is considered to be coding when the value of the discriminant function is above



256a certain threshold, and noncoding when it is below. The positions where the discriminantfunction equals the threshold are proposed to be borders between coding and noncodingregions. The main problem with this method is the determination of the threshold: theonly way to obtain it is to do a training, i.e. to analyze a sequence for which codingand noncoding regions are known and to choose the value which maximizes the number ofmatches for each window size.In Figure 18.3(a) we also include the values of 100(1 � D) obtained with the slidingwindow approach. These values are always clearly below those obtained using the segmen-tation algorithm. One advantage of our method is that the segmentation algorithm is notvery sensitive to a change of signi�cance level. In fact, any segmentation with a signi�cancelevel within the range 90� 95% (the usual range) gives similar results. On the other hand,the choice of the window size seems to be critical, and the optimal values are di�erent foreach bacteria. At this point, it is important to recall that the segmentation method doesnot use any a priori biological information, i.e. it does not require previous training.Up to now we have used the segmentation algorithm only to detect borders betweencoding and noncoding DNA, but there is no criterion to decide whether a domain is acoding or a noncoding region. In order to do this we can evaluate a discriminant function[Comment 13] and decide whether a segment is composed by coding or noncoding DNA. InFigure 18.3(b) we compare the accuracy of segmentation and moving windows approaches.Here the accuracy is de�ned [Burset & Guig�o 1996] as:1�D� � 12 � tpp + tnn � ; (18.5)where tp (tn) is the number of nucleotides correctly identi�ed as coding (noncoding) andp (n) is the total number of nucleotides identi�ed as coding (noncoding). Again, theresults for segments are better than those obtained with moving windows and the choiceof signi�cance level is much less critical than the choice of window length.In conclusion, we have introduced a new method capable of locating borders betweencoding and noncoding regions without using any a priori biological information. In additionthe domains obtained by means of the segmentation procedure improve the accuracy ofthe known discriminant functions.
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*Figure 18.3: (a) Comparison of the accuracy of segmentation (open symbols) and slidingwindow (closed symbols) approaches in �nding borders between coding and noncodingregions for three complete bacterial genomes: Rickettsia prowazekii (
), Escherichia coli(4), and Methanococcus jannaschii (ut); we �nd the best results when the training of thewindows is carried out using the same sequence as the one analyzed. (b) Comparison ofthe accuracy of segmentation and sliding window approach in identifying coding DNA.The discriminant function and the training is the same as used in (a), the threshold valueused with the segments is obtained by interpolating the values obtained for the movingwindows.



Appendix AConstructing a Basis of LinearlyIndependent Correlation FunctionsIn this Appendix, we ask whether the ��(��1)2 free symmetric parameters Sij (i; j = 1:::��1; i � j) can be estimated from a certain set of ��(��1)2 autocorrelation functions of sequencescomposed by � symbols.Let us consider autocorrelation functions where we assign the numbers 1 and 0 to allsymbols A1:::A�. In our notation, ai 2 f0; 1g for all i = 1:::�. In order to simplify furtherconsiderations for �-ary sequences, we introduce the following denotations:C(i) � C(0;:::;0;ai=1;0;:::;0) (1.1)C(i;j) � C(0;:::;0;ai=1;0;:::;0;aj=1;0;:::;0): (1.2)In words, we assign the number 1 to the symbol Ai and the number 0 to all other symbolsto de�ne C(i). Analogously, we assign the number 1 to the symbols Ai and Aj and thenumber 0 to all other symbols to de�ne C(i;j).Now we use relation (19) to express the � � 1 autocorrelation functions C(i) for i =1:::��1 and the ���12 � = (��1)�(��2)2 autocorrelation functions C(i;j) for i; j = 1:::��1; i < jin terms of Sij . C(i) = Sii (1.3)



259C(i;j) = Sii + Sij + Sji + Sjj : (1.4)This leads directly to the following expressions for the independent entries SijSij = C(i;j) � C(i) � C(j)2 (1.5)for all i; j = 1:::�� 1.This means that all entries of the symmetric matrix Ŝ are unambiguously determinedby the (� � 1) + (��1)�(��2)2 = ��(��1)2 autocorrelation functions C(i) and C(i;j). Hence,this set of ��(��1)2 autocorrelation functions can be regarded as a basis in the sense thatall autocorrelation functions of �-ary sequences are a linear combination of those ��(��1)2basic ones.



Appendix BJensen's InequalityIn this appendix, we will present Jensen's inequality, which can also be found in [Jaglom1965] or [McEliece 1977]. In a second step, we will apply Jensen's inequality to the functionsf(x) = � ln(x) and g(x) = x � ln(x).De�nition B.1 The real-valued function f(x) is said to be convex on the interval I, iff(t � x1 + (1� t) � x2) � t � f(x1) + (1� t) � f(x2) (2.1)for all x1; x2 2 I and all t 2 [0; 1].If strict equality holds whenever x1 6= x2 and 0 < t < 1, f(x) is said to be strictlyconvex on I.If f is su�ciently smooth, we can test f for convexity by calculus and obtain that f isconvex i� f 00(x) � 0 on I . If, furthermore, f 00(x) > 0 except for a �nite number of points,then f is strictly convex on I .Theorem B.1 (Jensen's inequality) Let X be a random variable and F (X) its distri-bution function being concentrated on I. If the expectation value E(X) exists and if f(x)is a convex function on I, then Jensen's inequality says thatE(f(X))� f(E(X)): (2.2)Furthermore, if f(x) is strictly convex, Jensen's inequality is strict unless X is concen-trated at a single point x0.



261Geometrically, Jensen's inequality says that if a mass distribution is placed on the graphof the convex function f(x), its resulting center of mass will lie above or on the graph off(x).Let us now consider, for example, the function f(x) = � log(x), which is strictly convexfor all positive x, since its second derivative 1=x2 exists and is positive for all x > 0.Let S = fx1; x2; :::; xMg be a discrete set of real numbers, and let p(xi) a nonnegativefunction that obeys MXi=1 p(xi) = 1: (2.3)Then S becomes a discrete sample space in the obvious way. Let q(xi) be any othernonnegative function de�ned on S, and de�ne the random variable X byX(xi) � q(xi)p(xi) : (2.4)Since E(log(X)) = MXi=1 p(xi) � log�q(xi)p(xi)� (2.5)and E(X) = MXi=1 q(xi) � �p(xi);0; (2.6)we obtain � MXi=1 p(xi) � log(p(xi)) � � MXi=1 p(xi) � log(q(xi)) + log(�); (2.7)if � denotes the sum in E(X), and we exploit Jensen's inequalityE(log(X)) � log(E(X)): (2.8)Furthermore, since f(x) = � log(x) is strictly convex, equality holds if, and only if,q(xi) = � � p(xi) for all i such that p(xi) 6= 0.Hence, we can state the following theorem.Theorem B.2 Let I be a discrete set of integers, and let pi be a set of positive real numberssuch that Xi2I pi = 1: (2.9)If qi is any other set of positive real numbers withXi2I qi = �; (2.10)



262then �Xi2I pi � log(pi) � �Xi2I pi � log(qi) + log(�); (2.11)with equality if, and only if, qi = � � pi for all i 2 I.Let us �nally display Jensen's inequality for g(x) = x � log(x): since g is strict convex,we obtain Xi2I xi � log(xi) � P (xi) � pi � log(pi); (2.12)which will turn out to be very helpful in chapters 3, 9, and 10.



Appendix CSteiner's Theorem and theExpectation Value of theMaximum Likelihood VarianceEstimatorThe task that we are going to solve in this section is the calculation of the expectationvalue of the maximum likelihood estimator of the variance of a normal population.Following eq. (6.19)�̂2 = 1N NXi=1(xi � �x)2 = 1N NXi=1(xi � �)2 � (�x� �)2 (3.1)for all real constants �.By setting � = �, we obtain an expression for the variance that is, in our examples,easier to calculate than the standard form for � = 0.The expectation value of the variance estimator is thenE ��̂2� = E 1N NXi=1 (xi � �)2!�E �(�x� �)2� : (3.2)Since E  1N NXi=1 (xi � �)2! = �2 by de�nition, we come up withE ��̂2�� �2 = �E �(�x� �)2� : (3.3)



264In other words, the mean di�erence between the true sample variance and its maximumlikelihood estimate is not zero but equal to the mean quadratic deviation of the estimatedmean from the sample mean.This is exactly Steiner's Theorem, which states that the momentum of inertia of a rigidbody with respect to an arbitrary point � is equal to its momentum of inertia with respectto its center of mass plus its mass multiplied by the squared distance between � and itscenter of mass.Our remaining task is now to calculate the mean quadratic 
uctuations of �x around �drawn from a sample of size N of a normal population.Since E(�x) = E(�); (3.4)we can rewrite E((�x� �)2) = �2(�x); (3.5)which can be decomposed as�2 (�x) = �2 1N NXi=1 xi! = 1N2 NXi=1 �2 (xi) = 1N � �2; (3.6)since the events xi (i = 1; 2; :::; N) are statistically independent.Hence, we obtain from eqs. (6.19) and (3.6):E ��̂2� = N � 1N � �2: (3.7)



Appendix DMaximum Likelihood EstimatorsD.1 Maximum Likelihood Estimator of the Probability Vec-tor in the Multinomial CaseIn this section, we will derive the maximum likelihood estimator for the probability vector~p = (p1; p2; :::; pM) containing the probabilities pi of an M -sided die to show up its facei. Let the sample size, i.e., the number of times we are rolling the die, be N . Then thelikelihood to sample the sequence x1; x2; :::; xN is given byL(x1; x2; :::; xN; ~p) = MYj=1 pkjj (4.1)with ~k being the vector containing the absolute frequencies kj of rolling an j, i.e.,~k � (k1; k2; :::; kM) (4.2)with kj � 1j NXi=1 �(xi � j) (4.3)for all j = 1; 2; :::;M .Recall that xi � j if the die shows up its face j after getting rolled the i-th time andthat �(x� y) denotes the Kronecker symbol, which is 1 for x = y and 0 otherwise.Maximizing L(x1; x2; :::; xN; ~p) = MQj=1 pkjj under the constraint MPj=1 pj = 1 leads to thefollowingM equations with � being the Lagrange multiplier belonging to the normalization



266constraint: @  MQj=1 pkjj � � �  MPj=1 pj � 1!!@pi = 0 (4.4)for all i = 1; 2; :::;M .This yields for ki > 0 and pi > 0kipi � MYj=1 pkjj � � = 0 (4.5)or piki = MQj=1 pkjj� = C (4.6)where C is a constant for all i = 1; 2; :::;M .Since MXi=1 pi = 1 (4.7)and MXi=1 ki = N; (4.8)we immediately obtain C = 1N (4.9)and thus p̂i = kiN (4.10)for all i = 1; 2; :::;M and ki > 0.For ki = 0, we realize that the likelihood L(~k; ~p) = L(x1; x2; :::; xN; ~p) becomes maximalby estimating the corresponding pi = 0.Hence, the maximum likelihood estimator can be expressed in the following closed formfor all ki and i = 1; 2; :::;M : p̂i = kiN ; (4.11)which re
ects the standard recipe to choose the relative frequency kiN as an estimator ofthe probability pi.



