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ABSTRACT

DNA carries the genetic information of most living organisms, and the goal of genome
projects is to uncover that genetic information. One basic task in the analysis of DNA
sequences is the recognition of protein coding genes. Powerful computer programs for gene
recognition have been developed, but most of them are based on statistical patterns that
vary from species to species.

In this thesis I address the question if there exist universal statistical patterns that are
different in coding and noncoding DNA of all living species, regardless of their phyloge-
netic origin. In search for such species-independent patterns I study the mutual information
Sfunction of genomic DNA sequences, and find that it shows persistent period-three oscil-
lations. To understand the biological origin of the observed period-three oscillations, I
compare the mutual information function of genomic DNA sequences to the mutual in-
formation function of stochastic model sequences. I find that the pseudo-exon model is
able to reproduce the mutual information function of genomic DNA sequences. Moreover,
I find that a generalization of the pseudo-exon model can connect the existence and the
functional form of long-range correlations to the presence and the length distributions of
coding and noncoding regions.

Based on these theoretical studies I am able to find an information-theoretical quantity,
the average mutual information (AMI), whose probability distributions are significantly
different in coding and noncoding DNA, while they are almost identical in all studied
species. These findings show that there exist universal statistical patterns that are different
in coding and noncoding DNA of all studied species, and they suggest that the AMI may

be used to identify genes in different living species, irrespective of their taxonomic origin.
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Comparison of three entropy estimators for M = 1024, N = 5000, and
p derived from C.elegans. This figure displays the three histograms corre-
sponding to Figure 5.2. We see that the variances of Grassberger’s estimator
and the Bayes estimator are of comparable size, whereas the fluctuations of
the natural entropy estimator are slightly larger. This implies to prefer the
Bayes estimator over the natural one even though we can almost perfectly
correct the significant bias of the natural entropy estimator by our length
correction formula derived in chapter 6. . . . . . .. ... ... L.
Comparison of three entropy estimators for M = 1024, N = 2000, and p
derived from C.elegans. Again, the upper curve reflects Grassberger’s es-
timates, the curve in the middle the Bayes ones, and the lower curve the
natural estimates of the Shannon entropy. In comparison with our previ-
ous two figures, we see that the biases of all three estimators become larger
as the sample size N, i.e., the sequence length, decreases. Again, the nat-
ural and the Bayes estimator systematically underestimate the theoretical
Shannon entropy, whereas Grassberger’s entropy estimator systematically
overestimates the theoretical value. We note again that the bias of the
Bayes estimator is significantly smaller than the biases of its competitors.
However, please keep in mind that we can correct the strong bias of the
natural estimator of the Shannon entropy. . . . .. ... ... .. ... ..
Comparison of three entropy estimators for M = 1024, N = 2000, and p
derived from C.elegans. These histograms exhibit that not only the biases,
but also the variances grow as N decreases. Since biases of estimators can
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Comparison of three entropy estimators for M = 1024, N = 1000, and p
derived from C.elegans. Grassberger’s estimator again yields the highest
estimates followed by the Bayes and then by the natural entropy estima-
tor. All biases become larger with a decreasing sequence length N, as a
comparison with Figures 5.4 and 5.5 reveals. In particular, the bias of the

natural estimator becomes outstandingly large. However, recall that our
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Comparison of three entropy estimators for M = 1024, N = 1000, and p
derived from C.elegans. These histograms show that the variances of the
Bayes estimator is comparable to the fluctuations of Grassberger’s entropy
estimator, which both are significantly smaller than the variance of the nat-
ural entropy estimates. Since we realize that the ratio of the variance of the
natural entropy estimates and the variance of the Bayes estimates becomes
larger for decreasing N, we highly recommend to substitute the natural es-
timator by the Bayes estimator of the Shannon entropy in order to get more
reliable estimates of the theoretical Shannon entropy in samples where N
cannot be guaranteed to be much greater than M. . . .. ... .. ... ..
Comparison of three entropy estimators for M = 1024, N = 1000, and p
randomly selected. From top to bottom, we display the estimates of Grass-
berger’s estimator, the Bayes estimator, and the natural estimator of the
5-mer Shannon entropy, respectively. Please note that a symmetric distri-
bution of the estimated entropies around the theoretical values does not
imply that the corresponding estimator is unbiased. It rather means that
the estimator is sometimes positively biased and sometimes negatively such
that the average bias just vanishes. Applied to the Bayes estimator, this
means that the cases where we systematically overestimate the theoretical
Shannon entropy yield the same absolute deviation from true as those cases
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simultaneously contribute to the variance of the entropy estimates: the av-
erage variance over all fixed vectors p" and the fluctuations of the biases for

—
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Comparison of three entropy estimators for M = 1024, N = 1000, and
p randomly selected. Studying these histograms belonging to Figure 5.8,
we realize that the natural estimator is systematically underestimated on
average. This result is not at all surprising, since we can show in chapter
6 that the natural entropy estimator is always biased independently on the
underlying vector p. In chapter 6, we also derive a length correction formula,
which perfectly corresponds to this simulation. Grassberger’s estimator, on
the other hand, systematically overestimates the theoretical entropy for all
10,000 vectors p generated in this simulation. Finally, the Bayes estimator
does not show a systematic deviation from the theoretical values on average,
which does however not mean that this estimator is unbiased (c.f. Figure 5.8).
Regarding the variance of the estimates, the Bayes estimator has obviously
to be preferred over the natural one independently on the availability of

powerful bias correction formulae. . . . . . . . . ... ... Lo L.

Comparison of the Bayes and the frequency-count estimator of the Shan-
non entropy, I?l and H,; respectively. We generate an ensemble of 10,000
sequences, each of which composed of N = 250 data points chosen from
an alphabet with cardinality M = 256. The 256 possible outcomes were
samples from a uniform distribution, p; = 1/M. From each such sequence,
the entropy is estimated by the Bayes estimator and the frequency-count
estimator. Figure 1 displays the corresponding histograms of H, (right) and
H, (left). It can be seen that the variance of Hy is about one order of mag-
nitude smaller as compared to the variance of H;. Note that the significant
negative bias can, in principle, be approximated by length correction for-
mulae. Therefore, it is the smaller variance of I?l that makes this estimator
SUPETIOT. & v v v v v o e e e e e e e e e e e e e e e e e e e e
The rank ordered hexamer distribution of the complete Haemophilus in-
fluenzae DNA sequence displayed as a double-logarithmic plot (O). For a
comparison, the rank ordered hexamer distribution of a Bernoulli-sequence

of same length has been included in the figure (A). . . .. ... .. ... ..

Xiv



8.3

8.4

8.5

9.1

Comparison of the entropy estimators Hy (right) and Hy (left) with M =
4096, N = 4000 and equidistributed p; = 1/M. We observe the small width
of the variance of the Bayes estimator ﬁg as compared to the frequency-count
estimator Hy. Equation (12.3) predicts the entropy bias with Aﬁg = —2.66-
10~* (bits/symbol), in good agreement to the observed value. According to
[Holste 1997], the bias of Hy can be approximated to be AH; = —0.36-1073
(bits/symbol), which is in good agreement to the observed value, too. In
samples where N is in the order of magnitude of M, the reliability of the
Bayes estimator is significantly higher than the reliability of the frequency-
count estimator. . . . . ... oL Lo
Comparison of the entropy estimators Ky (right) and K, (left) with M =
4096, N = 4000 and equidistributed p; = 1/M. We observe that fluctu-
ations of the Bayes estimator K, are strongly suppressed as compared to
the frequency-count estimator K,. Equation (12.5) predicts the entropy
bias with AK, = —0.81 (bits/symbol), in good agreement to the observed
value. According to [Holste 1997], the bias of K, can be approximated to
be AKy = —1.02 (bits/symbol), which is in good agreement to the observed
value as well . . . . oL Lo
Comparison of the entropy estimators H, (right) and Hy (left) with M =
4096, N = 8000 and p; derived from the H. influenzae DNA sequence. We
observe the smaller variance of the Bayes estimator ﬁg as compared to the
frequency-count estimator H,. Equation (12.3) predicts the entropy bias
with AHy = —0.38-104 (bits/symbol) and, according to [Holste 1997], the
bias of Hy can be approximated to be AH; = —0.18 - 10=2 (bits/symbol).

Variance of the observed 5-gram entropies Hs. We generated 10,000 se-
quences each of which contained N = 1000 out of 1024 equidistributed
5-mers. The bias of the natural Shannon entropy estimator of about — 0.58
is almost perfectly predicted by our linear approximation % Note that
the standard deviation of the natural entropy estimates, which we approx-
imate by 0.05, is significantly smaller than the their systematic error. The
variance, i.e., the squared standard deviation, can be roughly estimated as

31073,
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Two autocorrelation functions and the mutual information for a pseudo-exon
without codon-codon-interactions. We chose the 6324 base pair long exon
starting at position 278851 on chromosome III of the yeast Saccharomyces
cerevisiae to derive a representative codon usage table for yeast DNA. Then,
we generated a 300000 base pair long pseudo-exon by a random concate-
nation of 100000 codons according to this table. The GG-autocorrelation
function (upper graph) exposes a very strong periodicity, since the proba-
bility to find the nucleotide G varies tremendously with its position in the
reading frame. The “non-biological” AC-GT-autocorrelation (middle graph)
reveals only a faint periodicity due to the fact that the corresponding prob-
abilities are almost uniformly distributed over the three possible positions
in the frame. The pronounced periodicity exhibited by the mutual infor-
mation corresponds exactly to the predicted behavior. Note that, despite
the absolute values of the mutual information are really tiny, the differences
between the maxima at & = 3,6, ... and the minima at k = 4,5,7,8, ... are
by far higher than random fluctuations. . . . . ... ... ... .. ... ..
Correlations of the 315338 base pair long DNA sequence of the yeast Saccha-
romyces cerevisiae chromosome 111 for distances k between 1 and 100 base
pairs. The dominating triplet-periodicity that is induced by the nonuniform
codon usage in yeast can easily be observed. The comparison of the up-
per two graphs reveals that the A4+C content is indeed a poor indicator for
a nonuniform codon usage. The mutual information function displays its
typical high-low-low-pattern, which can be exploited to discriminate exons
from introns. Note that the peak at k& = 3 reveals correlations between
neighboring codons in yeast DNA. . . .. .. ... .. ...
Correlations of the complete DNA sequence of yeast chromosome Il for
distances k between 900 and 1000 base pairs. The GG-autocorrelation func-
tion as well as the mutual information maintain their dominating period-3-
oscillations up to 1000 base pairs. Remember that the reduced amplitudes

are due to the small number of exons longer than 1000 base pairs. . . . . .
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14.4

14.5

14.6

14.7

14.8

14.9

Mutual information function of the yeast chromosome XI (666,448 bp). The
periodicity due to the triplet code is visible even for distances above 1000
bp. The dashed line marks the bias according to Eq.(8). . . . . .. ... ..
Period-three oscillations of the mutual information for a chromosome region
of Escherichia coli (strain K-12, 111,401 bp). . . . . ... ... .. ... ..
Mutual information function of the HUMBMYHT7 gene (20,855 bp from the
first to the last exon). The mean exon length is about 150 bp which is the

characteristic length of the decay of the pronounced period-three oscillations.

Dashed line: Mutual information of a concatenation of all 40 exons (5,805
bp) of the HUMBMYHT gene (compare Figure 3). Full line: Correspond-
ing pseudo-exon (5,805 bp) generated from the codon usage table of the
HUMBMYHT gene. . . . . . .. . e
Histogram of open reading frames (ORF’s) longer than 500 bp from the
yeast chromosomes 111, IX, and XI. Regression by an exponential function
and a power-law decay are indicated by full and dashed lines, respectively.

Mutual information of a 10° bp long random sequence. Within a “random
sea” of independent letters A, C, G, and T, 1000 pseudo-exons of a length
600 bp have been interspersed. For small k, we observe the expected period-
three oscillations between F2I;, and F?I,, (see Eqs. (7) and (20)). Please
note that Eq. (24) predicts exactly the parabolic decay between k& = 0 and

Mutual information of a 10® bp long sequence containing 1000 pseudo-exons
with exponentially distributed lengths (mean value 600 bp). The logarithmic
vertical scale reveals the predicted exponential decay. . . . . .. .. ... ..
Mutual information of a 7 - 10% bp long sequence with 7000 pseudo-exons.
The parameters of the exon length distribution are L,,;;, = 150 and 8 = %. .
Decay of the mutual information function for yeast chromosomes (thin lines)
and the corresponding pseudo-chromosomes (thick lines). In order to reduce
the strong fluctuations (compare Figure 1) and to focus on the decay we
have applied a 99 bp running average. Upper graph: Chromosome III. The
codon usage table was taken from the temperature-sensitive lethal TSM1
protein (4,221 bp). Lower graph: Chromosome XI, table from the ORF
which encodes dynein (12,276 bp). . . . . . .. . ... . L.
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14.10Mutual information decay for the E. coli chromosome region (thin line) and

a corresponding pseudo-region with the same length distribution of pseudo-
exons. The codon usage table was taken from the isoleucil-tRNA ligase

(2,811 bp). As in Figure 9 a 99 bp running average was applied. . . .. ..

14.11Comparison of the smoothed mutual information (99 bp running average)

of Brugia malayi myosin heavy chain gene (8,600 bp from the first to the
last exon) and a corresponding random sequence with the same exon length
distribution and codon usage. Since the sample size decreases with the

distance there is a clear increase of the bias (see also the Appendix). . . . .

14.12Mutual information of yeast chromosomes IlI (full line), IX (dashed line),

16.1

16.2

XI (dotted line) for short distances. In order to eliminate the dominating
period-three oscillations, we apply a running average over 3 bp. The compar-
ison with a pseudo-chromosome (thick line) reveals additional correlations

(in particular a 10-11 bp period). . . . . . . .. .. ... oL

Mutual information function, Z(k), of coding (thin line) and noncoding
(thick line) human DNA, from GenBank release 111 [Comment 3]. We cut
all human, non-mitochondrial DNA sequences into non-overlapping frag-
ments of length 500 bp, starting at the 5’-end. We compute the mutual
information function of each fragment, correct for the finite length effect
[Herzel et al. 1995], and display the average over all mutual information
functions (of coding and noncoding DNA separately). While Z(k) for non-
coding DNA monotonically decays to zero as k increases, Z(k) of coding
DNA shows persistent period-3 oscillations. . . . .. ... ... .. ... ..
Z-distributions of data sets humg108a (solid lines) and humg108b (dashed
lines) of Fickett and Tung [Fickett & Tung 1992] for coding DNA (thin lines)
and noncoding DNA (thick lines). In both data sets the Z-distribution
of noncoding DNA is centered at significantly smaller values than the Z-
distribution of coding DNA. The cumulative distribution functions of T
presented in the inset show that Z allows a discrimination of coding and

noncoding DNA with an accuracy of approximately 76%.
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16.3

16.4

T-distributions of coding DNA (thin lines) and noncoding DNA (thick lines)
from all eukaryotic DNA sequences in GenBank release 111 [Comment 3].
We cut all sequences into non-overlapping fragments of length 54 bp
[Comment 7], starting at the 5-end. We compute Z of each DNA frag-
ment and show the Z-histograms for coding and noncoding DNA, for each
of the 4 disjoint taxonomic sets (primates, non-primate vertebrates, inver-

tebrates, plants) separately. We find that (i) for all taxonomic sets p,,(7)
is centered at significantly smaller values than p.(Z), while (ii) p.(Z) and
pn(Z) of different taxonomic sets are almost identical. The close similarity
of the Z-distributions for different taxonomic classes, phyla, and kingdoms
illustrates the species independence of p.(Z) and p,(Z). . . .. .. ... ..
Rescaled Z-distributions of model and experimental, coding and noncod-
ing DNA [Comment 3]. Figure 3(a) shows the histograms of log,, N*Z for
noncoding human DNA for N = 54 bp (o), 108 bp (O), and 162 bp (<),
and the corresponding y? probability density function with 6 degrees of
freedom (thick line). In addition to the observation (Figure 2) that the
T-distributions are almost identical for different species, we find that (i)
the rescaled Z-distributions collapse for all taxonomic sets and for all IV,
and that (ii) they agree with the y? probability density function. Hence,
the species independence of the Z-distributions for noncoding DNA may
be explained by the absence of a reading frame in noncoding DNA of all
species. Figure 3(b) shows the histograms of log;q N2Z for coding human
DNA sequences of length N = 54 bp (o), the corresponding non-central y?
probability density function (thick line), and the central x* probability den-
sity function (thin dotted line). We find that (i) the modeled Z-distribution
(thick line) is indeed shifted to higher Z-values than the Z-distribution of
noncoding DNA (thin dotted line), but that (ii) the Z-distribution of the
model sequences (o) is significantly different from the Z-distribution of cod-
ing human DNA. The significant difference between the modeled and the
experimental Z-distribution states that the presence of a reading frame is
not sufficient to reproduce the species-independent Z distributions for coding

DNA (Figure 2). . . . . .. o
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17.1

17.2

17.3

Histograms of I for human exons (right) and introns (left) of length 108 bp.
The corresponding cumulative distributions are shown in the inset. While
the values of I; fluctuate from window to window, their distribution is almost

the same irrespective of A A, or B. For all three data sets, the I;-

training’
histograms of non-coding DNA are centered at significantly smaller values as
compared to coding DNA. For A ;i the mean p and standard deviation o
for exons (introns) are p(log ;) = —2.39 (—3.36) and o(logI;) = 0.70 (0.68),
for Ay p(logly) = —2.41 (—3.38) and o(log ;) = 0.74 (0.69), and for B
p(log 1) = —2.52 (—3.41) and o(log I;) = 0.69 (0.66). For coding DNA, we
observe a small but significant shift of set B with respect to both A ;..
and A .. Both distributions show an overlap, the enclosed area of which
specifies how accurately we can distinguish coding versus non-coding DNA.
and A

The inset shows that Iy performs on A . with approximately

training tes

76%, and on set B with approximately 75% accuracy. . . ... .. ... ..
We study the dependence of I; on the A+T content for exons (thick graph)
and introns (thin) in Ay ining (@), Agese (b), and B (c). To calibrate error
bars, we equate the number of coding sequences with the number of non-
coding sequences in all three figures (each class comprising 7000 sequences).
In the top, we display the histograms of the overall A+T content as derived
from the data sets. The overall A+T content of exons is approximately
45% in A 43% in A, and 47% in B. For introns, it is 52%, 51%,
and 54%. In the bottom, we show the dependence of log I, on the A+T

training’

content, by binning the A+T values to 20 bins and computing the mean
and standard deviation of I; per bin. The overlap of error bars indicates
that the discrimination of exons from introns is less accurate for high A4+T
content. . . . ... L e e e
The accuracy of D, as a function of the parameter p evaluated on Ay ipine.
Aiests and B. The region around p,,; is shown in the inset. The accuracy
shows a strong dependence on the parameter p, dropping to nearly 50%
(no discrimination) while zero-crossing. The accuracy exhibits two distinct
maxima, one local for p < 0. For p > 0, the accuracy of D, reaches its global

maximum, and it shows a plateau-like behavior for p > p,p¢ while decaying

flatly. . . . e e e e e



17.4 The accuracy of I, as a function of the parameter ¢ evaluated on A

17.5

17.6

18.1

18.2

training?

Aiests and B. The region around ¢, is shown in the inset. The accuracy
depends on the parameter ¢, and exhibits a clear maximum which decays
steeply for ¢ > qope- -« o o oo
Accuracy of D, as a function of the parameter p for different window lengths
(from bottom to top the lengths read: 27, 30, 36, 45, 54, 60, 72, 90, 108,
120, 135,180, 216, 270, 360, 540, and 1080 bp). To guide the eye, the 108
bp length is graphed as a thick line. The value pope (<) at which D, dis-
tinguishes most accurately coding from versus non-coding DNA is relatively
insensitive to the window length. The broken line indicates the mean value
of all optimal p with (p,,,) = 1.6 and standard deviation A(pop) = 0.3 as
estimated on all lengths shown. The fluctuations increase for small (< 60)
windows. We note the shape of the accuracy spectrum (two maxima, dis-
tinct better performance for p > 0) remains overall unchanged when varying
the window size. . . . . . . ... oL
Accuracy of I, as a function of the parameter ¢ for different window lengths
for set B (as described in Figure 5). The value gop (<) at which I, dis-
tinguishes most accurately coding versus non-coding DNA is approximately
length-independent. The mean value of all optimal ¢ results to (g,,;) = 1.7
and standard deviation to A(gept) = (0.2). We observe that for increasing

length the sharp profile flattens out and becomes a unimodal function of ¢.

(a) JS vs. cutting position for a sequence obtained by joining a coding re-
gion (gene carB of bacteria E. coli, 3,222 bp long) and a noncoding region
(intergenic region between genes leuQO and ilvl of bacterium E. coli, 389 bp
long); the dashed vertical line is the border between both regions. (b) JS
vs. cutting position for a sequence obtained by joining two coding regions:
genes carB (3,222 bp) and polB (2,463 bp) of the bacterium E. coli. The
dashed vertical line is the boundary between the two regions. . . . . .. ..
Comparison between the known coding regions of Rickettsia (shaded areas)

and the cuts obtained at significance level s = 99% (dotted lines). . . . . . .
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18.3 (a) Comparison of the accuracy of segmentation (open symbols) and slid-

F.1

F.2

F.3

F.4

ing window (closed symbols) approaches in finding borders between cod-
ing and noncoding regions for three complete bacterial genomes: Rickettsia
prowazekii (), Escherichia coli (A), and Methanococcus jannaschii (O);
we find the best results when the training of the windows is carried out
using the same sequence as the one analyzed. (b) Comparison of the ac-
curacy of segmentation and sliding window approach in identifying coding
DNA. The discriminant function and the training is the same as used in (a),
the threshold value used with the segments is obtained by interpolating the

values obtained for the moving windows. . . . . . .. ... ... ... ...

The rank-ordered hexamer (6-letter) distribution of the complete DNA se-
quence of H. influenzae displayed as a double-logarithmic plot (O). For
a comparison, the rank ordered distribution of a corresponding Bernoulli
sequence of same length has been included in the figure (A). . .. ... ..
Comparison of entropy estimators: H;R) with parameter set M = 4096,
N = 8000, P =1/M. We observe the smaller variance of the Bayes entropy
estimator (thick line, the black curve corresponds to U = 2/X and the
grey curve corresponds to U = 1/)) as compared with the frequency-count
estimator (thin line) for a single realization for each order q. We observe
the significant small width of the variance of the Bayes entropy estimator as
compared with the frequency-count estimator. . . . . . .. ... .. ... ..
Comparison of entropy estimates: H;R) with parameter set M = 4096, N =
4000 P = 1/M, and U = 2/A. We observe that fluctuations of the Bayes
entropy estimator (thick line, the black curve corresponds to U = 2/X and
the grey curve corresponds to U = 1/\) are strongly suppressed as compared
with the frequency-count estimator (thin line) for a single realization for each
order q. The significant small width of the variance of the Bayes entropy
estimator as compared with the frequency-count estimator is visible.

Histograms of entropy estimates: H;R) with parameter set M = 4096, N =
4000, P =1/M, U = 1/X, and ¢ = 2. We observe the smaller variance of

. 284

the Bayes entropy estimator as compared with the frequency-count estimator.286
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F.5

Histograms of entropy estimates: H;T) with parameter set M = 4096, N =
8000, Py infuanzae, U = 1/A, and ¢ = 2. We observe the smaller variance of

the Bayes entropy estimator as compared with the frequency-count estimator.287

Bit-decay f(¢) for k = 2 and A = 256 compared with the expected exponen-
tial decay (13.5) for the pseudo random sequences RAND55 and LCG16807. 325
Bit-decay for k = 2 and A = 256: deviations of f(¢) from the mean (f(¢))
for the pseudo random sequences RANDS5 and LCG16807 compared with
the standard deviation o(f(¢)). . . . . . . . . ... oo L 326
Bit-decay for k = 2 and A = 3000: deviations f(t) — (f(¢)) in units of the
standard deviation o(f(t)) for RAND55 and LCG16807. Deviations from
the exponential decay up to +14 ¢ are found for LCG16807. RANDS5 only
shows deviations in the expected range. . . . . .. . ... ... .. ... .. 327
Bit-decay for & = 3 and A = 300 deviations f(t) — (f(¢)) in units of the
standard deviation o(f(t)) for RAND55 and LCG16807. Deviations from
the exponential decay up to —52 ¢ are found for LCG16807. RANDAS5 only

shows deviations in the expected range. . . . . .. . ... ... .. ... .. 328
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Chapter 1

Introduction

Unraveling the human genome is one of the most supreme challenges in our days. Aside
from raising a lot of serious ethical questions, it also confronts us with a series of tremen-
dously hard scientific problems.

These problems mainly arise from the following discrepancy: while sequencing tech-
niques are almost completely automatic controlled, the analysis of the sequenced data is
not. Hence, the major scientific goal raised by the Human Genome Project is the extrac-
tion of biologically and medically relevant information from almost automatically sequenced
DNA and RNA molecules.

In principle, biochemical methods are able to do this job, but since they are extremely
expensive and time consuming, the pressing demand for alternative approaches to extract
the information hidden in our genome appeared. In this situation, concepts and techniques
from statistical physics and information theory turned out to be welcome tools to handle
the problem of extracting valuable information from biosequences such as DNA, RNA, or
amino acid chains.

The main goal of this work is the presentation of concepts and methods derived from
statistical physics that we apply to problems born by a statistical analysis of biosequences.

This thesis is divided into seven parts: a brief presentation of some basic biological
background, parts A - E, and an appendix. Part A (chapters 3 - 5) contains an introduction
to basic concepts of information theory, a comparison of the mutual information function to
correlation functions, and an introduction to Rényi and Tsallis entropies. Part B (chapters
6 - 8) is devoted to the problem of estimating entropies from finite experimental data sets

and to the derivation of the Bayes estimator of Rényi, Tsallis, and (as a limiting case)



Shannon entropies. Part C (chapters 9 - 12) consists of a discussion and derivation of finite
size effects that occur when estimating (generalized) entropies, the mutual information
function, or correlation functions from finite experimental data. In part D (chapters 13 -
15) we study long-range correlations in genomic DNA sequences, and we present a simple
statistical model that can reproduce experimentally observed correlations in genomic DNA
sequences. In part E (chapters 16 - 18) we study statistical patterns that are universally
different in coding and noncoding DNA, and we present four different approaches — all
based on statistical physics and information theory — of how these patterns may be used
to identify coding regions in un-annotated DNA sequences.

In chapter 2, we provide our reader with a brief molecular biological background, which
will suffice to understand the motivation of our statistical analysis of biosequences as well
as the application of our results to biological questions.

In chapter 3, we introduce several entropy functions as measures of the information
content stored in symbolic sequences such as time series generated by dynamical systems,
natural texts, pieces of music, climatic data, or DNA sequences. We show how these
information theoretical measures can be beneficially applied to extracting the information
content stored in unknown sequences.

Chapter 4 is devoted to a comparison of the mutual information function introduced in
chapter 3 to correlation functions. We present two fundamental problems that arise when
applying correlation functions to symbolic sequences. First, symbols must be mapped to
numbers in order to compute any correlation function, and correlation functions are not
invariant under changes of the map. Hence, computing correlation functions from sym-
bolic sequences introduces some arbitrariness of choosing the function by which symbols
are mapped to numbers. Second, we show that even the infinite set of all possible auto-
correlation functions computable from a given (non-binary) symbolic sequence is unable to
detect all statistical dependences in that sequence.

We first analyze how many parameters are necessary and sufficient to store all infor-
mation about statistical dependences in sequences over an alphabet of A symbols. Then
we show that even the infinite set of all different autocorrelation functions belonging to
one symbol sequence cannot determine all of these parameters. This implies that there
are functional relations between different autocorrelation functions computed from one
symbolic sequence.

The solution of the puzzle of why infinitely many autocorrelation functions (which are



different from each other) are unable to detect the (A — 1)? statistical dependences stored
in a A-ary symbolic sequence is that all autocorrelation functions form a linear space the
dimension of which is even smaller than the number of parameters storing the informa-
tion about the statistical dependence between all A symbols. We present a method by
which a proper basis of autocorrelation functions can be constructed chapter 4. Moreover,
we deliver an algorithm, by which the functional dependence of an arbitrarily selected
autocorrelation function on the basis functions can be derived.

At the end of chapter 4 we show that the mutual information function does not pos-
sess the two shortcomings mentioned above, and hence we choose the mutual information
function and related information-theoretic quantities in our study of DNA sequences.

In chapter 5 we introduce two families of generalized entropies, the Rényi entropies
and the Tsallis entropies. We illustrate the relation of both the Rényi and the Tsallis
entropies to the Shannon entropy as well as some relations between the Rényi and the
Tsallis entropies. We discuss some mathematical properties of these generalized entropies,
which will become important in our study of DNA sequences.

We learn that serious problems to estimate entropies or other statistical measures arise
by the uncircumventable fact that all sequences have a finite length. Hence, chapters 6 -
12 are devoted to the derivation and discussion of statistical properties of (higher order)
Shannon, Rényi, and Tsallis entropies, the mutual information function, and correlation
functions.

In chapter 6, we review some theorems from sampling theory and realize that estimates
of population parameters can be regarded as random variables, the expectation value and
variance of which we try to determine in the following chapters. These results allow us to
evaluate the accuracy and reliability of those measures introduced in chapters 3 - 5.

A fundamental property of every estimator is its bias, i.e., the systematic error that is
induced by estimating population parameters from finite samples. By applying Steiner’s
theorem about the angular momentum of rigid bodies to the problem of sampling in math-
ematical statistics, we learn that the maximum likelihood estimator of the variance of a
normal population is biased and therefore commonly corrected. Analogously, it is our goal
to derive unbiased estimators of higher order Shannon, Rényi, and Tsallis entropies, the
mutual information function, and correlation functions, which we display in terms of length
correction formulae.

In chapter 6, we introduce two basic statistical concepts: the maximum likelihood



and the minimum variance method. The first method results in the maximum likelihood
estimator, whereas the second leads us directly to the Bayes estimator. Regarding the
Bayes theorem and applying it to our task to estimate population parameters from finite
samples, we come up with a relation between these twoindependently developed estimators.

Two approaches can be followed to improve the accuracy and reliability of statistical
estimators. We can either compute the bias of commonly used estimators and then correct
them or try to derive alternative estimators that inherently are more accurate and precise
than their classical counterparts. In chapters 7 and 8, we follow the latter approach and
derive the Bayes estimator of the Shannon entropy in chapter 7 and the Bayes estimator
of the Rényi and Tsallis entropies in chapter 8.

In chapters 9, 10, 11, as well as 12 we compute the means and variances of the frequency
estimators of the Shannon entropy, the mutual information function, correlation functions,
as well as Rényi and Tsallis entropies, respectively. In all four cases we are successful to
present length correction formulae that allow us to estimate the desired quantities without
bias in a first order approximation.

Not all of these results are new. The bias of the Shannon entropy estimator, i.e.,
its mean systematic error, was already derived by [Herzel 1988], [Grassberger 1988], and
[Li 1989], as well as [Basharin 1959], [Harris 1975], or [Levitin 1994], who also found
an approximation of the variance of this estimator, i.e., its reliability, by expanding the
entropy function in a Taylor series. The novel results that we contribute are the proof that
we always underestimate the Shannon entropy independently of the underlying probability
distribution and a relation between the variance of the entropy estimates and the variance
of the corresponding logarithmic probabilities.

By exploiting the same approach as in chapter 9, we derive the bias and the variance
of the mutual information estimator in a first order approximation. Although the first
approximation of the bias of the mutual information is always negative, we show that the
natural estimator does not always overestimate the mutual information. This means that
—in contrast to chapter 9 where we could prove that the natural estimator always underes-
timates the Shannon entropy — such a theorem does not exist for the mutual information,
and we present a counterexample in chapter 10.

In order to determine the variance of the mutual information estimates, we have to
consider correlations between 1-gram and 2-gram Shannon entropies. Surprisingly, these

two entropy estimates are highly correlated in biological sequences, which results in only



tiny fluctuations of the mutual information estimates.

Again, we can relate the sample variance of the mutual information estimates to the
population variance of the logarithmic probability ratios. Furthermore, we derive an anal-
ogous relation for the correlators between different entropies. The basic approach that
we chose to derive all previously mentioned results utilizes the Taylor expansion of the
entropy function, which we truncate in order to derive our approximate results. However,
since the entropy function is not analytic, the Taylor series diverges in certain parts of our
given simplex. Therefore, we present an alternative approximation of the entropy function
borrowed from regression theory in appendix G.

There, we derive an approximation that converges in all points of our given simplex
extremely quickly. We present a completely analytic solution to this problem, which even-
tually leads us to the difficult task of inverting the famous Hilbert matrix. Since we can,
however, explicitly display the inverse, we obtain the desired expansion coefficients by
completely elementary methods.

Chapter 11 is devoted to statistical properties of correlation functions. We show that the
natural estimator of correlation functions is always biased by deriving an exact estimation
of the corresponding finite sample effect. This analytic result allows us to present an exact
length correction formula for the natural correlation function estimator.

In chapter H.5 we derive the means and variances of the natural estimators of Rényi
and Tsallis entropies, and we compare these results with the mean and variance of the
natural estimator of the Shannon entropy. The significant variance of the natural entropy
estimators was the motivation for our search for alternative estimators and the derivation
of the Bayes estimators of (higher order) Shannon, Rényi, and Tsallis entropies in chapters
7 and 8.

In chapter 13 we study correlations in DNA sequences. Our results obtained in chapters
10 and 11 allow us to correct for finite size effects in order to detect biologically induced
correlations in DNA sequences. We show that periodic oscillations of correlation functions
and the mutual information, which dominate all correlations on length scales up to thou-
sands of base pairs, are simply due to a nonuniform codon usage in protein coding DNA.
We develop a simple statistical model, the pseudo-exon model, which can qualitatively
and quantitatively reproduce the experimentally observed period-3 correlations in genomic
DNA of yeast.

In chapter 14 attempt to understand not only the presence of long-range period-3



correlations, but also the decay of the envelop of these correlations. We show that the
decay of the envelope may originate from the mosaic structure of genomic DNA, i.e. from
the concatenation of alternating coding and noncoding regions in any genomic DNA. Based
and the simplifying assumption that coding regions are drawn independently from a given
length distribution, we can relate the length distribution of coding regions to the functional
form of the decay of correlations. Specifically, we can show that an exponential length
distribution will lead to an exponential decay of correlation functions and the mutual
information function, while a power-law length distribution of coding regions will lead to
a power-law decay of correlations.

We generalize the pseudo-exon model to the pseudo-chromosome model by taking into
account the experimentally observed length distribution of coding regions, and we can show
that this model is able to reproduce the long-range correlation behavior of genomic DNA
in many different organisms.

Chapter 15 is devoted to an more detailed discussion of long-range correlation features
in genomic DNA sequences. As we have shown in chapter 4, correlation functions com-
puted from one symbolic sequence by choosing different mappings of symbols to numbers
are not necessarily equal to each other. In chapter 15 we study correlation functions for
several biologically relevant mappings, and relate the observed patterns to biological fea-
tures of coding and noncoding DNA. Specifically, we show that the pronounced period-3
in correlation functions for almost any mapping is caused to a significant degree by the
nonuniformity of the codon frequency distribution in coding DNA. We also show that the
slow decay of the long-range C+G correlation function is related to the existence of dis-
persed repeats and CpG islands. As a last example, we show that periodicities of 10-11 bp
in correlation functions of yeast DNA may originate from an alternation of hydrophobic
and hydrophilic amino acids in yeast proteins.

In chapter 18 we present a new approach to the problem of the statistical identification
of protein-coding regions in genomic DNA. This approach is based on an entropic segmen-
tation algorithm, which attempts to divide a heterogeneous sequence into homogeneous
subsequences based on the Jensen-Shannon divergence as a measure of heterogeneity. We
find that this method is highly accurate in finding borders between coding and noncoding
regions, and we demonstrate that it is more accurate in identifying the correct location of
genes than methods based on sliding windows.

In chapter 16 we investigate if there exist universal statistical patterns that are different



in coding and noncoding DNA of all living species. We find that the probability distribution
functions of the average mutual information (AMI) are significantly different in coding
and noncoding DNA, while they are almost identical for all living species, ranging from
simple bacteria to complex vertebrates. We show that the accuracy by which the AMI can
distinguish coding from noncoding DNA is comparable to the accuracy of classical coding
measures, which are trained on species-specific data sets.

In an attempt to understand the origin of the observed species-independence of the
AMI distributions, we search for statistical models that could reproduce the experimentally
obtained AMI distributions. For noncoding DNA we succeed, and we can show that the
species-independence of the noncoding AMI distributions reflects the absence of the genetic
code in noncoding DNA of any living species. However, for coding DNA we can show that
the presence of the genetic code in coding DNA is not sufficient to reproduce the observed
AMI distributions. This finding leads us to the conclusion that there exist additional
correlations and inhomogeneities in coding DNA of all living species, which are responsible
for the observed universality of the AMI distributions.

Let us finally mention that all concepts introduced in this thesis are not restricted to
analyses of biological sequences. The derived statistical properties of the Bayes entropy
estimators and the natural estimators of correlation functions, the mutual information, or
the Shannon, Rényi, and Tsallis entropies apply to all situations in which we are confronted
with inferring knowledge from experimental data. Moreover, the techniques introduced to
evaluate statistical properties of correlation functions or entropies are also applicable to

measures and quantities not discussed in this work.



Chapter 2

Biological Background

In this chapter, we present a brief survey of molecular biology and genetics, as far as it is
relevant for motivating why this thesis has been written and for understanding the applica-
tions of statistical physics and information theory that will follow. A detailed introduction
to molecular biology and genetics can be found in a series of textbooks about molecular
biology or genetics such as [Wolkenstein 1983], [Knippers 1990], [Watson 1992], [Berg &
Singer 1992], [Lewin 1993], [Griffith 1993], or [Kolchanov & Lim 1994], the study of which
we highly recommend to interested readers.

When Robert Hooke analyzed a piece of cork under a light microscope in 1665, he
discovered the first organic cells. However, it took another 170 years before Mathias Jacob
Schleiden and Theodor Schwann published observations that gave birth to the discipline
named cytology. Today we know that all organisms consist of cells, the nuclei of which
contain their entire genetic information.

Organisms whose cells possess a nucleus are called eukaryotes, whereas those without
a nucleus like, for example, bacteria are called prokaryotes. The absence of a nucleus does
not mean that bacteria can live without genetic material. The defining difference between
prokaryotes and eukaryotes is just the missing or existing nucleic membrane that protects
the genetic material.

If we try to trace back where the genetic material is stored, we will realize a substance
called chromatin, which is found in a sometimes compressed and sometimes uncompressed
shape depending on the cell’s cycle. As we will see in the following, the compressed
shape, which we refer to as chromosomes, corresponds to the inactive state, whereas the

uncompressed shape corresponds to the active state of the chromatin.



About 80% of the chromatin is built up of proteins, whereas the remaining 20% are
contributed by nucleic acids. The proteins, which are mainly basic and called histones,
play a fundamental, however, not yet completely discovered role in the complex framework
of gene regulation in higher eukaryotes.

Nucleic acids are linear macromolecules synthesized by a polycondensation of nu-
cleotides and thus called polynucleotides. Their building blocks, the nucleotides, are
chemical compounds consisting of a base, a sugar molecule, and phosphoric acid. The
nucleotides are connected such that we obtain a sugar phosphorus backbone where the
bases are attached to the sugar molecules.

The sugar can either be 2-deoxyribose or ribose. In the first case, we obtain deoxyri-
bonucleic acid called DNA, whereas we end up with ribonucleic acid called RNA in the
second case. These macromolecules can either be single stranded or complexes of two non
covalently bounded polynucleotides. The total length of all DNA molecules stored in one
tiny cell of the human organism is about two meters. This unambiguously suggests that
there is a highly hierarchical structure of the genome, since otherwise a proper functioning
of a randomly compressed thread seems unimaginable.

Let us finally specify the bases that build up the nucleotides of DNA or RNA molecules.
The four bases adenine, cytosine, guanine, and thymine occur in DNA nucleotides, whereas
thymine is substituted by uracil in RNA molecules. These five bases can be chemically
classified to belong to the following two classes: adenine and guanine are purines, whereas
cytosine, thymine, and uracil are pyrimidines.

Since Watson and Crick discovered the double helix structure of the DNA [Watson &
Crick 1953], we can easily understand why the number of purines equals the number of
pyrimidines in all DNA molecules. Because the two complementary strands that DNA
consists of are bound by hydrogen bonds between a purine and a pyrimidine, the purine-
pyrimidine-ratio has to be constant for all double stranded DNA. Moreover, since adenine
(A) always pairs with thymine (7') and cytosine (C') with guanine (G), we further obtain
that the number of A equals the number of 7" and the number of C' equals the number of
G appearing in all double stranded DNA.

A gene is a region in the DNA that encodes one protein. Therefore, regions between
them are commonly called intergenic sequences. Before we go ahead to define what coding
and noncoding regions are, let us list three fundamental processes that govern molecular

biology and genetics.
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The process that produces an identical copy of the DNA is called replication. Today we
know that this process is semi-conservative, i.e., each of the two daughter DNA molecules
contains one parental and one freshly synthesized strand.

Aside from its multiplication, the production of proteins is essential for the survival of
the cell. Two processes are established to perform this task. The first one, which is termed
transcription, copies the coding strand of the DNA to a so called messenger RNA. This
m-RNA can then leave the nucleus and swim to the ribosomes, where the second process
called translation takes place.

Ribosomes can be considered as factories where the demanded polypeptides are syn-
thesized. The genetic message now stored on the m-RNA is here translated into its cor-
responding amino acid chain. The molecules governing the translation process are again
RNAs, however this time so called transport RNAs. They can be regarded as the molecular
dictionary of the genetic code, since they guarantee an unambiguous assignment of amino
acids to codons, which are defined as triplets of m-RNA nucleotides.

Let us have a closer view on the transcription of genes to m-RNAs. Strictly speaking,
we were cheating when we wrote that the coding DNA strand is directly copied to the
m-RNA molecule. Let us now consider the transcription process in detail.

In a first step, the DNA polymerase, i.e., the enzyme that copies the coding DNA strand
to a so called pre-m-RNA, binds to the promoter. Promoters are functional sites in the
genomic DNA that act as transcription start signals. We know that almost all promoters
contain a T AT A box, which is located about 30 base pairs upstream the transcription start.
Furthermore, we know that a C'AAT box about 75 base pairs upstream the transcription
start point is vital for an efficient gene expression. However, these two features are not at
all sufficient to identify promoters in un-annotated DNA sequences. Hence, much effort is
paid to discover more features that are typical for real promoters and atypical for all other
T AT A simulants.

After the polymerase has bound to the promoter, it starts copying the DNA along its
coding strand until a transcription stop signal terminates the transcription. The pre-m-
RNA molecule is now provided with a cap and a poly-A-tail which both are supposed to
impart the m-RNA its stability and resistance against aggressive enzymes. Additionally, a
number of pieces called introns are spliced out of the pre-m-RNA.

This observation implies that genes of higher eukaryotes possess a mosaic like structure

of alternating exons and introns. The exons are those parts of the genes that carry the
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genetic information transferred by m-RNAs to the ribosomes. Here it is then translated
into its corresponding amino acid sequence determining the structure and function of the
manufactured polypeptide. On the other hand, the purpose of the introns and the intergenic
sequences, which make up about 95% of the entire human genome, is much more unclear
[Nowak 1994].

This situation caused some people to call the noncoding DNA junk, which we think
names just the opposite of what the noncoding pieces really are. Many functional groups
such as promoters, enhancers, or poly-A-sites are known to be located in the noncoding
DNA. Moreover, the complex network of gene regulation is supposed to be stored in the
noncoding DNA, which might be related to recent findings of long range correlations in
introns and intergenic sequences [Li 1992],[Peng 1992], [Voss 1992], [Peng 1993], [Peng
1994].

It is still an open question how the cell identifies coding regions in the pre-m-RNA with
an accuracy of almost 100%. All artificially created techniques fail to discriminate exons
from introns with a probability of at least 5% [Lapedes 1989], [Uberbacher 1991], [Fickett
1992], [Farber 1992], [Mural 1994]. The reliability of their prediction becomes in particular
bad if the exons to be identified become smaller than 50 base pairs [Farber 1992].

This fact, which reflects the difficulties that statistical methods have with discriminating
between exons and introns or identifying functional sites such as promoters, poly-A-sites,
or splice junctions if the available sample size becomes small, perfectly motivates the goal

of our following work.



Part A



Chapter 3

Entropies and Information Theory

In the previous chapter, we have seen that the main problem in molecular biology is not
the sequencing of DNA, RNA, or protein chains, but the extraction of biologically relevant
information from them.

Hence, we devote this chapter to information measures, i.e., quantities that measure
the amount of information stored in single symbols (such as nucleotides in DNA or amino
acids in protein sequences) or blocks of n of those symbols, which we in general call n-words
or n-grams.

We will axiomaticly introduce the Shannon entropy Hi(p) in section 3.2, which defines
the average amount of uncertainty in one symbol of a given sequence. The four axioms, by
which the Shannon entropy can be uniquely defined, display some powerful mathematical
properties, which we will discuss in the same section.

In section 3.3, we will generalize the Shannon entropy by introducing higher order
entropies H,. As in the previous section, we will devote the second part of section 3.3 to
a discussion of some properties of higher order entropies.

Conditional entropies h,, will be defined in section 3.4, in which we will also discuss some
mathematical properties of the series h,, computed from stationary and ergodic sources.

The following four sections, 3.5, 3.6, 3.7, and 3.8, are dedicated to the introduction
of the mutual information function. In section 3.5, we present a first definition of this
function as a measure that quantifies the information gain about a symbol X by obtaining
another symbol Y.

Three possible generalizations of this preliminary mutual information make up the

contents of sections 3.6, 3.7, and 3.8. In section 3.6, we give up the restriction to single
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symbols and thus obtain the higher order mutual information as a measure of correlations
between sub-words of arbitrary size.

We will present the mutual information between two cylinders of different sources in
section 3.7 and finally introduce the Kullback entropy in section 3.8. We will realize the
mutual information as a special case of the Kullback entropy and thus develop a deeper
understanding of what the mutual information measures.

In section 3.8, we will also show that the mutual information only vanishes, if really all
appearing symbols are statistically independent.

Finally, we will present a short summary of all results collected in this chapter in section
3.9.

Although all results presented in this chapter can be found elsewhere in the literature
[Ebeling & Feistel 1982], [Grassberger 1988], [Herzel 1988], [Khinchin 1957a], [Khinchin
1957b], [Kolmogorov 1958], [Kullback 1959], [Leven 1989], [McMillan 1953], [Pompe 1994],
[Rényi 1982], [Shannon 1948a], [Shannon 1948b], [Yockey 1992], we consider it beneficial

for our reader

e to display in one chapter the definitions of information theoretical measures that we

will use in the remainder of this work,
e to present some intuitive explanations of these measures, and
e to exhibit an encyclopedic collection of useful theorems,

since concepts derived from theory have already been proven to be extraordinarily fruitful
in various disciplines such as statistical physics, bioinformatics, or linguistics.

Since the realization of the basic concepts behind all definitions presented in this chapter
are essential for understanding the methods by which we will analyze biological sequences,
we recommend all readers to become familiar with, for example, the concept of an infor-
mation source, before going over to the following chapters, in which we start our statistical

analysis of DNA sequences.

3.1 Introduction to Information Theory

In this section, we want to present some basic ideas behind what is commonly called

information theory. We will start with analyzing the communication process and dissect
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it into five elementary steps according to [Shannon, 1948b]. We will introduce the concept
of an information source and rationalize why we can derive all statistical properties of a
stationary and ergodic source from a single, however, in principle infinitely long sample
sequence. We will define a probability measure on the set of all cylinders of a given
information source and show that, for stationary and ergodic sources, this measure can be
interpreted as the probability to find the corresponding substrings in the infinitely long
sample sequence generated by the considered source. Finally, we will mention a serious
problem arising from the uncircumventable fact that all available sequences always have a
finite length and present an example that might first illustrate all definitions and concepts
delivered in this section and second give us an insight into techniques designed to distinguish
coding from noncoding DNA.

If we want to communicate with others, the following five elementary steps are essential

for the transmission of any kind of information:
1. The message that we wish to send has to be produced and emitted.
2. We have to encode the message that we are going to send.

3. We have to transmit this encoded message to our desired receiver through a possibly

noisy channel.
4. The receiver has to decode our received message.

5. Our destined subject or object has to receive this decoded message.

Even though this classification, which was introduced by Shannon in 1948, looks slightly
artificial, it has been proven to be very valuable for a scientific analysis of the communica-
tion process and will be proven to be extremely fruitful for a statistical analysis of biological
sequences.

Please note that the information source as well as the destination do not necessarily
have to be humans. The basic concept sketched above also holds for the communication
between animals or even between computers, machines, and other technical devices.

The central question in information theory, which we can now understand, is how we
can determine the capacity of a channel. Here, the channel capacity is understood as the
maximum amount of information that this channel is capable to transmit per time.

Before we however present a proper definition of the amount of information stored in a

message, we first want to explain what is commonly understood by an information source.
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A mathematical definition of the information source was presented by McMillan in
[1953] and Khinchin in [1957a, 1957b]. Let us at this point just briefly outline their basic
ideas.

What an information source basically does is producing a symbolic sequence

{#i}teg = cx_gax_y a0 22 ...

with an, in principle, infinite length. G denotes the set of all positive and negative integer
numbers and z; defines the symbol that we find at position ¢ in our given sequence. The
finite set of all appearing symbols is called an alphabet A = {Ay, Ao, ..., Apr} where M is
the number of different symbols appearing in our sequence of consideration and therefore
called the alphabet size.

German and English texts are composed of the 26 letters {A, B,C, ..., X, Y, Z}, so that,
in this particular case, the term we defined as alphabet is identical to the Latin alphabet. In
DNA sequences, where the four letters A, C', G, and T denote the four occurring nucleotides
adenine, cytosine, guanine, and thymine, the alphabet of size 4 would simply be the set
{A,C,G,T}.

There is, of course, an infinite number of sequences belonging to one information source,
everyone of which can be understood as one possible realization of this source.

If we now restrict, at some arbitrarily chosen positions ¢;, our symbols z¢, to be equal
to given symbols y; € A, then we call the set containing all possible realizations of the
source that are compatible with these constraints a cylinder. At this point, we can assign
probabilities to any given cylinder of a source and thus end up with a probability measure
p reflecting the set of all assignments of probabilities to all cylinders of a source. This
assignment, i.e., the probability measure u, unambiguously characterizes the information
source.

Two special cylinders will become the focus of our attention in the remainder of this
work. One is the cylinder that is given by n consecutive indices, i.e., by t; = 7,t; =
T+ 1,..,t, = 74+ n— 1. If we choose the symbols y1,ys, ..., 4, as those defining our
particular cylinder, then its measure u is interpreted as the probability to find the n-word
or n-gram (Y1, Yz, ..., Yn) at position 7. This probability is, in the following, simply denoted
DY Plys sy (T)-

The second class of cylinders we will deal with in the following are those defined by

two symbols y; and 2 at the two positions ¢; and ¢9 that are k positions apart from each
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other, i.e., t —t; = k. By setting 7 = t;, we analogously obtain the probability to find the
symbol 7y at position 7 and the symbol ys k positions later with its common denotation
Plys,0) (K, T)-

In case of stationary sources, the probabilities p(y, y,....y,)(T) and p(,, 4,y (k, 7) do not
depend on 7, i.e., the probability to find a certain string does not depend on the position
within the sequence.

If, moreover, the source is also ergodic, then we can consider the relative frequencies of
substrings that we derive from one infinitely long realization (which we commonly call a
sample sequence) as their probabilities, i.e., then the time averages converge (in probability)
to the corresponding ensemble averages.

Although it is, in principal, trivial to derive the probabilities p,, ., ...} or p(yhyz))(k)
for any w1, 42, ..., yp from infinitely long sequences produced by a stationary and ergodic
source, the estimation of these probabilities can become extremely hard or even impossible
if only finite sequences are available.

Imagine, for example, we want to estimate the probability, by which the 6-mer of
nucleotides ACTTGT appears in a given DNA sequence with a length of 10,000 base
pairs. Since there are 4096 different 6-mers possible, we cannot expect to find the substring
ACTTGT much more frequently than twice in our entire sequence (provided that the
probability pacrrar does not drastically deviate from 1/4096).

This situation, however, corresponds to the task to estimate the probability of a coin
by flipping it twice.

The situation in biology is even worse. Although there are sequences as long as 10,000
base pairs and longer, one of the main goals of computational molecular biology is to
develop algorithms that can reliably distinguish between coding and noncoding DNA. As
we, however, have learned in chapter 2, exons and introns are often shorter than 100 base
pairs.

Since, on the other hand, significant differences between the 6-mer frequencies of eu-
karyotic exons and introns exist, these differences are desired to be exploited by algorithms
that are designed to discriminate coding from noncoding DNA.

Surprisingly, these approaches, which make up the central part of the Gene Recognition
Module GRAIL installed at the Oak Ridge National Laboratory [Uberbacher 1991] and
[Mural 1994], are really successful. Three of the twelve algorithms that base on statistical

differences between coding and noncoding DNA in humans exploit differences in the 6-mer
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composition between exons and introns. This means that the 4096 dimensional vector
containing the absolute frequencies of the observed 6-mers, which often contains more
than 4000 zeros, carries some valuable information about the decision whether or not the

underlying DNA strand is protein coding.

3.2 Shannon Entropy

In this section, we will introduce the Shannon entropy as a measure of uncertainty. Strictly
speaking, the Shannon entropy characterizes a source and thus a set of produced sequences,
but not a particular sequence. This means that the Shannon entropy is a functional of the
probability distribution over all possible sequences that our considered source can produce.

Theoreticians like Shannon [1948b], Khinchin [1957b], Rényi [1957], and Kolmogorov
[1958] have introduced some requirements that functions have to fulfill in order to be
considered a measure of uncertainty. These requirements, which eventually build up a

complete system of axioms, are presented below.

Axiom 3.1 Let py,pa, ..., pu be the components of the M -dimensional probability vector i
and H (p) a scalar function of p. Then the first axiom requires the function H(p) be smooth
in P, which means that tiny variations of the probabilities p; cause only tiny variations of

the values of H.

Axiom 3.2 Let M be constant and the positive probabilities p; fulfill the normalization
M

constraint y_ p; = 1. Then H (p) becomes a maximum if p, = 1/M for alli=1,2,....M;
=1

€.,

1 1 1
H<M7M7 7M) _H(P17P27 7pM) (3 1)

for all pi1,pa,...,pp. Hence, the second axiom requires that the source is transmitting

symbols with the maximum amount of uncertainty if all symbols are sent with the same

probability 1/M.

Axiom 3.3 If we formally add an impossible event, i.e., ppy41 = 0, then the third aziom
requires

H(p17p27"'7pM70):H(p17p27"'7pM)‘ (32)

This means that a desirable measure should not be affected by the formal addition of im-

possible events.
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Axiom 3.4 Let p; be the probabilities for the events x;, q; be the probabilities for the
events y;, and P;; be the joint probabilities to observe the events x; and y; simultaneously.
Let us further denote the vector (p1,pa,...,pm) by p, the vector (q1,qz2,....,qm) by ¢, and
the M x N matriz containing the elements P;; by P. If we now define the conditional
probabilities p(z;|y;) = Pi;/q; and p(y;|x;) = Pi;/p; for all non-vanishing p; and q;, the

fourth axiom requires the following equality:

M

" (P) = H@)+ Y pi- Hp(yiles), pyalei), . plynle:) (3.3)
N

= H(@)+ 3 a;- H Py, p(aaly;), - p(amly;)) (3.4)

for all multivariate distributions P.

By defining the conditional entropies

N
H(plg) = qu - H (p(z1ly;), p(22]y))s s p(2mly;)) (3.5)

and o
H(q1p) = Zpi H (p(y1lzs), p(y2l@i), . plynla:)) (3.6)

we obtain the fourth axiom in the memorizable form

H(P) = H (5) + H(q7) = H (@) + H (717) (3.)

A conclusion of the fourth axiom is that, for independent events X and Y, i.e., if
Py =p;-q;forall i =1,2,.., M and j = 1,2,..., N, the measure of uncertainty is simply
additive, i.e.,

H(P)=H(p)+H(). (3.8)
In section 3.8, we will show that this equality only holds if the two events X and Y
are statistically independent. This means that the single equation H (]5) =H (p)+ H (7
implies the M - N equalities
Pij =pi-q; (3.9)
fore=1,2,....Mand j=1,2,...,N.
On the other hand, we realize H (¢]p) = 0if X and Y are functionally dependent. In
this case, we obtain the equality H (]5) =H (p)=H (9.
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In general, we can state the following inequalities for all p:

0 < H (pq) < H (p) (3.10)

as well as
0 < H(qlp) < H (9 (3.11)

and thus
magz (H (5), H () < H (P) < H (5) + H (q). (3.12)

As Khinchin shows in [1957b], the four axioms displayed above determine the following

functional form of the desired measure of uncertainty H (p):

M
=1

where (' is a constant that defines the units in which we desire to measure the amount
of uncertainty. This means that the measure of uncertainty compatible to all four axioms
displayed above has to be proportional to the average logarithm of the probabilities p;.

Therefore, we define the Shannon entropy

M
H (p1, p2s -y pv) = — Y pi - log(pi) (3.14)
=1

where the base to which we take the logarithm corresponds to the units in which we wish
to measure the average amount of uncertainty stored in one symbol of our stationary and
ergodic sequence.

If we identify this constant €' with the Boltzmann constant kg, we receive the micro-

scopic definition of the thermodynamic entropy.

Setting C' = 1/1n(2) yields

M
H (p1,p2s -y pv) = — Y pi - 10gy (pi), (3.15)
=1

which identifies the elementary units of uncertainty with binary digits. In this case, where
we measure the amount of uncertainty in bits, we end up with a very instructive interpre-
tation of the Shannon entropy.

Then the Shannon entropy H (p1, pz, ..., par), which is a measure of the average amount

of uncertainty in one symbol of our given sequence, is the (average) number of binary
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questions that we must ask in order to identify a particular symbol provided we use an
optimal strategy of asking.

Let us, at this point, present an example that will explain this interpretation.

Imagine we are sitting in front of a deck of 32 hidden cards, which all are different,
and want to guess which card is on top of the pile. The deeper question is how much we
gather if somebody tells us the answer. Applying our informal definition of the Shannon
entropy, we start asking binary questions about the uppermost card. Let us, for the sake
of simplicity, assume that all cards are numbered from 1 through 32.

Since each card exists exactly once, an optimal asking strategy would be the following:

1. Does the card on top of the pile belong to the first 16, i.e., is the number on this card
< 167

2. Depending on the answer on question 1, yes or no, we would continue asking: Does

the card belong to the first ... or third ... group of 87

3. And so on.

After having asked the fifth question, we will know for sure which card is on top of the
pile, i.e., the amount of uncertainty is equal to 5 bit in this case.

Calculating

Mo 1
H (p1,p2y s pm) = — ; Vi -log, (M) = log,(M) (3.16)
yields the same result for M = 32 since 2° = 32.

Imagine we are now interested in the amount of uncertainty in a single letter in an
English text. A foreign friend® whose only knowledge about English be that there are 32
letters would be confronted with the same task of guessing letters as we were with the task
of guessing cards.

For him, the amount of uncertainty per letter would be 5 bit as well.

However, if we ask an Englishmen to guess a letter that we randomly picked from an
English text, he would definitely need less than 5 questions on average to determine the

hidden letter. Two reasons contribute to this decrease of the Shannon entropy per letter.

'Please note that this is a hypothetic example since we believe that foreign people might, on average,

understand ten-thousand times more about English than we about their foreign language.
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First, there are only 26 letters in the Latin alphabet and not 32. And second, these
26 letters are by far not equidistributed. An F appears much more frequently than, for
example, an X. Hence, an optimal strategy would probably start with the first question:
Is the hidden letter a vowel?

Shannon was the first who analyzed the entropy of English texts [Shannon 1951]. His
results, which have not been changed over the last five decades, state that the amount of
uncertainty per letter in English texts is about 4.03 bit. This means that we should be
able to recover a lost letter by asking somebody who found it about 4 binary questions on
average.

However, what happens if we want to guess letters from a context? Imagine for example
we are reading a book and suddenly are coming across a spot where black ink hides exactly
one letter. The sentence reads as follows: “The sky is blu%.” The % marks the letter that
we cannot identify and thus have to guess. But do we really have to ask more than four
times to guess the letter completely?

Of course, not! The answer is that the amount of uncertainty in this letter (e) is indeed
very close to zero. The question that we pose with this statement is where this entropy
decrease originates from?

In the following section, we will introduce higher order entropies and conditional en-
tropies, which will eventually allow us to quantify the amount of uncertainty in a symbol
that is embedded in a context.

We will learn that correlations between a symbol that we want to guess and its en-
vironment always decrease the Shannon entropy of this symbol and hence increase its

redundancy.

3.3 Higher Order Entropies

In this section, we will introduce Shannon’s n-gram entropies H,, which define the amount
of uncertainty in a sub-word of length n.

As we have already mentioned in section 3.1, a source is completely and unambiguously
determined by its probability measure p. Vice versa, we are automatically given all n-gram
probabilities once our source is specified. Please let us neglect the problems that arise from

estimating these n-gram probabilities from finite sequences for the next moment.
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In section 3.2, we have learned that the function

H (p17p27 . 7PM sz 10g2 pz (317)

measures the average amount of uncertainty in one single letter.

Let us now formally identify all possible sub-words of length n that can be composed by
letters y; derived from an alphabet of size A with new symbols A;. Note that ¢ = 1,2, ..., A,
but 7 = 1,2,.... M with M = A". Of course, there are M = A" different sub-words of
length n composable from letters belonging to a A-ary alphabet.

Denoting the n-gram probabilities by p(ln),p(zn)7 ...,pg\z), we obtain the higher order en-

tropies
Hy (7,947, 0)) = - sz log, (p") (3.18)

as a measure of uncertainty in sub-words of length n.

Again, we choose the dual logarithm in order to measure the amount of uncertainty in
bit. Then, the a higher order entropy of 12 bit means we have to ask 12 binary questions
to get to know the corresponding sub-word.

As Khinchin shows in [1957a], the series { H,, } is monotonically increasing for stationary

and ergodic sources, i.e.,

H,, < H, (3.19)

for all m < n.

This statement is intuitively clear if we apply our informal definition of the Shannon
entropy. If we have to ask H,, times to get to know a sub-word of length n on average,
then we need at least the same number of questions to ask for a sub-word of length n + 1.
The amount of uncertainty in the last letter cannot be negative, since entropies are always
nonnegative.

Let us consider a purely random and a periodic sequence to exemplify the definition of
higher order entropies.

In the following, we will call a sequence Bernoulli-like or, in short, Bernoulli sequence,
if all A symbols appear statistically independent of each other. This means that the prob-
ability to find a sub-word of length n is identical to the product of the probabilities of its

components, i.e.,

Pluryz,eyn) = Pyr " Pyz ~ 7 " Pyn- (3.20)
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Exploiting this equality for Bernoulli sequences immediately yields
H,=n-Hy, (3.21)

which is intuitively clear: Hy is the average amount of uncertainty per letter. This means
we have to ask Hp times to get to know this letter. How often do we then have to ask
a binary question in order to guess the second letter of our n-gram? Since all letters
are statistically independent in our sequence, we cannot infer anything about the letter
at position 2 by getting to know the first letter and thus have to ask again H; binary
questions. Hence, we have to ask n - H; questions to obtain the identity of a sub-word
of length n, which is in accord to the fourth axiom stating the additivity of the Shannon
entropy for independent variables.