267D.2 Maximum Likelihood Estimator of the Shannon En-tropyIn this section, we will derive the maximum likelihood estimator for the Shannon EntropyH(p) = �p � ln(p)� (1� p) � ln(1� p) of a coin with the probability p to show up its headand 1� p to show up its tail.Let xi 2 f0; 1g be the discrete random variables corresponding to the outcomes tail orhead up in the i-th experiment of 
ipping the coin.The likelihood to observe the sequence x1; x2; :::; xN is thenL(x1; x2; :::; xN; p) = pk � (1� p)N�k (4.12)with k = NPi=1 xi being the absolute frequency of tossing a head.We are, however, interested in the likelihood L(x1; x2; :::; xN;H) to produce a certainsequence x1; x2; :::; xN under the condition of a given H . Introducing the conditionalprobability P (pjH) that a coin has the probability p provided its Shannon entropy is H ,this likelihood can be rewritten asL(x1; x2; :::; xN;H)= Z L(x1; x2; :::; xN; p) � P (pjH) dp (4.13)= 12 � (L(x1; x2; :::; xN; p) + (L(x1; x2; :::; xN; 1� p)) (4.14)= 12 � �pk � (1� p)N�k + (1� p)k � pN�k� (4.15)since the function H(p) is symmetric with respect to p = 1=2 and thusH(p) = H(1� p): (4.16)Maximizing 2 � L(x1; x2; :::; xN;H) yields the equationk � pk�1 � (1� p)N�k � (N � k) � pk � (1� p)N�k�1� k � (1� p)k�1 � pN�k + (N � k)(1� p)k � pN�k�1 = 0 (4.17)for the maximum likelihood estimator of H = H(p).At this point, we realize that the maximum likelihood estimator of the Shannon entropy,Ĥ(x1; x2; :::; xN) = H(p(x1; x2; :::; xN)) with p(x1; x2; :::; xN) which can be obtained as thesolution of eq. (4.17), is not equal to the so called natural estimator given byĤ(x1; x2; :::; xN) = H �k(x1; x2; :::; xN)N � : (4.18)



268Epilogue: Please realize that the solution of eq. (4.17) yields the maximum likelihoodestimator for all symmetric functions f(p), i.e., all functions for which the equality f(p) =f(1 � p) holds, since this is the only assumption we need to come from eq. (4.13) toeq. (4.14).Hence, the maximum likelihood estimator of the variance �2 of the binomially dis-tributed k, which is given by �2 = p � (1� p)N (4.19)can be determined by solving eq. (4.17) and then calculating�̂2 = p(x1; x2; :::; xN) � (1� p(x1; x2; :::; xN))N : (4.20)



Appendix EBayes EstimatorsE.1 Laplace EstimatorIn this section, we want to derive the Bayes estimator for the probability vector ~p of anM -sided die from a sample of size N under the prior assumption of a uniform distributionof ~p.Let us de�ne the random variables xi to be j if the outcome of the i-th experiment ofrolling the die is that the die shows up its face j (j = 1; 2; :::;M).Our task is to minimize the functionalF [~f(x1; x2; :::; xN)] � Z Z � � � Z �~f (x1; x2; :::; xN)� ~p�2� P (x1; x2; :::; xNj~p) � P (~p) d~p (5.1)where ~p = (p1; p2; :::; pM) (5.2)and pi is the probability of the die to show its face i.The integral is taken over the entire parameter space of ~p which is here the M � 1dimensional simplex given by pi � 0 (5.3)for all i = 1; 2; :::;M and MXi=1 pi = 1: (5.4)



270Since ~k = (k1; k2; :::; kM) withkj = 1j NXi=1 xi � �(xi � j); (5.5)and �(xi�j) being the Kronecker symbol de�ned by �(x�y) = 1 for x = y and 0 otherwiseis multinomially distributed, the conditional probabilities can be explicitly given byP (x1; x2; :::; xNj~p) = P (~kj~p) =  N~k! � MYi=1 pkii (5.6)with �N~k � being the multinomial coe�cient de�ned as N~k! = N !k1! � k2! � � � kM ! : (5.7)The vector ~k, which contains the absolute frequencies kj of the outcomes j of ourexperiment, turns out to be a better handle of describing our sample than the vector(x1; x2; :::; xN) and is thus preferred in the future.Rewriting the scalar product in eq. (5.1) leads toF [~f(~k)] = MXj=1 Z Z � � � Z (fj(~k)� pj)2 � P (~kj~p) � P (~p) d~p ) min; (5.8)which can be solved byfj(~k) = Z Z � � � Z pi � P (~kj~p) � P (~p) d~pZ Z � � � Z P (~kj~p) � P (~p) d~p (5.9)= Z Z � � � Z pj �  N~k! � MYi=1 pkii � P (~p) d~pZ Z � � � Z  N~k! � MYi=1 pkii � P (~p) d~p (5.10)if an individual minimizing of all summands in eq. (5.8) is compatible with the minimizationof the sum.Before we can try to calculate the integrals above, we have to specify our prior assump-tion about the probability density of the vector ~p. Again, as described in section 6.5.2,we start with the weakest possible assumption about the ~p, namely that we do not knowanything about this vector except the pj be normalized. Then, the maximum entropy



271principle suggests the prior probability density be uniform on the simplex given in eqs. 5.3and 5.4.Under this assumption, which is also called the Bayes hypothesis, the Bayes estimatorfor the probability pj of an M -sided die becomesfj(~k) = Z Z � � � Z  N~k! � pj � MYi=1 pkii d~pZ Z � � � Z  N~k! � MYi=1 pkii d~p : (5.11)From appendix H.3, we obtainZ Z � � � Z  N~k! � pj � MYi=1 pkii d~p= 1Z0 N !kj ! � (N � kj +M � 2)! � pkj+1j � (1� pj)N�kj+M�2 dpj (5.12)and Z Z � � � Z  N~k! � MYi=1 pkii d~p= 1Z0 N !kj ! � (N � kj +M � 2)! � pkjj � (1� pj)N�kj+M�2 dpj (5.13)since MXi=1 pi = 1 (5.14)and MXi=1 ki = N: (5.15)As we show in appendix H.1,1Z0 pkj+1j � (1� pj)N�kj+M�2 dpj = (kj + 1)! � (N � kj +M � 2)!(N +M)! (5.16)and 1Z0 pkjj � (1� pj)N�kj+M�2 dpj = kj ! � (N � kj +M � 2)!(N +M � 1)! : (5.17)



272Hence, fj(~k) = Z Z � � � Z pj � MYi=1 pkii � d~pZ Z � � � Z MYi=1 pkii � d~p = kj + 1N +M : (5.18)At this point, we realize that the individual minimization of the summands in eq. (5.8)reveals estimators for the probabilities pj , which only depend on kj but not on the remainingM � 1 components of the vector ~k. Hence, the estimator~f(~k) = (f1(~k); f2(~k); :::; fM(~k)) (5.19)is the Bayes estimator of the probability vector ~p of an M -sided die under the assumptionof a uniform prior probability density of ~p, which is also called the Laplace estimator.E.2 Bayes Estimator of the Shannon Entropy - Part IIIn chapter 7, we have derived the Bayes estimator of the Shannon entropy H(~p) = � MPi=1 pi �ln(pi) under the assumption of a uniform prior probability density on the simplex f~pg.The same job was done in a brilliant, however, yet unpublished work by David Wolpert[1993], who calculated the appearing integrals by applying Laplace's convolution theoremand ended up with the result that the Bayes estimator of the Shannon entropy is given bythe following equation:̂H = � MXi=1 ki + 1N +M ���(1)(ki + 2; N +M + 1); (5.20)in which ��(1)(ki + 2; N +M + 1) � �(1)(ki + 2)� �(1)(N +M + 1); (5.21)and �(1)(z) � @ ln (�(z))@z ; (5.22)where �(z) is the gamma-function of the real positive numbers z.In this section we will show that this �nding and our result displayed in eq. (7.14) areindeed identical.The scienti�c value that we see in this proof of consistency arises from being convincedthat only a few people would like to implement a subroutine computing the logarithm of the



273gamma-function and its derivative, but all programmers are certainly able to implement asubroutine calculating a �nite harmonic sum.Starting with the �rst poly-gamma-function, we obtain�(1)(z) = @ ln (�(z))@z = �0(z)�(z) (5.23)= 1Z0 1� tz�11� t dt� C (5.24)by exploiting the Gaussian formula [Bronstein & Semendjajew 1989] andC = limn!1 nXk=1 1k � ln(n)! (5.25)de�ning Euler's constant.For integer z, 1� tz+11� t = tz + tz�1 + :::+ t + 1; (5.26)and hence, 1Z0 1� tz�11� t dt = 1Z0 tz�2 + tz�3 + :::+ t+ 1 dt (5.27)= 1z � 1 + 1z � 2 + :::+ 12 + 1 (5.28)for integer z � 2.Thus we obtain ��(1)(ki + 2; N +M + 1) = � N+MXj=ki+2 1j ; (5.29)which proves the desired identity.E.3 Binary R�enyi Entropy EstimatorUnder the assumption of a uniform prior probability density, Q(~p) = const, the Bayesestimator of the binary R�enyi entropy of order q can be written ascKq(N1; N2) = 11� q 1W 0(N1; N2) Z 10 dp pN1 (1� p)N2 log2 hpq + (1� p)q i (5.30)



274for all N1 +N2 = N . Using the normalization constant (8.38), we rewrite equation (5.30)in the formcKq(N1; N2) = 1ln 2 11� q �(N + 2)�(N1 + 1)�(N2+ 1) � (q Z 10 dp pN1 (1� p)N2 ln p+ Z 10 dp pN �1� pp �N2 ln �1 + �1� pp �q�): (5.31)The �rst term on the right hand side of (5.31) can be calculated to becomeq Z 10 dp pN1 (1� p)N2 ln p � q @@N1 �R 10 dp pN1 (1� p)N2�= q @@N1B (N1 + 1; N2+ 1)= �q B (N1 + 1; N2+ 1)�PNl=N1 1l+1�: (5.32)In the remaining term in equation (5.31), we change the coordinate x = (1� p)=p and thusarrive at cKq(N1; N2) = 1ln 2 11� q 0@Iq (N1; N2)� q NXl=N1 1l + 11A (5.33)where we de�neIq (N1; N2) = �(N + 2)�(N1 + 1)�(N2 + 1) �Z 10 dx xN2 [1 + x]�(N+2) ln (1 + xq)�: (5.34)



Appendix FBayes Estimators of GeneralizedEntropiesIn this appendix, we present a generalized derivation of the Bayes estimator of generalizedentropies. This derivation is more general than the derivation from chapter 8 in the sensethat here we give up the restriction to a uniform a-priori probability density function. Inthe following we compute the Bayes estimator of R�enyi and Tsallis entropies under thea-priori assumption of a Dirichlet probability density function.F.1 MotivationThe demand made upon computational analysis of observed symbolic sequences has beenincreasing in the last decade. Here, the concept of entropy receives applications, and thegeneralizations according to Tsallis H(T)q and R�enyiH(R)q provide whole-spectra of entropiescharacterized by an order q.An enduring practical problem lies in the estimation of these entropies from observeddata. The �nite size of data sets can lead to serious systematic and statistical estimationerrors. We focus on the problem of estimating generalized entropies from limited datasamples and derive a Bayes estimator of the Tsallis entropy, H(T)q , including the (q = 1)Shannon entropy.By extending our previous results on statistical entropy estimation of symbol sequences[Holste et al. 1998], we use a prior distribution over the probabilities which is of Dirichlet-type. Using the relationship betweenH(T)q andH(R)q , we utilize the Bayes entropy estimator



276H(T)q to estimate the R�enyi entropy H(R)q from observed data. The Bayes estimator yieldsthe smallest mean-squared deviation from the true parameter as compared with any otherestimator. We compare the Bayes entropy estimators with the frequency-count estima-tors of H(T)q and H(R)q . Numerical simulations reveal that the Bayes entropy estimatorreduces statistical estimation errors of generalized entropies for statistical processes suchas generated by higher-order Markov models.F.2 IntroductionBuilding on the works of Shannon [Shannon 1948], generalized entropies have been ex-tensively applied to characterize complex behavior in models and real systems. As theShannon entropy, H , is formally de�ned as an average value, the idea underlying a gen-eralization is to replace the average of logarithms by an average of powers. This givesrise to generalized R�enyi and Tsallis entropies of order q, H(R)q and H(T)q , respectively[R�enyi 1970, Tsallis 1988, Curado & Tsallis 1991].The order q applies to describe inhomogeneous structures of the probability distributionassociated with the stochastic process under consideration. From both order-q entropies,H(R)q and H(R)q , the Shannon entropy is obtained in the limit q ! 1. Applications oforder-q entropies occur in a variety of �elds of sciences like, e.g., nonlinear dynamicalsystems [Beck & Schl�ogl 1993, Grassberger et al. 1991, Pompe 1993], statistical thermo-dynamics or evolutionary programming [Tsallis Entropies], and computational molecularbiology [Amalgor 1985, Herzel et al. 1994b, Li 1997, Strait & Dewey 1996]. Here we ad-dress the problem of estimating generalized entropies from samples of observed data.Entropy is based on probabilities which are, however, a priori unknown. Under theassumption of a stationary process, we consider data sets to be composed of N datapoints, each chosen from M possible di�erent outcomes. In almost any practical situationthe observer only obtains a snapshot of the stochastic process, and hence an enduringproblem arises when entropies are to be estimated from limited samples. Replacing theseprobabilities by the sampled relative frequencies produces large statistical and systematicdeviations of estimates from the true value [Harris 1975, Herzel 1988].This problem becomes severe when the number of data points N is of the order of mag-nitude of the number of di�erent states, N � O(M), which can occur e.g., in practical esti-mations of correlations [Grassberger et al. 1991, Sch�urmann & Grassberger 1996], the vari-