The same approach allows us to derive an analytic relation among higher order entropies
of periodic sequences. If the sub-words are longer than the period, which we denote by [,
i.e., n > [, then we do not have to guess the last n —[ symbols, because they are completely

determined by the first [ symbols. Hence, we obtain
H,=H, (3.22)

for all n > (.

Let us now come back to the question how we can exploit the properties of the series
{H,} to detect correlations in our underlying sequence.

Two examples might serve as a motivation why many scientists are interested in corre-
lations that appear in symbolic sequences such as natural texts, pieces of music, computer
programs, or DNA.

On the one hand, there is the increasing demand to compress data. However, data
can only be compressed if they contain some redundancy. But redundancies are intrinsicly
related to correlations within the analyzed sequence.

If there is a set of rules that have to be obeyed such as spelling rules and the grammar
of a certain language, then we have less freedom to construct permitted sequences. This,
however, decreases the number of questions we have to ask in order to obtain a hidden
symbol or sub-word.

Imagine, for example, we are to guess an English word and have already found out
one particular letter be a g. Then we do not have to ask at all for the next letter since
we know it must be an u. This example clearly demonstrates how correlations (which are

weak forms of restrictions) decrease higher order entropies and thus increase redundancies.
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Aside from demanding better data compression algorithms, many biologists and physi-
cians are interested in understanding gene regulation in higher eukaryotes. The discovery
of the existence of long-range correlations in noncoding DNA sequences [Li 1992], [Peng
1992], [Voss 1992], which however seem to be not present in protein coding pieces, raised a
loud controversy and hence the demand for a careful analysis of all measures and techniques
used to detect correlations in symbol sequences.

In chapter 11, we will introduce some classical techniques like the analysis of random
walk fluctuations, power spectra, or autocorrelation functions, by which correlations are
commonly measured. We will show how all of these techniques are related to each other
and thus concentrate on the question whether or not correlation functions are able to detect
all kinds of correlations hidden in a symbol sequence. We will present some novel results
regarding this question and outline a method, by which all statistical dependences between
symbols or sub-words within a symbolic sequence can be detected.

We will see that the mutual information, an entropy-related measure derived from
information theory, is a welcome tool to detect all kinds of correlations in a symbol sequence.
Therefore, we will now come back to our question for a quantity that defines the amount
of uncertainty that is remaining in a symbol, if the preceding n symbols are known. If we
then apply this measure, which we term conditional entropy, to our sentence “The sky is
blu%,” we will realize that this conditional entropy is indeed much smaller than four bit.
This means we do not have to ask about four times for an illiterate letter in English texts,
if we are given some preceding letters and know some basic orthographic and grammatical
rules.

The effect that we have to ask the less, the more we understand about English, i.e.,
the more regulations we know, again illustrates the crucial relation between the strength
of correlations and redundancy.

Let us in the following section define the conditional entropies h,, which define the

amount of uncertainty in a symbol y,,41 if the preceding n symbols yq, ya, ..., y,, are known.

3.4 Conditional Entropies

Please recall that we denote Shannon’s n-gram entropies, which define the amount of
uncertainty in a string of length n, by H,.

Let us in this chapter define the conditional entropy h, as the difference between the
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two higher order entropies H, 41 and I, i.e.,
hy, =H,+1 — H,. (3.23)

The quantity h, measures the amount of uncertainty in one symbol provided we know
the preceding n-gram, i.e., the conditional entropy h,, quantifies the number of questions
we must ask in order to identify the last letter of our (n 4 1)-gram provided we already
know the first n letters.

In the following paragraph, we will motivate the term conditional entropy, i.e., we
will show that %, can be written as the average logarithm of the conditional probabilities
P(Yn+1ly1, Y25 -, Yn), Whereas the Shannon entropy H,, is given by the average logarithm
of the n-gram probabilities p(y1, yz2, ..., yn), as we have seen in section 3.3.

Let p(S,) = p(y1, Y2, ..., Yn) be the probability to find the string S,, = y1y2...y,, of length
n at any arbitrary position 7 in our stationary and ergodic sequence. Let further

p(Sn, yn-l-l)
p(Sn)

be the conditional probability to find the symbol y,+;1 following the string .S,, where

PYn+1]5,) = (3.24)

P(Sn, Ynt1) denotes the probability to find the (n + 1)-gram y1yz...ynt1.

Then the conditional entropy h, can be rewritten in the following manner:

hn = Hpyp — Hy (3.25)
= = Y p(SnUnt1) 108y (p(Sny Ynt1)) + D p(Sn) - logy(p(Sn))  (3.26)
{Snyn+t1} {Sn}
= - Z p nvyn-l—l 10g2(p(5n7yn+1))
{Snyn+1}
+ Z p nvyn-l—l 10g2(p(5n)) (327)
{Snyn+1}
STL? ie3
{Snums1} Pion
= — D (S Ynt1) o8y (P(Ynt11Sn)) (3.29)
{Snyn+1}

which states that the conditional entropy is given by the average logarithm of the condi-
tional probabilities p(y,+1]9,) and hence the average uncertainty about the symbol y,,11

if the preceding n symbols w1, yo, ..., ¥, are known.
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Since the amount of uncertainty about a symbol y,+1 can never be increased by pro-
viding the observer with some additional information about the symbol yg, we can state
that

hy 2 hpta (3.30)

for all n € A, i.e., the series of the conditional entropies h,, is monotonicly decreasing.

This relation between the conditional entropies h, can be back-translated into a nice
property of the higher order entropies H,. Since the conditional entropy h,, as a function
of n can be understood as the first derivative of the higher order entropy H,, as a function
of n, the monotonic decrease of the function h, implies the convexity of H, as a function
of n.

This means that although the higher order entropies are always increasing with rising
n, the increase becomes smaller and smaller.

Since, in addition to the monotonicity of h,,, the conditional entropies are always non-
negative, i.e., the set of all h, is bounded from below, the series {h, },car converges to a
nonnegative number

h= lim h,. (3.31)
n—00

This quantity h, which is called the entropy of the source, quantifies the amount of
uncertainty remaining in a symbol, if all preceding symbols of our infinitely long, stationary,
and ergodic sequence are known.

Please note that the quantities H,,/n, which can be defined as the average amount of
uncertainty of an n-gram per letter, also converge to the entropy of the source, i.e.,

H,
lim — = 1i_>m hy, = h. (3.32)

n—oo N

Hence, the quantity H,,/n is a good measure of correlations as well. In fact, the number
1 - #&A) is chosen as a measure of redundancy by Gatlin [1972], Ebeling [1982], and
Mantegna [1994, 1995], who analyzes linguistic differences between coding and noncoding

DNA in these s.

We, however, stick to the conditional entropies h,, for three reasons:

e The numbers h,, converge quicker to the entropy of the source than the entropies per

letter H, /n.
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e The conditional entropies h, with their interpretation as the average uncertainty
about a symbol given the preceding n-gram are closer to the correlation measure we

are looking for than the quantities H, /n.

e The mutual information function, which we will introduce in the next section, can

easily be defined (and understood) in terms of the conditional entropies h,,.

Before we, however, go over to our next section, where we introduce the mutual infor-
mation function, let us present two examples in the remainder of this section that shall
illustrate the meaning of conditional entropies.

Imagine a Bernoulli sequence. Then all conditional entropies h,, are equal to Hy, i.e.,
h, = Hy, (3.33)

since H, = n- Hy for all n € A/. This result is not at all surprising, because all symbols are
statistically independent and hence uncorrelated so that we do not learn anything about
the following symbol in our sequence independently on how many preceding symbols we
have gotten to know. Therefore, we have to ask H; times for a single symbol independently
on how many preceding symbols we are given, i.e., the conditional entropies h,, are always
identical to H;.

If we consider a periodic sequence, then we obtain
h,=0 (3.34)

by applying eq. (3.22) for all n > [, where [ denotes the length of the period. This is
intuitively clear, since we can predict (without any uncertainty) the symbol y,, 4 following
the n-gram 5, if n > [.

The series {h,} of all other stationary and ergodic sequences range within these two
limiting cases and tell us, in principle, everything about statistical dependences between
symbols or substrings within our sequence. The practical problem that we are, however,
confronted with while analyzing English texts, pieces of music, or biological sequences is
the finite size of all these samples. In order to get a reliable estimate about the conditional
probability p(y,+1]9,), we have to make sure that the corresponding (n + 1)-gram S, y,+1
occurs at least once in our sample.

This restriction would, however, never allow us to analyze correlations on length scales

of hundreds or thousands of symbols, since even in the best case that we are dealing with
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21000 which is a number

binary sequences, the required minimum sequence length would be

that exceeds by far the number of atoms in our entire universe.
In the following section, we will introduce the mutual information function, which is

not affected by those serious combinatorial problems mentioned above. Since the mutual

information will turn out to measure exactly what we understand by redundancy, we will

use the mutual information function to measure correlations in symbolic texts.

3.5 Mutual Information

In this section, we will present the mutual information as a measure of correlations between
symbols within one sequence. Since we analyze these correlations depending on the distance
between the considered symbols, we obtain the mutual information as a function of the
inter-symbol-distance, which we will briefly call the mutual information function.

The philosophy behind the definition of this measure is extremely simple. Instead of
considering substrings of length n, we will now deal with cylinders that are given by a pair
of two symbols in a distance &, as outlined in section 3.1.

Then we can define a conditional entropy hy(k) by the following equation:
hl (k) = HQ(]C) — 1{17 (335)

in which Hy and Hz(k) are defined by

A
Hy = — Zpi log(p;) (3.36)
and .
Hy(k) = = 37 Py(k) - log (P (k) (3.37)

where p; denotes the probability to find the symbol A; at any arbitrary position in our
stationary sequence and P;;(k) names the joint probability to find the two symbols A; and
A; (in this order) k positions apart from each other. Please recall that k = 1 corresponds
to adjacent positions and note that p; = pa, and Py;(k) = p4, 4,)(k) according to our
denotation introduced in section 3.1.

In analogy to section 3.4, we obtain that hq(k) quantifies the average amount of in-
formation hidden in a symbol of our stationary and ergodic sequence provided we know

the symbol that appears k positions upstream. If this conditional information is measured
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in bit, then Ay (k) is equal to the average number of questions we have to ask in order to
obtain the information about the second symbol provided we know the first symbol.

Let us now compare this information hy(k) with the Shannon entropy Hp, which is
equal to the average number of binary questions we have to ask about the second symbol
provided we do not know the symbol £ positions upstream. The difference between these
two entropies gives us the information that we gain about the second symbol by getting to
know the first one.

This difference is exactly what we are looking for as a correlation measure between two
symbols that appear k positions apart from each other in a given stationary and ergodic
sequence.

Hence, we define

I(k) = Hy — hy (k) (3.38)

as the mutual information function of our given information source.

Applying eqs. (3.35), (3.36), and (3.37) to this definition yields

I(k)=2-Hy, — Hy(k) = ﬁ: Py (k) - log (P—(k)) : (3.39)

Pt pi " pj
which is the definition usually found in the literature [Kullback 1951b], [McEliece 1977],
[Pompe 1986], [Ebeling 1992], [Yockey 1992], [Herzel 1994a).

Let us at this point again consider a Bernoulli sequence to illustrate the definition given

above.

Since, in the case of Bernoulli sequences, h,, = H; for all n, we obtain
I(k)y=0 (3.40)

for all k € M\{0}.

This result exactly corresponds to our intuitive understanding of what the mutual
information defines. In Bernoulli sequences, where all symbols are statistically independent
of each other, we do not gain any information about the current symbol by getting to know
any previous one.

In deterministic sequences, were all h, are zero, i.e., there is no uncertainty about the
next symbol provided we know at least one symbol that appeared in the past, the mutual

information function is constant at its highest possible value H;. In mathematical terms,

(k) = H, (3.41)
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for all k € M\{0}.

This means not only that the entire information available about the symbol to be
guessed is provided by getting to know any previous symbol of our deterministic sequence,
but also that the information H; that any symbol of this sequence can provide us with is
entirely exploited to predict the symbol to be guessed.

In chapter 13 we will deal with some delicate problems that arise by analyzing correla-
tions in periodic sequences. We will see that even slight periodicities give rise to periodic
mutual information functions as well as to periodic correlation functions. Since periodici-
ties in coding DNA sequences are trivially generated by a nonuniform codon usage, which
is typical for coding but atypical for noncoding sequences, the periodicity of the mutual
information function can be exploited to identify coding DNA pieces.

But before we start discussing some important mathematical properties of the mutual
information function, let us outline three possible generalizations of this 2-point correlation
measure.

In our first step, we will not only consider symbol-symbol-correlations, but also correla-
tions between a set of n symbols at arbitrary positions and another m symbols at arbitrary
positions. A special case of this generalization are correlations between n-grams and m-
grams separated by k symbols and, for n = m = 1, our mutual information prototype just
defined above.

In our second step, we will give up our restriction to one sequence. We will also
consider correlations between symbols or sub-words appearing in different sequences. The
combination of both step one and step two will eventually provide us with a measure of all
many-point crosscorrelations.

In step three, we will introduce the Kullback entropy [Kullback, 1951b] and show that

the mutual information is a special case of this measure.

3.6 Higher Order Mutual Information

The mutual information I(k) quantifies what we will (on average) learn about a hidden
symbol if somebody tells us which symbol is located k positions upstream in the sequence.
Let us now generalize this mutual information by not only considering pairs of symbols &
positions apart from each other, but, for example, a symbol pair at position 7 and a single

symbol at position 7+ k in our sequence of investigation.
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The answer on the question “Which amount of information about the symbol at position
T + k do we obtain by getting to know the symbol pair at position 77”7 is then exactly
defined as our generalized mutual information. It can again be written as the average
logarithm of the terms %E;? where p; is now the probability to find the i-th 2-gram, ¢; is
the probability to find the j-th symbol, and P;;(k) is the joint probability to find the i-th
2-gram and the j-th symbol k positions downstream.

In mathematical terms,

2
I(k) = ﬁ:ﬁ: P;; (k) - log (R—(k)) . (3.42)
i=1j=1 Di-qj

Please note that the index ¢ is now counting all 2-grams and thus running from 1 to
A2,

All following generalizations are straightforward and thus only briefly displayed.

Instead of considering correlations between a 2-gram and a remote symbol, we can as
well analyze the mutual information between an n-gram and a symbol k positions down-
stream in our stationary and ergodic sequence. Then ¢ runs from 1 to A™ and p; denotes
the probability of the cylinder given by the i-th n-gram. The mathematical expression is
analogous to eqs. (3.39) and (3.42) and reveals the following interpretation: if the loga-
rithm is taken to base 2, the mutual information quantifies the information gain about a
randomly chosen symbol by getting to know the n-gram k positions upstream.

We will, in the following, also stop to restrict the target of our prediction be a single
symbol. Instead we will present a quantity that measures correlations between an n-gram
and a 2-gram separated by k symbols. In this case, we denote the 2-gram probabilities by
qj where j = 1,2, ..., A\? and again apply the same definition. Then the mutual information
measures the average amount of information we gain about a 2-gram by getting to know
the n-gram k positions upstream.

Correlations between n-grams and m-grams that are separated by k symbols can be
analyzed by an analogously defined mutual information that quantifies the information
content we obtain about an m-gram if somebody tells us which n-gram is located k positions
upstream. Please note that n and m can be any positive integer number, i.e., we do not
require n > m.

The last step will be that we also allow our n-tuple and m-tuple to contain disconnected
symbols. The ultimate question that we are now asking is which information do we obtain

about m symbols at m arbitrary positions by getting to know another n symbols at another
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n arbitrary positions? The answer is given by the mutual information, which is defined as

. AT . R(E)
I(k)y =YY" Pyj(k)-log (f—) : (3.43)
i=15=1 Pi-d;

Please note that this mutual information function now depends an a vector k that
contains the distances between all of the considered m + n symbols.

This generalization will turn out to be extremely fruitful for the analysis of DNA
sequences, since there are a lot of correlations of this type known to molecular biologists,
which are, however, not yet systematically exploited. As an illustrating example, we might
choose the problem to identify promoters in eukaryotic genomes. We already know from
molecular biology that a TAT A box at position k4 = — 30 and a C'AAT box at position
ko = — 75 are necessary for building up a functioning promoter, if position kg = 1 marks
the transcription start.

The problem by which computational molecular biologists are now confronted with is
that these features are by far not sufficient to identify real promoters in eukaryotic DNA. If
we assume for the sake of simplicity that all nucleotides appear with the same probability,
we come up with the bothering result that the mean distance between two T AT A boxes
is 256 base pairs on average.

On the other hand, we know the typical lengths of genes and their density in the genome,
i.e., we know about the typical lengths of intergenic sequences. The human genome, which
consists of about three billion base pairs, is expected to contain about a hundred thousand
genes. This means that the mean distance between two promoters is in the order of thirty
thousand base pairs.

Hence, a search for all TAT A elements will certainly provide us with all promoters, but
99% of them will be T AT A-simulants and not real promoters. Therefore, many biologists
are searching for other features or patterns that distinguish real promoters from T AT A-
simulants [Mural 1994]. A welcome tool for these kinds of studies could be the generalized
mutual information. This measure might reveal whether there are additional positions that
are highly correlated with appearing CAAT and TAT A boxes. These correlations could
then be exploited for identifying real promoters with a higher reliability.
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3.7 Mutual Information Crosscorrelations

In this section, we will introduce a second generalization of the mutual information defined
in section 3.5. We will give up our restriction to one sequence in which we look for corre-
lations. The consideration of two sequences and correlations between them will eventually
bring us back to the original questions risen in information theory.

Let us remember the five elementary steps by which a message is transmitted. We are
now neglecting the coding and decoding process and only concentrate on the question what
happens with a given symbol sequence that is sent through a noisy channel.

Let the original sequence, which we assume to be stationary and ergodic for the sake of
simplicity, be denoted by X := ...x_ox_1 zg 21 ®2 ..., Where the letters z; are chosen from
the alphabet A of size A. Let then the received sequence be Y = ...y_sy_1 %1 vy2 ...,
where we assume the letters y; be chosen from the same alphabet A.

If the channel is noiseless, we obtain X =Y, i.e., z; = y; for all integer «¢.

However, if the channel is noisy, mutations may happen that randomly change some of
the transmitted symbols.

The question that we are now asking is: “How much information do we gain about the
sent symbol z,, (that we, as the receiver, do not know) if we receive the symbol y,,?”

The answer is given by the mutual information, which is defined as

(k) = ﬁ:ﬁjpﬁ log (i) (3.44)

where p; is the probability that the symbol A; € A is sent, ¢; is the probability that the
symbol A; € A is received, and FP;; is the joint probability that the symbol A; € A is sent
and the symbol A; € A is received. If the logarithm is taken to base 2, we obtain the
mutual information measured in bit.

The motivation and explanation of this definition is analogous to section 3.5 and thus
only sketched here.

Let Hy be the Shannon entropy of the emitted sequence? X, Hy be the Shannon

entropy of the received sequence Y, and H, the Shannon entropy reflecting the average

?Please remember that this definition is only correct for stationary and ergodic sources, where we can
identify the statistical properties of an infinitely long sample sequence with the statistical properties of the
source. In all other cases, the definition of Hx, Hy, and Hz would also be possible, but then we would
have to spend more words to present a proper definition of the Shannon entropies Hx, Hy, and Hs of the

information sources X, Y, and (X,Y).



35

information stored in the symbol pairs (z;, y;).

The difference between the mean uncertainty about the symbol pair (z;,y;) and the
mean uncertainty about the symbol y; is again identical to the mean uncertainty about
the (sent) symbol z; provided we know the (received) symbol y;. Therefore, let us again
define the conditional entropy

hX|Y = H2 — HY (345)

in analogy to the definition of hg in section 3.4.

Of course, we can also define a conditional entropy hy|x = Hz — Hx, which quantifies
the mean uncertainty about y; provided we know z;. However, please note that hyy is
not necessarily equal to hy x, i.e., hxy is not necessarily symmetric in X and Y.

In order to answer the question what amount of information we gather about the sent

symbol z; by receiving the symbol y;, we just subtract x|y from Hx and thus obtain

A
PZH
I[X,Y]=Hx —hxyy = Hx + Hy —Hy = Y P;j -log (—f) : (3.46)

i,j=1 Pi- q]

Even though we will, in the remainder of this work, only deal with analyzing correlations
between symbols or sets of symbols within one sequence, this two-sequence-generalization
will turn out to be essential for correctly calculating the mutual information function of
finite sequences.

If we are given an only finite sequence, we cannot determine the corresponding mutual
information with absolute accuracy, but only estimate the mutual information values with
a certain reliability. Due to finite size effects, the estimates of p; and ¢; (these are the
probabilities to find the symbol A; at the left hand side and at the right hand side of
our symbol pair, respectively) do not have to be identical. Therefore, a careful distinction
between the two probabilities p; and ¢; is required even in the case of dealing with only
one sequence.

Moreover, the two-sequence-generalization will be crucial for understanding statistical
and systematic errors by estimating correlation functions from finite samples. We will
show in chapter 11 that a careful analysis of the relation between the probabilities p; and
q; will eventually result in an exact expression of the systematic errors induced by the
non-vanishing bias of the natural correlation function estimator.

At the end of this section, we will briefly focus on some possible (and recommendable)

generalizations of the mutual information between two sequences.
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In the first instance, we give up our restriction that the letters x; and y; have to be
chosen from the same alphabet. This means that ¢ now runs from 1 to Ay and 7 from 1 to
Ay, where Ay denotes the size of the alphabet A, from which the symbols z, are chosen,
and Ay denotes the size of the alphabet B, from which the symbols ¥, are chosen.

In the second instance, we apply all generalizations discussed in our previous section.
This means that we are now asking how much information we gain about n symbols picked
at arbitrary positions in the sent sequence X by getting to see m symbols of the received

sequence Y. Let us eventually present our final definition of the mutual information.

Definition 3.1 Let p; denote the probability of the cylinder A; of a given information
source X, where 1 =1,2,..., Mx and Mx = \% in case of our ezample presented above. Let
analogously q; denote the probability of the cylinder B; of a sourceY, where j = 1,2, ..., My
and My = Ay for example. Let further P;; be the joint probability for the simultaneous
occurrence of the two cylinders A; and B;.

Then we define the mutual information as

Myx My
]DZ,,
I[X,Y]:ZZBj-log( f) (3.47)
=1 ]‘:1 pZ q]

Before we will turn to our third generalization of the mutual information by defining
the Kullback entropy, let us state an interesting theorem about the mutual information
I[X,Y] as a function of the two information sources X and Y, which deals with the relation
between I[X, Y] and I[Y, X].

Imagine we substitute the role between the sender and the receiver, i.e., we do not ask
what the receiver learns about the sent sequence X by receiving Y, but vice versa what
the sender can infer about the received sequence Y by analyzing the channel and the sent
sequence X.

It is formally trivial to show that
I[X,Y] = 1Y, X] (3.48)

independently on the chosen alphabets A and B.

This, however, means that, for example, the amount of information we gain about a
received symbol from a binary alphabet B by getting to know a sent 5-gram composed
from a ternary alphabet A is equal to the amount of information we obtain about this

5-gram from X by getting to know the binary symbol from Y. This general statement of
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the symmetry of the mutual information as a function of the two sources X and Y just

reflects the mutuality of this information measure.

3.8 Kullback Entropy and Mutual Information

In this section, we will define the Kullback entropy K (ﬁ, p_é) and show that the mutual
information /(p) is equal to the Kullback entropy in the special case in which we set p_fJ
equal to the product of the marginal distributions of p.

We will present some properties of the Kullback entropy that will turn out to be ex-
tremely valuable for the application of the mutual information function as a correlation
measure to symbol sequences such as texts, pieces of music, time series, DNA, RNA, or
amino acid sequences.

We will, in particular, show in theorem 3.1 that the Kullback entropy is always positive
and only vanishes if 7 = p_é7 which implies that the mutual information vanishes if, and
only if, all appearing symbols in our sequence are statistically independent.

An extended introduction of Kullback’s entropy and detailed discussions of the theorems
presented in this section can be found in [Jaglom 1965], [Khinchin 1957a], [Kullback 1951b],
[McEliece 1977], [Shannon 1948a], [V6lz 1982 & 1983], and [Yockey 1992].

We introduced the mutual information as that amount of information which we gain
about a symbol or tuple z; by receiving a message y;. Let us now consider the general case
that we have some prior assumption about a system X, which we represent by a vector
p_fJ = (p?,pY, ..., pY;) containing the prior probabilities p! of the states of our considered
system.

Let us then carry out some experiments that provide us with new information about
this system. Let our posterior knowledge about the states of the system be reflected by
P = (p1,p2s ..., Pm), which denotes the vector containing the posterior probabilities p;.

Then the information gain K (ﬁ, p_é) is given by

M .
K (ﬁ, p_é) = CZZH -In (1%) (3.49)
=1 2

and termed the Kullback entropy.
Kullback introduced this quantity as a divergence measure, since it quantifies the com-
patibility of the outcomes of a sampling experiment with the prior hypothesis about the

considered system.
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Let us now illustrate the relationship between the Kullback entropy and the mutual
information as defined in the previous chapter. Imagine we are setting up some sam-
pling experiments by which we want to decide whether or not two random variables are
statistically independent. Let the two random variables be X and Y with their possible
realizations x1, z2, ..., 2ar, and y1, Y2, ..., Yar,, respectively.

Let now our prior assumption be the statistical independence of X and Y, i.e., PS =
pi - ¢;, where p; denotes the probability to observe z; and ¢; denotes the probability of the
experimental outcome ;.

If we denote the experimental joint probabilities by F;;, we come up with the special

Kullback entropy

Mx My >
K (P, =y (7) =33 Py -log Pff -, (3.50)
=1 =1 Pi - q;

where the base of the logarithm is purposely left unspecified, since it is related to the units
in which we wish to measure the amount of information.

As we easily recognize, this Kullback entropy is identical to our definition 3.1 of the
mutual information.

By definition, this quantity K (]5, PO = - q_') measures the information we gain about
the P;; under the assumption of independent X and Y. If this information is zero or

close to zero, this means that our assumption PZ%, i

.e., the assumption of the statistical
independence between X and Y, is perfect or very good, respectively. If, on the other hand,
the mutual information is high, this means that our independence assumption is very bad,
i.e., X and Y are statistically dependent.

Let us now present a lemma and a theorem that underscore the value of the mutual

information I[X, Y] as a measure of correlations between X and Y.

Lemma 3.1 The Kullback entropy K (ﬁ, p_é) is a convex function of the probabilities p;,

€.,
0’K 52’]’

=—>0 3.51

Op:dp;  pi — (3:51)

foralli,j=1,2,....M, all §, and all p".

0? 1

Since also f(z,20) = —In(a/x¢) is a convex function in z, i.e., 8—]; ==
x x

apply Jensen’s inequality (see Appendix B) to the definition of the Kullback entropy and

> 0, we can
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obtain

=l

o M 0
-K ( po) = Zpi -log (Z—Z) (3.52)
=1 ¢

< log (% p?) (3.53)

= log(l)=0, (3.54)
which yields our announced theorem.

Theorem 3.1 The Kullback entropy is always positive, i.e.,
K (ﬁ, p_é) >0 (3.55)

Jor all p and p_é, and only vanishes if equality holds in Jensen’s inequality, i.e., the Kullback

entropy vanishes if, and only if, p= p_é.

This theorem implies the important property of the mutual information 7[X,Y] to be
always positive and only equal to zero, if X and Y are statistically independent. For exactly
this reason, we consider the mutual information a more powerful measure of correlations
than, for example, the correlation function C[X, Y] defined in chapter 11.

At this point we turn back to analyzing symbol sequences and present a theorem about

the mutual information function 7(k) of Markov chains.

Theorem 3.2 Let the random variables X, Y, and Z form a (first order) Markov chain,
i.e., 7 depends on X only through Y, i.e., p(z|y) = p(z|z,y). Then we obtain that

I[X, 7] < I[X,Y] (3.56)
as well as
I[X, 7] < I[Y, 7] (3.57)

for all X, Y, and Z.

This means that the mutual information function I(k) of a first order Markov chain
is always monotonicly decreasing. Vice versa, we can state that any deviation from the
monotonic decay of the mutual information function indicates the non Markovian character

of the underlying sequence.
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In information theory, the inequalities (3.56) and (3.57) carry a very important meaning:
discrete memoryless channels always tend to leak information [McEliece 1977]. If Y is
a definite function of X and Z is a definite function of Y, then we can think of the
Markov chain (X,Y,7) as a data processing configuration. Then theorem 3.2 says that

data processing can only destroy information.

3.9 Summary

In section 3.1, we analyzed the communication process and introduced the concept of
an information source. We showed that the probability measure of a given cylinder can
be understood as the probability to find the corresponding substring in stationary and
ergodic sequences. We want to emphasize again that we are only in this case allowed to
study infinitely long sample sequences instead of sequence ensembles.

In section 3.2, we presented an axiomatic approach to the definition of the Shannon
entropy as a measure of uncertainty in single symbols.

Section 3.3 was then devoted to the introduction of higher order entropies, which mea-
sure the amount of uncertainty in substrings of, in principle, arbitrary length. We realized
that the series of higher order entropies is always monotonicly increasing and convex.
Whereas Bernoulli sequences exhibit a linear growth of their higher order entropies, peri-
odic sequences reach a plateau at the length of their period.

In section 3.4, we introduced conditional entropies, which measure the amount of un-
certainty in a symbol provided we know some previous ones. We explained why the series
of conditional entropies of stationary and ergodic sources always monotonicly decreases
and considered a Bernoulli sequence as well as a periodic string as limiting cases of all
possible h,,-series of stationary and ergodic sources.

In section 3.5, we motivated the definition of the mutual information as a measure of
correlations between two symbols. Since these two symbols are not restricted to neighbor
each other, but can instead be separated by a gap of arbitrary length, the mutual infor-
mation function turned out to be a very powerful tool to detect long-range correlations in
symbolic sequences.

Sections 3.6, 3.7, and 3.8 were eventually dedicated to presenting three kinds of gener-
alizations of the mutual information function presented in section 3.5.

In section 3.6, we gave up the restriction of measuring correlations between single
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symbols and defined the mutual information between a set of m and a set of n symbols
at arbitrary positions. We demonstrated that this generalization yields a powerful tool for
linguistic analyses of DNA sequences.

In section 3.7, we presented a generalization of the mutual information as a measure
of the shared between two symbols or sets of symbols stored in different sequences. We
underscored the importance of this generalization for properly understanding and correctly
calculating the systematic estimation errors induced by the always finite length of real
sequences.

Section 3.8 was reserved for introducing the Kullback entropy. We showed that the
mutual information is a special Kullback entropy and thus gained a new interpretation of
the mutual information between two random variables. By relating this interpretation with
our previous understanding, we developed a new insight into what the mutual information
measures.

In section 3.8, we derived the theorem that the mutual information is always positive
and vanishes if, and only if, the considered random variables are statistically independent.
This property is the main reason why we prefer the mutual information function over
autocorrelation functions for analyzing symbolic texts such as DNA, RNA, or amino acid

sequences.



Chapter 4

Measuring Correlations in Symbol

Sequences

This chapter is devoted to relations between correlation functions and the mutual infor-
mation function. We show that in sequences over an alphabet of A symbols statistical
dependences are measured by (A — 1)? independent parameters. However, not all of them
can be determined by autocorrelation functions. Appropriate sets of correlation functions
(including crosscorrelations) are introduced, which allow the detection of all dependences.
The results are exemplified for binary, ternary, and quaternary symbol sequences. As an
application, we discuss in section 13 that a nonuniform codon usage in protein-coding DNA

sequences introduces periodic correlations even at distances in the order of 1000 base pairs.

4.1 Introduction

The statistical analysis of symbol sequences is of growing interest in various fields, for
example lin-
guistics [Shannon 1951, Jaglom & Jaglom 1965, Schenkel 1993, Ebeling & Pdschel 1994,
Levitin & Feingold 1994], analysis of biosequences [Gatlin 1972, Ebeling & Feistel 1982,
Ebeling et al. 1987, Herzel 1988, Karlin & Brendel 1992, Peng et al. 1992,
Borstnik et al. 1993, Herzel et al. 1994a, Herzel et al. 1994, Herzel et al. 1995], cellular au-
tomata [Grassberger 1986], or dynamical systems [Farmer 1982, Eckmann & Ruelle 1985,
Ebeling & Nicolis 1991]. Under the assumption of stationarity, probabilities can be as-

signed to the occurrence of symbols in given sequences. These symbols are, for example,
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the four nucleotides A, C, G, and T occurring in DNA sequences, the 26 letters of the
Latin alphabet in English texts, or the 20 amino acids in protein sequences.

The aim of this chapter is to study certain characteristics of some widely used
measures such as correlation functions and mutual information [Herzel & Ebeling 1985,
Pompe et al. 1986, Fraser & Swinney 1986, Li 1990]. In particular, we focus on
the interrelation between correlation functions and the mutual information func-
tion.  Our study is motivated by the continuing analysis of long correlations in
biosequences [Ebeling et al. 1987, Herzel 1988, Karlin & Brendel 1992, Peng et al. 1992,
Borstnik et al. 1993, Herzel et al. 1994a, Herzel et al. 1994, Herzel et al. 1995], but most
of our results are of general importance.

Both, the correlation function and the mutual information measure correlations within
one sequence (autocorrelations) or between two sequences (crosscorrelations). However,
both measures impose their own meaning of what they define as correlation. There is a
clear mathematical expression for statistical independence between random variables —
the factorization of the corresponding probabilities. The mutual information and correla-
tion coeflicients vanish in case of statistical independence, but they differ in quantifying
deviations from statistical independence, i.e., in quantifying statistical dependences.

Correlation coeflicients measure only linear dependences, whereas the mutual infor-
mation is more general in the sense that it detects all kinds of statistical dependences.
However, we will argue that vanishing correlation functions can ensure statistical indepen-
dence under certain circumstances as well.

Both, correlation functions and mutual information have their advantages and disad-
vantages. The following list might help to compare and contrast some features that are

relevant in this context:

Advantages of correlation functions:

o A lot of experience how correlation functions behave has been gathered in statistical
physics. For example, there are well known relations between the autocorrelation
function and the variance growth of a corresponding random walk [Peng et al. 1992,

Stanley et al. 1994].

e Fourier transforms of autocorrelation functions give power spectra, which allow an

easy detection of periodicities.
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e Correlation coefficients can be either positive or negative. Hence, they can distinguish

between correlations and anticorrelations.

e Correlation coefficients are very specific. They can, for example, measure correlations
between the nucleotides A and C in DNA sequences or between hydrophilicity and

charge in amino acid sequences.
On the other hand,

e correlation functions measure only linear correlations. This can be illustrated by
chaotic sequences for which correlation coeflicients may vanish, although the iterates
are even functionally dependent. For example, the autocorrelation coefficients vanish
for the fully developed logistic map z,41 = 42,(1 — x,) [Herzel & Ebeling 1985,
Grossmann & Thomae 1977].

e Correlation coefficients are not invariant with respect to coordinate transformations.
Hence, the assignment of numbers to symbols is somewhat arbitrary and the output

of the autocorrelation function depends on the chosen projection.
Advantages of the mutual information:

e The mutual information detects any kind of dependence (not only linear correlations),
which is stated by the following theorem: The mutual information vanishes if, and
only if, all occurring symbols are statistically independent. (See, e.g., [Mackey 1989]

for a proof.)
e The mutual information is invariant under coordinate transformations.

e No assignment of numbers to symbols is required.
Disadvantages:

e The mutual information is less specific than autocorrelation functions since any de-

viation from statistical independence is mapped onto a single number.

e For all finite sequences, there is a systematic overestimation of the mutual informa-
tion, which, however, can be corrected. (See [Herzel et al. 1994a] and Appendix 11

for reviews of finite sample corrections.)
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We have already mentioned that a vanishing mutual information is necessary and suf-
ficient for the statistical independence of all symbols. The arising question is now whether
there are sets of correlation functions the vanishing of which guarantees statistical indepen-
dence as well. Moreover, we derive some functional relations between different correlation
functions, on the one hand, and correlation functions and the mutual information function,
on the other hand. With this respect, this chapter can be regarded as a generalization of
previous results by Wentian Li [Li 1990].

In particular, we concentrate on quaternary sequences, which were not studied in
[Li 1990], and apply our results to DNA sequences since they are of immanent interest
in biology.

Our main results may be summarized as follows: In order to quantify statistical depen-
dences in sequences with A symbols, (A — 1)? independent parameters have to be studied
for a given distance between symbols.

(A=1)

However, only A 5— of these parameters can be measured by autocorrelation coeffi-

cients. We suggest to use crosscorrelations in order to detect all statistical dependences.

4.2 Definitions

Symbol sequences are composed of letters from an alphabet of A letters {Ay, Ag, ..., 4)\}
(e.g. {A,C,G, T} for DNA sequences or {4, B,C, ..., X, Y, Z} for English texts). Since we
assume stationarity, any symbol A4; (¢ = 1...A) occurs with a well defined probability p; at
any arbitrary site, i.e., this probability p; does not depend on the position at which the
symbol appears in the sequence. At this point, we remark that the assumption of sta-
tionarity is a delicate question for finite sequences. Natural sequences such as languages,
DNA, or proteins are often not completely stationary. So we see, for example, signifi-
cant fluctuations of the G+C content in DNA sequences even on length scales of several
million base pairs. For instance, chromosome bands indicate regions of different G4+C
content [Herzel et al. 1995, Lewin 1997]. However, these problems of instationarity can be
reduced by trend elimination techniques [Stanley et al. 1994, Li et al. 1994]. The effects
of a nonuniform codon usage in the reading frame on instationarity is discussed in section
VII.

Now we define joint probabilities p;; (k) to find the symbol A; and the symbol A; (in

this order) in a distance k. So p;;(1) refers to adjacent symbols A; and A;. Please note
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that, due to the assumed stationarity, the joint probabilities p;;(k) do not depend on the
positions of A; and Aj;, but only on their distance within the sequence.

Two symbols in a distance k are defined to be statistically independent if, and only
if, pi; (k) = p; - ¢; where p; denotes the probability to find the symbol A; at an arbitrary
position 7, and ¢; denotes the probability to find the symbol A; at position n 4 k. Due to
stationarity, all p; are equal to g;, so that we can call two symbols statistically independent
if (and only if) p;; (k) = p;i - p;.

At this point we define a quantity that measures the statistical dependence (and thus
correlations) between symbols in a distance k:

I(k) = ﬁ: pi; (k) - log pf—(k) (4.1)
ij=1 Pi - P;

This quantity is
termed mutual information (or transinformation [Herzel & Ebeling 1985]) and is related
to the Kullback information or Boltzmann’s H-functional [Mackey 1989]. As base of the
logarithm we choose 2 and obtain the following interpretation for I (k). The mutual infor-
mation gives us the information (measured in bit) that we receive about the second symbol
by getting to know the first one.

Now we turn to the definition of autocorrelation functions of symbol sequences. Here,

we have to assign real numbers (ay, az, ..., a)) to symbols A, Ag, ..., Ax. For further con-
venience, we define the vector @ as the A-tuple @ = (a1, ag, ...,a)). Then we define
Ca(k) = (a(n) -a(n+ k)) = (a(n)) - (a(n + k)) (4.2)

as the autocorrelation function with the chosen projection @ where a(n) denotes the number
assigned to the symbol at position n in the sequence and (...) refers to the average over the
entire sequence.

Assuming ergodicity, the above average can be replaced by the average over probabilities

pi; (k) to define the autocorrelation function:

A A

Calk) = (3 piy(k) - ai-aj) = (3_pi-ai)’
A

= > (k) = pi-py) - ai - aj. (4.3)

7,75=1
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If we now define a quadratic A x A matrix D(k) by setting the entries D;;(k) = py; (k) —
pi - p;j, We can write any autocorrelation function as a bilinear form of this matrix ﬁ(k) in

the following way:

Cz(k)y=a-D(k)-a’. (4.4)

If, and only if, all symbols in our sequence are statistically independent, this matrix
D(k) is identical to 0.

Various relations between different autocorrelation functions are derived in the next
sections. For simplicity, the dependence of the joint probabilities p;;(k), the matrix ﬁ(k),
the mutual information I(k), and the correlation functions Cz(k) on the distance k is

dropped in the following. However, relations derived for any of those quantities hold for

all k € N\ {0}.

4.3 How to guarantee statistical independence

This question was also addressed by Wentian Li [Li 1990] for binary and ternary sequences.
However, we do not require the matrix P (which is defined by the entries p;;) to be
symmetric. Moreover, we discuss statistical properties of sequences that are composed of
more than three different letters. Some relations valid for sequences with any alphabet size
are derived in Appendix 1. Novel results regarding the dependence between autocorrelation
functions of ternary and quaternary sequences are derived as special cases in sections 1V
and V, respectively.

As shown above, any correlation function is a bilinear form of the matrix 15, and
D=0is necessary and suflicient for the statistical independence of all symbols in the
sequence. Hence, this matrix D contains all information we need to evaluate any statistical
dependence within our symbol sequence of interest.

We first raise the following question: How many of the A\? entries of the matrix D are
independent?

For this reason, let us first collect all constraints that might decrease the number of
independent entries of D.

The normalization of the joint probabilities p;;

A
> opij=1 (4.5)

7,75=1
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and of the probabilities p;
dopi=1 (4.6)
yields
A A A A
Y Dij= Y Pi—Q_p) - Q_p) =0 (4.7)
7,75=1 7,75=1 =1 7=1
So the normalization constraint for our dependence matriz D reads as follows: The sum

over all entries of D has to vanish.

Furthermore, the equations
A
> P = (4.8)
=1
and

A
> i =pi (4.9)
Jj=1

hold due to stationarity for all 7 = 1...\ and for all + = 1...A, respectively. Hence, we obtain
forall j =1...A

A A
Z => (pij—pi-p) =0 (4.10)
: :1
and for all : = 1...A
A A
Y Dij = (pij— =0. (4.11)
7=1 7=1

In other words, this means that the sum of the matrix entries D;; in each column and
in each row has to vanish. This gives us another 2- A constraints besides the normalization.
At this point, it is important to realize that these
2 - A+ 1 constraints are not independent of each other. In the following paragraph, we
are showing that two of the constraints mentioned above depend on a set of only 2- A — 1
equations.

In a first step, we show that the equations

A
> D=0 (4.12)
=1
and

A
Z = (4.13)

can be derived from the remaining 2- A — 1 constraints. This means we have to prove that

both, the sum in the last column and the sum in the last row vanish, provided normalization
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holds and all sums in the first A — 1 columns and in the first A — 1 rows vanish. By using

the A — 1 row-constraints and realizing the normalization condition, we obtain:

A A A=1 A
> D= Dij=) 3 _Dij)=0. (4.14)
=1 7,75=1 7=1 =1
N—_———’
0
Analogously, we proceed and yield:
A A A=1 A
> Dyj=Y Dij—> (> D) =0. (4.15)
7=1 7,75=1 =1 7=1
N—_———’

0

Now we have to show that the 2 - A — 1 constraints, which have just been found to be
sufficient to guarantee stationarity and normalization, are indeed independent. By now
we know that there are not more than 2- X — 1 independent equations constraining the A2
dimensional space of all parameters D;;. Thus, there are A2—2-A+1 = (A—1)? parameters
sufficient for determining the matrix D.

In order to prove that these parameters are also necessary, let us fill the matrix D
starting with the first line. We define the entries Dyq, D1o, ..., D1a_1. At this point, Dy} is
also defined by the first row-sum-constraint. We proceed with the second row and define
Dy, Dag, ...y Day_1. Again, Dy is then determined by the second row-sum-constraint. We
repeat this procedure until we arrive at the element Dy_15_1. By now, we have filled the
first A — 1 rows completely by having exploited all of the A — 1 row-sum-constraints.

We can determine the matrix element Dy; by applying the first column-sum-constraint,
D)2 by applying the second one, ..., and Dyy_1 by using the (A — 1)th column-sum-
constraint. We have just determined all entries D;; except Dy by having defined (A — 1)?
parameters and having used 2 - (A — 1) constraints. The last parameter D)y can now be
determined by using the remaining normalization constraint. The whole procedure, which

is exemplified for ternary sequences in section V, is illustrated by the following sketch:

Dy Dix—a *
D= ‘ h ‘ ‘ (4.16)
Dy_11 -+ Dy_qn-1 *

The matrix elements marked by stars can be determined by the upper left quadratic

matrix of type (A—1) X (A — 1) together with the constraints. At this point, we can answer
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the question how many parameters are required to determine the matrix D unambiguously.
It is obvious that exactly (A — 1)? entries (all elements of the upper left quadratic matrix)
can be chosen independently. So we have learned that (A — 1)? parameters are necessary
and sufficient to define the matrix D.

Consequently, we concentrate on the (A—1) x (A— 1) matrix composed of those (A —1)?
independent parameters in the upper left corner, which we denote by D. The remaining
2\ — 1 entries of the matrix D can then be calculated by all of the 2 - A — 1 constraints
discussed above.

Now we turn to another relevant question. How many of those (A — 1)? parameters
(which are required to identify all correlations in a sequence built up of an alphabet con-
taining A letters) can be determined by autocorrelation functions?

To evoke the reader’s interest in this question, let us call that there is an infinite number
of autocorrelation functions since we can assign real numbers to all A symbols, but there
are only (A — 1)? parameters to be determined.

We remember that every matrix can unambiguously be decomposed into a sum of a
symmetric and an antisymmetric matrix in the following way. If D is the matrix to be

decomposed, and S and A denote its symmetric and antisymmetric parts, then

Di; + Dj;
Si; = it D (4.17)
2
and
D;j — Dy
Ay = 12 ! (4.18)

for all 7,5 = 1...A.

It follows immediately from eqs. (10), (11), and (18) that the sum over all entries,
row-sums, and column-sums of the antisymmetric matrix A vanish. Consequently, our
constraints for D apply to S as well.

It can easily be seen that autocorrelation functions are determined solely by the sym-

metric part:

A A
Ci = Y . Di-ai+ >, (Di+Dj)-ai-a
= ij=1
1< j
= a-S-a. (4.19)
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Hence, autocorrelation functions cannot reveal any information about antisymmetric
components of D. We stress that also autocorrelations of moments of the numbers a;
depend only on the symmetric ingredients of the matrix D.

The symmetric matrix corresponding to the matrix D (remember that only the upper
left matrix has to be considered) contains M%l independent parameters, S;; (¢, =
1...A=1;7 < j), which is the number of elements in the upper triangle matrix including the
diagonal elements. On the other hand, the corresponding antisymmetric matrix contains
W independent parameters, A;; (1,7 = 1...A — 1;¢ < j) (upper triangle matrix
excluding the diagonal elements).

Summarizing, we state that (A—1)% independent parameters are necessary and sufficient

for the estimation of all correlations in a given sequence, W of which cannot be
determined by any autocorrelation function. The question that we are going to answer in
the following sections is how all of the remaining # parameters can be calculated by

autocorrelation functions.

4.4 Binary Sequences

In this section, we want to apply our results to binary sequences and compare them with
studies by Wentian Li [Li 1990]. In binary stationary sequences, the dependence matrix D

has the form:

_n2 — .
D= P11 — 7 P12 — M1 2P2 (4‘20)
P21 —P1 P2 P22 — P3

Due to the constraints of vanishing row-sums and column-sums, we get

D= ( Du =Dn ) (4.21)

_Dll Dll

where we have introduced the notation Dy; = py1 — p%. Since pig = p1 - p2 — D1 and
po1 = p1 - p2 — D11, we realize that Li’s requirement, p12 = po1, is a simple consequence of
the constraints resulting from stationarity.

As shown in section II, any autocorrelation function can be expressed by the following

bilinear form:

D11 —D11 ay
Ca a = , . .
(21,2) (a1, a2) ( —Di1 Dn ) ( ag )

= (a1 — 02)2 . D11 (422)
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Now we consider the autocorrelation function where we have assigned the numbers 1
and 0 to the symbols A; and Ay, respectively, i.e, (a1, az) = (1,0). Then, the corresponding

autocorrelation function is identical to Dyy:
C0) = D1 (4.23)
Thus, we can rewrite eq. (22) as follows:
Clar,as) = (a1 — a2)* - Cy ). (4.24)

This equation reveals that all autocorrelation functions are dependent on only one (e.g.,
on 0(1,0)) which can be considered a basis of the 1-dimensional space spanned by all auto-
correlation functions of binary sequences.

We see that C'(y o) = 0 implies D = 0 and thus statistical independence. This means
that Cq o) (or any other autocorrelation function of binary sequences) vanishes if, and only
if, all symbols are statistically independent.

Thus, we realize that autocorrelation coefficients are as good as the mutual information
with respect to detecting correlations in binary sequences.

These results also apply to a problem arisen in communication theory [Bernasconi 1987]:
Extensive optimization studies have been performed [Krauth & Mezard 1995] to find low
autocorrelation binary sequences by minimizing C’(L_l)(k). It turns out that a vanishing
autocorrelation function

C(l,—l) =4- C(LO) =4- D11 (425)

implies also statistical independence of letters in the corresponding binary strings.

4.5 Ternary Sequences

Sequences based on an alphabet of three letters are widely used to encode natural lan-
guages [Ebeling & Poéschel 1994] or music [Ebeling & Nicolis 1992, Ebeling et al. 1995].
The well known Morse Code can also be regarded as being composed of three symbols:

{short,long, pause}. In this section, we show that
e not all correlations between symbols can be detected by autocorrelation functions

and that
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e the three autocorrelation functions {0(1,0,0)7 C0,1,0): 0(07071)} are a basis in the sense
that all possible autocorrelation functions of ternary sequences are a linear combina-

tion of those “basic” ones.

From section IIT we know that there are (A — 1)? = 4 independent entries of the matrix
D, # = 3 of which belong to the symmetric matrix S. We show in this section that
these three parameters can be determined by three autocorrelation functions, for example,
by {0(1,0,0)70(0,1,0)70(0,0,1)}- However, the antisymmetric parameter remains hidden and
cannot be determined by any autocorrelation function.

For illustration, let us consider the following first order Markov process: If the current
symbol is Ay, the following one is A; with probability 1/3 and Ay with probability 2/3;
As cannot occur right after A;. Analogously, the transition probabilities from A, to A,
and As to As are 1/3 and those from A, to A3 and Az to A are 2/3. Due to symmetry,
we obtain p; = p; = p3 = 1/3. This Markov process can be represented by the following

matrix:

1/9 2/9 0
Pk=1)=] 0 1/9 2/9 (4.26)
2/9 0 1/9

containing the joint probabilities defined in section II. This process introduces some pe-
riodicity 4y = A; — As; — A leading to non-vanishing antisymmetric components,
which is not atypical for DNA sequences. (Cf. the nonuniform codon usage discussed in
[Ebeling et al. 1987, Fickett 1982, Staden 1984] and in section VII.) All information re-

garding correlations in this Markov chain is stored in the matrix

0 1/9 -1/9
Dk=1)=|-1/9 0 1/9 (4.27)
1/9 -1/9 0
which obviously contains a non-vanishing antisymmetric part.

Since

Ca00 = D, (4.28)
Clo,1,0) = D2z, (4.29)

and

Clo,0,1) = Dss, (4.30)
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we realize that these three autocorrelation functions, which were introduced by Voss, are
all equal to zero in this example and thus fail to measure any correlation.

In the following, we are going to show that the three autocorrelation functions
{0(17070), Co,1,0) C(LLO)} are sufficient to determine the three independent parameters Siq,

S12, and Sy, required to identify the symmetric matrix S, By definition, we have

C1,00) = S11, (4.31)
Clo,1,0) = S22, (4.32)

and
Ca1,0= 511+ Stz + S21 + S22. (4.33)

Eqs.(31) and (32) together with

Cia,0 1t C00 +Coi0
2

512 = 521 = (4.34)

give the entries of S (the upper left 2 x 2 matrix of S) determined by
{0(1,0,0)70(0,1,0)70(0,0,1)}3 Due to the constraints, S is completely determined by
{S11, S12, S22}

Siz = S31 =511 — 512 (4.35)
Sz = Szp = =591 — S (4.36)
Ss3 = St1+ 512 + Sa1 + Saa. (4.37)

We note in passing that eqs. (33) and (37) reveal the identity

Cloon) = Cu10)- (4.38)

So we can summarize that the three autocorrelation functions {0(17070), Co,1,0) 0(07071)}
are sufficient to identify the matrix S and constitute a basis for all autocorrelation functions
of ternary sequences, since

Ci=a-S-a’ (4.39)

as pointed out in section III.
However, we have to remember that autocorrelation functions cannot determine all
(A — 1)? = 4 parameters of the matrix D. This means that the statement “there are no

correlations between symbols if all possible autocorrelation functions vanish” is not valid for
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ternary sequences. Hence, there are sequences for which all autocorrelation functions are
identical to zero even though correlations do exist (as shown in our introductory example).
In these situations, the mutual information function could reveal those correlations not
detectable by autocorrelation functions.

Another concept to display the antisymmetric correlations is to determine the
MQMH independent entries of the antisymmetric matrix A by calculating crosscor-

relation functions in the following manner. We introduce the crosscorrelation function

Capk) = (a(n)-b(n+k)) - (a(n)) - (b(n+ k))
= @-D-b" (4.40)

by using two different assignments @ and b to the symbols of a given sequence. If we choose

the basis @ = (1,0,0) and b= (0,1,0), we obtain
= Dy, (4.41)

which is (in addition to Sy, S12, and Siz) sufficient to determine the four independent

parameters of the matrix D:

Dy = Sn (4.42)
D1z = C100),0.10) (4.43)
Dy = 2-S13— Di (4.44)
D22 = 522' (445)

The application of all 2- A — 1 = 5 constraints gives the remaining entries of D.

4.6 Quaternary Sequences

A statistical analysis of quaternary sequences is of fundamental importance in biology, since
all nucleic acid sequences are composed of four nucleotides with the four bases: Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T). All kinds of RNA (m-RNA, t-RNA,
r-RNA) are built up of A, C, G, U (Uracil). Measuring and understanding correlations

in DNA sequences or sub-sequences like exons, introns, or intergenic regions is one of
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the current goals. So it is the particular purpose of this chapter to apply our results to
quaternary sequences in order to foster further analyses of DNA sequences.

There are (A — 1)? = 9 independent parameters in the matrix D, only # =6 of
which can be determined by autocorrelation functions. The arising question is now to find
an appropriate basis of six independent autocorrelation functions, the linear combination
of which yields any imaginable autocorrelation function of quaternary sequences.

There are seven possible projections of quaternary sequences onto binary ones, which
are indeed studied in [Stanley et al. 1994]. For convenience, we choose the DNA alphabet
{A,C,G, T} instead of {Ay, Ay, A3, A4} for the quaternary sequence and the alphabet
{X,Y} for the binary sequence in this section. Then we can visualize the seven projections

in the following list:

{4,C} = X and {G, T} =Y
“alphabetical AC-GT rule”, no biological interpretation known; corresponding to
C(1,1,00)
e {AG}= X and {C,T}=Y:
“purine-pyrimidine rule”; corresponding to C1 01,0
o {AT} = X and {C,G}=Y:
“hydrogen bond rule”; corresponding to C1 00,1

e A= X and {C,G, T} =Y

“Adenine rule”; corresponding to C'y g0,

e = X and {A,G, T} =Y

“Cytosine rule”; corresponding to C(g 1,0,0)

e (= X and {A,C,T} =Y

“Guanine rule”; corresponding to C(g,0,1,0)

o I'— X and {A,C,G} =Y

“Thymine rule”; corresponding to C(g,0,0,1)

In this way we have obtained seven different binary sequences, the correlation functions
of which we want to calculate. Remembering that there is but one autocorrelation function

to be determined in binary sequences and choosing (z,y) = (1,0) for the sake of simplicity,
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we receive seven different autocorrelation functions. Since we know that there are only six
independent parameters in the symmetric matrix S, we can already conclude that these
binary autocorrelation functions cannot be independent.

In the following, we are checking whether six of these seven binary autocorrelation
functions are sufficient to determine the matrix S entirely. In this case, they would form
a basis in the (usual) sense that all quaternary autocorrelation functions could be linearly
combined by them.

Now we are showing that the upper six autocorrelation functions are indeed sufficient

to identify all six independent parameters of S, Applying eq. (24) to Cl1,0,0,1) yields:

Ca001) = Clo,1,1,0) (4.46)

We can use the same strategy as in section V and write down all six autocorrelation
functions in terms of the symmetric elements of D. In the next step, we obtain the

M = 6 entries of the symmetric matrix S in terms of the autocorrelation functions

C(1,0,0,0)7 C(0,1,0,0)7 C(0,0,1,0)7 C(1,1,0,0)7 C(1,0,1,0)7 and 0(0,1,1,0)3

S11 = C1,0,0,0) (4.47)
$1z = G200~ Cson = oo (1.43)
$1p = 010~ Cason = Cooao (1.49)
S22 = Cl0,1,0,0) (4.50)

C -C -C
Sy — (0,1,1,0) (o;,o,o) (0,0,1,0) (4.51)
S33 = C(0,0,1,0)- (4.52)

The remaining entries of S can be calculated by applying the constraints

514 = —511 — 512 — 513 (453)

Saoq = =521 — S22 — Sa3 (4.54)
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S34 = =531 — S32 — S33 (4.55)
3
Saa = Z Sij (4.56)
7,75=1
and using the symmetry

Obviously, the chosen autocorrelation functions form a basis since they contain the
entire information about all correlations that autocorrelation functions could detect in
principle. For example, Cg,0,1) is the following linear combination of the basis functions

used above:

Co001) = —C1,000 — C0,1,00) — C(0,0,1,0)
+C1,1,00) 1+ C1,01,0)+ Cro1,1,0). (4.58)

After replacing Cig1,1,0) by C(1,00,1), we obtain

Cao00 t C1,00 1 Co01,0+ Coo01)=
Caipo0 + Cuo10t+C000)- (4.59)

This relation allows to select an appropriate basis of six autocorrelation functions out
of those seven. We suggest to choose {C(1 0,00 C(0,1,00) C0,0,1,0p C(0,00,1) C(1,0,1,0)
0(1,0,0,1)} since all of the autocorrelation functions in this set are biologically interpretable.
The “AC-GT rule” as well as others such as the molecular mass rule [Stanley et al. 1994]
are just a linear combination of those autocorrelation functions mentioned above.

A general way to find a simple basis for any alphabet size A is presented in Appendix

After we have extensively discussed the dependence between quaternary autocorrelation
functions, we are now coming back to our original task to study how all of the (A — 1)* = 9
independent parameters building up the matrix D can be determined.

As already pointed out in section V, one possibility is the calculation of crosscorrela-

A(A-1)
2

tion functions. In quaternary sequences, where = 6 of 9 parameters have been

determined by autocorrelation functions, the remaining ﬁﬂ%ﬂ = 3 antisymmetric



59

entries can be estimated by three independent crosscorrelation functions, for example:
C(1,0,0,0),(0,1,0,0)7 C(1,0,0,0),(0,0,1,0)7 and C(0,1,0,0),(0,0,1,0)-

In order to measure all existing correlations by a single function, one can calculate
the mutual information function as discussed in sections I and II. We study the mutual
information function of genomic DNA sequences in chapter 13, and we dedicate chapters
14, 15, 18, and 16 to further applications of the mutual information to the analysis of DNA

sequences.

4.7  Summary

Several statistical measures can detect long-range correlations in symbolic strings such as
English texts or DNA sequences. We understand all of them as functions that quantify
the degree of statistical dependence between symbols in a distance k. Hence, we raised the
question how many parameters have to be estimated in order to determine all correlations
in a given distance. We could show that, for any distance k, (A — 1)2 parameters are
required to identify all correlations in a sequence composed by an alphabet of A symbols.

We turned to the question whether autocorrelation functions could determine these
(A — 1)? parameters and realized that they can detect only # parameters. Moreover,
we learned that all autocorrelation functions are linearly dependent on a set of #
properly chosen autocorrelation functions that we termed a basis.

Sections IV, V, and VI were devoted to selecting an appropriate basis for binary, ternary,
and quaternary sequences, respectively.

We could show that one autocorrelation function is sufficient to measure all correlations
in binary sequences. Thus we were able to state that all symbols (in a given distance) are
statistically independent if, and only if, the chosen autocorrelation function vanishes.

In section V, we considered ternary sequences to illustrate our general results summa-
rized in Appendix 1. We realized that only three of four parameters required to identify
all correlations can be determined by autocorrelation functions. Hence, statistical inde-
pendence cannot be guaranteed by the disappearance of all autocorrelation functions as
illustrated by our example in that section. However, crosscorrelation functions and the
mutual information function were found to be a welcome tool to detect all correlations.

Section VI was dedicated to quaternary sequences, which are of particular interest in

biology. We showed that all autocorrelation functions are linearly dependent on a basis
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of # = 6 functions, all of which carry a biological interpretation. In particular, we
derived eq. (59) connecting seven autocorrelation functions that are widely used to analyze

DNA sequences. At the end of that section, we emphasized again that crosscorrelations or

mutual information are required to determine the remaining W = 3 parameters of
the dependence matrix D.
In Appendix A, we derived that a properly chosen set of # autocorrelation func-

tions is sufficient to identify all independent parameters of the symmetric matrix S. Hence,
we proved that these M%l autocorrelation functions form a basis. We delivered an al-
gorithm that allows to construct the symmetric matrix S in terms of a properly chosen

basis.



Chapter 5

Generalized Entropies

The order-¢q Tsallis (H,) and Rényi entropies (k) receive broad applications in the statis-
tical analysis of complex phenomena. Here we provide a brief introduction to both H, and

K,, and we present some connections between these two families of generalized entropies.

5.1 Introduction

Building on the works of Shannon [Shannon 1948] and Khinchin [Khinchin 1957a], gener-
alized entropies have witnessed an increasing interest in their application to characterize
complex behavior in models and real systems. As the Shannon entropy is formally de-
fined as an average value, the idea underlying a generalization is to replace the average
of logarithms by an average of powers. Then this gives rise to the order-g Tsallis entropy
H, [Tsallis 1988, Curado & Tsallis 1991] or, similarly, the Rényi entropy K, [Rényi 1970].
The external parameter g applies to describe inhomogeneous structures of the probability
distribution and whence the associated process under consideration. From both order-¢
entropies, H, and K,, the Shannon entropy is obtained in the limit ¢ — 1. Applications
of order-¢q entropies occur in a variety of fields of sciences like, e.g., non-linear dynamical
systems [6-10], statistical thermodynamics [11-16], classical mechanics [Plastino 1994], or

evolutionary programming [Stariolo & Tsallis 1995, Penna 1995].
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5.2 Definitions and Properties

This section is aimed at introducing the notation used throughout this work as well as
giving the definitions of the order-¢ Tsallis entropy, H,, and the Rényi entropy, K,. We then
review some basic properties of these entropies, which will finally allow us the derivation
of an indirect Bayes estimator of the Rényi entropy in section 5.

Consider a random variable A that can take on M different discrete values a;, ¢ =
1,..., M, with an associated probability-vector 7 = {py,..., pys} with components p; =
p(a;). The probabilities satisfy the two constraints 0 < p; < 1 and Z£1 p; = 1. Tt is
customary to refer to the set of all possible outcomes as the alphabet A with cardinality

M. Then the Shannon entropy of A is defined as

M
H(A) == pilog,pi = —(log, pi). (5.1)
=1

Since the base of the logarithm is chosen to be 2, the Shannon entropy is measured in units
of bits. One distinctive property of H, which is not shared by the generalized entropies,
is worth mentioning: the entropy of a composite event can be given as the sum of the
marginal and the conditional entropy.