277ability in neural spike trains [Steveninck et al. 1997, Schneider et al. 1986], or in computa-tional biology [Li 1997]. In those cases the choice of an estimator with small deviations fromthe true (though unknown) value becomes important. Several di�erent estimators of theShannon entropy have been developed [Ebeling et al. 1995, Grassberger 1988, Herzel 1988,Schmitt et al. 1993]. Speci�c estimators for the R�enyi entropy and for the dimensions re-lated to them have also been derived [Grassberger 1988, Pawelzik & Schuster 1987].Using Bayes estimation, we derive an estimator of generalized entropies. The Bayesestimator possesses the optimal property to minimize the mean-squared deviation of theestimate from the true value, subject to a prior distribution. We derive the Bayes estimatorof the order-q Tsallis entropy H(T)q under the prior assumption of a Dirichlet distribution.We discuss properties of the estimator H(T)q and contrast the result obtained with the usualfrequency-count estimator. Using the relationship connectingH(T)q withH(R)q , we propose amethod on how to extract the R�enyi entropy from observed data. We test the performanceof the Bayes entropy estimator, by using both homogeneous and inhomogeneous Markovprocesses with zero- and �ve-step memories derived from biological sequence data of theprokaryote H. in
uenzae.F.3 Generalized entropy analysisIn this section, we outline the concept of generalized entropies, and we add some remarksabout their similarities and di�erences.Consider a random variable A that assumes M di�erent discrete values ai, i = 1:::M .Associated with A is a probability vector P = (p1; : : : ; pM) with components pi � p(A =ai). The pi's are de�ned on a simplex comprised by fP j 8i : pi > 0^PMi pi = 1g. The setof all possible outcomes is referred to as the state space of size M . The Shannon entropyof A is de�ned as H(P) = �hldpiiP = � MXi=1 pi ldpi (6.1)where h�iP is the average over P. Due to the dual base of the logarithm (ld), the entropyis measured in units of bits per symbol. A distinctive property of Eqn. 6.1, which is notshared by generalized entropies, is that the entropy of a composite event can be given asthe sum of the marginal and the conditional entropy.It follows from Eqn. 6.1 that events having either a particularly high or low frequencyof occurrence do not contribute much to the Shannon entropy. In order to weight particular



278regions, one can consider the following partition functionZq(P) = hpq�1i iP = MXi=1 pqi �q 2 R�: (6.2)In the spirit of statistical mechanics, by introducing the \energy" Ei = �ldpi and iden-tifying q as inverse temperature �, Zq plays the same role as the partition function of asystem which is embedded in a heath bath.Varying q allows for the monitoring of the inhomogeneous structure of P: forlarger q, the larger individual probabilities pi dominate Zq . On the other hand, forsmaller q, the smaller pi become dominant. Note that Z0 = M and Z1 = 1.Building upon the above partition function, the order-q Tsallis entropy is de�ned as[Tsallis 1988, Curado & Tsallis 1991]H(T)q (P) = 1ln 2Zq(A)� 11� q = 1ln 2�pq�1i � 11� q �P: (6.3)Similarly, the order-q R�enyi entropy is given by [R�enyi 1970]H(R)q (P) = ldZq(A)1� q = �ldhpq�1i i 1q�1P : (6.4)In the above expression, hpqi i1=qP is the generalized q-average of the numbers pi. By inspec-tion, H(T)q and H(R)q are functionally related throughH(R)q (P) = 11� q ln h1 + (1� q) ln 2 H(T)q (P)i (6.5)and H(T)q (P) = 11� q exp h(1� q) ln 2 H(R)q (P)i� 1: (6.6)We see that H(T)q and H(R)q are monotonic functions of one another for �xed q, and theyposses the following properties:� H(T)q and H(R)q � 0. Global maxima (minima) are attained at pi = 1=M 8i for q > 0(q < 0).� H(T)q and H(R)q are monotonically decreasing functions of q for arbitrary P.� H(T)q is a concave (convex) function of pi, for any q > 0 (q < 0). The curvature ofH(R)q upon q is nontrivial [Tsallis Entropies]. Yet we �nd two inequalities hold: H(R)qis a convex (concave) function of P for q < 0 (0 < q � 1).



279� For two independent random variables, H(R)q (A;B) is additive, i.e., H(R)q (P;Q) =H(R)q (P)+H(R)q (Q), and H(T)q is pseudo-additive, i.e., H(T )q (P;Q) = H(T )q (P) +H(T )q (Q) + (1{q)H(T )q (P)H(T )q (Q).The motivation to introduce generalized entropies stems from the advantage that throughthe characterizing order q we arrive at a whole-spectrum of entropies. Entropy spectra, inparticular the di�erences between entropies of di�erent order q contain information aboutthe underlying process. In the light of the fact that (i) H(R)q is additive but neither concaveor convex, and (ii) that H(T)q is convex (concave) but not additive, it is remarkable thatyet by Eqn. 6.5 and 6.6 we are able to switch between two types of entropies of order q.F.4 Bayes entropy estimationIn this section, we will �rst describe how to preprocess the necessary variables from sequencedata and we outline the concept of Bayes estimation.For a given sequence SN of N observed data points, we de�ne the vector F = N=N ,which stores the relative frequencies of occurrence. Its ith component contains fi = Ni=N ,the ratio of the number of occurrences of symbol i and the total number of symbols in thesequence N =PMi=1Ni. We derive Ni independently from SN such thatN is multinomiallydistributed1 P (NjP) = 1Z(N) pN11 � � �pNMM (6.7)with the normalization constant Z(N) = N1! � � �NM !N !In Bayes estimation, the �rst quantity one would wish to write down is the posteriordistribution for the vector P given the observed frequencies N. For a given stochastic pro-cess under consideration, the individual components pi of P always take on a speci�c value.Yet we can use a prior distribution P (Pj�U) as a conditioner to embody our (subjective)assumptions about P. This allows for the direct inclusion of speci�c knowledge about the1Note that N is multinomially distributed only in the case of independent identical-distributed datapoints. Otherwise, Eqn. 6.7 can only serve as an approximation which, however, is often the case inpractical situations.



280parameters pi. We choose the pi to obey a Dirichlet distribution [MacKay & Peto 1994],namely P (Pj�U) = 1Z(�U) p�u1�11 � � �p�uM�1M (6.8)with the normalization constantZ(�U) = �(�u1) � � ��(�uM)�(�) :The vector U = (u1; : : : ; uM) is the expectation value of P (Pj�U), writingR dP P (Pj�U)P = U. It is positive in each component ui, and it is normalized thoughthe scalar � > 0. In case that U = 1=�, the Dirichlet distribution simply reduces to theassumption of a homogeneous probability density on the simplex, P (Pj1) = �(M). Therole of � is that it measures how di�erent we expect typical vectors P to be from theexpectation hPiP (Pj�U) = U.We are now in a position to write down the complete distribution of P, given the dataN and the parameterization U,P (PjN; �U) = P (NjP)P (Pj�U)P (Nj�U)= QMi p(�ui�1+Ni)i =Z(N)=Z(�U)P (Nj�U) (6.9)where the normalization constant is obtained by integration over the simplexP (Nj�U) = R dPQMi p(�ui�1+Ni)Z(N)Z(�U) :In the above expression, P (Pj�U) is called the prior, P (NjP) is called the likelihood, thedata-dependent term P (Nj�U) is called the evidence (how much the data N are in favorof �U), and P (PjN; �U) is called the posterior distribution. The latter quantity can beunderstood as summarizing what we know about P is what we knew before the experiment[P (Pj�U)] and what the observables conveyed us P (NjP).The Bayes entropy estimator [Berger 1985, Wolpert & Wolf 1995], which emergesas the expectation value of H(T)q over the posterior distribution, H(T)q = hH(T )q iP (PjN;�U),minimizes the mean-squared deviations of its estimates from the true value H(T)q , constraintto a prior distribution. Inserting Eqn. 6.8, we haveH(T)q (N; �U) = Z dP H(T)q (P)P (PjN; �U)= R dP H(T)q (P)P (NjP)P (Pj�U)R dP P (NjP)P (Pj�U) : (6.10)



281In order to obtain H(T)q , we note that it su�ces to calculate the Bayes estimator of thepartition function, Zq , writingH(T)q (N; �U) = 1ln 2 11� q hZq(N; �U)� 1i: (6.11)Evaluating expression 6.11 yields [Holste et al. 1998]Zq(N; �U) = MXi ��(ri + 1 + q)�(ri + 1) �(R +M)�(R+M + q)�for all ri 2 R, ri = �ui � 1 +Ni and R = PMi ri = ��M +N . Note that the parameterinterval for which Zq is de�ned is q 2 (�Umin;1) with Umin = min8ifuig. If all ri areintegers, the �-functions simplify to their factorial representation. For instance, for q = 1and ui = 1=M the Bayes estimation of the probability is given by (Ni + 1=M)/(N + 1).According to Sch�urmann & Grassberger [Sch�urmann & Grassberger 1996], this is the esti-mator found numerically to yield `best' entropy estimates when inserted as an estimator forthe individual probability pi. Here we realize that it corresponds to choose a homogeneousDirichlet distribution over the simplex.As H(T)q is a generalization of the Shannon entropy, the same is expected to hold forthe Bayes entropy estimator of H . For integer ri, the limit q ! 1 yieldscH1(N; �U) = 1ln 2 MXi ri + 1R+M 0@ R+MXn=ri+2 1n1A : (6.12)For U = 1=�, this is identical with the result derived in [Grosse 1996,Wolpert & Wolf 1995].We now turn to the Bayes estimator of the R�enyi entropy H(R)q . Substituting H(R)qfor H(T)q in Eqn. 6.10, the problem of deriving the Bayes entropy estimator reduces tothe calculation of the integral H(R)q (N; �U) / R dP ldZq(P)P (NjP)P (Pj�U). Even in thesimplest case, namely for a 2-letter alphabet, no analytical expression could be derived.Therefore we seek another strategy which is of practical use, in particular in the multi-variate case. We propose to use the closed-form result of Zq for the estimation of H(R)q ,by making use of the relationship between H(T)q and H(R)q . We �rst estimate H(T)q fromdata, and then compute H(R)q through Eqn. 6.5. After these preliminary remarks, we writedown the (indirect) Bayes entropy estimator of H(R)qH(R)q (N; �U) = 11� q ldZq(N; �U): (6.13)



282

1 10 100 1000 10000
rank

1

10

100

1000

ab
so

lu
te

 fr
eq

ue
nc

y

Figure F.1: The rank-ordered hexamer (6-letter) distribution of the complete DNA se-quence of H. in
uenzae displayed as a double-logarithmic plot (2). For a comparison, therank ordered distribution of a corresponding Bernoulli sequence of same length has beenincluded in the �gure (4).