By equation (5.1), events having either a particularly high or low occurrence do not
contribute much to the Shannon entropy. In order to weight particular regions of the

probability-vector P, one can consider the following partition function:

M
Zy(A) = Zpi = (pih). (5.2)

In contrast to equation (5.1), the average of logarithms is now replaced by an average of
powers of ¢. Clearly, a change of the order ¢ will change the relative weights of how the
event ¢ contributes to the sum. Therefore, varying the parameter ¢ allows to monitor the
inhomogeneous structure of the distribution p: the larger ¢, the more heavily the larger
probabilities enter into Z,, and vice versa. Obviously, Zy equals the number of events i
with non-vanishing probability, and Z; introduces normalization. Then the order-¢ Tsallis

entropy is defined as

1 Z,4) -1 _ 1 (' =1
=LA L — L) (53)
In2 1-—y¢ In2 1-—g¢

Since the prefactor is chosen to be 1/1n 2, the Tsallis entropy is measured in units of bits.

This can be seen by considering the limit ¢ — 1: we easily verify that lim,,; H, = H
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holds.
The order-g entropy due to Rényi is given by

. 1 _1\/(e=1)
Ky (4) = 1 log; Z,(4) = ~log, (™) . (5.4)

Here the argument of the logarithm is the generalized average of the numbers p;. By

equation (5.3), the relationship connecting both order-¢ entropies reads as

Ky(4) = - ! —log, [1+ (1= q) n2 1,(4)]. (5.5)

From equation (5.5) we see that for fixed ¢, K, and H, are monotonic functions of one
another and that lim,_,; K, = H holds.

Let us summarize the following features of order-g entropies:

1. H, > 0 and K, > 0. For given M, the global maxima (minima) are attained at
pi = 1/M Vi for ¢ >0 (¢ < 0). In particular, we have that K*** = H™.

2. H, and K, are monotonically decreasing functions of ¢ for arbitrary probability-

vectors p: Hy > Hp and K, > K, for g < ¢'.

3. H,(A) is a concave (convex) function of the probabilities given ¢ > 0 (¢ < 0). The
curvature dependence of K, upon ¢ and p'is non-trivial [Curado & Tsallis 1991]. Yet
the following two inequalities hold: K, is a convex (concave) function of p; for ¢ < 0

0<g<).

4. Considering two subsets, A and B, then K (A, B) obeys additivity for inde-
pendent random variables, whereas H,(A, B) is pseudo-additive. ~That is, we
find Hy(A,B) = Hy(A)+ H,(B) + (1 — ¢)H,(A)H,(B). Furthermore, H,(A, B)
generalizes the Shannon-additivity to the order ¢ (see, e.g., [Shannon 1948] or
[Curado & Tsallis 1991] for a definition and discussion).

By the above properties, the whole set of order-¢q entropies (which generalize the Shannon
entropy) provides us with a whole spectrum of entropies, in which ¢ = 1 is singled-out by
the property of composite events. In the light of the fact that K, is indeed additive but,
in general, not a concave (convex) function of the probabilities p; on the entire simplex, it
is remarkable that via the non-linear transformation (5.5) we are able to switch between
two types of entropies of order g, either having the property of additivity or of well-defined

concavity (convexity).
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5.3 Summary

In this chapter we presented a brief introduction to the definition and statistical properties
of generalized entropies. These generalizations of the Shannon entropy will turn out to be
of practical importance in later chapters. Before we apply these generalized entropies to
DNA or amino acid sequences, we will first study how to estimate generalized entropies
from finite data sets. We will present an introduction to the theory of estimating population

parameters from finite data sets in the following chapters.
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Chapter 6

Estimating Population Parameters

from Finite Samples

In our previous chapter we have introduced some measures designed to determine the
information content stored in symbolic sequences such as time series, natural texts, pieces
of music, econometric data, or DNA strings.

In chapter 2, we have learned that the extraction of biologically relevant information
from DNA, RNA, or amino acid sequences is the main goal in the stormingly evolving
discipline called computational molecular biology.

The problems that we are always confronted with arise from the uncircumventable fact
that all existing sequences have a finite length and thus do often not allow us to estimate
quantities that we desire to determine with sufficient reliability. However, this dilemma is
identical to the basic task dealt with in mathematical statistics.

The general problem in mathematical statistics is the estimation of certain population
parameters 6 or of functions f(6) of those parameters from samples, which always have a
finite size. These parameters # can, for example, be the probability p of a coin, the mean
i, or the variance o of a normal population.

For the purpose of illustration, imagine we want to estimate the probability of a coin.
Strictly speaking, we want to estimate the probability for the event that the coin shows
its head after having been tossed. Certainly, we would flip the coin N times, count how
often we have observed a head, and calculate the relative frequency as k/N if the absolute
frequency (the number of heads) is denoted by k.

Then we would pretend that this relative frequency k/N is a very good estimator for
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the probability p of this coin at least for sufficiently large N. The questions that arise
at this point are, however, whether there is a motivation behind this recipe to accept the
relative frequency k/N as an estimator for the probability p, and whether this recipe is
indeed valuable in cases when the number of sample points N is very small, which often
occurs when analyzing biosequences.

In section 6.2, we will present the maximum likelihood method, which will eventually
allow us to answer the question arisen above. We will discuss some general statistical prop-
erties shared by maximum likelihood estimators and apply them to our primary problem
to estimate entropies from finite samples.

In section 6.5, we will introduce the Bayes estimator, which — instead of maximizing
the likelihood — minimizes the variance of the estimate. Our final goal is the derivation
of the Bayes estimator for the Shannon entropy in chapter 7 and the discussion of its
statistical properties.

Section 6.6 is devoted to comparing the maximum likelihood estimator with the Bayes
estimator. In this section, we will show that the maximum likelihood estimator chooses,
under the Bayes hypothesis, the maximum of the posterior density function of the quantity
to be estimated, whereas the Bayes estimator chooses the expectation value of the posterior
distribution as its estimate.

Recommendable books on this field are, for example, [Martin 1971], [McEliece 1977],
[Gnedenko 1981], [Rényi 1982], [Fisz 1989], or [Wickmann 1990].

6.1 Sampling Theory and the Analysis of Time Series

In this section, we will introduce some helpful definitions and notations, which allow us
to formulate our task to estimate population parameters or functions of them from finite
samples in a mathematical language.

A necessary requirement for any statistical analysis is a set of initial conditions that are
reproducible. These conditions define an experiment, and by making an observation (or a
set of observations) we produce an outcome of this experiment. Let’s denote the outcomes,

which are either single numbers or possibly sets of numbers, by z;.

Definition 6.1 The set of all possible outcomes z; (i = 1,2,...,n) of an experiment is
called the sample space or population.

The random numbers x; are called sample points in the sample space.
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Definition 6.2 A subset of the sample points, e.g. x; (i =1,2,...,N) is called an event
and denoted by
E={z;:i=1,2,..,N}. (6.1)

Definition 6.3 If ©1, 22, ...,2n5 denotes a set of numerical values of N observations se-

lected from a larger set, then the set of values is called a sample of size N.

Definition 6.4 A numerical value determined from some, or all, of the values of a sample

1s called a statistic.

The basic task of mathematical statistics is now to provide us with deliberate tools of
estimating the values of the parameters of a population by calculating certain statistics
from a sample.

As an example, we consider the estimation of the probability of a given coin. Our
experiment can be defined as “tossing a given coin” resulting in outcomes head or tail
up. Thus, our sample space is discrete and contains but two elements, which we like to
denote by 1 and 0, respectively. A sample of size N is then a list of N values z; € {0,1}
corresponding to the observed events tail or head up.

The natural estimator of the Shannon entropy, which is defined as

. k k k k
H(zy,29,...,2N) = N -log N (1-— ﬁ) log(1 — ﬁ) (6.2)
with
N
k=k(zy,22,....,2N) :in (6.3)
=1
is a function of the sample points x1, z9, ..., xxy and thus commonly termed a statistic. This

statistic can formally be regarded as a random variable and then be analyzed with respect
to its statistical properties, which are referred to as systematic and statistical errors.

The statistical properties of this statistic H(xl, Tg,...,xN) are the focus of our investi-
gations in chapter 9.

The probability p of the coin to show its head is the population parameter, which we
generally denote by 8. Of course, nobody knows the value of 8. It is just the value of 8

that we want to estimate by sampling.
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6.2 Maximum Likelihood Estimator

To prepare the introduction of the maximum likelihood method, let us define the likelihood

Sfunction.

Definition 6.5 Let L(x;8) denote the density function of a random variable z, where the
form of L is known, but not the value of 8, which is to be estimated. Let xq, s, ...,2N be a

random sample of size N. The joint density function L(x1, za, ..., xn;0) of the independent

random variables ©1, x4, ...,z is then given by
N
=1
and called the likelihood function of 6.
In the following, we suppress the dependence of L on zy,z9,...,2x5 and come to the

definition of the maximum likelihood estimator of the population parameter 6 from a

sample of size V.

Definition 6.6 The maximum likelihood estimator of the population parameter 6 is

that statistic § which mazimizes L(0) for variations of 8.

Here, we stick to the common notation that g denotes the estimator of the the popu-
lation parameter 6.

If L is sufficiently smooth, i.e., if the second derivative exists, then the maximum
likelihood estimator can be defined to be that 6 for which the following necessary equations

hold:

aL(0)

and ,
92L(6)
g <0- (6.6)

Obviously, the maximum likelihood method leads us directly to an optimization problem
in the parameter space of #, which can be perfectly dealt with by physicists, since variational
principles make up the fundamental laws of physics.

Since L(#) > 0 and In(#) is a monotonic function of 6, the first equation is equivalent

to
d1n L(6)

55 =0, (6.7)
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where the function In L(6) is often referred to as the log-likelihood function.

Before we start to derive some general theorems about maximum likelihood estimators,
we want to calculate the maximum likelihood estimator for the probability of a coin.

Let p be the probability for the observation of a coin’s head after a toss, and ¢ the

probability of observing the coin’s tail. Since p 4+ ¢ = 1, the only population parameter is

p.

N N
).y )
The likelihood for tossing the sequence 1, &3, ..., 2y is p<i=1 (1 —p) \i=t and

thus the likelihood function for this Bernoulli process of N tosses is

Lp)=p"-(1-p~* (6.8)

N
if k is the number of heads we observed and N — k is the number of tails, i.e., k = > z,.

=1

For k =0 or k = N, we immediately see that
p=20 (6.9)
and

p=1 (6.10)

maximizes the likelihood function L(p) for K =0 and k = N, respectively.
For all other k, (0 < k < N), setting the partial derivative of the log-likelihood function
OInL(p) Ok-lnp+(N—k-In(l-p) k N-—k (6.11)
ap dp p l-p '

identical to zero, yields the solution

k
p= — 12
P N (6.12)

which is neither 0 nor 1 for 0 < & < N so that all operations performed above are possible,
i.e., no division by zero occurs.

Summarizing eqs. (6.9), (6.10), and (6.12), we can state that the maximum likelihood
estimator p for the probability p of a coin! is given by the relative frequency k/N of the

outcomes associated with p.

'In German texts, we find the term 0 - 1 - populationfor the population corresponding to the distribution

function
0 for —0 < z < 0
Fl#)=<¢ p for O < v o< 1 (6.13)
1 for 1 < ¥ < ™
Since we do not like to term the M-dimensional generalization a 0 - 1 - 2 - ... - (M — 1) - population,

we decided to name the population corresponding to the first distribution a coin-population and the sample

space of an M-sided die an M -sided-die-population.
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In other words, the assumption that the (hidden) probability p is indeed equal to k/N
has the highest likelihood compared to all other estimates.

It is shown in appendix D.1 that the maximum likelihood estimator of the probability
vector p of an M-sided-die yields exactly the same recipe, namely, the identification of
the components p; of the vector p with the relative frequencies of the observations, k;/N.
Hence, if we are to estimate the six probabilities of a die, we start rolling the die N times,
count the absolute frequencies k; (¢ = 1,2, ..., 6) of the six sides of the die, and then estimate
the probabilities p; = k; /N, since this is the estimate with the highest likelihood.

Let’s now generalize the maximum likelihood concept on cases where we want to esti-
mate several parameters 61, 6,, ..., 07 of a population from a sample of size V.

We define the likelihood function of the parameters 6y,6s,...,03 in a straightfor-
ward way as L(z1, 23, ..., 2n; 01,02, ...,00), suppress the dependence on the sample points
T, T2, ..., TN, and define the maximum likelihood estimator of the parameters 6,05, ..., s
to be the solution of the following system of M equations:

8111 L(Hl, 027 ceey 02'7 ceey OM)
06;

=0 (6.14)

forall i =1,2,...,M.

To illustrate how the maximum likelihood method works for a set of parameters
01,0, ...,0) that we want to estimate simultaneously from a sample of size N, let us
consider the example of a normal population where both the mean p and the variance o
are to be estimated.

The likelihood function reads as

L a)—ﬂ LSRN (il U (6.15)
lu7 - Falet 27‘[’0’ p 20_2 .
and thus the two equations
L
OLipma) _, (6.16)
o
and
dL(p, o)
— 1
P 0 (6.17)

can be solved analytically:

=0 (6.18)
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gives
1 N
u:x:ﬁ;xi (6.19)
and
do 0 —~ o’ N '

gives

. 1 X

o? = ~ 2(96 - 7)% (6.21)

Please realize that we have derived the maximum likelihood estimator of & and not of
o%. Theorem 6.1 will however prove the identity of the maximum likelihood estimator of
o? and the squared maximum likelihood estimator of o.

We note that the maximum likelihood estimator for the variance of a normal population
is equal to the sum of the quadratic deviations from the sample mean divided by N and

not by (N — 1). Before we however can give a reason why the estimator

02 = —— Z(x — 7)* (6.22)

should better be used to estimate the variance of normally distributed populations, we

have to define two properties of point estimators.

6.3 Consistency and Bias

It is intuitively obvious that a desirable property of any estimator is that its estimates
tend to the value of its population parameter as the sample size N increases. Any other
behavior would clearly be misleading. This property is commonly called consistency and

defined as follows:

Definition 6.7 An estimator 8y (note that N is the index indicating the sample size)
is said to be a consistent estimator of the population parameter 6 if, for any positive

(arbitrarily small) € and 7, there exist some N such that
P(|on -0 <) >1-m. (6.23)

This means that an estimator 6 is consistent if {éN}NeN converges in probability to 6

for N — oo.
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We may further restrict the possible estimators by requiring that for all N the expec-

tation value of @y is equal to #. Such an estimator is termed unbiased.

Definition 6.8 An estimator éN, computed from a sample of size N, is called an unbi-
ased estimator if

Ely)=190 (6.24)
for all N € N

At this point we can judge that the maximum likelihood estimator of the probability

vector p of a multinomial population is unbiased since
E(ki/N) = p; (6.25)

for all : = 1,2, ..., M as shown in appendix I.

The maximum likelihood estimator for the mean p of a normal population is also unbi-
ased, whereas the maximum likelihood estimator for the variance o2 of a normal population
is not as we will show below.

In appendix C, we will calculate the expectation value of the maximum likelihood
estimator for the variance of a normal population and show that it is by a factor of %

smaller than the population variance; in mathematical terms:

- N -1
E(0’N) = —— ot (6.26)

To illustrate the difference between o2 and 0%, imagine we want to estimate the variance
of a normal population. We consider a sample of size N and determine o2 by calculating
the maximum likelihood estimator given in eq. (6.19). We chose this estimator, because
it maximizes the likelihood for our estimate, i.e., it maximizes the probability that our
estimate is indeed identical with the ‘true’ sample variance.

Of course, the maximum likelihood estimator does not guarantee that we are always
correct with our estimate, i.e., we can understand this estimate as a random variable and
then ask for its expectation value. What we will show in appendix C is that, by applying the
maximum likelihood estimator to the variance of a normal population, we systematically
underestimate the population variance by a factor of % on average.

These introductory examples were presented to illustrate the basic ideas of our approach
to evaluate measures and algorithms currently used to analyze DNA, RNA, or protein
sequences by estimating (or approximating) their statistical properties like systematic and

statistical errors induced by an always finite size of available samples.
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6.4 Properties of Maximum Likelihood Estimators

Let us eventually present a theorem about the maximum likelihood estimator of a function
f(8) of a population parameter @ that is of crucial interest for all practical applications

dealing with estimating functions of probabilities from finite samples.

Theorem 6.1 If f(6) is a monotonic function of 8, then the maxzimum likelihood estimator
of f is given by
f6)=r® (6.27)

zfé is the mazimum likelihood estimator of 6.

This means that the estimator f(@) does not necessarily maximize the likelihood of f
if fis not a monotonic function.
Let us illustrate this message by the following example:

The Shannon entropy of a coin is given by

H(p) = —p-log(p) — (1 - p) - log(1 — p), (6.28)

which is a non-monotonic function of p.

It is shown in appendix D.2 that the natural estimator of the Shannon entropy,

(k) =~ Tog( 1) — (1= ) -Tog(1 — ), (6.20)

% is the maximum likelihood

is not the maximum likelihood estimator of H although p =
estimator of p.

Before we go over to introduce the Bayes estimator in the following section, let us
mention three theorems that might emphasize the importance of maximum likelihood es-

timators in general.
Theorem 6.2 Mazimum likelithood estimators are consistent.

Theorem 6.3 Maximum likelihood estimators have a distribution that tends to normality

for large samples.

Theorem 6.4 Maximum likelihood estimators have a minimum variance in the limit of

large samples.
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The value of theorem 6.4 is very questionable for analyzing biosequences as well as time
series in meteorology, economics, or theoretical physics since the studied samples are often
so small that we have to estimate population parameters or functions of them in the range
of extremely poor statistics.

At this point we are ready to rise the question whether or not there is an alternative
to the maximum likelihood estimator that has the property of minimizing the variance
not only for infinitely large N but for all N € A. The next chapter will be devoted to

answering this question and deriving a minimum variance estimator.

6.5 Bayes Estimator

In this section, we will derive an estimator that minimizes the variance of its estimates for
all sample sizes N € A/. We will introduce and solve a variation principle in subsection
6.5.1. In subsection 6.5.2, we will then calculate the Bayes estimator for the probability
of a coin and compare the results with the maximum likelihood estimator of the same
population. Finally, subsection 6.6 is devoted to stressing some general relations between

maximum likelihood and Bayes estimators.

6.5.1 Minimum Variance Principle

In this subsection, we will introduce the Bayes estimator by considering the following
example:

Imagine we have two estimators p;(k) and pz(k) for the probability p of a coin. The
question “Which of these estimators is the better one?” cannot be answered in general,
because we have not yet specified what a good estimator should look like.

Certainly, it should predict the ‘true’ sample probability as precise as possible, which
means (p(k) — p)? be minimal.

Since we, however, do not know the value of p — this is just the parameter that we are

going to estimate — we define the functional

FIp) = [ (5(k) = p)* - PHp) - P(p) dp, (630

which we are going to minimize in order to obtain our desired estimator p(k). Let us, in

the following, motivate this step.
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The term (p(k) — p)? quantifies the quadratic deviation of the estimate p(k) from the
true population parameter p, which we choose as our penalty. Now realize that it is not
only important by which magnitude our estimates deviate from the theoretical population
parameter, but also how often a certain quadratic deviation appears.

The value of an estimator that is always a bit wrong might be comparable to the
value of another one that is almost always right, but sometimes extremely far from the
true population parameter. Hence, we multiply the penalty (p(k) — p)? by the probability
P(k|p) by which this deviation appears.

P(k|p) is the conditional probability of obtaining & heads from a sample of N tosses
under the assumption that the probability of the coin be p.

The product (p(k) — p)? - P(k|p) does still depend on the population parameter p, i.e.,
before we integrate this term over the entire parameter space, which is the interval [0, 1]
in our case, we might assume that some p appear more frequently than others. This prior
assumption is expressed by the prior probability density P(p) of the population parameter
Pp.

Consequently, we also multiply our integrand by P(p) and thus end up with eq. (6.30)
for the functional that we desired to minimize.

The minimization of the functional F[p(k)] is trivial and we immediately obtain

p- P(klp) - P(p)dp
p(k) = (6.31)
P(k[p) - P(p) dp

O

O

1
as that estimator which minimizes F[p(k)] = /(ﬁ(k) —p)?- P(klp) - P(p)dpforall N € N.

0
At this point, we are ready to state the minimum variance principle and to define the

resulting Bayes estimator of the population parameter 6.

Definition 6.9 Let 6 be the only parameter of our given population, P(6) its prior prob-
ability density, and P(xq,22,...,2N|0) the conditional probability to realize the sample
X1, L9,y ey TN

Then we define the Bayes estimator of the population parameter  to be that statistic

0(x1, 29, ..., xN) which minimizes

F[é(xl,xg,...,x]\r)]E/(é(xl,xg,...,x]\r)—0)2-P(x1,x2,...,x]\r|0)-P(O) a6 (6.32)
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where the integral stretches over the whole parameters space of 6.

Minimizing the functional F[é(xl, Tg, ..., N)] leads us again to a simple quadratic equa-

tion the solution of which is

/0 P(21, 22, s 2n]0) - P(8) 46
O(x1,29,...,2N) = .

/P(xl,acg, e zn|0) - P(6) d

(6.33)

In section 6.6, we will show that this estimator é(acl,wg, ..., xn) is identical to the
expectation value of the posterior probability distribution of 6.

At the end of this section, we present the definition of the Bayes estimator for popula-
tions described by more than one parameter.

Let 6 = (01,63, ..., 0n1) be the M-dimensional vector containing the population parame-
ters 6y, 64, ..., 0, P(J) its prior probability density, and P(z1, 22, ..., xN|5) the conditional
probability to realize the sample z1, zo, ..., zN.

Then the Bayes estimator of the population parameter vector 6= (01,83, ...,05) is that

—

vector function #(zq, 23, ..., 2 ) which minimizes the functional
2, 2, 2\ 2
F[ ($17$27...7$N)] = //”'/(0($17$27"'7$N)_0) (634)
P(x1, 9, ..., xx6) - P(A) df (6.35)

. 2
where (0(361,962, e EN) — 0) denotes the scalar product, i.e., the squared norm of the

vector J(xl, T3y .y TN) — g and the integral stretches over the entire parameters space of g.

Rewriting the scalar product

5, N2 X 2
( (21,22, ey TN) — 0) = Z (Oi(xl, T2y ey TN) — 02') (6.36)

leads to

Flo] = f://.--/(éi(acl,xg,...,x]v) —02»)2 (6.37)

P(zy, 29, ...,xx|0) - P() df = min. (6.38)
If we now minimize each of the M summands individually, i.e., independently on the
other M — 1 terms, we obtain a lower bound for the minimum of the sum. If we can then

show that the individual estimates of the parameters #; are compatible to the estimate
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of J, we have found the Bayes estimator for g and can display it in the following explicit

expression:

—

($17 T2y vuny $N) = (éh éz, ceey éM) ($17 T2y vuny $N) (639)

A // /0 P(ey, 29, s 2x]0) - P(8) dE -

0i($17$27...7 .
// /le,xg,.. ex|6) - P(@) df

The whole procedure is exemplified in appendix E.1, where we derive the Bayes esti-

with

forall i =1,2,...,M.

mator for the probabilities of an M-sided die that has been rolled N times under the prior
assumption of a uniform distribution of the probabilities p; (i = 1,2, ..., M).

However, we recommend to read the following section 6.5.2, in which we derive the
Bayes estimator for the probability of a coin under the same assumptions, before going to

appendix E.1 and studying the M-dimensional generalization.

6.5.2 Laplace Estimator

In this subsection, we will derive the Bayes estimator for the probability of coin and compare
it to the corresponding maximum likelihood estimator.

Our task is to calculate

[ o P(k|p) - P(p) dp
k) = 5 (6.41)
E)I"P(/’Clp) - P(p) dp

with
P(klp) = (ZZ) (1= p)N (6.42)

and

P(p) = 1. (6.43)

The choice of a uniform prior distribution for p reflects the mazimum entropy principle
applied to the weakest possible assumption that we can make, namely that we do not know

anything about the probability p except that it ranges in the interval [0, 1].
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The assumption of a uniform prior distribution of p is also called the Bayes hypothesis,

which leads to )
Jp- () pb-(1=p)NFdp
p=" = (6.44)

6’" (]Z) .pk . (1 _p)N—k dp

for the Bayes estimator of the probability p.
In appendix H.1, we will derive that

/1 S pdp= —2 (6.45)
P Prap= (s+t41)! '
0
for any s € N and ¢t € N, which yields
. k41

This is the Bayes estimator for the probability of a coin under the Bayes hypothesis,
which is also called the Laplace estimator.

We see that, for large N, the difference between the maximum likelihood estimator and
the Laplace estimator vanishes. However, for small sample sizes NV, the difference becomes
significant.

Imagine, for example, we want to estimate the probability of a coin, but we must
not flip the coin more than once. Then there are only two outcomes of this experiment
possible. Either we obtain a head or a tail. The maximum likelihood estimator would, in
this situation, suggest to assume p = 1 or p = 0, respectively, which is extremely unrealistic.

The Bayes estimator, on the other hand, would recommend you to assume the prob-
abilities p = 2/3 or p = 1/3, respectively. Note, that it can even deliver a meaningful
prediction for the case that we did not flip the coin at all. Then, the estimated probability
would be p = 1/2, which corresponds exactly to our prior assumption.

In appendix E.1, we will calculate the Laplace estimator for the probability vector
P = (p1,p2, -, pm) of an M-sided die. In that case, the vector k= (k1, k2, ..., kar) of the

absolute frequencies is multinomially distributed, which leads to the Laplace estimator

k+1
5 = 6.47
PNt M (6.47)
for all (i =1,2,..., M) under the assumption of a uniform prior distribution on the M — 1

dimensional simplex spanned by all p.
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k+1
N+ M

It is easy to show that the Laplace estimator is consistent, since p; = converges
in probability to p.
However, the disadvantage of the Laplace estimator is that it is not unbiased for p # 1/2,

since then

. 1-2.p 1-2p

E — = =
e s R

£0. (6.48)

6.5.3 Bayes Estimator of Functions of Population Parameters

Remembering our original task to estimate higher order entropies from finite samples, we
will apply the minimum variance principle to estimators of functions f(g) of population
parameters 61,605, ...,037 in this section and thus introduce the Bayes estimator f(lg)

Let P(J) be the posterior probability density of the vector § = (01,0, ...,85) containing
the M population parameters 6;, P(EW) be the likelihood of this hypothesis 6 to generate
the sample of size N represented by the vector lg, and f(lg) be the estimator of the function
f(6).

Then the minimum variance principle, which recommends us to choose that estimator

f(k) which minimizes the mean quadratic deviation from the theoretical function f(0), i.e.,

which minimizes

aA = ~ — — —

FIFEN = [ (F) - 1) P(HE) - P(6) dF (6.19)

defines the Bayes estimator f(k) of the function f(f)

In equivalence to section 6.5.1, we finally obtain

o [ [+ [ 18- P0G - P6)df o

as the Bayes estimator of f(f).

In chapter 7, we will derive the Bayes estimator of the Shannon entropy H (p), which
will turn out to be extremely powerful, if higher order entropies have to be estimated from
finite sequences.

Please note in passing that the Bayes estimator of the function f(#) is not necessarily

equal to the function f of the Bayes estimator of g.
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6.6 Sampling and the Bayes Theorem

In subsection 6.6.1, we want to introduce the Bayes formula, which we then apply to
our general task to make a decision about possible values of a function f of population
parameters that we are to estimate from a sample of size N.

In subsection 6.6.2, we will then show that the Bayes estimator of f(f) (with 6 =
(01,04, ...,05) and 0y, 04, ..., 03 being the population parameters of our considered sample
space) is identical to the expectation value of f over its posterior distribution. This,
however, means that the expectation value of f(g) over the posterior probability density
P(§|x1,x2, ..., N) is that estimator f(g) which minimizes the mean quadratic deviation
from the real population parameter function f(g)

In subsection 6.6.3, we will derive that, under the Bayes hypothesis, i.e., under the
assumption of a uniform prior density P(H_))7 the maximum likelihood estimator chooses
that value f(g) which maximizes the posterior probability density P(f|z1,z2,...,zn) if
x1,%2,...,xn are the outcomes of our sampling experiments.

The interesting point is that, under the Bayes assumption, the maximum likelihood
estimator does not only maximize the conditional probability P(z1,z2,...,zn|f), which
this estimator is supposed to do by definition, but also the posterior probability density
P(flz1, 2, ..., zN).

Finally, we will compare and contrast the Bayes estimator and the maximum likelihood

estimator in subsection 6.6.4

6.6.1 Bayes Formula

After we will have introduced the Bayes formula for discrete random variables, we will
apply it to the question what we can learn about a population parameter by sampling. In
this context, we will introduce the terms prior and posterior probability and relate them
to the Bayes Formula for continuous variables at the end of this subsection.

Let A, By, Bz, ..., By—1, and By be M + 1 events, P(A), P(B1), P(Bz), ..., P(By-1)
and P(Bys) their probabilities, and P(A|B;) the conditional probability of the event A
given that the event B; has occurred for ¢ = 1,2, ..., M.

The question that Thomas Bayes, an English clergyman, raised and answered in 1763,
was whether we can now calculate the conditional probability P(B;|A) for the event B;

given that the event A has occurred.
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Theorem 6.5 (Bayes Theorem) If the events B; (i = 1,2, ..., L) are mutually exclusive
and exhaustive (i.e. all possible events are included in the B;) events, and if A can occur
only in combination with one of the L events By, then the conditional probabilities P(B;|A)

can be calculated as follows:

P(A|B; i
P(B;|A) = 7 PAIB) - P(Bi) (6.51)
Zl P(A|B;) - P(B;)
]:
forallv=1,2,...,L.
The proof is extremely simple.
P(AnN B;) = P(A|B;) - P(B)) (6.52)
and
P(B;nA) = P(B;|A)- P(A) (6.53)
by definition for all : = 1,2,..., L.
However, since
P(A N Bi) = P(BZ' N A), (6.54)
we obtain
P(A|B;) - P(B)
P(B;|4) = . 6.55
(Bia) = TED (6.5)
Now,
L
=Y P(A|B;) - P(By), (6.56)
7=1
and hence,
P(A|B; i
P(B;|A) = 7 PAIB) - P(Bi) (6.57)
2 P(A[B;) - P(Bj)
]:

forall i =1,2,...,L.

In the following part of this section, we will introduce the terms prior and posterior
probability and relate them to the Bayes Formula for discrete variables. Let us, for the sake
of simplicity, consider the following example.

We are given two coins about which we only know that one coin is a fair coin, i.e.,
the probability to show its head is p; = 1/2, whereas the other coin has a probability of

p2 = 4/5 to show its head. Now it is our task to decide which coin the fair one is.
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Before we start tossing one of the coins, we do not know anything about them. We
cannot at all distinguish between them without starting to toss one of the coins. Hence,
our intuitive assumption about the prior probability that we have chosen the fair coin is
1/2, which we also obtain by exploiting the maximum entropy principle.

In order to increase our knowledge about the question which coin we have chosen, we

start tossing the coin N times. Let k£ be the number of heads we have observed. Then

P(klp1) = (ZZ) ph - (L= p)NTF (6.58)

is the probability that the first coin has produced our observed sample whereas

P(k|p2) = (ZZ) ps - (L= pp)NF (6.59)

is the probability that the unfair coin has generated it.

The important question that we, however, ask is what is the probability that our sample
was generated by the fair coin? In other words, what is the probability that we have chosen
the fair coin?

This question can easily answered by applying the Bayes formula and calculating the

posterior probability P(p|k):

P(klp1) - P(p1)

P(pilk) = . 6.60
0 = By Pl + Plkpa) - Plpa) (6.60)
Analogously, we obtain
P(k|p2) - P(p2)
P(ps|k) = , 6.61
20 = By o) + Plkpa) - Pl (661
which immediately reveals that

P(p1]k) + P(p2|k) = 1. (6.62)

Therefore, the posterior probability P(p;|k) reflects the knowledge about the chosen
coin that we have gained by our sampling experiment of tossing the coin N times.

Finally we can state that the Bayes formula relates the prior probabilities P(B;) of
possible hypotheses B; with their posterior probabilities P(B;|A), if we understand A as
the outcome of a given sampling experiment.