283F.5 Numerical TestsIn this section, we test the performance of the Bayes entropy estimators. We generate byMonte-Carlo simulations synthetic sequence data and investigate the statistical propertiesof H(T)q and H(R)q for both Bayes entropy estimators and frequency-count estimators.
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estimatesFigure F.2: Comparison of entropy estimators: H(R)q with parameter set M = 4096, N =8000, P = 1=M . We observe the smaller variance of the Bayes entropy estimator (thickline, the black curve corresponds to U = 2=� and the grey curve corresponds to U = 1=�)as compared with the frequency-count estimator (thin line) for a single realization foreach order q. We observe the signi�cant small width of the variance of the Bayes entropyestimator as compared with the frequency-count estimator.We focus on the case where the size of the alphabet M is in the order of the number



284of data points N , and we investigate the sample variance of the entropy estimators2, byperforming the following simulations:
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uctuations of the Bayes entropy estimator(thick line, the black curve corresponds to U = 2=� and the grey curve corresponds toU = 1=�) are strongly suppressed as compared with the frequency-count estimator (thinline) for a single realization for each order q. The signi�cant small width of the varianceof the Bayes entropy estimator as compared with the frequency-count estimator is visible.1. We simulate homogeneous 0-step Markov processes. Considering the interval q 2(0; 50) and incrementing q by �q = 0:1, we monitor the estimates for a single re-2Frequency-counts are directly obtained by sampling the relative frequencies fi from sequence data.Replacing the individual probability pi by their sampled relative frequency fi, the frequency-count entropyestimator is respectively given by H(T)q = �Zq(F)� 1��(1� q) and H(R)q = �ldZq(F)��(1� q).



285alization for each q (and hence, allowing 
uctuations to become visible rather themaveraging them out), we study the observed variance of the R�enyi entropy estimatesand hence compare the Bayes entropy estimator with the frequency-count estimator.The outcome of the numerics is shown in Figure 2 and 3.2. We simulate 0-step homogeneous and 5-step inhomogeneous memory Markov pro-cess. In the latter case, the transition probabilities are taken from the complete1; 830; 240 nucleotides long DNA sequence of the prokaryotic genome of H. in
uen-zae [Fleischman et al. 1995]. The probability vector PH :in
uenzae , derived from theabove DNA sequence is used to test the performance of the Bayes entropy estimatorversus the frequency-counts estimator. In either case, P = 1=M or PH :in
uenzae ,a sequence SN is randomly generated from which we estimate the entropy values.In this test, we can also compute the `true' hexamer entropies (taking the relativefrequencies as probabilities by de�nition). The di�erence between the estimated andthe theoretical values de�nes a random variable, which we de�ne as the entropy es-timate deviation from true. Generating an ensemble of sequences fS(i)N g10;000i=1 andestimating the order-2 entropies H(R)2 and H(T)2 , we calculate the histograms of theentropy estimate distribution and compare the sample variance of both estimators.The outcome of the numerics is shown in Figure 4 and 5.Figure 1 shows the rank-ordered distribution obtained from both the DNA sequence ofH. in
uenzae and from a sequence of same length derived from a homogeneous 0-stepMarkov process. It can be seen that the DNA sequence is far more inhomogeneous thanthe realization of the latter process. The derived frequencies can be regarded as a typicalexample representing hexamer distributions in (prokaryotic) DNA.These studies demonstrate the merit of the Bayes entropy estimator as compared withthe frequency-count estimator in deriving reliable estimates from small samples: the vari-ances of the Bayes estimates are signi�cantly smaller than the variances of the frequency-count estimates for both homogeneous 0-step and inhomogeneous 5-step Markov processes.F.6 ConclusionsWe derived the Bayes estimator for generalized entropies, H(T)q and H(R)q , for a discrete setof data points. Our approach of deriving the estimators H(T)q and H(R)q is motivated by
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Figure F.4: Histograms of entropy estimates: H(R)q with parameter set M = 4096, N =4000, P = 1=M , U = 1=�, and q = 2. We observe the smaller variance of the Bayesentropy estimator as compared with the frequency-count estimator.



287the requirement to estimate generalized entropies from realizations where the total samplesize N is of the order of magnitude of the size of the state space M . Both entropy estima-tors are obtained from the estimator of the partition function, Zq, which could be used toestimate further related quantities like, e.g., generalized dimensions. A comparative study
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Figure F.5: Histograms of entropy estimates: H(T)q with parameter set M = 4096, N =8000, PH :in
uanzae , U = 1=�, and q = 2. We observe the smaller variance of the Bayesentropy estimator as compared with the frequency-count estimator.of the accuracy by which the Bayes entropy estimator and the frequency-count estima-tors estimate H(R)q and H(T)2 associated to 0-step homogeneous and 5-step inhomogeneousMarkov models demonstrates the strength of the Bayes entropy estimator. Over the wholerange of order q considered, the Bayes entropy estimator outperforms the frequency-countestimator by a signi�cantly smaller variance of its estimates. This makes the Bayes entropyestimator appropriate to be applied in situations where the sample size N is of the order



288of the size of the state space M .The numerical simulations demonstrate that for the P-vectors considered is this work,the Bayes entropy estimator leads to variances which are signi�cantly smaller as comparedto the variances of the frequency-counts estimators of generalized entropies extracted fromsmall samples.The Bayes entropy estimators have been derived under the assumption of a Dirichletprior distribution. The speci�c parameterization (U) is application-dependent. Givenno further information about P, a homogeneous distribution constitutes the least biasedguess; this does not mean that the individual probabilities pi are equidistributed, but ratherthat all vectors P are equiprobable. The central result in Eqn. 6.12 allows for the directimplementation of individual situation-tailored a priori-information.



Appendix GApproximation of the ShannonEntropy H(p) for all p 2 [0; 1]In this section, we will present an alternative to the Taylor expansion of the Shannonentropy, and thus outline alternative approaches to calculating the expectation value, thevariance, or even higher moments of the distribution of observed Shannon entropies.The weak point of all Taylor approximations is, as we have seen in chapter 9, thedivergence of the power series ~H(~x) = 1Pk=0 MPi=1 a(i)k � (xi � pi)k for xi > 2 � pi.One possibility of circumventing these divergences is to compute the power series ex-pansion of H(~x) about the point ~x = (12 ; 12 ; :::; 12) or about points with components evengreater than one half. However, this approximation is fairly bad, i.e., it converges onlyslowly to H(~x).Hence, we present an approximation derived from the theory of linear regression thatcombines the following two features:� it converges for all xi 2 [0; 1] and all i = 1; 2; :::;Mand� it converges quickly to the limit function H(~x).Imagine we are given a cloud of n points in the x-y-plane and are to determine afunction f(x; �0; �1; :::; �m) = mXk=0 �k � xk (7.1)



290that optimally �ts the points. Here, `optimally' means that we search for those �k (k =0; 1; :::;m) for which the sum of the squared deviations between the f(xi) and the yibecomes minimal, i.e., nXi=1 (f(xi; �0; �1; :::; �m)� yi)2 ) min: (7.2)Now it is our goal to approximate the cloud consisting of an in�nite number of pointsgiven by y = �x � ln(x) with a uniform density on the interval [0; 1] by a �nite power seriesmPk=0 �k � xk .We substitute the �nite sums over all points by de�nite integrals and thus end up withthe following analytic problem:1Z0 (f(x; �0; �1; :::; �m)� y(x))2 dx ) min; (7.3)with f(x; �0; �1; :::; �m) = mXk=0 �k � xk (7.4)and y(x) = �x � ln(x): (7.5)We can either try to solve this problem numerically, which would however shift ouranalytic problem to a numerical one by back-substituting the above integral by a �nitesum, or to solve the integrals analytically, which would then reduce our analytic problemto an algebraic one.The latter goal is indeed achievable, because closed form expressions for all appearingintegrals can be derived.1Z0 (f(x; �0; �1; :::; �m)� y(x))2 dx= 1Z0 f2(x; ~�) dx+ 2 1Z0 f(x; ~�) � x � ln(x) dx+ 1Z0 x2 � ln2(x) dx= mXi;j=0 1Z0 �i � �j � xi+j dx+ 2 mXi=0 1Z0 �i � xi+1 � ln(x) dx+ 1Z0 x2 � ln2(x) dx



291= mXi;j=0Aij � �i � �j + 2 mXi=0Bi � �i + C (7.6)by de�ning Aij � 1Z0 xi+j dx = 1i+ j + 1 ; (7.7)Bi � 1Z0 xi+1 � ln(x) dx = J(i+ 1; 0) = �� 1i+ 2�2 ; (7.8)and C � 1Z0 x2 � ln2(x) dx: (7.9)Minimizing mXi;j=0Aij � �i � �j + 2 mXi=0Bi � �i + C (7.10)leads to the following m+ 1 equations for all k = 0; 1; :::;m:2 �Akk � �k + mXi=0(1� �ik) �Aik � �i + mXj=0(1� �kj) �Akj � �j + 2 �Bk = 0 (7.11)Since Aij = Aji, we obtain mXi=0Aik � �i = �Bk (7.12)for all k = 0; 1; :::; m, which can be displayed in the following matrix representation of asystem of linear equations:0BBBBB@ 11 12 � � � 1m+112 13 � � � 1m+2... ... . . . ...1m+1 1m+2 � � � 12�m+1 1CCCCCA �0BBBBB@ �0�1...�m 1CCCCCA = 0BBBBB@ 122132...1(m+2)2 1CCCCCA : (7.13)Let Â be the (m + 1) � (m + 1) matrix containing the elements Aij = 1i+j+1 , ~� =(�0; �1; :::; �m) be the vector containing our regression parameters, and ~B = (B0; B1; :::; Bm)be the inhomogeneity vector of our system of linear equations. Then, our systemÂ � ~�T = ~BT (7.14)is uniquely solvable by ~�T = Â�1 � ~BT (7.15)



292if Â is regular, i.e., if Â�1 exists.Our next task will thus be the inversion of the matrix Â given by the elements Aij =1i+j+1 for i; j = 0; 1; :::;m.Doing it by hand is no fun for m � 5. Hence, a numerical inversion of the matrix Âseems to be the only alternative. But unfortunately, almost all programs fail to deriveproper results for increasing m. The reason for this dilemma is fairly simple: the matrixÂ, which is called the Hilbert matrix, is ill conditioned. This means that this matrix looksas if it were singular although it is indeed regular. In other words, all eigenvalues of thismatrix are nonzero, but extremely small.The question that we have not yet answered is whether the Hilbert matrix is indeedregular. In the following paragraph, we will prove the regularity by displaying the inversematrix explicitly.Theorem G.1 Let Â be the n� n Hilbert matrix de�ned by its elementsAij = 1i+ j + 1 : (7.16)Then the inverse matrix Â�1 is given by the elements~Aij = (�1)i+j � i2 � j2(i+ j � 1) � (i!)2 � (j!)2 � n2 � iYk=1(n2 � (k � 1)2) � jYk=1(n2 � (k � 1)2): (7.17)Multiplying the matrix Â�1 by the inhomogeneity vector ~B yields our desired vector ~�containing the coe�cients of our power series approximating y(x) = �x � ln(x).This power series expansion can eventually be used to derive approximations (in anyorder) for the expectation value, the variance, or even higher moments of the Shannon en-tropy estimates distribution, since all moments of the multinomial distribution are known.



Appendix HUseful Integrals and SumsThis section is devoted to the derivation of some analytic expressions for the followingintegrals, which we are frequently using throughout our work:I(p; s; t)� Z ps � (1� p)t dp (8.1)and J(s; t) � 1Z0 ps � (1� p)t � ln(p) dp (8.2)for any s 2 N and t 2 N as well asK(p1; kj;M;N)� 1�p1Zp2=0 1�p1�p2Zp3=0 � � � 1�p1�p2�:::�pM�2ZpM�1=0  N~k! � MYi=2 pkii dpM�1 � � � dp3 dp2: (8.3)In section H.4, we will derive the marginal distribution of the component ki (i =1; 2; :::;M) of a multinomially distributed vector ~k = (k1; k2; :::; kM), which confronts uswith the �nite sumS(p1; k1;M;N)� N�k1Xk2=0 N�k1�k2Xk3=0 � � � 1�k1�k2�:::�kM�2XkM�1=0  N~k! � MYi=2 pkii (8.4)for i = 1.



294H.1 The Inde�nite Integral I(p; s; t)The inde�nite integral I(p; s; t) = Z ps � (1� p)t dp is obtainable by partial integration,which yieldsZ ps � (1� p)t dp = 1s + 1 � ps+1 � (1� p)t + ts+ 1 � Z ps+1 � (1� p)t�1 dp= 1s + 1 � ps+1 � (1� p)t + t(s+ 1) � (s+ 2) � ps+2 � (1� p)t�1+ t � (t� 1)(s+ 1) � (s+ 2) � Z ps+2 � (1� p)t�2 dp= :::= k�1Xi=0 s! � t!(s+ i+ 1)! � (t� i)! � ps+i+1 � (1� p)t�i+ s! � t!(s+ k)! � (t� k)! Z ps+k � (1� p)t�k dp (8.5)after k times partial integration for integer k � t.For k = t, we obtainI(p; s; t) = Z ps � (1� p)t dp= t�1Xi=0 s! � t!(s+ i+ 1)! � (t� i)! � ps+i+1 � (1� p)t�i+ s! � t!(s+ t+ 1)! � ps+t+1= tXi=0 s! � t!(s+ i+ 1)! � (t� i)! � ps+i+1 � (1� p)t�i (8.6)by de�ning 00 � limp!1(1� p)0 = 1: (8.7)Hence, the de�nite integral with limits 0 and 1 becomes1Z0 ps � (1� p)t dp = s! � t!(s+ t+ 1)! : (8.8)H.2 The De�nite Integral J(s; t)Since we have obtained an analytic expression for I(p; s; t) = R ps � (1�p)t dt, we can easilyderive J(s; t) = 1R0 ps � (1� p)t � ln(p) dp by partial integration:



2951Z0 ps � (1� p)t � ln(p) dp = [I(p; s; t) � ln(p)]10 � 1Z0 I(p; s; t) � 1p dp: (8.9)Since limp!0 pk � ln(p) = limp!1 pk � ln(p) = 0 (8.10)for all k 2 Nnf0g, [I(p; s; t) � ln(p)]10 = 0: (8.11)The remaining term, 1R0 I(p; s; t) � 1p dp, yields:1Z0 I(p; s; t) � 1p dp = 1Z0 tXi=0 s! � t!(s+ i+ 1)! � (t� i)! � ps+i � (1� p)t�i dp= tXi=0 s! � t!(s+ i+ 1)! � (t� i)! 1Z0 ps+i � (1� p)t�i dp= tXi=0 s! � t!(s+ i+ 1)! � (t� i)! � (s+ i)! � (t � i)!(s+ t + 1)!= s! � t!(s+ t + 1)! tXi=0 1s + i+ 1 : (8.12)Hence, J(s; t) = 1Z0 ps � (1� p)t � ln(p) dp = � s! � t!(s+ t + 1)! tXi=0 1s+ i+ 1 : (8.13)H.3 The De�nite Integral K(p1; k1;M;N)In this subsection, we will display an analytic expression for the de�nite integralK(p1; k1;M;N) �1�p1Zp2=0 1�p1�p2Zp3=0 � � � 1�p1�p2�:::�pM�2ZpM�1=0  N~k ! � MYi=2 pkii dpM�1 � � � dp3 dp2; (8.14)which almost always appears if Bayes estimators of multinomially distributed likelihoodsP (~kj~p) are to be derived.Since a complete mathematical proof is too long to get displayed in this work, we justpresent the main ideas and recommend all interested readers to exercise the induction bythemselves.



296First, the following variable substitutions seem to be recommendable:�i = 1� p1 � p2 � :::� pi (8.15)and Ni = N � k1 � k2 � :::� ki (8.16)for all i = 1; 2; :::;M .Then, we can rewriteK(p1; k1;M;N) � Nk1! � pk11 � �1Zp2=0  N1k2! � pk22 � �2Zp3=0  N2k3! � pk33 � � � �M�2ZpM�1=0  NM�2kM�1! �pkM�1M�1 � (�M�2 � pM�1)NM�2�kM�1 dpM�1 � � � dp3 dp2; (8.17)since �i � �i+1 = pi+1 (8.18)and Ni �Ni+1 = ki+1 (8.19)for all i = 1; 2; :::;M � 1.Finally, calculating the integral�Z0  Nk! � pk � (�� p)N�k+l dp=  Nk ! � �N+l � �Z0 � p��k � �1� p��N�k+l dp=  Nk ! � �N+l+1 � 1Z0 xk � (1� x)N�k+l dx=  Nk ! � �N+l+1 � k! � (N � k + l)!(N + l+ 1)!= N ! � (N � k + l)!(N � k)! � (N + l + 1)! � �N+l+1 (8.20)for all positive real �, integer N , and integer k � N , starting the induction, and calculatingthe occurring integrals as outlined above yieldsK(p1; k1;M;N) = N !k1! � (N � k1 +M � 2)! � pk11 � (1� p1)N�k1+M�2: (8.21)



297This result | the proportionality to pk11 �(1�p1)N�k1+M�2 | can easily be interpretedin the following way. The quotient of the two integrals1R0 f(p) � pk � (1� p)N�k dp1R0 pk � (1� p)N�k dp (8.22)can be read as the expectation value of the posterior density of the function f(p) underthe prior assumption of uniformly distributed p, which is identical to the Bayes estimatorfor f(p) under the Bayes hypothesis for p:f̂(k) = 1R0 f(p) � P (kjp) � P (p) dp1R0 P (kjp) � P (p) dp : (8.23)Let us now consider the multinomial case and assume f be a function that only dependson one component of p. Without loss of generality, let p1 be the only component that fdepends on, i.e. f = f(p1).Then, under the assumption of a uniform prior distribution of p, the Bayes estimatorfor f(p1) becomesf̂(~k) = R f(p1) � P (~kj~p) � P (~p) d~pR P (~kj~p) � P (~p) d~p= 1R0 f(p1) � pk11 � (1� p1)N�k1 � (1� p1)M�2 dp11R0 pk11 � (1� p1)N�k1 � (1� p1)M�2 dp1 (8.24)This, however, is exactly the one-dimensional Bayes estimator of the function f(p1)with the prior density P (p1) � (1� p1)M�2; (8.25)where the proportionality constant can be derived from the normalization constraint, whicheventually yields P (p1) = (M � 1) � (1� p1)M�2: (8.26)H.4 The Finite Sum S(p1; k1;M;N)In this section, we will show that the marginal distribution of the component ki of amultinomially distributed vector ~k is binomially distributed with parameters pi and N ,



298if the parameters of the underlying multinomial distribution are ~p = (p1; p2; :::; pi; :::; pM)and N .Without loss of generality, we consider the marginal distribution of the component k1of the vector ~k, which is multinomially distributed according toP (~k; ~p;N) =  N~k! � MYi=1 pkii (8.27)with pi being the probability that an M -sided die shows up its face i and ki being theabsolute frequency of observing the i-th face in a sample of size N .Let us �rst introduce a generalized binomial formula by rewriting the N1-th power ofa sum over M � 1 positive real numbers qj as0@ MXj=2 qj1AN1 = 0@q2 + MXj=3 qj1AN1 = N1Xk2=0 N1k2! � qk22 �0@ MXj=3 qj1AN1�k2= N1Xk2=0 N1k2! � qk22 �0B@N1�k2Xk3=0  N1 � k2k3 ! � qk33 �0@ MXj=4 qj1AN1�k2�k31CA= :::= N1Xk2=0N1�k1Xk3=0 � � �N1�M�2Pj=2 kjXkM�1=0  N1k2! � N1 � k2k3 !� � �  N1 � k2 � k3 � :::� kM�2kM�1 ! � qk22 � qk33 � � � qkMM= Xf ~k1g N1~k1! MYj=2 qkjj ; (8.28)where the sum is to be taken over all vectors ~k1 = (k2; k3; :::; kM) of positive integers kj forwhich the equality MXj=2 kj = N1 (8.29)holds.If we now set N1 � N � k, pj = qj for j = 2; 3; :::;M , and exploit the normalizationconstraint MXj=2 pj = 1� p1; (8.30)



299we immediately realizeXf ~k1g N~k! MYj=1 qkjj =  Nk1! � pk11 �Xf ~k1g N1~k1! MYj=2 qkjj=  Nk1! � pk11 � (1� p1)N�k1 : (8.31)Since this derivation is possible for all i = 1; 2; :::;M , we obtain the general resultXf~kig N~k! MYj=1 qkjj =  Nki! � pkii � (1� pi)N�ki (8.32)for all N , ki � N , and ~ki = (k1; k2; :::; ki�1; ki+1; :::; kM), which states that all componentsof a multinomially distributed vector are binomially distributed. This result, however, mustnot mislead us to the wrong conclusion that all components are statistically independent.The reverse is right, i.e., all components of a multinomially distributed vector are mutuallydependent.H.5 The normalization constant WUnder the assumption of a stationary, independent distributed sample of data points, theconditional probability density to observe a sample with occupation numbers fN1; : : : ; NMgis given by the multinomial distribution P ( ~N j~p) = C ~N QMi=1 pNii . Here the multinomialcoe�cient reads as C ~N = N !=QMi=1Ni!, and the size of the sample is N =PMi=1Ni.We de�ne W 0( ~N) = W ( ~N)=C ~N . Then, with a uniform prior probability density, thereduced normalization constant reads asW 0( ~N) = 1C ~N ZS d~p P ( ~N j~p) Q(~p) = ZS MYj=1 dpj pNjj : (8.33)Introducing the auxiliary variable kj = 1�Pjl=1 pl, the explicit integral takes on the formW 0( ~N) = Z 1p1=0 dp1 pN11 Z k1p2=0 dp2 pN22 � � �Z kM�2pM�1=0 dpM�1 pNM�1M�1 (kM�2 � pM�1)NM :(8.34)In the above expression, all integrals are of the type R du ua(� � u)b. Changing co-ordinatesu = �v, these integrals can be rewritten in terms of ordinary Beta-functionsZ �0 du ua(� � u)b = �a+b+1 B(a+ 1; b+ 1) (8.35)



300for all positive real numbers a and b, and B(a; b) = �(a)�(b)=�(a + b). The relation�(n+ 1) = n! holds for n 2 N .Using relation (8.35), we may integrate equation (8.34) over pM�1 to getW 0( ~N) = B�NM�1 + 1; NM + 1�� (Z 1p1=0 dp1 pN11 Z k1p2=0 dp2 pN22 � � �� � �Z kM�3pM�2=0 dpM�2 pNM�2M�2 (kM�3 � pM�2)(NM�1+NM+1) ):Completing the iteration for all but the integration over p1, this yieldsW 0( ~N) = M�1Ym=2 B�Nm + 1;M�1Xj=m Nj+1 + (M �m)��(Z 1p1=0 dp1 pN11 (1� p1)�PMj=2 Nj+(M�2)� ):Expressing the Beta-functions in terms of Gamma-functions, we obtain W 0(p1; ~N) in theform W 0(p1; ~N) = pN11 QMj=2 �(Nj + 1)� �PMj=2Nj +M � 1� (1� p1)�PMj=2Nj+(M�2)� : (8.36)Inspecting the above expression, we realize that equation (8.36) can, in fact, be readilywritten down for a general ith component:W 0(pi; ~N) = pNii QMj=1j 6=i �(Nj + 1)� �PMj=1(1� �ij)Nj +M � 1� (1� pi)�PMj=1(1��ij)Nj+(M�2)� : (8.37)Integrating (8.37) over pi, we arrive at the normalization constantW ( ~N) = C ~N Z 1pi=0 dpi W 0(pi; ~N) = �(N + 1)�(N +M) : (8.38)



Appendix ICharacteristic FunctionsIn this appendix, we will brie
y introduce characteristic functions f~k(~t) of a discrete randomvector ~k with the probability distribution P �~k�, which we will then calculate to displaythe �rst moments of the multinomial distribution given byP �~k� =  N~k ! MYi=1 pkii ; (9.1)where ~k = (k1; k2; :::; kM) denotes the M -dimensional vector containing the nonnegativeintegers ki constrained by MXi=1 ki = N (9.2)and ~p = (p1; p2; :::; pM) denotes the M -dimensional probability vector containing the non-negative reals pi obeying the constraint MXi=1 pi = 1: (9.3)More detailed introductions of characteristic functions containing a set of valuabletheorems can be found, e.g., in [Bronstein & Semendjajew 1989], [R�enyi 1982], or [Fisz1989].The table of the central multinomial moments displayed at the bottom of this appendixcan also be found in [Harris 1975].De�nition I.1 Let k be a random variable with its distribution function F (k). Then wede�ne the characteristic function fk(t) as the expectation value of the numbers exp(i k t),i.e., fk(t) � Z exp(i k t) dF (k): (9.4)



302By expanding exp(i k t), we obtainfk(t) = E  1 + i k t+ (i k t)22! + (i k t)33! + � � �! = 1Xn=0 in �n tnn! ; (9.5)where �n denotes the n-th central moment of k, i.e.,�n = E (kn) = Z kn dF (k): (9.6)Di�erentiating n times and then setting t = 0 givesin � �n = �@nfk(t)@tn �t=0 ; (9.7)i.e., the n-th derivative of the characteristic function fk(t) yields the n-th moment of k.Considering the binomial distribution, we obtainfk(t) = NXk=0 exp(i k t) � Nk ! � pk � (1� p)N�k = (p � exp(i t) + 1� p)N (9.8)and thus all moments by di�erentiating this function.Let us now consider the characteristic function of multivariate distributions.De�nition I.2 Let ~k be a random vector and F (~k) its distribution function. Then wede�ne the characteristic function f~k(~t) as the expectation value of the numbers exp(i~k~t),i.e., f~k(~t) � Z exp(i~k~t) dF (~k): (9.9)Hence, the characteristic function of a multinomially distributed vector ~k is given byf~k(~t) = Xf~kg  N~k! � MYi=1 pkii � MYi=1 exp(i ki ti)= Xf~kg  N~k! � MYi=1 (pi � exp(i ti))ki=  MXi=1 pi � exp(i ti)!N (9.10)according to appendix H.4.In analogy to the univariate case, we obtain all higher moments of the multinomialdistribution by di�erentiating the characteristic function f~k(~t).