If the set of all possible hypotheses we are taking into account before setting up an
experiment is not discrete but continuous, we have to modify the Bayes formula for con-

tinuous variables. Then, the prior probabilities become probability densities as well as the
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posterior probabilities become posterior probability densities and the Bayes formula reads
as
P(A|B) - P(B)

P(B|A) = TP{AIB) P(B) B (6.63)

6.6.2 Bayes Estimator - Revisited

The Bayes formula allows us to derive the posterior probability distribution for any set
of hypotheses and any possible experimental outcomes provided we can express our prior
assumption as well as the conditional probabilities P(A|B) in mathematical terms and can
then calculate the occurring sum or integral. Often, we will not be able to derive a closed
form expression of the posterior density, but let us in the following analyze what we can
state about its maximum and expectation value.

The expectation value of g over the posterior probability distribution P(é]f) reads as

E@) = /5-P(5|f) i (6.64)
_ S P(flg)'PEq) Cfg (6.65)
[ P(#|6) - P(6)df

which is identical to the Bayes estimator of g.

In general, we can state that the Bayes estimator of a population parameter vector g or
a function f(6) of them can be understood as the expectation value of § or f(#) over the
posterior distribution of g. Vice versa, we have shown in section 6.5 that the expectation
value of § or f(g) over the posterior distribution of Jautomatically minimizes the sample

deviation from the theoretical value of § or f(6).

6.6.3 Maximum Likelihood Estimator - Revisited

For the sake of simplicity, let p be the only population parameter in the following section.
The maximum of the posterior probability density P(p|k) can then be obtained by solving

the equation

oP(plk)
——=0. 6.66
- (6.66)
Applying the Bayes formula and realizing that the denominator does not depend on p
yields
OP(klp) 0P (p)
— P P(k|p) - =0 6.67
o (p) + P(klp) - —5 (6.67)
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if the denominator

[ P - Py dp £ 0. (6.65)

If, as under the Bayes hypothesis, the prior probability density P(p) does not depend

on p, i.e., the partial derivative vanishes, then we immediately come up with

oP(klp) _
— =0 (6.69)

This, however, is exactly the Maximum-Likelihood-Condition. Consequently, the max-

imum likelihood estimator favors that guess about the hypothetic population parameter p

which maximizes its posterior probability density P(p|k).

6.6.4 Maximum Likelihood versus Minimum Variance

Whereas the Bayes estimator of a population parameter 8 chooses the expectation value of
all hypothetic 8 values over the posterior probability density P(6]k) and thus minimizes the
quadratic deviation of the estimates from the true parameter 6, the maximum likelihood
estimator searches for the maximum of the posterior probability density P(#|k) under the
Bayes hypothesis of a uniform prior P(6).

The conclusion that we are enforced to draw here is the following. If we are to estimate
a certain population parameter from a finite sample, we first have to inquire about whether
it is important to estimate this parameter precisely or whether our goal should be to come
as close as possible to the true parameter value.

The first case means that we get penalized (with the same penalty) if we do not estimate
the true parameter value correctly; i.e., it only counts whether we estimate correctly or not.
In this case, we should preferably use the maximum likelihood estimator, which searches
for the parameter value with the highest posterior probability density.

If we are, however, penalized proportionally to the squared distance that our estimate
deviates from the true parameter value, then we should undoubtedly prefer the Bayes
estimator. Since we, in almost all practical situation, are not confronted with the demand
to determine a certain parameter precisely, but normally are required to find an estimate
that is as close as possible to the true parameter value, we should prefer the Bayes estimator

over the maximum likelihood estimator in those situations.
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6.7 Summary

This chapter was devoted to present some statistical definitions, theorems, and techniques
by which information about theoretical population parameters or functions of them can be
inferred from finite samples.

After we had presented some basic definitions in section 6.1, we introduced the max-
imum likelihood method in section 6.2. In section 6.3, we defined another two estimator
properties, while section 6.4 was dedicated to presenting some valuable theorems about
statistical properties of maximum likelihood estimators in general.

We raised the question whether we cannot develop an estimator that has the desirable
property to predict a population parameter or a set of them from a finite sample as precisely
as possible. This question lead us to the formulation of the minimum variance principle
and the resulting Bayes estimator in section 6.5. In that section, we also calculated the
Bayes estimator of the probability of a coin in order to exemplify the minimum variance
method. Finally, we presented the Bayes estimator of functions of population parameters,
which will allow us to derive this desirable estimator of Shannon entropies in the following
chapter.

In section 6.6, we investigated relations between the maximum likelihood and minimum
variance estimators, and realized that the Bayes estimator of a population parameter 6 al-
ways chooses the expectation value of the posterior distribution of 8, whereas the maximum
likelihood estimator chooses its maximum under the Bayes hypothesis. In subsection 6.6.4,
we stated our conclusion that Bayes estimators should be preferred over maximum like-
lihood estimators in situations where we want to approximate the theoretical population

parameter as closely as possible by our estimates from finite samples.



Chapter 7

Bayes Estimator of the Shannon

Entropy

7.1 Motivation

In the previous chapter, we have learned that Bayes estimators have to be preferred over
maximum likelihood estimators in all cases where the goal of the considered estimation
is to approximate the true but hidden parameter as close as possible. Since, in general,
the difference between the maximum likelihood and the Bayes estimator vanishes for large
sample sizes N, maximum likelihood estimators are often preferred due to their simple
expressibility. In small samples, however, the application of maximum likelihood estimators
becomes questionable, and should better be replaced by their Bayes counterparts.

The estimation of higher entropies from finite samples, such as DNA sequences, English
texts, pieces of music, or time series generated by dynamical or stochastic processes, is a
wide-spread method to analyze linguistic structures hidden in those sequences mentioned
above. However, entropy estimates are often required in situations where sufficiently large
samples are not available. Imagine, for example, we have realized significant differences
of the 6-mer Shannon entropy between coding and noncoding pieces in eukaryotic DNA
sequences. Our ultimate goal would then be to exploit this different statistical behavior to
distinguish between coding and noncoding DNA.

The problem that we are confronted with in this example is to estimate the 6-mer
Shannon entropy Hg from sequences not much longer than 100 base pairs. In our previously

introduced notation this means M = 4% = 4096 and N =~ 100. By imagining the size of
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our 4096 dimensional state space, we immediately realize that the 100 sample points that
we are given cannot at all guarantee a reliable estimate of any of the 4096 probabilities p;.
Moreover, we know that approximately 4000 dicodons do not at all appear in our DNA
sequence.

Since the maximum likelihood estimator of the probability assigns those non-observed
dicodons the probability 0 and the natural entropy estimator is defined as the entropy of
those maximum likelihood estimates, we clearly realize why the natural entropy estimator
systematically fails to deliver any reasonable estimate of the Shannon entropy if the sample
size is small.

Aside from linguistic analyses, there is a wide spectrum of problems in physics where
entropies and related statistics have to be estimated from finite samples the size of which
is often extremely small [Wolpert & Wolf 1993].

The following section will be dedicated to deriving an exact expression for the Bayes

estimator of the Shannon entropy.

7.2 Derivation

In this section, we will derive the estimator for the Shannon entropy

H (p1, pay -+ PM1) sz n(p;) (7.1)

that minimizes the quadratic deviation from the true value of H (py, p2, ..., pas) under the
assumption of a uniform prior probability density.

According to eq. (6.50), the Bayes estimator of the Shannon entropy, which is a function
of the probabilities py, po, ..., pas, is given by

/H@ PFIR) - P(7) dp
[ P@m - P ds

: (7.2)

where p = (pl,pg,. o PM), k= (k1, k2, ..., kar), and the integrals are taken over the whole

simplex given by E pi=1land p; >0forall i =1,2,..., M.
=1
By interchanging the integrals with the finite sum appearing in the numerator, we

obtain

= 3 [ v PER - P a5
= /Pk|ﬁ) P(p) dip

(7.3)



Exploiting our results obtained in appendices H.1, H.2, and H.3, we yield

| pien) - PED - PG A
stmplex

1

= /_Pi n(p;) - K(pis ks, M, N ) dp;
0
1

N! s .
= - A In(py) - pB (1 = p) VR dp,
hLW—h+M—®!/MMZ% (=) P

N! )
- _ki!-(N—kiJrM—z)!'J(kiJrl’N_kﬁM_Q)
N! (kz—l—l)'(N—kZ—l—M—Q)'
kil (N —ki+ M —2)! (N + M)!
NZ-|—:M1

j=kit2J

Analogously we proceed and obtain

1
[ PR @) A= [ K pike MN) dp
0

stmplex
N! h
_ . ki N—Fk;+M-2
= R (1= i dp;
kZ'(N—kZ—I—M—Q)' O/Z)Z ( p) P
B N! kZ'(N—kZ—I—M—Q)'
- kZ'(N—kZ—I—M—Q)' (N—I—M—l)!

Eventually, dividing both terms leads to

[ vy PED - PG gy v

/P(laﬁ) : P(ﬁ) dp N+M J=ki+2 J
forall i =1,2,...,M.
If we define
(k) = ki +1 NiM 1
N—I_Mj:ki-l-?j

we obtain the Bayes estimator of the Shannon entropy as
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(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)
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7.3 Properties

This section, which is dedicated to the discussion of and the comparison between some
statistical properties of the Bayes entropy estimator and the so called natural entropy
estimator, will reveal striking advantages of using the Bayes estimator instead of the natural
one if the available sample size N is small compared to the number M of possible states
in our system of consideration.

These statistical properties of the Bayes entropy estimator, which are perfectly exem-
plified in [Wolpert & Wolf 1993] for the binomial case, unambiguously suggest to prefer
the Bayes estimator over the natural one in cases where IV is small compared to M.

Since the algorithm for calculating the Bayes entropy estimator only consists of calcu-
lating finite harmonic sums, it might be even quicker than the natural estimator algorithm,
where logarithms of relative frequencies have to be taken. Hence, we highly recommend
to substitute all subroutines calculating the natural entropy estimator by subroutines that
calculate the Bayes entropy estimator from a given finite sample.

Let us finally outline a relation between the
e Bayes estimator of the Shannon entropy H (p1, p2, ..., P:m)
and the
e Shannon entropy H of the Bayes estimator of the probabilities py, po, ..., pas.

In section D.2, we learned that, due to the non-monotonicity of the function H(p) =
—p-In(p)—(1—p)-In(1—p), the maximum likelihood estimator of the Shannon entropy is not
equal to the Shannon entropy H of the maximum likelihood estimator of the probability
p. The same statement holds for the Bayes estimator of the Shannon entropy; i.e., the

Shannon entropy of the Bayes estimators of the probabilities py, pa, ..., Pas,

M
~ ki+1 ki+1
Ao=_S" ST (X 1
G ;N—l—M n(N—|—M)’ (7.15)

is not the Bayes estimator of the Shannon entropy [Wolpert & Wolf 1993].
In the following, we will, however, derive a relation between these two entropy estima-

tors.
N+M
Let us, for this reason, approximate the finite harmonic sum Z — by the corre-

J=ki+2
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sponding definite integrals:

N+M1 NAM N-|—M-|—11
/ —da > >o=> / —da. (7.16)
ki +1 =k2d

Multiplying the upper bound approximation

M kit 1
—dr = —1In [ — 1
/ P H<N—I-M) (7-17)
ki+1
ki +1 : :
by N and summing over all terms yields
M
k+1 k+1
H . q
<7 ZN+M (N—|—M) (7.18)

Now we see that the right hand side of this inequality is the Shannon entropy of the
Bayes probability estimator, which we briefly call Grassberger’s entropy estimator accord-
ing to [Grassberger 1994].

The difference between the the Bayes entropy estimator and Grassberger’s entropy
estimator is equal to the error of replacing the finite harmonic sums by the corresponding
integrals.

Considering the asymptotic behavior of the Bayes entropy estimator, we can state that

Mk—|—1N+M1

H(k) = ZN'+M S —Z ( ) (7.19)

7= k—|—2‘]

for N — oo. This means that not only the natural entropy estimator, but also the Bayes
entropy estimator is consistent [Wolpert & Wolf 1993].

Let us in the remainder of this section study some simulations that are to reveal sta-
tistical properties of the three entropy estimators introduced above. In order to choose
adequate parameters of our simulations, let us first study the following biological situa-
tion, which is typical for raising the problem of estimating entropies from finite samples.

While analyzing biological symbol sequences, we are almost always confronted with
situations in which the sample size N can not be guaranteed to be significantly greater
than the number M of possibly occurring words, since M is blowing up exponentially with
the word-length n, namely M = A™.

The following simulations are motivated by the task to estimate 5b-mer entropies of

several DNA sequences. Since M = A" = 1024, we need sequences of at least 10,000 base
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pairs to obtain reliable entropy estimates by the natural entropy estimator. However, since
biological tasks often demand to analyze shorter sequences as well, we are confronted with
estimating entropies from samples in which N ~ M. Hence, we chose N = 5000, N = 2000,
and N = 1000 for our simulations.

Another parameter that we must specify is the probability vector p'= (p1, p2, ..., P1024)-
We know that, if we compare two estimators A and B, A can be on average much closer
to the true population parameter than B for some particular p, but then B can be more
accurate than A for some other p. Since each estimator has its favorite P, we have to choose
this probability vector very carefully in order to make sure that our following analysis does
not become useless just because we simulate in a point on the p-simplex that is biologically
irrelevant.

As representation of a typical probability vector p, we choose the the 5-mer distribu-
tion derived from the 2,181,032 base pairs long sequence of the Caenorhabditis elegans
chromosome III. The rank ordered distribution of these 1024 probabilities is displayed in
Figure 7.1 as a double-logarithmic plot.
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C.elegans 5-word rank-ordered distribution

100000 ¢

(>)\ OOo
2 10000 ¢ |
() [
>
O
o
o
=
o
a8 1000 - |
[ [

100 L Lo | L TR R SRR | L T SRR | L Loy

1 10 100 1000 10000

rank

Figure 7.1: Rank-ordered 5-mer distribution of the Caenorhabditis elegans chromosome
III. We estimate the 5-mer probabilities as the corresponding relative frequencies of all
overlapping 5-mers in the 2,181,032 base pairs long sequence of the Caenorhabditis elegans

chromosome I1I.
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This probability vector is now chosen for the following three simulations corresponding
to N = 5000, N = 2000, and N = 1000. According to these 1024 given probabilities, a
sequence of N b-mers is randomly composed. Then we apply three different entropy estima-
tors, namely the natural entropy estimator, the Bayes entropy estimator, and Grassberger’s
entropy estimator [Grassberger 1994] given by eq. (7.15), to this sequence with the finite
length N.

Since we know the true population parameters py, po, ..., Pro24, We can as well calculate
the theoretical 5-mer entropy. The differences between the estimated entropy values and
the theoretical entropy value define our three random variables, which we call entropy
estimate deviation from true. Now we repeat the experiment of generating a sequence
10,000 times and thus obtain a time series where we denote the time step by number of
simulation.

Figures 7.2 — 7.7 demonstrate the accuracy and reliability of the Bayes estimator over

the natural estimator for the C.elegans probability vector p.
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Entropy Estimators
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Figure 7.2: Comparison of three entropy estimators for M = 1024, N = 5000, and p de-
rived from C.elegans. The upper curve corresponds to Grassberger’s estimator, the curve
in the middle to the Bayes entropy estimator, and the lower curve to the natural estimator
of the Shannon entropy Hs. We see that the natural estimator and the Bayes estimator
systematically underestimate the theoretical Shannon entropy, whereas Grassberger’s esti-
mator systematically overestimates the true entropy value for our chosen p. However, the
biases of the natural estimator as well as Grassberger’s estimator are so strong that there
is even not a single event among our 10,000 trials where their estimates come close to the
theoretical value, i.e., their biases are larger than their standard deviations. The Bayes
estimator, on the other hand, is almost unbiased compared to its variance. Please note
that our length correction formula presented in chapter 6 can almost perfectly correct the
bias of the natural estimator. Hence, the significant difference between the quality of the
natural and the Bayes estimator is not given by their biases, but by their variances, which

we will study in the next figure.
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Entropy Estimators
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Figure 7.3: Comparison of three entropy estimators for M = 1024, N = 5000, and p
derived from C.elegans. This figure displays the three histograms corresponding to Fig-
ure 5.2. We see that the variances of Grassberger’s estimator and the Bayes estimator are
of comparable size, whereas the fluctuations of the natural entropy estimator are slightly
larger. This implies to prefer the Bayes estimator over the natural one even though we can
almost perfectly correct the significant bias of the natural entropy estimator by our length

correction formula derived in chapter 6.
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Entropy Estimators
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Figure 7.4: Comparison of three entropy estimators for M = 1024, N = 2000, and p' derived
from C.elegans. Again, the upper curve reflects Grassberger’s estimates, the curve in the
middle the Bayes ones, and the lower curve the natural estimates of the Shannon entropy.
In comparison with our previous two figures, we see that the biases of all three estimators
become larger as the sample size IV, i.e., the sequence length, decreases. Again, the natural
and the Bayes estimator systematically underestimate the theoretical Shannon entropy,
whereas Grassberger’s entropy estimator systematically overestimates the theoretical value.
We note again that the bias of the Bayes estimator is significantly smaller than the biases
of its competitors. However, please keep in mind that we can correct the strong bias of the

natural estimator of the Shannon entropy.
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Entropy Estimators
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Figure 7.5: Comparison of three entropy estimators for M = 1024, N = 2000, and p' derived
from C.elegans. These histograms exhibit that not only the biases, but also the variances
grow as N decreases. Since biases of estimators can often be corrected, the comparatively
small variance of the Bayes estimator is its main advantage over the natural estimator of

the Shannon entropy.
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Entropy Estimators
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Figure 7.6: Comparison of three entropy estimators for M = 1024, N = 1000, and p
derived from C.elegans. Grassberger’s estimator again yields the highest estimates followed
by the Bayes and then by the natural entropy estimator. All biases become larger with
a decreasing sequence length N, as a comparison with Figures 5.4 and 5.5 reveals. In
particular, the bias of the natural estimator becomes outstandingly large. However, recall

that our length correction formula can correct it even in this situation where N < M.
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Entropy Estimators
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Figure 7.7: Comparison of three entropy estimators for M = 1024, N = 1000, and p de-
rived from C.elegans. These histograms show that the variances of the Bayes estimator is
comparable to the fluctuations of Grassberger’s entropy estimator, which both are signif-
icantly smaller than the variance of the natural entropy estimates. Since we realize that
the ratio of the variance of the natural entropy estimates and the variance of the Bayes
estimates becomes larger for decreasing N, we highly recommend to substitute the natural
estimator by the Bayes estimator of the Shannon entropy in order to get more reliable
estimates of the theoretical Shannon entropy in samples where N cannot be guaranteed to

be much greater than M.
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Even though we could reasonably motivate the selection of the probability vector p
in our previous simulations, this does not free us from presenting more simulations with
different p. However, instead of going this way and filling the next pages with pictures
similar to the previous ones, we will design the following experiment.

Instead of fixing the probability vector arbitrarily to any p, we also randomly pick
this vector from any point of the simplex given by the normalization constraint of the
p;. In order not to overreach any probability vector, we assume an uniform probability
density of the vectors p. Please note that this assumption does not mean that we simu-
late with equidistributed p;. An uniform density on the psimplex rather means that the

equidistributed vector 7= (ﬁ, ﬁ, e ﬁ

) has the same right to get selected as the c.elegans
probability vector displayed in Figure 7.1 or any other imaginable probability vector p. In
mathematical terms, all probability vectors have the same probability P(p) to get selected
for our simulation experiment.

The outcome of these simulations will then be an average distribution of the three
estimates introduced above. Remember that our original task was to evaluate our three
entropy estimators in terms of their statistical properties. What we have shown with
our previous simulations was that the Bayes estimator should be preferred over the natural
estimator of the Shannon entropy in the particular case of rank-ordered distributions similar
to Figure 7.1.

Although this rank ordered distribution might count as a typical example representing
the 5-mer probabilities in eukaryotic DNA, we now ask the question what the distributions
of the entropy estimates look like in general, i.e., for randomly chosen p-vectors uniformly

spread upon the simplex. In our following simulation, we choose N = 1000, since, due to

their consistency, all estimators can be shown to converge to each other for increasing N.
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Entropy Estimators
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Figure 7.8: Comparison of three entropy estimators for M = 1024, N = 1000, and p ran-
domly selected. From top to bottom, we display the estimates of Grassberger’s estimator,
the Bayes estimator, and the natural estimator of the 5-mer Shannon entropy, respectively.
Please note that a symmetric distribution of the estimated entropies around the theoretical
values does not imply that the corresponding estimator is unbiased. It rather means that
the estimator is sometimes positively biased and sometimes negatively such that the aver-
age bias just vanishes. Applied to the Bayes estimator, this means that the cases where
we systematically overestimate the theoretical Shannon entropy yield the same absolute
deviation from true as those cases in which we systematically underestimate the true value.
Hence, two effects simultaneously contribute to the variance of the entropy estimates: the

average variance over all fixed vectors p’ and the fluctuations of the biases for different p.
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Figure 7.9: Comparison of three entropy estimators for M = 1024, N = 1000, and p
randomly selected. Studying these histograms belonging to Figure 5.8, we realize that
the natural estimator is systematically underestimated on average. This result is not
at all surprising, since we can show in chapter 6 that the natural entropy estimator is
always biased independently on the underlying vector p. In chapter 6, we also derive a
length correction formula, which perfectly corresponds to this simulation. Grassberger’s
estimator, on the other hand, systematically overestimates the theoretical entropy for all
10,000 vectors p’generated in this simulation. Finally, the Bayes estimator does not show a
systematic deviation from the theoretical values on average, which does however not mean
that this estimator is unbiased (c.f. Figure 5.8). Regarding the variance of the estimates,
the Bayes estimator has obviously to be preferred over the natural one independently on

the availability of powerful bias correction formulae.
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7.4 Summary

In this chapter we derived the Bayes estimator of the Shannon entropy,

Mooy NEM o

H(F) :Zm DI (7.20)

In section 7.1, we motivated the demand for an entropy estimator that has the desirable
property to be very close to the theoretical Shannon entropy that we intend to determine.
Since Bayes estimates have, in general, a smaller mean quadratic deviation from the theo-
retical population parameter than the estimates of any other estimator, we tried to derive
the Bayes estimator of the Shannon entropy.

Section 7.2 was entirely devoted to deriving the Bayes estimator of the Shannon entropy
under the prior assumption of a uniform distribution on the simplex of the underlying
probability vectors. Please remember that this uniform prior does not mean that we
prefer equidistributed probability vectors. Conversely, the assumption of a uniform prior
is identical to the demand of equal rights for all possible probability vectors.

In section 7.3, we compared the statistical properties of the natural entropy estimator,
Grassberger’s entropy estimator, which is defined as the entropy function of the Laplace
probability estimator, and our in section 7.2 derived Bayes entropy estimator.

These studies unambiguously revealed the strength of the Bayes entropy estimator,
which were its small bias and, more importantly, the small fluctuations of its estimates.
Therefore, we recommend everybody who is confronted with the problem of estimating
entropies from finite samples and has no idea about the underlying probability distribution
to substitute all procedures that calculate the natural entropy estimates by subroutines
computing their Bayes counterparts.

Additionally, we could relate Grassberger’s estimator to the Bayes estimator of the
Shannon entropy by showing that we obtain Grassberger’s estimator if we substitute the
finite sum in eq. (7.20) by the corresponding definite integral. This finding finally allowed
us to present the inequality that Grassberger’s estimator is always greater than the Bayes

estimator of the Shannon entropy.



Chapter 8

Bayes Estimators of Generalized

Entropies

One practical and common problem in the analysis of experimental data is the estimation
of probabilities or functions of probabilities from finite sets of observed data. The finite size
of data sets can lead to serious systematic and statistical errors in numerical estimates.
In this chapter we address the problem of estimating generalized entropies from finite
samples, and we derive the Bayes estimator of the order-¢g Tsallis entropy, including the
order-1 (i.e., the Shannon) entropy, under the assumption of a uniform prior probability
density. The Bayes estimator yields, in general, the smallest mean-quadratic deviation
from the true parameter as compared to any other estimator. Exploiting the functional
relationship between the Tsallis entropy H, and the Rényi entropy K,, we use the Bayes
estimator of H, to estimate K,. We compare the Bayes estimators with the frequency-
count estimators for H, and K,. We find by numerical simulations that the Bayes estimator
reduces statistical errors of order-q entropy estimates for Bernoulli as well as for higher-
order Markov processes derived from the complete genome of the prokaryote Haemophilus

influenzae.

8.1 Introduction

Here we address the estimation of these entropies from a finite set of experimental data.
Under the assumption of a stationary process generating the data, the data set is com-

posed out of NV data points chosen from M possible different outcomes. The problem that
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arises when entropies are to be estimated from these finite data sets is that the probabil-
ities are a priori unknown. Naively replacing these probabilities by the sampled relative
frequencies produces large statistical and systematic deviations of estimates from the true
value [Basharin 1959, Harris 1975]. This problem becomes severe when the number of data
points NV is in the order of magnitude of the number of different states M, which occurs
in many practical applications, e.g. in the estimations of correlations and dimensions. In
such cases, the choice of an estimator with small deviations from the true value becomes
important. Several different estimators have thus been developed, mainly devoted to the
estimation of the Shannon entropy [22-27]. Specific estimators for the Rényi entropy and
for the dimensions associated to them have also been derived, as well as for upper bounds
on entropy estimates [Grassberger 1988, Schiirmann & Grassberger 1996].

While one can, in principle, calculate the systematic errors arising from frequency-
counts, less fluctuating entropy estimates can only be obtained by employing a different
entropy estimator. The estimator which possesses the optimal property to minimize the
mean-quadratic deviation of the estimate from the true value, subject to a certain prior
assumption, is customarily referred to as the Bayes estimator. In this work, we derive
the Bayes estimator of the Tsallis entropy and discuss its statistical properties. We then

exploit this Bayes estimator to measure the Rényi entropy.

8.2 Tsallis Entropy Estimator

In this section we focus upon the first task stated in the preceding section, by deriv-
ing the Bayes estimator of the generalized Tsallis entropy H,. The total number of
symbols available in a sample for the estimation is given by N = Z£1 N;. Let fur-
ther P(N|p) = N'[[TM, pfvi /N;!] be the underlying conditional probability distribution
to obtain the (multinomially distributed) observable-vector N with components N;. Fi-
nally, Q(p) denotes the prior probability density of the probability-vector p. It satis-
fies the constraint [¢ dp@Q(p) = 1 where the integration extends over the whole simplex
S={p|Vip; >0, Zf\il pi = 1}. Then the Bayes estimator of H, reads as
1

W(N)

o~

Hq(]\?):

[, 47 5,3 PO Q) (8.)

where the normalization constant is given by

W) = [ a7 POVID) QP (8.2)
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N) = P(N|P)Q(P)/Q(N). Thus equation (8.1) is
N), which is the average of H,(j) over the posterior

According to the Bayes theorem, P(
equivalent to H, J(N) = [ dp H,(p)P(
distribution P(5|N).

P
p

In what follows, we will derive the Bayes estimator of H, under the assumption of a
uniform prior probability density Q(p) = const. That is to say, we regard all possible
probability-vectors € S to be relevant.

If we write down the Bayes estimator of H, as

(V) = = [Z,(§) — 1] with Z,(¥) = W(l

_,/dp sz (N|p)  (8.3)

then it can be seen that the derivation of I?q reduces to the derivation of the Bayes estimator
of the partition function Z,. The normalization constant W and the quantity W' (see later)
will be evaluated in appendix B. Interchanging the integral with the finite sum, Z; may be

cast into the form

— o (N + M) / (Nj+3i59)
Z,(N) = dp; p Y 8.4
)= Z H i (5.4
Integrating over M — 1 of the M components, we obtain

o TN+ M) . .
7lN) = LT +1) {/pizo Api Wpi N) p } (8:5)

Evaluating the remaining integral, we arrive at

Zy(N) =

M

PN+ M) l

L(N;+1+q)
I'(N+ M +q)

[(N: + 1)

=1

and thus, composing all above expressions, we eventually obtain

Ty L T+ M) M D(N;i+ 1+ q)
= 1n21—q{r<N+M+q>XEW]”}‘ =0

Expression (8.7) constitutes a central result of this work: the Bayes estimator of the Tsallis
entropy of order ¢. To illustrate the differences between the fluctuations of the Bayes esti-
mator and the frequency-count estimator of H,, in the following we will simplify expression
(8.7) for the special cases ¢ = 1 and ¢ = 2. The motivation for this parameter choice stems
from the following. We recall that H, is indeed a generalization of H, providing upper and
lower bounds for the Shannon entropy. As such, we wish to make contact with the Bayes

estimator H for the Shannon entropy. This is realized in the limit ¢ — 1. The second
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example, ¢ = 2, plays an important role in the statistical analysis of non-linear dynam-

ical systems. Here ¢ = 2 gives rise to quantities like the correlation dimension and the

second-order Kolmogorov entropy (see, e.g., [Ruelle 1989] and references therein) as well

as a generalization of the mutual information which preserves positivity [Pompe 1993].
To obtain I?l, we introduce the auxiliary function

M .
I(q) = E}W] /F(N+M+q). (8.8)

This will become useful due to the necessary consideration of the limit ¢ — 1, since

expression (8.7) is not defined otherwise. Introducing oy = N;+14¢and §, = N+ M +¢,

we may write at the limit point

. (N ey I oF
() = fin 1, () = 5 0

(8.9)

where

8F7((]) — o & (1) ) — (1) }
dq _;{F(QO)F(ﬂq) <¢ (ag) =¥ (ﬂq)) : (8.10)

Here (0 (2) = dInT(2)/dz is the Digamma-function. Since a; and ) are integers, we
may express ¥(1)(z) in terms of the finite harmonic sum M (z) = EZZ:_II 1/l — F., with

E. = limpyo (328, 1/r — In R) being Euler’s constant. Inserting this expression into

arn X T'(ay) o1
T ;{rmo)r(ﬂl‘) (lzzl)} 1

equation (8.10), we get

and hence we obtain

M N+M
(N)= [; ]]VVZ':AZ ( 3 %)] . (8.12)
Equation (8.12) defines the Bayes estimator of the order-1 Tsallis entropy under a uni-
form prior probability density. Comparing the above expression with results derived in
[Wolpert & Wolf 1995] and [Grosse 1996], we verify the consistency of expression (8.7) in
the limit ¢ — 1. That is, the Bayes estimator of the order-1 Tsallis entropy is identical to
the Bayes estimator of the Shannon entropy: I?l = .

We now turn to the case ¢ = 2. From equation (8.6) we can read off the Bayes estimator

of p! to be
5 I(IN+M) DNitl+gq)
p; = X
O IN(N+M+q) I'(N; 4+ 1)

(8.13)
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Thus we write down ﬁg in the form

. R N; +1 N; + 2
2: ! !
Hy(N) = 1n2< E pZ) with p; ( n ) ( n —I—l)' (8.14)

In general, we find the following characteristics of the Bayes estimator to be noteworthy:

1. I?q is defined in the parameter range ¢ € (—1,00). Apparently, cases of particular
interest (and simplicity) are given when ¢ takes on integer values n € A (set of non-
negative integer numbers) which allow one to replace Gamma-functions by factorials.

Similar simple expressions can also be obtained when ¢ = (n + 1)/2.

2. Given g = n, then equation (8.13) factorizes into a product of n terms, which takes

on the following singled-out form:

%_(Ni*‘l)( N;+2 )( N+ 3 ) ( N;+n )
PP = \NTM)\N+M+1/)\NLTM+2 N+M—1+n/)

As we have shown above, I?(”q:l includes the Bayes estimator of the Shannon entropy.

Setting now n = 1, we furthermore re-obtain Laplace’s (successor rule) estimator (see,

e.g., [Schiirmann & Grassberger 1996]): Z/)?Inﬂ = (N;+1)/(N + M). Moreover, for
g = n the asymptotic approach ]/)f — f;" is realized by allowing N — oo, i.e., E
converges towards the frequency-count estimator of H,,. Thus the Bayes estimator is

consistent.