303Let us, in the remainder of this appendix, display the �rst centered moments �n1 n2 ::: nlde�ned by �n1 n2 ::: nl � E ((k1 �N p1)n1 � (k2 �N p2)n2 � � � (kl �N pl)nl) ; (9.11)which can be obtained by completely elementary methods from the moments �n1 n2 ::: nl .�1 = 0 (9.12)�2 = N � (p1 � p21) (9.13)�3 = N � (p1 � 3 � p21 + 2 � p31) (9.14)�4 = 3N2 � (p21 � 2 � p31 + p41)+ N � (p1 � 7 � p21 + 12 � p31 � 6 � p41) (9.15)�1 1 = �N � p1 � p2 (9.16)�2 1 = N � (2 � p21 � p2 � p1 � p2) (9.17)�3 1 = 3N2 � (p31 � p2 � p21 � p2)+ N � (�6 � p31 � p2 + 6 � p21 � p2 � p1 � p2) (9.18)�2 2 = N2 � (3 � p21 � p22 � p21 � p2 � p1 � p22 + p1 � p2)+ N � (�6 � p21 � p22 + 2 � p21 � p2 + 2 � p1 � p22 � p1 � p2) (9.19)�1 11 = 2N � p1 � p2 � p3 (9.20)�2 11 = N2 � (3 � p21 � p2 � p3 � p1 � p2 � p3)+ N � (�6 � p21 � p2 � p3 + 2 � p1 � p2 � p3) (9.21)�1 1 11 = 3N2 � p1 � p2 � p3 � p4 � 6N � p1 � p2 � p3 � p4 (9.22)



Appendix JMean and Variance of ln�2In this appendix, we derive the mean and variance of the logarithm of a �2-distributedrandom variable.Let Xi be i. i. d. continuous random variables with outcomes xi and probability densityfunctions P (xi) � 1p2�e�x2i2 (10.1)for i = 1; 2; 3; :::;1. Let Ym be the continuous random variable with outcomes ym �Pmi=1 x2i : Then the probability density function of Ym isQm(y) = ym2 �1e� y22m2 �(m2 ) : (10.2)The distribution of Xi is called normal distribution with mean 0 and variance 1, and thedistribution of Ym is called �2 distribution with m degrees of freedom. Eq. (10.2) can bederived in (at least) two ways:1. Complete Induction over m� Compute by brute force (but easily)Q1(y) = e� y2p2�py (10.3)and Q2(y) = Z y0 Q1(x)Q1(y � x)dx = e� y22 : (10.4)� Show that Qm+1(y) = Z y0 Q1(x)Qm(y � x)dx (10.5)for all m = 1; 2; :::;1.



305� This implies that the sum of k independent �2-distributed random variables withm1; m2; :::; mk degrees of freedom is �2-distributed with m = m1+m2+ :::+mkdegrees of freedom, i. e.Qm1+m2(y) = Z y0 Qm1(x)Qm2(y � x)dx: (10.6)2. Characteristic Functions� De�ne the characteristic functionfm(t) � Z 10 Qm(x)extdx (10.7)and compute f1(t) = (1� 2t)� 12 : (10.8)� Use the convolution theorem, which states that the characteristic function ofthe sum of independent random variables is equal to the product of their char-acteristic functions, to obtainfm(t) = fm1 (t) = (1� 2t)�m2 : (10.9)� Perform the inverse Laplace transform on fm(t) to obtain eq. (10.2).� Obviously fm1+m2(t) � Z 10 Qm1+m2(x)extdx= fm1(t)fm2(t): (10.10)The n-th moment, hyni, of the �2 distribution with m degrees of freedom can beobtained by brute force integration,hyni � Z 10 Qm(y)yndy = 2n�(m2 + n)�(m2 ) ; (10.11)or, more elegantly, by Taylor-expanding the generating function,fm(t) � Z 10 Qm(y)eytdy= Z 10 Qm(y)(1 + yt + (yt)22 + (yt)33! + :::)dy= h1i+ hyit+ hy2i t22 + hy3i t33! + :::; (10.12)



306yielding hyni = dnfm(t)dtn jt=0 = 2n�(m2 + n)�(m2 ) ; (10.13)in agreement with eq. (10.11). Fromhy0i = 1; (10.14)hy1i = m; (10.15)hy2i = m(m+ 2); (10.16)we obtain �2(y) � hy2i � hyi2 = 2m: (10.17)The �rst two moments of ln y can be obtained by brute force integration,hln yi � Z 10 Qm(y) ln y dy= ln 2 +  0(m2 ); (10.18)hln2 yi � Z 10 Qm(y) ln2 y dy= ln2 2 + ln 4 0(m2 ) +  20(m2 ) +  1(m2 ); (10.19)or by performing the variable transformation z = ln y and computing the moments hzi andhz2i of the density Rm(z) � Qm(y)dydz = emz�ez22m2 �(m2 ) : (10.20)The characteristic function of Rm(z) isgm(t) � Z 1�1 Rm(z)eztdz = 2t�(m2 + t)�(m2 ) ; (10.21)and the �rst and second derivatives of gm(t) evaluated at t = 0 yield eqs. (10.18) and(10.19), where  n(x) � dn+1 ln �(x)dxn+1 (10.22)is the polygamma function. Hence, we obtain�2(ln y) � hln2 yi � hln yi2 =  1(m2 ): (10.23)With 
 � limn!1 nXk=1 1k � lnn (10.24)



307being Euler's constant, we obtain for m = 6hln yi = ln 2 + 32 � 
; (10.25)and �2(ln y) = �26 � 54 : (10.26)



Appendix KDe�nitions of C and UIn this appendix, we detail the calculation of the correlation coe�cient, C(X; Y ), and theuncertainty coe�cient, U(X; Y ).K.1 Rank-Ordered Correlation Coe�cient CLinear statistical dependences can be quanti�ed by calculating the correlation coe�cientC(X; Y ) of two random variables X and Y . C(X; Y ) ranges from -1 to 1, where (�)1corresponds to perfect sample (anti-)correlation, and 0 is the value for linearly statisticallyindependent samples. Denote the average over the data set by h iS , and de�ne the covari-ance �2XY = h(x� �x)(y � �y)iS and the mean values �x = 1S �PSs=1 xs and �y = 1S �PSs=1 ys.C(X; Y ) is de�ned as (Sachs 1984)C(X; Y ) = �2XY�XX � �Y Y :In this study, we use rank numbers rather than direct measurements, since thenC(X; Y ) becomes independent on monotonic scaling. We obtain rank numbers throughX 0 = fri(x)g, where ri(x) is the rank of the ith element of the original data sample per-muted according to ri(x) = #fjjxj � xi; 1 � j � Sg.



309K.2 Uncertainty Coe�cient UWe use the uncertainty coe�cient U(X; Y ) to quantify non-linear statistical dependences.U(X; Y ) is de�ned as (Press et al. 1992)U(X; Y ) = 2 � H(X) +H(Y )�H(X; Y )H(X) +H(Y ) ;where H(X) = �PMm=1 pm � log2 pm. Eqn (11.1) is the (normalized) mutual informationin X about Y (Shannon 1948). The marginal entropies, H(X) and H(Y ), and the jointentropy, H(X; Y ) are computed as follows:1. Distribute X and Y on an array consisting of M �M bins such that the marginalprobabilities Pr(X = xm) = pm and Pr(Y = yn) = pn are uniform, that is pm = pn =1=M . Consequently, we have H(X) = H(Y ) = log2M .2. Determine the joint probabilities, PrfX = xm; Y = yng = pm;n from the distributionof X and Y on the array of M2 bins..3. Calculate U(X; Y ) according to eqn (11.1). Since the marginal probabilities obey apriori a uniform distribution, we compute U(X; Y ) = 2� H(X;Y )log2M .U(X; Y ) ranges from 0 to 1, where 0 corresponds to the case in which X and Y arestatistically independent, and 1 to the case in which X and Y are interdependent.



Appendix LScale Invariance andNon-Self-Averaging Behavior in aSimple Fragmentation ProcessIn this chapter we investigate statistical properties of a simple recursive fragmentationprocesses. We show that the fragment length distribution is purely algebraic, and thatthe fragmentation process is non-self-averaging. Additionally, extremal properties, e.g.,the distribution of the largest fragment, exhibit an in�nite number of singularities. Ind-dimensions, the volume distribution is given by a sum of d power-laws, and consequently,the small-size tail diverges algebraically.L.1 IntroductionNumerous physical phenomena are characterized by a set of variables, say fxjg, whichevolves according to a random process, and are subject to the conservation law Pj xj =const. An important example of such a stochastic process is fragmentation, with ap-plications ranging from geology [Turcotte 1996] and fracture [Lawn & Wilshaw 1975]to the breakup of liquid droplets [Shinnar 1961] and atomic nuclei [Chase et al. 1998,Redner 1990]. Other examples include spin glasses [Mezard et al. 1987], where xj repre-sents the equilibrium probability of of �nding the system in the jth valley, genetic popula-tions, where xj is the frequency of the jth allele [Higgs 1995, Derrida & Jung-Muller 1999],and random Boolean networks [Kau�man 1993, Flyvbjerg & Kjaer].



311Our primary motivation arises from applications of a DNA segmentation algorithm[Bernaola-Galv�an et al. 1996, Rom�an-Rold�an et al. 1998, Bernaola-Galv�an et al. 1999,Li et al. 1998, Bernaola-Galv�an et al. 1999, Oliver et al. 1999], which is used to decom-pose a heterogeneous DNA sequence into homogeneous sub-sequences. The segmentationalgorithm attempts to divide recursively a given heterogeneous sequence into two sub-sequences. For each possible \break point" one computes a heterogeneity measure, forexample, the Jensen-Shannon divergence [Lin 1991], and chooses that \break point" atwhich the heterogeneity measure is maximal. If that maximal value is greater than someprede�ned con�dence level, the sequence is divided into two sub-sequences, and the out-lined segmentation procedure is repeated recursively for both sub-sequences. Otherwise,the sequence does not undergo further segmentation, and it is considered homogeneous withthe given con�dence level. To evaluate whether the length distributions of the resultingfragments from DNA sequences are signi�cantly di�erent from the length distribution offragments resulting from random, uncorrelated sequence, we derive the latter distributionhere.L.2 Recursive Fragmentation ProcessSpeci�cally, we investigate the following recursive fragmentation process. We start withthe unit interval and choose a break point l in [0; 1] with a uniform probability density.Then, with probability p, the interval is divided into two fragments of lengths l and 1� l,while with probability q = 1 � p, the interval becomes \frozen" and is never fragmentedany further. If the interval is fragmented, we recursively apply the above fragmentationprocedure to both of the resulting fragments.First, let us examine the average total number of fragments, N . Since with probabilityq a single fragment is produced, and with probability p the process is repeated with twofragments, N satis�es N = q + 2pN , yieldingN = ( q=(1� 2p); if p < 1=2;1; if p � 1=2. (12.1)The average total number of fragments becomes in�nite at the critical point pc = 1=2,re
ecting the critical nature of the underlying branching process [Harris 1989].