3. We note that the Bayes estimator of H, is not equal to the estimator obtained by
inserting the Bayes estimator of the probability-vector p, i.e., I?q(l\_f) # H, (]AT)

8.3 Rényi Entropy Estimator

In this section, we consider the Bayes estimator of the Rényi entropy K,. Substituting K,
for H, in equation (8.1), the problem of deriving the estimator is the calculation of the

integral
1

1—qW

Even in the simple case for M = 2, ﬁndlng the explicit analytical solution of the above

o~

K, (N) =

Z,(B) P(N[P) Q(p)- (8.15)

integral turns out to be very complicated. In appendix C we will show that the Bayes

estimator of the binary Rényi entropy (under the assumption of a uniform prior probability
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density) can be written as

— 11
K,(Ni,Ny) = ——— [ 1, (N1, N2) — ¢ 8.16
(N1, Ny) ln21—q( 1, N l%lﬂ) (8.16)

for all Ny + Ny = N. In the above expression we have introduced the following notation:

_ (N +2) o0 a2 .
Iy (N1, Vo) = +1)F(N2+1)/ o v In 1+, (8.17)

Though the integrand in the above integral is well-defined and thus this integral exists for
all g, we could not obtain a closed analytical expression for arbitrary given Ny, Ny and
q. This does also hold for the case M > 2. So the explicit evaluation of equation (8.15)
remains a challenge.

Although equation the binary case, c.f. equation (8.17), could be solved numerically to
give I/(Z, we may seek another strategy which is of practical use also in the multi-variate case
M > 2. We recall that H, and K, are intimately related to each other via equation (5.5).
Therefore, a natural way to estimate K, would be to estimate /, and then use relation
(5.5) to compute K, of corresponding order. Hence we may write down the (indirect)
Bayes estimator I?:q, c.f. equation (8.6), in the form!

— o1 [(N + M)
Kq(N)_l—qlogz{F(N—l—M—l—q)Xl

M

%1 } (8.18)

=1

Since limg_yq EJ = limg—; I?q, the limit f(vl — H holds and we again re-obtain the Bayes
estimator of the Shannon entropy. The motivation to proceed in this way is lead by the fact
that both I?q and I?; can be understood as entropies computed from the Bayes estimator of
the partition function Z,. As such, we gain a significant reduction of the entropy variance

due to ZAq

8.4 Numerical Tests

o~

In this section we compare the variances of the direct and indirect Bayes estimators, H,
and I?;, with the variances of the frequency-count estimators, Hq and R'q. To investi-
gate and contrast the performance of the two different estimators we choose m-step mem-

ory Markov processes belonging to the following cases: (a) generated by a process with

'Please note that we distinguish the indirect from the direct Bayes estimator by a tilde.
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no memory, i.e., m = 0, and (b) generated by a process with memory m = 5. In (a)
we choose a process with equidistributed probabilities (henceforth denoted as Bernoulli
process), whereas in the latter case we use the fifth-order transition probabilities taken
from the complete 1,830,240 nucleotides long Haemophilus influenzae DNA sequence
[Fleischman et al. 1995] to generate a Markov chain with fifth-order memory. Figure 2
shows the rank ordered statistics obtained from the above DNA sequence and from a se-
quence of same length derived from a Bernoulli process. It can be seen that the DNA
sequence is far more inhomogeneous than the realization of the Bernoulli process. The
derived rank-order frequencies might count as a typical example representing hexamer dis-
tributions in (prokaryotic) DNA. The entropy analysis of biosequences has received appli-
cations in order to distinguish between coding and non-coding DNA [Fickett & Tung 1992],
to detect repeated nucleotide sequences [Herzel et al. 1994b], and to characterize protein
sequences [Herzel 1988, Strait & Dewey 1996]. A prerequisite to the application of gener-
alized entropies in biosequence analysis are reliable estimators. Therefore we consider a
probability-vector derived from a DNA sequence to test the performance of the Bayes esti-
mators, given by the expressions (8.7) and (8.18), versus the frequency-counts estimators,
which are obtained by defining 7, — M [ with f; = N;/N.

Since we are particularly interested in the case where the size of the sequence length
is in the order of magnitude of the cardinality of the alphabet, M = 4, we perform our
numerical simulations with N,y = 4 - 10° and Ngpy = 8- 10%. Then, according to the
probability-vector p'= (p1,.. ., Paogs), a sequence S is randomly generated from which we
estimate the entropy values. In both cases we can also compute the theoretical hexamer
entropies (since we take the relative frequencies obtained from the DNA sequence as prob-
abilities by definition). Hence, the difference between the estimated and the theoretical
values defines a random variable, which we define as “entropy estimate deviation from
true”. Generating an ensemble of 10, 000 sequences and estimating the entropies from each
sequence, we obtain the histograms displayed in figures 3, 4 and 5. These studies demon-
strate the merit of the Bayes order-2 entropy estimators as compared to the frequency-count
estimators. Indeed, the variances of the Bayes estimates are significantly smaller than the
variances of the frequency-count estimates for both Markov processes with memory m = 0
and m = 5. In repeated simulations with different sequence lengths and different values of
g ranging from —1 to 50 we could observe similar results: the Bayes estimator of H, and

K, produces significantly smaller variances than the frequency-count estimator.
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As analytical calculations and numerical simulations reveal, the Bayes estimator of Z,
(and hence for H, and K,) is biased. As we will show in appendix A, this bias can be

approximated within O(1/N), by using a straightforward analytical approach.

8.5 Summary

In this chapter we derived the direct Bayes estimator I?q of the order-¢ Tsallis entropy and
the indirect Bayes estimators EJ of order-q Rényi entropy of a finite, discrete data set.

Our approach of deriving the Bayes estimators of H, and K, has been been moti-
vated by the requirement to estimate generalized entropies from realizations where the
total sample size N available may only be in the order of magnitude of the cardinality
M. The central result of this work, namely the Bayes estimator of the Tsallis entropy H,,
is stated in expression (8.7). As we could not arrive at a closed form expression of the
direct Bayes estimator of the Rényi entropy, we proposed an indirect Bayes estimator by
the transformation-formula which connects the Tsallis with the Rényi entropy. In fact,
both estimators, I?q and I?:q, are based on the Bayes estimator of the partition function
Z4, which may be exploited to estimate related quantities like generalized dimensions or
order-g Kolmogorov entropies. In the case of ¢ = (n+1)/2, n € N, these estimators are
easy to implement for numerical purposes.

A comparative study of the accuracy by which both the Bayes and the frequency-count
estimators extract the order-2 entropies of m-step memory Markov-chains demonstrated
the strength of the Bayes estimator. Over the whole parameter range ¢ € (—1,00) the
Bayes estimator outperforms the frequency-count estimator by a significantly smaller vari-
ance of its estimates. This makes the Bayes estimator appropriate to measure generalized
entropies in a sample, whose size N may be as small as the cardinality M of the alphabet.

The Bayes estimators I?q and I?; have been derived under the assumption of a uni-
form prior probability density. Clearly, the specific choice of an assumption for the prior
probability density is application-dependent. Given no other constraint except p € §, we
assumed a constant prior probability density over the simplex. Note that this does not
mean that the probabilities p; are equidistributed, but rather that all probability-vectors
P on the simplex § are equiprobable. Nevertheless, the numerical simulations demonstrate
that for the probability-vectors considered is this work, which are by no means equidis-

tributed on the simplex, the Bayes estimator with Q(p) = const leads to variances which
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are significantly smaller as compared to the variances of the frequency-counts estimators

of generalized entropies of order ¢.
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Figure 8.1: Comparison of the Bayes and the frequency-count estimator of the Shannon
entropy, I?l and H,; respectively. We generate an ensemble of 10,000 sequences, each of
which composed of N = 250 data points chosen from an alphabet with cardinality M = 256.
The 256 possible outcomes were samples from a uniform distribution, p; = 1/M. From
each such sequence, the entropy is estimated by the Bayes estimator and the frequency-
count estimator. Figure 1 displays the corresponding histograms of H, (right) and H;
(left). It can be seen that the variance of H, is about one order of magnitude smaller as
compared to the variance of I;. Note that the significant negative bias can, in principle,
be approximated by length correction formulae. Therefore, it is the smaller variance of I?l

that makes this estimator superior.
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Figure 8.2: The rank ordered hexamer distribution of the complete Haemophilus influenzae
DNA sequence displayed as a double-logarithmic plot (O). For a comparison, the rank
ordered hexamer distribution of a Bernoulli-sequence of same length has been included in

the figure (A).
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Figure 8.3: Comparison of the entropy estimators I, (right) and Hy (left) with M = 4096,
N = 4000 and equidistributed p; = 1/M. We observe the small width of the variance of
the Bayes estimator ﬁg as compared to the frequency-count estimator Hy. Equation (12.3)
predicts the entropy bias with AH, = —2.66-10~* (bits/symbol), in good agreement to
the observed value. According to [Holste 1997], the bias of H, can be approximated to
be AH; = —0.36 - 10~3 (bits/symbol), which is in good agreement to the observed value,
too. In samples where N is in the order of magnitude of M, the reliability of the Bayes

estimator is significantly higher than the reliability of the frequency-count estimator.
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Figure 8.4: Comparison of the entropy estimators Ky (right) and Ky (left) with M = 4096,
N = 4000 and equidistributed p; = 1/M. We observe that fluctuations of the Bayes estima-
tor Ky are strongly suppressed as compared to the frequency-count estimator K,. Equation
(12.5) predicts the entropy bias with AK, = —0.81 (bits/symbol), in good agreement to
the observed value. According to [Holste 1997], the bias of Ky can be approximated to be
AK3y = —1.02 (bits/symbol), which is in good agreement to the observed value as well
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Figure 8.5: Comparison of the entropy estimators [, (right) and Hy (left) with M = 4096,
N = 8000 and p; derived from the H. influenzae DNA sequence. We observe the smaller
variance of the Bayes estimator ﬁg as compared to the frequency-count estimator Hs.
Equation (12.3) predicts the entropy bias with AH, = —0.38 - 1074 (bits/symbol) and,
according to [Holste 1997], the bias of H, can be approximated to be AH; = —0.18 - 1073
(bits/symbol).
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Chapter 9

Statistical Properties of the
Natural Estimator of the Shannon

Entropy

The following section is devoted to the derivation and discussion of certain statistical

properties of the natural entropy estimator,

H(k) = Jé —% -In (%) : (9.1)

such as its expectation value and variance.

Remember that the estimate of a population parameter can be viewed as a random
variable with a well defined probability distribution. The problem that occurs in practical
applications is, however, that this probability distribution is often unknown and only hard
to derive. Nevertheless, it can, in principle, be sufficiently described by all of its moments.
Often its first two moments, namely its expectation value and its variance, suffice to give
us a basic idea of what the distribution looks like.

The bias of an estimator is, as we have learned in section 6.3, defined as the deviation of
the expected value of its estimates from the real population parameter value. The variance
of the estimates, on the other hand, is defined as the mean quadratic distance from the
expectation value, and thus reflects the magnitude of fluctuations of this estimator. We
commonly relate the term reliability with the second moment of the estimate’s probability

distribution.
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Section 9.1 is devoted to showing that the natural entropy estimator is biased in all
cases where our underlying probability distribution is not pathologically concentrated in
a single point. In section 9.2, we then derive an approximation for this bias, which has
turned out to be fundamental for all statistical analyses of biological symbol sequences.
Eventually, section 9.3 is dedicated to presenting an approximation for the variance of the
natural entropy estimates.

Please note that neither the approximation of the expectation value nor the approxi-
mation of the variance of the Shannon entropy are new. These and similar approximations
can be found in [Basharin 1957], [Harris 1975], [Pompe 1986], [Herzel 1988], [Li 1989],
[Herzel 1994a], or [Levitin 1994].

9.1 The Natural Entropy Estimator is Biased

In this section, we will show that we systematically underestimate the Shannon entropy
H (p) by using the natural entropy estimator ﬁ(E) independently on the underlying prob-
ability distribution py, po, ..., pam-

This bias of the natural entropy estimator is due to the nonlinearity, i.e., the convexity,
of the entropy function and can easily be understood in the case of equidistributed p;.

Let us imagine we are to estimate the Shannon entropy
H(p)=—p-In(p) = (1-p)-In(1 —p) (9-2)

of a coin and assume p = 1/2. Let further be the sample size N = 2, i.e., we are tossing
the coin only twice.

Then the possible outcomes of our tossing experiment are:

1. We toss two heads, i.e., k = 2.

2. We toss one head and one tail (or one tail and one head), i.e., k = 1.
3. We obtain two tails, i.e., k£ = 0.

In the first and the third case, we estimate the Shannon entropy of the coin be zero,
which reflects our estimates of the probability p = 1 or p = 0, respectively. In the second
case, we estimate the probability p = 1/2 and thus the entropy H= In(2).

Comparing all of our entropy estimates with the theoretical Shannon entropy H(p) =

In(2), we see that all estimates, which we also call the observed entropies, are smaller than
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or equal to the theoretical entropy. In our case, this only reflects the well known statement
that a uniform distribution yields the highest possible entropy. Our realizations, however,
cannot be more uniform than the underlying uniform probability distribution is. Moreover,
they often deviate from uniformity, which happens in two of three cases in our example.
Thus, it is not surprising that the expected value of the observed entropies, i.e., the
ensemble mean of all observed entropies, is smaller than the theoretical entropy value in

our example:

E(H) = Pk=0lp=1/2)-Hk=0)4+Pk=1p=1/2) - H(k=1)
k=2

+ Plk=2p=1/2) - Hk=2)=1/2-1n(2) < In(2) = H. (9.3)

The question we are raising at this point is whether this inequality always holds. Let
us, for example, consider the same experiment, but now under the assumption of p = 0.7.
Again, we obtain the three possible estimates for ﬁ, namely 0, 1, and 0, for the three
possible outcomes k = 2, k = 1, and k = 0, respectively, of our tossing experiment.

However, now we realize that the entropy observed in the second case is larger than the
theoretical value. Nevertheless, we can prove that the expected entropy (which we define

as the expectation value of all observed entropies) is smaller than the theoretical entropy:

E(H) = Pk=0p=07)-Hk=0)+Pk=1p=07)-H(k=1)
+ Pk=2lp=07)-Hk=2)=2-0.7-0.3-1n(2)
< —0.3-In(0.3) = 0.7-1n(0.7) = H. (9.4)

The interesting question that appears at this moment is whether the expected entropy
is always smaller than the theoretical entropy independently on our assumption about the
underlying distribution and its dimensionality.

The following section is devoted to deriving the theorem that the expected value of the
observed entropies is always smaller than the theoretical entropy.

Let 7= (p1, p2, ..., ppm) be the vector containing the probabilities of an M-sided die and

N be the given sample size. Let further (%7) denote the multinomial coefficient given by

NY _ N!
[ B N B T (9.5)
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Then the expected entropy reads as

E(H(F)) =Y P(Rp) - H(F) (9.6)
(£}
with
- N\ M
PRI = ( k) I1s (9.7
=1
and o
L k. k.
H(k) = ——In{=). .
H=3 -5 (3) (9.5
Interchanging the finite sum over all possible states k with the sum over all state indices
1 yields
M
E(H(E)) = _ZZP(E@-@ -In (k—) (9.9)
=1 {E} N N

Now we exploit eq. (2.12), which we derive in appendix B by applying Jensen’s inequal-
ity to the function f(p) = —p-In(p), and obtain

ook ki
— L. Y < . . )
ZP(klﬁ) ol (N) < —p;i - In(p;) (9.10)
{k}
forall : =1,2,..., M, since
ok
pi = Pklp)- - (9.11)

{7y
By applying this result to eq. (9.9), we end up with the inequality

M . .
B(H(R) = —;%P(lﬂﬁ) : %-m (%) (9.12)
M
< - Zpi ~In(pi) = H(p) (9.13)

where equality holds only in the pathological case that P is concentrated in one point, i.e.,
if one p; = 1 and all others be 0.
In other words, the natural entropy estimator is always biased and on average under-

estimates the theoretical Shannon entropy.
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9.2 The Entropy Bias

In the last section, we have shown that the natural entropy estimator is biased. Fur-
thermore, we could show that this bias is always negative, i.e., we systematically under-
estimate the theoretical entropy independently on the underlying probability distribution
P1, P2, .-y PM-  In this section, we will quantify this bias and derive a length correction
formula that approximates the bias in the order of 1/N.

The expected value of the natural entropy estimates is given by

E(H(k) =" H(k) - P(k|p). (9.14)
{k}
We know that the vector & containing the absolute frequencies kq, ko, ..., kas is multi-

nomially distributed according to
P(k; p,N) = (E) 1w (9.15)

However, we do neither know the distribution of ﬁ(E) nor the expectation value of this
statistic.

But following [Harris 1975] and [Herzel, 1988], we can expand the function H (k) in
a Taylor series and thus derive first and second order approximations of the expectation

value of H (k).

We define the relative frequencies as the positive real variables 1, x5, ..., 237 by
T, = kZ/N (9.16)
for all ¢ = 1,2,..., M and then compute the power series expansion of H(z1, 2, ..., 2ar)

about the point (1,22, ...,20m) = (P1, D2, -y PM)-

Since the partial derivatives read as

o
o —In(z;) -1 (9.17)
92 H

Geor = (9.18)
k _ !

OH e, (k=2) (9.19)

8$Z’k wk_l
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forall o,j =1,2,....M,j # 4, and all k =2,3,...,00, we obtain the following Taylor series
for the observed Shannon entropy H (z):

M
H(z) = Z: —pi - In(p;) — (In(p:) + 1) - (z; — p;)

S
(k=1)-k pi!

(s — p)® (9.20)

+
(]

ol
Il
N

(l
M=

—pi -In(p;) —In(p;) - (z; — p2)

.
Il

CUZ L ot (0.21)

* (k=1)-k pF~

Nk

ol
Il
N

Please realize that we denoted the limes of this power series by H and not by H
because we have not yet analyzed whether the function H(z) is indeed analytic, which
means, whether it is expressible by its Taylor series.

We know that all power series in z about a point zg converge in an open interval
(zo — 1,20 + 1), where r is called the radius of convergence. Our next task will be to

determine the radius of convergence r of the series given above.

The ratio test reveals that the radius of convergence r of a power series io: ay - =¥ can
be determined by =
r=lim aZil . (9.22)
Hence, we obtain, for the above series and k > 2,
aZil = % “pi = D (9.23)

for k—> oo and all ¢ =1,2,..., M.

Since power series converge inside their convergence intervals, but diverge outside, the
Taylor expansion derived above is only convergent on the whole interval (0,1) in the case
that we are dealing with binary sequences in which the two symbols occur with the same
probability 1/2. Let us incidentally remark that in this particular case, the series also
converges at the points + = 0 and = 1 and that its limits are even identical to the values
of the function H at this point. This means we may identify H with I in this case.

In all other cases, the Taylor series becomes divergent in certain intervals, and the only
statement we are allowed to derive is that the power series given above converges in the
open parallel epiped given by the two points (0,0, ...,0) and 2- (p1, p2, ..., pym). Here we can
then prove H(z) = H(z).
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For all & that fall into this parallel epiped, the Taylor approximation can be improved
with any higher order term whereas the opposite is the case for all other Z. If we, however,
keep in mind the probabilities by which vectors & appear in our sample of size N, then we
will realize that this Taylor approximation is a really good and valuable approach in many
practical situations. It only fails if the underlying statistics becomes extremely poor.

For those situations, we present a different approach in appendix G. There, we exploit
a technique derived from regression theory, which finally provides us with a power series
for the Shannon entropy that converges in the entire interval [0, 1].

Let us in this section continue with the Taylor approach and write down the expectation

value of the natural entropy estimator H (z).

M
E(H(F) = Z:—Pi In(ps) — In(pi) - E(x5 — ps)
o~ (DTN L
T

In Appendix I, we introduce generating functions and present a method by which
we can, in principle, derive all moments of a multinomial distribution. For the sake of
simplicity, we truncate the Taylor expansion after the quadratic term, i.e., we neglect all

moments higher than the second, and thus obtain

M M . o
BE@) = w3 5 B o () )
= H(p) - ]\24_N1 +0 %) (9.26)
E(z;—pi) =0 (9.27)
and
K ((962' - Pi)z) = w (9.28)

as derived in appendix I.

In our previous section, we have learned that we always systematically underes-
timate the Shannon entropy independently on the underlying probability distribution
P1, P2, .-y M- In this section, we could now derive the surprising result that the bias

of the natural entropy estimator

E(H-H)= —Z\g__Nl +0 (%) (9.29)
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does also not depend on the underlying probability distribution in a first order approxima-
tion.

However, this interesting finding is not new and has only been presented here for ex-
emplifying our basic approach. We highly recommend our readers to review the original
papers mentioned above, where these so called finite sample effects are studied and the

value of the length correction formula corresponding to eq. (9.29) are perfectly illustrated.

9.3 The Entropy Variance

In this section, we will derive an approximation of the variance of the natural entropy

estimates H(lg) where the random vector & is multinomially distributed according to

M
P(k|p) = (ZEV) [1»i" (9.30)

In section 6.3, we have discussed some desirable properties of point estimators; namely,
to be consistent and unbiased. Another, perhaps even more relevant question is whether
our estimator is also reliable. Whereas the question for the bias of a given estimator
confronted us with calculating the expectation value of its estimates, we are now confronted
with computing the mean sample variance of its estimated values.

Fluctuations of their corresponding estimates are immanent for all estimators due to
always finite sample sizes. The magnitude of these fluctuations, however, is an important
criterion to evaluate statistical measures and to determine their reliability.

Since we can approximate the systematic sampling errors of all estimators considered
in this work and thus correct their bias, the remaining statistical errors decide about the
power of the considered estimators.

In chapter 7, we have already discussed the variance of the natural entropy estimates.
Let us here have a closer view on the size of the variance and compare it with analytical
results derived below.

The simulations performed here exactly correspond to those experiments carried out
in section 7.3. However, instead of fixing the 1024-dimensional probability vector p to
the 5-mer probabilities derived from the C.elegans chromosome 111, we simply choose p'=
(ﬁ, ﬁ, e ﬁ) for our following simulations. We generate sequences of N = 1000 5-mers and

repeat this experiment 10,000 times, which yields the following histogram of the observed
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Shannon entropy estimates

H(k) = - Jé % -In (%) : (9.31)

Although we revealed an approximate value of the sample variance of the natural Shan-
non entropy estimates, we have to admit that simulations of those statistics are tedious
and lethal for any scientific progress in a long run. Thus our goal will be to derive an
analytic expression that approximates the variance of the natural entropy estimates as a
function of py, p2, ..., pas, and N.

A naive approach yields

) M M
o (H(ﬁ)) =0’ (Z: —n; - In (nz)) ~ Z_: o (=n; - In (ny)) , (9.32)

if we assume the relative frequencies n; = k;/N be statistically independent.

In a first order approximation, we obtain
—n; - In(ng) = —p; - In(pi) = In(p) - (mi = pi) + O ((ni = pi)?) (9.33)
forall i = 1,2,..., M and thus
R M
o (H(i)) o 3 = In(p;) - o ((mi = pi)) (9.34)
=1
In this linear approximation, we could obviously relate the fluctuations of the Shannon

entropy to the fluctuations of the relative frequencies n;.

Assuming equidistributed p;, we obtain

o2 (H(7)) o M-In %)M(ZM —b (9.35)
e 2 Cpic(1=p)
o’ ((ni—pi)) = —x—— (9.36)

Comparing this first order approximation, which yields
S ()
2 = ~
o (H(n)) x ~ 0.05, (9.37)

with Figure 9.1 reveals the shocking fact that our variance calculation is by a factor of 20

too big.
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Variance of the Natural Entropy Estimates
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Figure 9.1: Variance of the observed 5-gram entropies 5. We generated 10, 000 sequences
each of which contained N = 1000 out of 1024 equidistributed 5-mers. The bias of the nat-

ural Shannon entropy estimator of about — 0.58 is almost perfectly predicted by our linear

approximation % Note that the standard deviation of the natural entropy estimates,

which we approximate by 0.05, is significantly smaller than the their systematic error. The

variance, i.e., the squared standard deviation, can be roughly estimated as 3 - 1073,
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The serious question is whether this error was caused by the naive assumption all n;
be independent or by our first order approximation.

In the following, we will show which dramatic effect the constraint % n; = 1 imposes
on the sum of the fluctuations of the otherwise independent n;. =

To present this paradoxon as clearly as possible, let us consider the following example.
We are rolling a normal six-sided die the faces of which show the six letters A, B, ..., F. Let
our sample size N be 100, i.e., we are rolling the die 100 times and then count how often
we obtained an A, a B, a (', and so on. Eventually we are wondering whether the number
of As we rolled has anything to do with the number of Bs.

The naive answer would be, that there is no statistical dependence between the fre-
quency of rolling an A and the frequency of rolling a B. By definition, there is no correlation
between the outcomes of our experiment!

Nevertheless, we know about the normalization constraint, which requires the sum over
all absolute frequencies be equal to N = 100, or the sum over the relative frequencies be

equal to 1.

In mathematical terms, the constraint

M
dni=1 (9.38)
=1

induces slight correlations between the random variables n; and thus our assumption of
statistical independence between them is questionable.
Let us in the following prove that these weak normalization correlations can indeed
dramatically change our result obtained above.
We still stick to the first order approximation given by eq. (9.33) and hence obtain
M M
o (H(ﬁ)) =0’ (Z —n; - In (nz)) x o? (Z —1In(p;) - (ny — pz)) . (9.39)
=1 =1

Assuming uniformity among the p;, i.e., p; = 1/M for all i = 1,2, ..., M, yields
o2 (M1(7)) = (M) - 0 (9.40)
since
M M
dni=> pi=1 (9.41)
=1 =1

What we have just learned is that the weak correlations we induced by regarding
the normalization constraint for the observed frequencies destroy all fluctuations of the

observed Shannon entropies in a linear approximation.
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This example was to serve as an illustration that the proper summation on the sim-

plex given by eq. (9.38) cannot be substituted by a summation over all possible states k

disregarding their normalization constraint.

In the remainder of this section, we will derive an analytic expression for the variance

of the observed entropies derived from a sample of size N for arbitrary py, po, ...

Let us split this task according to

o2 () =F ((H—H)Q) — (& () —H)2

and start approximating the first term in the order of 1/N.

Since

M
H(ii) — H (p) :Z—ln(m) — P +Z = Az = pi)”,

we obtain

9 M
(A@) -H@) = 3 n(p) () - (e —pi) - (25— py)

1,5=1

4+ h.o.t.

Calculating the expectation values of these terms yields

E ((H(ﬁ) _ H(@)Q)

M
= > In(p) - In(py) - E((ni = pi) - (n; — p;)) + E (h. 0. 1.)

7]_1

= Zln pz ( 2 p2)2)
M

+ > (1 =6i) -In(ps) - In(py) - E((ni — pi) - (n;

7]_1

_ (1—]?2)
= Zln (pi) N

M s e .
= > (1=d) In(p:) - In(p;) - pZNp] + B (h.o. t.)

1,5=1

1 M
= ﬁZan(pi) - pi

- —Zlnpz ) -In(py) - pi - pj + E (h. 0. 1)

1,5=1

—p;))+E(h o t)

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)
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2

M
= _sz i) (Zln pi) + E(h.o.t.) (9.50)

= (Zpl P — H2) + E(h.o. t). (9.51)

Considering I (h. o. t.) reveals that all higher order terms only contribute fluctuations
in the order of O (1/N?).

This is not at all trivial, which all readers might experience who derive an approximation
for the variance of the natural entropy estimates in the order of O (1/N?). In that case, a
Taylor expansion of H (7) in the order of O (( — p)?) does not suffice to collect all terms
contributing to an 1/N? approximation of o2(H).

At this point, we renounce to display the second order approximation (TQ(H)7 but rather

recommend the interested reader to study the wonderful review article by Harris [1975].
(M —1)?
— T
, 4. N?

O (1/]\73) and thus neglecting the term (E(ﬁ) — H) in our 1/N approximation of its

Realizing that the square of the natural entropy estimator bias goes with

variance leads to our final result:

o2 (1) = (ZpZ i) )+0<;2) (9.52)

At this point, we eventually understand why the fluctuations of the observed entropies
are of negligible magnitude compared to the bias of the natural entropy estimator in our
introductory example. If the probabilities p; approach an uniform distribution, the term
% p; - In?(p;) — H? vanishes.

- Finally, we will display this well known result in a new fashion, which might delight all
readers who can sometimes hear the harmonic cords of the great music that nature plays.

Rewriting eq. (9.52) yields

o (i) = % (sz pi) ) +0 (;2) (9.53)
= (B (n2) - B2 i) + 0 (;2) (9.54)

and hence,
o (i) = 5 o> (n(p) + O (%) . (9.55)

Theorem 9.1 The sample variance of the observed entropies is given by the population

variance of the M numbers In(p;) divided by the sample size N.
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Although this is a clear mathematical statement, we are far from intuitively under-
standing the relation between the fluctuations of the Shannon entropy estimates on the
one hand and the variance of the logarithms of the theoretical probabilities on the other
hand.

For equidistributed p;, we immediately realize
o (In(pi)) = (B (In*(p)) = B2 (In(ps))) =0, (9.56)

which means that the sample variance of the Shannon entropy decays with 1/N? in this

case.



Chapter 10

Statistical Properties of the
Natural Estimator of the Mutual

Information

In chapter 3, we introduced the mutual information as a correlation measure which pos-
sesses the desirable property that it vanishes if, and only if, the considered random variables
are statistically independent.

The estimation of this function from finite samples will, however, again affect the precise
determination of the hidden correlations. Hence, we are again confronted with the task
to derive some basic statistical properties of the mutual information estimator such as its
expectation value and variance.

In the following section we will show that the natural estimator of the mutual infor-
mation is usually biased. However, unlike in the case of the natural entropy estimator,
which always underestimates its theoretical Shannon entropy, the direction of the mutual
information bias depends on the underlying probability distribution p;; and the sample
size .

In section 10.2, we will derive a first order approximation of this bias and discuss first
applications of the corresponding correction formula. Finally, we will approximate the

population variance of the natural mutual information estimates in section 10.6.
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10.1 The Mutual Information Estimator is Biased

Unlike in section 9.1 where we could prove that the natural entropy estimator H always
underestimates the theoretical Shannon entropy H, there is no such theorem for the mu-
tual information. However, this does not imply that the natural estimator of the mutual
information is unbiased. It rather means that the mutual information is overestimated by
its natural estimator in some cases (i.e. for some probability distributions p;; and some
sample sizes N) and underestimated in others. The aim of this section is to develop an
understanding of why there is no strict inequality about the direction of the bias (as in the
case of the natural entropy estimator) and to exemplify the two cases in which the natural
estimator typically overestimates and underestimates the mutual information.

The reason why the natural entropy estimator always underestimates its theoretical
Shannon entropy is the concavity of the entropy function H (p) = — Zf\il pi-1n(p;). In
contrast, the mutual information

M ..
I =3 pj-In (p—]) (10.1)

i,j=1 pi- q]

is neither convex nor concave in its arguments p;;. Here and in the following, p denotes the
M x M matrix containing the elements p;;. Before we start to illustrate the local convexity
and concavity of the mutual information I by two examples, let us see what we can learn

from the relation

I=Hx +Hy — H, (10.2)

about the convexity of I as a function of p.
As we learned in section 9.1, the concavity of the Shannon entropy implies that the
entropy of the arithmetic mean of two arbitrary probability vectors pj and p3 is greater

than the arithmetic mean of the corresponding Shannon entropies, i.e.

H (ph) + H (p2)

1 (p) > (10.3)
where the arithmetic mean of the probability vectors p; and ps is denoted by
ﬁEpl—IQ—p?. (10.4)

Of course, the same statement holds for higher order entropies: let p; and py be two ar-

bitrary probability matrices with M rows and M columns, and let us denote the arithmetic
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mean of these probability matrices by

P11+ D2
2

P . (10.5)

Then the entropy of the average distribution, H (p), is greater than the average over the
entropies H (p1) and H (p3), i.e.