312L.3 Fragment Length DistributionNext, we study P (x), the density of fragments of length x. The recursive nature of theprocess can be used to obtain the fragment length densityP (x) = q�(x� 1) + 2p Z 1x dyy P �xy� : (12.2)The gain term indicates that a fragment can be created only from a larger fragment, andthe y�1 kernel re
ects the uniform fragmentation density. Eq. (12.2) can be solved byintroducing the Mellin transformM(s) = Z dx xs�1P (x): (12.3)Eqs. (12.2) and (12.3) yield M(s) = q + 2ps�1M(s), which impliesM(s) = q + 2pqs� 2p: (12.4)The average total number M(1) = N is consistent with Eq. (12.1), and the total fragmentlength M(2) = 1 is conserved in accord with 1 = R dx xP (x). (Here and in the followingall integrals with unspeci�ed limits are taken over the interval 0 < x < 1.) The inverseMellin transform of Eq. (12.4) givesP (x) = q�(x� 1) + 2pq x�2p: (12.5)Apart from the obvious delta function, the length density is a purely algebraic function. Inparticular, the fragment distribution diverges algebraically in the limit of small fragments.Interestingly, given such an algebraic divergence near the origin P (x) � x�
 , length con-servation restricts the exponent range to 
 < 2. In our case 
 = 2p, and since 0 < p < 1,the entire range of acceptable exponents emerges by tuning the only control parameter p.Interestingly, at the critical point pc = 12 , the fragment length distribution becomesindependent of the initial interval length. Starting from an interval of length L, Eq. (12.5)can be generalized to yieldP (x) = q�(x� L) + 2pqL1�2px�2p:Thus, the critical point may be detected by observing that point at which the segmentdistribution becomes independent of the original interval length.



313L.4 Multidimensional GeneralizationThe recursive fragmentation process can be generalized to d dimensions. For instance,in two dimensions we start with the unit square, choose a point (x1; x2) with a uniformprobability density, and divide, with probability p, the original square into four rectanglesof sizes x1 � x2, x1 � (1 � x2), (1 � x1) � x2, and (1 � x1) � (1 � x2). With probabilityq, the square becomes frozen and we never again attempt to fragment it. The process isrepeated recursively for each fragment produced in the previous step.Let P (x1; : : : ; xd) be the probability density of fragments of size x1 � � � � � xd.P (x1; : : : ; xd) satis�esP (x1; : : : ; xd) = q dYi=1 �(xi � 1)+ 2dp Z dYi=1 dyiyi P �x1y1 ; : : : ; xdyd� : (12.6)Following the steps leading to Eq. (12.4), we �nd that the d-dimensional Mellin transform,de�ned by M(s1; : : : ; sd) = R Qdi=1 dxi xsi�1i P (x1; : : : ; xd), satis�esM(s1; : : : ; sd) = q "1 + �dQdi=1 si � �d # ; (12.7)with � = 2p1=d.The overall number of fragments is N = M(1; : : : ; 1) = q=(1 � 2dp) if p < 2�d, andN ! 1 if p � 2�d. One can verify that the total volume M(2; : : : ; 2) = 1 is conserved.Interestingly, there is an additional in�nite set of conserved quantities: all moments whoseindices belong to the hyper-surface dYi=1 s�i = 2d (12.8)satisfyM(s�1; : : : ; s�d) = 1. In a continuous time formulation of this process, which is similar(but not identical) to the special case p = 1, the same moments were found to be integrals ofmotion [Krapivsky & Ben-Naim 1996]. The existence of an in�nite number of conservationlaws is surprising, because only the volume conservation has a clear physical justi�cation.L.5 Volume Distribution in d DimensionsNext, we study the volume density P (V ), de�ned byP (V ) = Z dx1 � � �dxd P (x1; : : : ; xd)�(V �Yxi): (12.9)



314The Mellin transform M(s) = R dV V s�1P (V ) can be obtained from Eq. (12.7) by settingsi = s, M(s) = q "1 + �dsd � �d # ; (12.10)with � = 2p1=d. Using the dth root of unity, � = e2�i=d, and the identity 1sd�1 =1dPd�1k=0 �ks��k , M(s) can be expressed as a sum over simple poles at ��k . Consequently,the inverse Mellin transform is given by a linear combination of d power lawsP (V ) = q "�(V � 1) + �d d�1Xk=0 �kV ���k# : (12.11)One can verify that P (V ) equals its complex conjugate, and hence P (V ) is real. Addition-ally, the one-dimensional case (12.5) is recovered by setting d = 1.The small-volume tail of the distribution can be obtained by noting that the sum inEq. (12.11) is dominated by the �rst term in the series, which leads toP (V ) ' AdV �2p1=d as V ! 0; (12.12)with Ad = �q=d. Although the value of the exponent changes, the possible range ofexponents for this process remains the same since 0 < 2p1=d < 1 when 0 < p < 1. In thein�nite dimension limit, P (V ) becomes universal: P (V ) � V �2.The leading behavior of P (V ) in the large size limit can be derived by using the Taylorexpansion and the identity Pd�1k=0 �kn = �n;0 for n = 0; : : : ; d� 1. One �nds that in higherdimensions the volume distribution vanishes algebraically near its maximum value,P (V ) ' Bd(1� V )d�1 as V ! 1; (12.13)with Bd = �d=(d� 1)!.L.6 Fragment Length Distribution in d DimensionsThe entire multivariate fragment length density can be derived by performing the in-verse Mellin transform of Eq. (12.7). We expand the geometric series �dQdi=1 si��d =Pn�0Qdi=1 � �si�n+1, and perform the inverse Mellin transform for each variable separatelyby using the identity R dx xs�1 hln 1xin = n!s�n�1 . Hence, we obtainP (x1; : : : ; xd) = q " dYi=1 �(xi � 1) + �dFd(z)# ; (12.14)



315with the shorthand notationsFd(z) = 1Xn=0�znn!�d ; z = � dYi=1 ln 1xi!1=d : (12.15)The small size behavior of P (x1; : : : ; xd) can be obtained by using the steepest decentmethod. The leading tail behavior, Fd(z) ' (2�z) 1�d2 ezd for z � 1, corresponds to thecase when at least one of the lengths is small, i. e. xi � 1. Hence, we �nd an unusual\log-stretched-exponential" expressionP (x1; : : : ; xd) � qz=�1�dezd (12.16)L.7 Non-Self-Averaging BehaviorThe fragment length density represents an average over in�nitely many realizations ofthe fragmentation process, and hence does not capture sample to sample 
uctuations.These 
uctuations are particularly important in non-self-averaging systems, where sampleto sample 
uctuations do not vanish in the thermodynamic limit. Useful quantities tocharacterize disordered systems, which are often non-self-averaging [Mezard et al. 1987,Derrida 1997], are the moments Y� de�ned byY� =Xi x�i ; (12.17)where the sum runs over all fragments.We are interested in the average values hY�i and hY�Y�i. For integer �, hY�i is theprobability that � points randomly chosen in the unit interval belong to the same fragment.The expected value of Y� satis�eshY�i = q + phY�i Z dy [y� + (1� y)�] : (12.18)The �rst term corresponds to the case where the unit interval is not fragmented, and thesecond term corresponds to the case where fragmentation occurs. Eq. (12.18) giveshY�i = q �1 + 2p�+ 1� 2p� (12.19)if � > 2p � 1, and hY�i ! 1 if � � 2p � 1. As expected, Eq. (12.19) agrees with themoments of P (x) (12.5), hY�i = R dx x�P (x).



316Higher order averages do not follow directly from the fragment density. For example,consider for example hY�Y�i. For integer � and �, hY�Y�i is the probability that, if �+ �points are chosen at random, the �rst � points all lie on the same fragment, and the last� points all lie on another (possibly the same) fragment. hY�Y�i satis�eshY�Y�i = q + phY�Y�i Z dy hy�+� + (1� y)�+�i+ phY�ihY�i Z dy hy�(1� y)� + (1� y)�y�i ;yielding hY�Y�i = q + 2pq�+ � + 1� 2p+ 2p �(�+ 1)�(� + 1)�(�+ � + 1) hY�ihY�i�+ � + 1� 2p;if �; � > 2p� 1 and � + � > 2p� 1, and hY�Y�i ! 1 otherwise.Note that hY�Y�i 6= hY�ihY�i, and in particular hY 2� i 6= hY 2� i. Hence, 
uctuations in Y�do not vanish in the thermodynamic limit, which states that the recursive fragmentationprocess is non-self-averaging. While for p < 1=2 non-self-averaging behavior is expectedbecause the total number of fragments is �nite, the emergence of non-self-averaging quan-tities for p > 1=2 is surprising. Hence, statistical properties obtained by averaging overall realizations are insu�cient to probe sample to sample 
uctuations. In principle, higherorder averages such as hY n� i can be calculated recursively by the procedure outlined above.L.8 Length Distribution of the Largest FragmentExtremal properties provide an additional probe of sample to sample 
uctuations. Specif-ically, let us consider L(x), the length density of the largest fragment. For a self-averagingfragmentation processes with an in�nite number of fragments one expects L(x)! �(x) inthe thermodynamic limit. To see that L(x) is non-trivial for any p, let us �rst determineL(x) for x � 1=2. In this region,L(x) = q�(x� 1) + p Z 1x dyy L�xy� : (12.20)If the original unit interval is not fragmented, the largest fragment is obviously the unitinterval. If the �rst fragmentation is performed, only one of the two resulting fragmentscan be larger than x > 1=2. Therefore, only subsequent breaking of this fragment (oflength y > x) can contribute to L(x), which explains Eq. (12.20).



317Eq. (12.20) is similar to Eq. (12.2), and can be solved by the same technique to giveL(x) = q�(x� 1) + pq x�p for x � 1=2: (12.21)In the complementary case of x < 1=2, L(x) satis�esL(x) = p Z 11�x dyy L�xy�+ p Z 1�x1=2 dyy L�xy�L� � x1� y�+ p Z 1�x1=2 dyy L� x1� y�L� �xy� :The �rst term on the right-hand side of this equation is constructed as in Eq. (12.20): ifwe �rst break the unit interval into two fragments of lengths y > 1=2 and 1 � y, then for1�y < x the longest fragment is produced by breaking the fragment of length y. The nexttwo terms describe the situation when 1 � y > x, so the longest fragment can arise outof breaking any of the two fragments. The factors L�(u) = R u0 dvL(v) guarantee that thelongest fragment of length x comes from the fragment of length v in the �rst generation.Since we already know L(x) for x � 12 , we can compute L(x) for 13 � x � 12 bysubstituting the expression for L(x) into the above equation. Similarly, we can computeL(x) for 1k+1 � x � 1k . Clearly, L(x) is analytic in the intervals � 1k+1 ; 1k�, but singular atthe boundaries of these intervals, namely at x = 1=k. These singularities (we loosely use theterm singularity to denote the existence of only a �nite number of derivatives at x = 1=k)become weaker as k increases. Singularities at x = 1=k appear to be a generic propertyof several disordered systems, including random walks, spin glasses, random maps, andrandom trees [Chase et al. 1998, Higgs 1995, Derrida & Jung-Muller 1999, Derrida 1997,Derrida & Flyvbjerg 1987, Frachebourg et al. 1995, Derrida & Flyvbjerg 1988].L.9 SummaryWe have found that the recursive fragmentation process is scale free, i.e., the frag-ment length distribution is purely algebraic. In higher dimensions, the volume distri-bution is a linear combination of d power laws, and consequently, an algebraic diver-gence characterizes the small-fragment tail of the distribution. A number of experi-mental fragmentation studies, where solid objects impact a hard surface, report alge-braic mass (or equivalently volume) distributions with exponents ranging from 1 to 2



318[Oddershede et al. 1993, Kadono 1997]. As in such situations a fragment may impact thesurface more than once, the recursive fragmentation process may serve as a starting pointto model those experimental fragmentation processes. We have found that the recursivefragmentation process exhibits features that are typical of complex and disordered systems,such as non-self-averaging behavior and the existence of an in�nite number of singulari-ties in the distribution of the largest fragment. These features indicate that even in thethermodynamic limit sample to sample 
uctuations remain, and that knowledge of �rstorder averages may not be su�cient for characterizing the system. This implies that ex-perimental results obtained from DNA sequences must be handled with great care, as largesample to sample 
uctuations (from DNA of di�erent organisms) are expected and do notnecessarily re
ect organism-speci�c biological features.



Appendix MHow random are randomnumbers?Random numbers were needed to perform most simulations in this work and they are gen-erally required in many areas of statistical physics, e.g. stochastic optimization, Monte-Carlo methods or stochastic simulation [Ebeling & Feistel 1982, Allen & Tildesley 90,Schnakenberg 1995]. Random numbers are usually generated by a pseudo random numbergenerator (PRNG). A problem with all PRNG is that pseudo random sequences gener-ated in this way contain weak correlations that may lead to spurious simulation results[Ferrenberg et al. 1992].In this appendix a simple and e�cient method [Beule & Grosse 1996] for testing ran-domness is introduced and applied to several widely used PRNGs in order to detect weakcorrelations in pseudo random sequences and helps to determine which PRNGs are suitablefor sampling large discrete spaces.M.1 Pseudo Random NumbersA PRNG is an iterative map F of a number (or a set of numbers) xj onto a new num-ber xj+1 = F (xj). The map is chosen in such a way that for suitable initial valuesx0 the sequence fxjg (or parts of it) appear randomly distributed in a certain interval[Marsaglia 1992]. The pseudo random numbers generated in this way have several desirablefeatures: they are reproducible (e.g. for counter checking results) and produced e�ciently



320without any special equipment1. An overview of the many possibilities for choosing themap F (xj) and the corresponding initial values is given in [Knuth 1981, Marsaglia 1992].Because of (binary) coding in computers the number of di�erent values xj is limitedand PRNGs are periodic. For many PRNGs the length of this period can be determinedanalytically or at least estimated [Marsaglia 1992, Knuth 1981]. Besides periodicity thesequences xj can contain further correlations. For good generators these correlationsare quite small and therefore di�cult to detect especially because any correlation mea-sure has �nite-size e�ects, that simulate correlations even in truly random �nite sequences[Herzel et al. 1994a, Grosse 1995]. Nevertheless these small correlations - especially if sam-pling high dimensional or �ne structured spaces - may lead to spurious simulation results[Ferrenberg et al. 1992].M.2 What is a random sequence?Before proceeding to actual tests for PRNGs a more precise de�nition of random has tobe given. Even for in�nite sequences it is di�cult to de�ne random in such a way thaton the one hand there are random sequences and on the other hand no contradiction tothe intuitive understanding of random arises cf. [Knuth 1981]. When performing empiricaltests of PRNGs one is always restricted to �nite sequences. It seems impossible to give aproper de�nition of random for a �nite sequence because any sequence of given length hasequal probability. However, everybody will agree that the decimal sequence 897932384626appears to be more random then 919191919191, 1234567890123 or 000000000000. A typical�nite sequence of length N is characterized by the fact that all �nite subsequences oflength k for any k � log�N will appear with equal probability p(k). Here � is the sizeof the alphabet i.e. the number of di�erent letters in the sequence. There are M = �kdi�erent sequences of length k and therefore p(k) = 1=M . Sequences that have the desireddistribution for a given k are called k-distributed [Knuth 1981].M.3 An exampleLet us consider a PRNG of the widely used class of linear-congruential generators:xj+1 = F (xj) = (a � xj + c) mod m ; j > 0 ; (13.1)1True random numbers can be generated e.g. from thermal electron noise [Knuth 1981].



321where a; c;m and xj are integer. The quality of a linear-congruential generator (LCG)depends on the proper choice of the parameter a; c;m; x0. As an instructive example weconsider a = 137, c = 187, and m = 256. For any initial value (13.1) will generateequidistributed (1-distributed) pseudo random numbers of period 256 [Knuth 1981].In order to randomly sample the �elds of a chess board with 8� 8 �elds one will need2-distributed coordinates (y2j ; y2j+1). These yj might be generated from the 3 leadingbits of xj i.e. yj = xj >> 5, where >> denotes the bit-shift operator. It will turn outthat the pairs of coordinates (y2j ; y2j+1) are not chosen with equal probability. If thecoordinates are generated from the last 3 bits of xj i.e. yj = xj mod 8, one will alwaysselect the same �eld while never reaching any other. The reason for this non-uniformdistribution are correlations between xj and xj+1 that cause the pseudo random numbers(x2j ; x2j+1) to �ll only a fraction2 of the possible [0; 255]� [0; 255] space. Therefore thecoordinates (y2j ; y2j+1) do not properly sample the �elds of the chess board. The sequenceof yj coordinates are not 2-distributed and simulations on a 8�8 grid may lead to spuriousresults.A better choice of the parameter a; c;m; x0 (especially larger values for a and m) willimprove the situation, but if larger chess boards or higher dimensional spaces are consideredthe problem will appear again. The e�ect that was just described is well known for linear-congruential PRNGs [Marsaglia 1968] and it is even possible to determine the maximaldistance between neighboring d-tuples (xj+1; : : : ; xj+d) with the help of the semi-empiricalspectral-test [Knuth 1981]. For PRNGs that are not of the linear-congruential type onecan not perform this test.M.4 Bit-DecayIn order to test whether a sequence of length N is k-distributed one can determine theprobability of any subsequence (serial test) or some subsequences (poker test) of lengthk and compare it with the expectation value p(k) [Knuth 1981]. Another possibility isto determine the number of sequences that did not appear up to length t [Stau�er 1996,Beule & Grosse 1996]. In the chess-board example (� = 8, k = 2) this means to ask: howmany �elds have not been selected after the coordinates have been generated t times.2The reason for this is the reconstruction of the attractor of the underlying nonlinear map by means ofdelay coordinates.



322For a large number of �elds M = �d the nature of this test can be understood easilyby considering the analogy to the radioactive decay. Radioactive nuclei decay randomly,independently of their position and with a �xed rate. Hence the number of remaining(not decayed) nuclei follows the well known exponential decay law. For a random sequence(using the de�nition given above) all M cells are selected with the same �xed probability1=M . For M � 1 one has a Poisson process and the expectation value hf(t)i for thenumber of cells, that were not selected after t trials decays exponentially:hf(t)i �M exp (�t=M) for 1�M = �k : (13.2)Not k-distributed sequences lead in general to deviations from the exponential decay law(13.2), cf. [Beule & Grosse 1996]. Expectation value and standard deviation of f(t) can begiven exactly even for �nite M , see section M.7.The information whether a cell has been selected can be stored by a single bit. Thereforethe bit-decay can be used as an e�cient test of the quality of the PRNG generating thesequence. It allows to test whether a given sequence of pseudo random numbers is k-distributed.M.5 Expectation ValueIn order to calculate the expectation value for f(t) after t trials consider the binary variableXi(t) (i = 1; 2; :::;M). Let Xi(t) = 1 if the i-th cells is empty after t trials and Xi(t) = 0otherwise. The number of empty cells is given by [Feller 1968]f(t) = MXi=1Xi(t) : (13.3)Therefore the expectation value hf(t)i of empty cells after t trials is given byhf(t)i = * MXi=1Xi(t)+ = MXi=1hXi(t)i : (13.4)The probability of selecting a single �xed cell i in a single trial is p = 1=M . Therefore theprobability that the cell is empty after t trials is: A(t) � hXi(t)i = (1� p)t. This gives theexponential decay lawhf(t)i =M (1� p)t =M exp (�b � t) with b = ln(M=(M � 1)) : (13.5)



323M.6 VarianceThe variance of the number of empty cells f(t) is de�ned by�2(f(t)) � hf(t)2i � hf(t)i2= Xi hXi(t)2i+Xi 6=jhXi(t) �Xj(t)i �Xi;j hXi(t)i � hXj(t)i (13.6)= Xi (hXi(t)2i � hXi(t)i2 +Xi 6=j(hXi(t) �Xj(t)i � hXi(t)i � hXj(t)i)= Xi (hXi(t)2i � hXi(t)i � hXj(t)i) +Xi 6=j cov(Xi(t); Xj(t)) :In each sum every term gives the same contribution because all cells are equal. Thereforeone �nds for the variance�2(f(t)) = M � (hX1(t)2i � hX1(t)i2) +M � (M � 1) � cov(X1(t); X2(t))= M � (A(t)� A(t)2) +M � (M � 1) � [(1� 2p)t �A(t)2] (13.7)= M �A(t)� (M �A(t))2 +M � (M � 1) � (1� 2p)t:The statistics of the bit-decay can be related to the �nite-size e�ects of the topologicalentropy3 , see [Beule & Grosse 1996] for details.M.7 DistributionThe probability distribution P (f; t;M) for occupying M � f of the M = �k cells in t trialsis given by [Feller 1968]:P (f; t;M) =  Mf ! �M�fXj=0 (�1)j �  M � fj ! � �1� f + jM �t : (13.8)In the limit M !1 the number of occupied cells is given by a Poisson distribution.M.8 TestsThe behavior of the bit-decay for a variety of sequences with di�erent correlations hasbeen discussed in [Beule & Grosse 1996]. Here only the advantages and limitations of twoselected PRNGs will be presented:3The limit q ! 0 of the R�enyi entropies [R�enyi 1970].



(i) LCG16807: The linear-congruential PRNG (13.1) with the parameter a = 16807,c = 0, m = 231 � 1, and x0 = 1 de�ned as the minimal standard PRNG in[Press et al. 1992]. The period length of this generator is 2:1 � 109 [Marsaglia 1992].(ii) RAND55: A so called lagged-Fibonacci PRNG with the iterationxj = (xj�55 � xj�24) mod m ; (13.9)initialized with 55 positive integers and with m = 232 [Knuth 1981]. The length ofthe period is 7:7 � 1025 [Marsaglia 1992].For the stochastic simulations of 2 and 3-dimensional systems one needs random coordinatesthat are at least 1-distributed, 2-distributed, and 3-distributed. As all modern PRNGseasily pass tests for 1-distribution bit-decay tests for k = 2 and k = 3 for di�erent �are performed here. The cell coordinates yj are again generated from subsequent pseudorandom integers xj . It is important to generate yj from the leading bits of the xj as thisresults in a much better distribution of the yj , cf. section M.3 and [Knuth 1981]. First thesequences LCG16807 and RAND55 are used to sample a chess board of 256� 256 �elds,i.e. � = 256 and k = 2. The number of cells that are empty after t trials is shown in FigureM.1 together with the expectation value hf(t)i given by the exponential decay (13.5).In order to assess whether the observed deviations are are signi�cant one has to comparethese deviations with the standard deviation �(f(t)) obtained from (13.6). This comparisonis shown in Figure M.2 For the chosen parameter � = 256 and k = 2 the deviations arewithin the expected range.Thus the pseudo random coordinates generated from LCG16807 and RAND55 for the256�256 grid can be considered 2-distributed according to this test. The situation changeswhen one considers �ner grids (Figure M.3) or higher dimensions (Figure M.4). In these two�gures the deviations f(t)� hf(t)i are plotted in units of the standard deviation �(f(t)).For LCG16807 one �nds signi�cant deviations from the exponential decay up to +14 �and �52�. This shows that this generator is not suitable for properly sampling the spacesunder consideration. Similar deviations are already found for smaller � and may lead tospurious results in simulations [Beule & Grosse 1996]. Lattices where � is close to a powerof 2 are especially prone to this problem. The lagged-Fibonacci generator RAND55 showsa signi�cantly better performance even for these large high dimensional lattices. ThereforeRAND55 was chosen as the standard random number generator for all simulation in thiswork.
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329M.9 ConclusionsWeak correlations are always present between subsequent pseudo random numbers due tothe deterministic character of PRNGs. When sampling �ne structured or high dimensionalspaces these correlations may lead to spurious results because the sampling becomes non-uniform. The bit-decay method allows to detects weak correlations and thus reveals thelimitations of popular PRNGs. It can help in selecting proper PRNGs suitable for theplaned stochastic simulations. In conclusion, we agree with Donald Knuth: \Randomnumber generators should not be chosen at random."
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