(10.6)

for arbitrary p1 and po.
From eq. (10.4) we see that the mutual information of the average distribution, I (p),
is smaller than the average over the mutual information values I (p1) and I (pq), i.e.

I(pr)+1(p2)

I(p) < 5

(10.7)

if the probability matrices p; and p; have the same marginal distributions.

If, however, the marginal distributions of p; and py are different, then the marginal
entropies Hx and Hy will increase by averaging, which diminishes (and possibly over-
compensates) the increase of Hy. As we will see in the following two examples, it depends
on the underlying probability distributions p; and py which of the two forces (Hy + Hy
versus Hz) wins over the other.

Let us start with an example that illustrates the case in which we lose mutual in-
formation in X about Y by averaging over two probability distributions. For the sake of
simplicity, let X and Y be binary random variables, i.e., let p; and p; be two 2 X 2 matrices.

Assume the matrices p; and py be those for which the mutual information is exactly 1

et (1) (103

1325%'((1) 3) (10.9)

In this case, the average distribution becomes

1 {1 ({10 1 {01 1 (11
P 5'(5'(0 1)+§'(1 0)):?(1 1)' (10.10)

The mutual information of this probability distribution is clearly zero, which we can intu-

bit, i.e.

and

itively understand by the following information-theoretical considerations.
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Assume we have two binary sources and two perfect channels. The binary sources emit
the two input symbols x; and x5 with the same probability p; = ps = 1/2. In channel
1, the input symbol z; is mapped to the output symbol 3, and the input symbol x5 is
mapped to the output symbol yo. This yields the joint probability matrix p;. In channel
2, x1 is mapped to y9, and x5 is mapped to y;, which yields the joint probability matrix
Pa. Since both channels are perfect, the mutual information between the input signal X
and the output signal Y is 1 bit in both cases.

Now assume that we are to receive messages from both channels. If we can distinguish
both channels, i.e., if we know the channel through which the message was sent, then we
can uniquely reconstruct the input signal from the received signal. In this situation, the
mutual information per transmitted signal is exactly 1 bit, i.e.

I(p1) +1(p2)

: =1n2 = 1bit. (10.11)

In a second experiment, we do not have knowledge about the channel through which
the incoming message was sent. Somebody else is receiving the message from either of the
two channels, and we are only told the received bit (y; or yz), but we are not told the
channel from which the signal was received. In this situation, we do not have any clue
about the sent signal. If the received symbol is y, the input signal was 21 with probability
1/2 (transfer through channel 1) and z, with probability 1/2 (transfer through channel
2). If the received symbol is y;, the story is the same. In total, we do not obtain any
information about the sent symbol z; by obtaining y;. Hence, the mutual information
between X and Y is zero, i.e.

1(py) = 0. (10.12)

As we will see in later stages of this work, we usually lose mutual information by
averaging over probability matrices. This implies that we usually overestimate the mutual
information from finite samples. However, these statements are not strict, which we will
illustrate by the following example.

Let us now consider the matrices

P = ( (1) 8 ) (10.13)
P2 = ( g (1) ) : (10.14)

and
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The mutual information between X and Y is exactly zero in both cases. However, by

averaging we obtain

(o)) e

which yields a mutual information of 1 bit.

We can again develop an intuitive understanding of this result by imagining two senders
of binary signals and two perfect channels. This time, sender 1 can only emit the input
signal z1, while sender 2 can only emit the input signal 5. Both channels are perfect and
map z1 to y; and 3 to yz. Each channel alone (coupled to its sender) cannot transmit

any information. Therefore

w _o. (10.16)

In contrast, the mutual information of the average probability distribution p is greater
than zero. Assume again that we (as the receiver) are not told the channel through which
the message was sent. The possible output symbols are y; and y,, both appearing with
probability ¢; = ¢2 = 1/2. The input symbols are 2y and x2, and in our experiment they
are sent with equal probability p; = p, = 1/2.

If we obtain y;, we know that this signal traveled through channel 1. Therefore we
know the input symbol must have been z;. If the output symbol is y3, we know the signal
traveled through channel 1. Then we know the input signal must have been z,. In both
cases we can uniquely reconstruct the input symbol; hence, the mutual information between
X and Y is 1 bit, i.e.

I(p) =In2=1but. (10.17)

What we have illustrated so far is that the mutual information is neither convex nor
concave. There are regions on the simplex of the joint probability distributions p where
the the mutual information [ (p) is locally convex and there are other regions for which the
mutual information is locally concave. In the following we will study how this complicated
convexity pattern influences the direction of the bias of the natural information estimator.

The natural mutual information estimator is defined by

= Z pij - ( bij ) (10.18)
i,j=1 i
where p be the M x M matrix containing the elements p;;,
kij

b= o (10.19)
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be the relative frequency to observe the symbol pair (z;,y;),

ok 1 M M.

be the relative frequency to observe the symbol z; in the input sequence, and

X l; 1Yy M
i=x=% ;k] = ;pzj (10.21)

be the relative frequency to observe the symbol y; in the output sequence.

Now consider an ensemble of observers who estimate the mutual information from a
sample of size N. Let us in our first case assume the theoretical mutual information be
zero, i.e., all joint probabilities p;; factorize according to p;; = p; -¢; forall ¢, 7 =1,2,...M.
However, the estimated values of the mutual information are always greater than (or equal
to) zero. Therefore, the mutual information of a Bernoulli-sequence is always overestimated
by its natural estimator.

This theorem is easy to understand. Due to the finite size N of the sample, most
realizations mimic statistical dependences between the symbols z; and y;. Only those
realization for which (by chance) the observed joint frequencies p;; factorize according to
Pij = pi - ¢; for all 7,7 = 1,2, ..M yield a mutual information equal to zero, while all other
realizations give a mutual information greater than zero. Therefore, the expected mutual
information 1¢"? = FE/(I) is always greater than zero for Bernoulli-sequences.

In the case of weakly correlated sequences, this inequality remains the same. On av-
erage, we systematically overestimate the mutual information in finite sequences. The
intuitive reason for this behavior is that the contribution to the finite size effect of the
joint entropy Hs still dominates over the contribution of the two marginal entropies Hyx
and Hy. However, let us in the following paragraphs analyze an extreme case in which the
natural mutual information estimates are always smaller than the true mutual information
value regardless of the sample size V.

Assume the binary random process given by the joint probability matrix

P %((1) (1)) (10.22)

The theoretical mutual information in X about Y is 1 bit. Let us now study the ensemble of

possible observations if we restrict the sample size to N = 1. The only two outcomes of this

sampling experiment are: observing the pair (z1,y;) with probability 1/2 and: observing
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the pair (22, y2) with probability 1/2. In case 1, the joint frequency matrix p; estimated

P = ( (1) 8 ) , (10.23)

while in case 2, the joint frequency matrix po is

by = ( 00 ) . (10.24)

01

from a sample of size N =1 is

In both cases the estimated mutual information is zero. Therefore, the expected mutual
information I°*? is equal to zero. This result can be generalized to an alphabet of size M
and to arbitrary joint-probability distributions p: the expected mutual information drawn
from a sample of size N = 1 is zero.

Unfortunately, this result is only of pathological interest. Let us therefore study the
change of the expected mutual information with increasing sample size N. In our extreme
example, where the theoretical mutual information assumes its maximum of 1 bit, the
expected mutual information (i.e. the average over the observed mutual information values)
is monotonically increasing with N and asymptotically approaching the theoretical mutual
information from below.

In all other cases (in which the theoretical mutual information does not assume its
maximum), we will observe an interesting crossover effect. For small sample sizes N, the
natural estimator underestimates the mutual information, while for large sample sizes, it
overestimates the theoretical mutual information value. This crossover point lies at large
N when the theoretical mutual information I is large and at small N when I is small. Since
statistical dependences between nucleotides in DNA sequences or between amino acids in
protein sequences are usually weak, we systematically overestimate the mutual information
of most DNA and protein sequences, even if they are as short as, say, 50 nucleotides or
amino acids.

In the next section, we will turn to the magnitude of this systematic error and try to

approximate the bias of the mutual information estimator.

10.2 The Mutual Information Bias

In this section, we will derive a first order approximation of the expected mutual informa-
tion, i.e., we will approximate the expectation value of the mutual information observed in

a sample of size N.
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Since

1(p) = —Hz(p) + H. () + Hy (9 (10.25)

as shown in chapter 3, we obtain

[(#) = —Ha(#) + H,(7) + H, () (10.26)
with I being the mutual information, Hy being the 2-gram Shannon entropy, I, being the
1-symbol Shannon entropy of the transmitter, H, being the 1-symbol Shannon entropy of
the receiver, I, Hy, H,, ﬁy being their natural estimators based on a sample of size IV,
p being the joint probability matrix, p’and ¢ being its corresponding marginal probability
vectors, and Z, &, and i being their corresponding relative frequencies.

Note that we are dealing with two sequences here, between which we want to estimate
the mutual information as a measure of how closely these two sequences are correlated.
Therefore, we distinguish between the two marginal distributions p'and ¢ as well as between
Z and 7. In chapter 11, where we introduce correlation functions, we will specify all of our
results for the case of dealing with correlations between different sites within one sequence,
i.e., for analyzing autocorrelations.

Exploiting eq. (10.26) and our results from chapter 9, we obtain

E(i(#) = —B(H(@)+E(H:7) + B (H,(5) (10.27)
— () + ]\f_Nl +0 (1/N?)
+ H,(p) - ]\24_N1 +0 (1/N?)
and hence, (-1

B (I(#) =1()+ T +0 (1/N?). (10.29)

In the following section, we want to analyze the fluctuations of the observed mutual

information values around their expectation value F (f(i))

10.3 The Mutual Information Variance - Part I

In this section, we will deliver a first order approximation of the mean quadratic deviation

of the observed mutual information values /(%) from their expectation value.
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According to eq. (10.26) and denoting the covariance between two random variables a

and b by C(a,b), we obtain
o2 (I(#)) = o (Ha@)) + 0 (Hy(#)) + o (H,(#))
— 2-C(Hy Hy) —2-C(Hy H)+2-C(H,, H,) (10.30)

for the mean sample variance of the mutual information between two sequences.

Naively assuming ﬁg, ﬁx, and ﬁy be mutually independent yields

o (I(3)) = o (Ha(#)) +0* (H(#)) +0? (H,(#)) (10.31)

1 M
- (Z_pm (pis) H%(p))w(l/zv?)
b (Do w2 + 0 (1)
1 M
+ 5 (Zq] H?@)w(l/m), (10.32)

which, however, is much larger than the mutual information fluctuations we really observe,
e.g., in all three figures displayed in chapter 13.

Remember that we understood in section 9.3 why the fluctuations of the observed
Shannon entropies were about twenty times smaller than naively expected. Now we are
confronted with the strange phenomenon that the real mutual information fluctuations are
again smaller than the already tiny fluctuations of Hy().

The arising question is whether the three occurring Shannon entropies are indeed mu-
tually uncorrelated, i.e., whether the assumption all three covariances vanish is reasonable
or not.

In the following two sections, we will calculate C(ﬁg, ﬁx), C(ﬁg, ﬁy), as well as
C(H,, H,) and show

e that ﬁg and ﬁx as well as ﬁg and ﬁy are highly correlated,
which finally leads to the effect

e that the variance of the mutual information estimates almost vanishes.
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10.4 Correlations between the 2-gram Shannon entropy H,

and its marginal 1-symbol Shannon entropy H,

Let us start in this section with deriving a first order approximation of the covariance
C(Hy, H;) between the 2-gram Shannon entropy Hz and the 1-symbol Shannon entropy
H,.

C(Hy, Hy) = B (Hy - Hy) = E(Hy) - E(H,) =
E ((lié _']12) '(lix _'lfx)) - l;(lié _']12) 'lz(}ji _'lfi) (10'33)

Since the second term

M2 1) (M - 1)
4. N2

E(Hy — Hy) - E(H, — H,) = . +0 (1/N%) (10.34)

is negligible in the order of 1/N, we concentrate on the first term and obtain:

) ) M M
C(Hy,Hy) x F (Z In(p;;) - (zij — pij) - Z In(pg) - (zx — pk)) (10.35)
k=1

7,75=1
M
= Z In(pij) - In(pr) - E ((vij — pig) - (@61 — Prt)) (10.36)
7,7,k [=1
M
pij - (1 —pij
= Z In(p;) - In(p;) - %
7,75=1
% 5 " Pkl
— 3 (=) (=8 - In(py) Inpe) - =5 (10.37)
7,7,k [=1
1 M
= N Z In(pij) - In(pi) - pis
7,75=1
1 M
- N In(pi;) - In(px) - pij - Pt (10.38)
7,7,k [=1
1 M 1
= & 2 P In(py) - In(pe) = - Ha - Hy (10.39)
7,75=1
1 )
= -C(n(p)-In(p) (10.40)

in surprising analogy to eq. (9.55), which relates the variance of the natural Shannon

entropy estimates to the logarithmic variance of their underlying probabilities.
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Analogously, we obtain
P 1
C(Hy, H,) = 5 - C (In(p) - In(@)) + O (1/N?). (10.41)

In other words, the covariance between the observed 2-gram Shannon entropy and one
of its marginal 1-symbol Shannon entropy observed from the same sample of size N is, in
a first order approximation, equal to the covariance between the logarithms of the joint
probabilities p;; and the logarithms of their marginal symbol probabilities p; divided by
N.

Let us eventually derive an approximation for the correlation coefficient r between H;

and Hs, which is defined as the normalized covariance:

r(Hy, Hy) = C(Hy, Hy) (10.42)
Vo (Hy) - o2 (Hy)
Clln(p, p)) (10.43)

Vor(In(p)) - o*(In(p))
= r(In(p), In(p)) (10.44)

This is a really noticeable result, since the right hand side of this equality does not
depend on the sample size V. It states that the correlation coefficient between the natural
estimates of the statistics Hy and H» is independent of the number of sample points and
given by the correlation coefficient between the logarithm of the joint probabilities p;; and
the logarithm of their marginal symbol probabilities p;.

Although this is a clear mathematical result, we are again very far from intuitively un-
derstanding the relation between the sample correlator on the one side and the population

correlator on the other side of the equality.

10.5 Correlations between the two marginal 1-symbol Shan-

non entropy estimates flx and Fly

In this section, we will derive a first order approximation for the covariance C’(IA{I7 Hy)
between the Shannon entropy estimates H, and ﬁy.
Since we again realize that the leading term of the bias is proportional to 1/N for both

estimators, H, and ﬁy, we obtain:

C(H, 1) = E((H,—H,)-(,-1,)
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- E(H,-H,) E(H,- H,) (10.45)

M
x (zln po) - (e = p) Y Infgy) - (e «—qﬂ) (10.46)

j:

—_

= Z In(p) - In(g;) - E ((2i — pi) - (2 — ;) (10.47)

7,75=1
by neglecting all O(1/N?) terms.

If we assume the two considered sequences be independent, we end up with
C(f,, 1,) =0+ 0 (1/N?) (10.48)

as expected.
If we, however, consider the opposite limiting case, namely the two sequences be iden-

tical, which occurs if we are interested in autocorrelations, then we obtain:

C(Hy, ) = /o2 (H) - o*(H,) + 0 (1/N?). (10.49)

In the remainder of this section, we will derive a first order approximation for the general
case where we analyze autocorrelations in a sequence of length N’. Let the correlation
length in which we are interested be k. Then, our sample size reduces to N = N’ —k, since
we do not want to introduce artificial correlations by applying cyclic boundary conditions.
Hence, we count the first and the last k£ symbols in our given sequence once and the
remaining N’ — 2 - k symbols in the middle of the sequence twice, since we count N’ — k
pairs of symbols in total.

How this partially overlapping counting affects the expectation value of correlation
functions is presented in chapter 11.

Here, we exploit the finding
N -2k

E((xi—pi) - (yi —pi)) = m pi - (1 —pi) (10.50)
forall i =1,2,...,M and
E((wi —pi) - (y; — pj)) = —H “Pi D (10.51)

for all ¢, j =1,2,..., M with ¢ # j to obtain

C(H. Hy) = _2 kZln (pi) - pi - (1= py) (10.52)



N -2k
2

N/

M
“In(p;) - In(p;) - pi - p;
7=1

7 2

M
= 72];21112 pz Pi

N -2k &
- mzln pi) - In(pi) - pi - p;
7,75=1

M
— ?_72]; (Zpl Hl)

and thus
C(H,, H,) = % o? (1n(ﬁ))+0(1/zv2).

This result perfectly produces both of our limiting cases, namely
C (i, I1y) = o* (In(5) + O (1/N?)

for k/N" — 0 and
C (i, ) =0+ 0 (1/N?)

for k> N'/2.

10.6 The Mutual Information Variance - Part 11
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(10.53)

(10.54)

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

In section 10.4, we have seen that the observed 2-gram Shannon entropies are highly

correlated with the corresponding 1-symbol Shannon entropy observations.

This is the

reason why the fluctuations of the observed mutual information are by far smaller than

naively expected.

In this section, we will finish the derivation of the mutual information variance observed

from a sample of size NV, i.e., from a sequence of N units where the units might, for example,

be amino acids in proteins or dicodons in the case of DNA sequences.

According to eq. (10.30) and exploiting our results from sections 10.3, 10.4, and 10.5,

we obtain:
o? (I(#))

= o (Hy(#)) +0* (Ho(3)) + 0 (H,(#))
— 2.C(Hy, H,)—2-C(Hy, H))+2-C(H,, H,)

(10.60)
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ot () + o () + o (n(@) (10.61)
— 2 C () ) — - (), (@) + - C (@) (1062)
_ %-02 (In() = In(5)  In(9)) (10.63)

and thus )
o2 (I(#)) = % o2 (ln (%)) +0 (1/N?) (10.64)

for our limiting case k << N.

10.7 Summary of Chapters 9 and 10

Chapters 9 and 10 were entirely devoted to presenting approximations of statistical and
systematic errors that uncircumventably occur by estimating entropies or the mutual in-
formation function from finite samples.

In both sections, we payed much effort to outline the conceptional techniques by which
we analyzed these errors, since these concepts are, in principle, applicable to approximate
statistical and systematic errors of any measure of interest.

The purpose of this summary is now to display the main results, in particular those
that we found new, on two pages.

Let p'= (p1,p2, ..., PMy) and = (q1, ¢z, -.., qm,) be two probability vectors and P the
My x My matrix containing the elements P;; where 7 = 1,2,...Mx and j =1, 2,...My.

Then the negative average logarithms of the probabilities p;, ¢;, and F;; are defined as

the Shannon entropies Hx, Hy, and Hs, respectively.

Hy = —E(n(p)) (10.65)
Hy = —E(n(q) (10.66)
Hy = -8 (n(P)) (10.67)

The natural estimators, Hyx, Hy, and Hy, of these Shannon entropies are defined as
the entropy function applied to the maximum likelihood estimators p;, ¢;, and ]%j of the

corresponding probabilities p;, ¢;, and P;;.

Hy = —E(n(p)) (10.68)
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oy = —E(In(g)) (10.69)
iy = —E(n(Py)) (10.70)

The biases, AHy, AHy, and AH,, of these entropy estimators are given by

. Mx —1

Allx = —;7N (10.71)
. My —1

Ay = —;7N (10.72)
. My - My —1

AH, = —% (10.73)

by neglecting O(1/N?) terms if N denotes the sample size.

In the following, we will present all results in this first order approximation and thus
drop mentioning the higher order terms O(1/N?).

The variances, o2 (ﬁx), o? (ﬁy), and o? (ﬁg), of the corresponding natural entropy
estimators are given by the variances of the logarithms of the corresponding probabilities!

divided by N.

-o* (In (p)) (10.74)
co? (In (q)) (10.75)

o2 (In (P)) (10.76)

e

(i) =

Please note that the left hand side of the above equalities are functions of the sam-
ple, whereas the variances of the logarithms of the probabilities on the right hand side
are functions of the population parameters p;, ¢;, or F;;, respectively, and thus sampling
independent.

The only dependence of the right hand sides on the sample is introduced by the factor
1/N, i.e., by dividing by the sample size.

The covariances C' (ﬁX, Hy), C (ﬁX, ﬁg), and C' (ﬁy, Hz) between the three entropy

estimates Hy, Hy, and [, are given by the covariances between the logarithms of the

!The variance of the entropy estimates is really proportional to the variance of the logarithms of the
corresponding probabilities and not to the variance of the logarithms of the probability estimates. The
interesting story about these equalities i1s that they relate the variance of estimates with the variance of

population parameters.
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corresponding probabilities? divided by N.

¢ (fix, fy) = %-c(m@,ln@) (10.77)
C(fx, i) = %-C(ln(ﬁ),ln (7)) (10.78)
C (fy, i) = %-C(ln(q"),ln (7)) (10.79)

The corresponding correlation coefficients r (ﬁx,ﬁy), r (ﬁx,ﬁg), and r (Hy,ffg)
between the three entropy estimates ﬁX, Hy, and ﬁg, which all are functions of the given
sample, do not depend on the sample size N and are given by the correlation coeflicients

between the logarithms of the corresponding probabilities in a first order approximation.

r(Hx, fy) = r(n(p),n(@) (10.80)
r (ﬁX, Hz) = r (ln (P),1n (]5)) (10.81)
r (ﬁy, Hz) = r (ln (q),1n (]5)) (10.82)

The mutual information I between two random variables X and Y is defined as the

PZH
In (—) 7 (10.83)
Pi- 4

where we copy all denotations from above, i.e.,

PZH
o) sy

The natural estimator I of the mutual information is defined as the mutual informa-

expectation value of the numbers

tion function calculated from the maximum likelihood estimators p;, ¢;, and ]A%j of the

corresponding probabilities p;, ¢;, and P;;.

) 3
i=kF (m (p—q])) (10.85)

The bias AT of this estimator is given by

My —1)- (My 1)

i (
Al =
2-N

(10.86)

?Please note that we could again relate the covariance of estimates to the covariance of population pa-
rameters, i.e., the covariances on the right hand side of the displayed equalities do not mean the covariances

of the logarithmic probability estimates.
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Please note the missing minus sign, i.e., we systematically overestimate the mutual
information whereas we systematically underestimate all Shannon entropies.

The variance of the mutual information estimates as a function of the given sample,

i.e., the variance of the numbers F (ln (;,Dfé )), is equal to the variance of the numbers
idy

In ( Pi; ), the expectation value of which is defined as the mutual information, divided by

o (1) = % e (m (ppq])) (10.87)

Please remember at this point the valuable property that the right hand side of this

the sample size N.

equality vanishes for random numbers X and Y that are statistically independent, which

implies the disappearance of all mutual information fluctuations in the order of 1/N.



Chapter 11

Statistical Properties of Natural
Estimators of Correlation

Functions

Power spectra, random walk studies, or the direct calculation of autocorrelation functions
make up most of the tools commonly used to detect long-range correlations in time se-
ries, natural texts, pieces of music, econometric data, or DNA sequences. However, since
the power spectrum is defined as the Fourier transform of the corresponding correlation
function and the growth of random walk fluctuations corresponds to an integrated autocor-
relation function [Stanley 1994], we will concentrate on statistical properties of correlation
function estimators from finite samples in this chapter.

In analogy to our previous chapters 9 and 10, we will analyze the bias of the natural
covariance estimator C’Z](k) and the variance of its estimates.

The covariance C'(z,y) between two numerical random variables z and y is defined by

M M M
Cr,y) = Zwi'yj'P(%yj)—Zwi'P(%)'Z:yj'Q(yj) (11.1)

1,5=1

= E(e-y) - E@) EG)=E((— E@)) (y— EW).  (112)

if the state space is discrete and M-dimensional for both variables x and .
Since we are interested in measuring correlations between symbols within one sequence,
we will specify this definition in the following and introduce the dependence of the covari-

ance on the integer number k denoting the correlation length.
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Let a; be the real numbers we assigned to the symbols A; where ¢+ = 1,2,..., M and
M be the alphabet size, e.g., M = 20 in amino acid sequences or M = 45 = 4096 if we
consider dicodons in DNA or RNA sequences.

By formally identifying the position n in our sequence with the time ¢ in a time series

a(t), we can easily introduce the correlation function
Ca(k)=E(a(n)-aln+k)) — E(a(n)) - E(a(n+k)) (11.3)

where the average is taken over all positions n, and k is the size of the gap between the
two multiplied numbers.

The subscript @ is to remember that we originally want to analyze correlations within
a symbolic sequence and just chose the projection vector @ = (ay,az,...,ap) to assign
numbers to symbols in order to define a correlation function.

The deeper sense is that correlation functions are not invariant under coordinate trans-
forms, i.e., if we change the assignment of numbers to symbols, we may (and in general
do) obtain a different correlation function.

Before we are ready to rewrite eq. (11.3), we have to introduce the probabilities p;
to find the symbol A; at any position in our given sequence as well as the probabilities
P;;(k) to find the symbol pair (A4;, 4;) in a distance k. Note that P;;(k = 1) reflects the
probability to find the two adjacent symbols A; and A; at any position in our considered
sequence.

If we now replace the sum over the entire sequence by the sum over all possible combi-

nations of two symbols multiplied by their corresponding probabilities to occur, we obtain:
Ca(k)y=a-D(k)-a’ (11.4)

by defining D(k) as the M x M matrix containing the elements
Dis(k) = Py () = pi - py- (11.5)

The elements D;;(k) are often referred to as correlation functions between the symbols
A; and Aj;, but in order not to mismatch C; (k) and Cz(k), we denote the C;;(k) correlation
functions by D;;(k) and call the matrix D(k) dependence matriz.

Since all correlation functions Cz(k) are bilinear forms of the dependence matrix, we
can easily derive all statistical properties of the Cz(k) estimator, if we know the statistical

behavior of the D;;(k) estimator.
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Let us thus define the natural estimator D;;(k) of the matrix element D;;(k) by

Dyj(k) = Pij(k) = pi - B (11.6)
where ]%j(k), Pi, and p; are the maximum likelihood estimators the probabilities P;; (k),
pi, and p;, respectively.

Please note that we introduce some finite size effects by identifying the estimates p;
and p;: since we always deal with finite sequences, the possible difference between the
frequency composition of the first and the last k£ symbols is not negligible.

Hence, we prefer to distinguish between the probability p; to observe the symbol A;
‘on the left hand side’” and the probability ¢; to observe the symbol A; ‘on the right hand
side” although we know p; = ¢; in all stationary sequences.

We will see that this distinction is essential for understanding that the bias of the
natural lA)”(k) estimator does not only depend on the sample size N, but also on the
correlation distance k.

In the following section, we will derive an exact analytic expression for the expectation
value of the D;;(k) estimates and show that autocorrelations are always underestimated
whereas crosscorrelations are always overestimated.

Section 11.2 is then devoted to deriving a first order approximation of the D;(k)

variance.

11.1 The Correlation Function Bias

In this section, we will derive an exact analytic expression for the expectation value of
the natural correlation function estimates D;; (k) and show that the corresponding natural
estimators are always biased for & < N’/2 where N’ denotes the sequence length.

Let P;;(k), pi, and ¢; be the probabilities defined in the previous section. Then the
expectation value — strictly speaking, the expectation function — of the natural correlation

function estimates is given by
B (Diy(k)) = B (Py(k) = F (5; - ) - (11.7)
If we denote the number of symbol pairs we are counting by

N=N—k (11.8)
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for k < N, we obtain

B (Py(k)) = Py (k) (11.9)
and
. N—-2-k
E(pi-G)—pi- g = m-pi-(l—%) (11.10)
forall i = 1,2, ..., M as well as
L N -2k
E(Pi'(]j)_l)z"(]j:—m‘])z"q]‘ (11.11)

forall o,j =1,2,..., M and 7 # j.

Let us start the proof with denoting the absolute frequency by which we find the symbol
pair (A;, A;) in our sequence of length N’ by N;;(k). Then the absolute frequency N/ of
observing the symbol A4; on the left hand side is given by

M
N{ =" Ni(k) (11.12)
j=1
and the frequency of the symbol A; that we find on the right hand side is
M
NI =" Ni(k) (11.13)
=1

Since we count N’ — 2 -k symbols twice, Nil and N7 are not independent. It is exactly
this dependence that introduces the bias of the correlation function.

To get a handle of this bias, let us decompose the frequencies Nil and N7 into the
frequencies N? and N]Q of the symbols that we have counted twice and the frequencies
Nil_o and N;_O corresponding to the first and last & symbols in our sequence.

The following sketch might illustrate these definitions.

ACCTGTATACGGGTTATCCATACTGGTCTGGE (11.14)
—— N——’
N.l—O NO N.T_O

The length of this given DNA sequence is N/ = 30 bp. Let us assume we are interested
in the correlation function between the nucleotides A and G and want to estimate its value
for k = 4. Then, N = N’ — k = 26, i.e., we have to count 26 symbol pairs, and therefore,
we will count N’ — 2 -k = 22 symbols twice.

Hence, NA_O =1, Ny =5 N2 =6, and Ng;_o = 2 in our example.
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Now we see:

E(NLND) = BN ND) (VT4 D) (11.15)
= E(NFONT0) 4 B (N0 ND)
+ E(NY-N70) + B (NS NY) (11.16)
= K pi-gi+k- (N =2-k)-pi-gj
+ (N =2-k) kpiog+ (N =2-k)2 p; - g
+ (N'=2-k)-Qi (11.17)
with
Qi = —pi - q; (11.18)

for all o,j =1,2,..., M with ¢ # j and

Qi =pi- (1 —q) (11.19)

for all ¢ = 1,2, ..., M, which proves eqgs. (11.10) and (11.11).
Hence, we can state that the natural correlation function estimator is biased for all

P;; (k) where its bias is given by

> N -2k
') (Dn(k)) - D“(k) = —m - (1 — qi) (11.20)
forall i =1,2,...,M and
- N' —2-k
E (Du‘(k)) — Dij(k) = g P (11.21)

for all o, =1,2,..., M with ¢ # j.
In other words, all diagonal terms of any given auto-covariance matrix are systemati-

cally underestimated whereas all non-diagonal terms are systematically overestimated.

11.2 The Variance of the Natural Correlation Function Es-
timates
In this section, we will derive a first order approximation for the variance of the correlation

functions D;; (k). We will learn that, in contrast to the mutual information variance, these

fluctuations do not vanish as the P;; approach p; - ¢;. This qualitative difference will give
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rise to some important conclusions about the preferable measure of statistical dependences
when DNA sequences (which are known to exhibit only weak 2-point-correlations) are to
be analyzed.

In the following, we will restrict ourselves to the limiting case k << N’ and drop the k
dependence for the sake of simplicity.

Let us now start deriving the sample variance of the natural correlation function esti-

mates by defining

AP; = P;—F; (11.22)
Api = pi—pi (11.23)
Ag = G —q (11.24)
for all 7,7 = 1,2, ..., M, which denote the deviations between the relative frequencies ob-
served in a sample of size N and their corresponding probabilities.
The squared correlation estimate fluctuations can be rewritten as
. . 2 .
o*(Dij) = B (Dij—Dy) —E*(Dy - Dy) (11.25)
. o 2 5
= E(Pj-Py— (i i —piq5) +0 (1N, (11.26)
since the squared bias
A 1
B (Dij - Dyj) 7 @ (11.27)
is zero in the order of 1/N.
This yields
o’ (ﬁij) o E(APj—pi-Agi—q; - Api — Api - Agj)’
B (AP~ 2-pi- APy Agj—2-q;- APy - Ap;)
+ B (pF- A% 2 piogi - Api Mgy +qF - Api) (11.28)
where the symbol o means that we neglect all terms in the order of 1/N?2.
From appendix I and by some simple arithmetics we obtain:
1
2p.. - . PP
B(A%p;) = 5P (1= Py) (11.29)
1
2. — (1=
B (&%) = S opi-(L-p) (11.30)
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1
E(Aij) = 5 % (1-g) (11.31)
E(AP;-Ap) = Y E(AP;-APy)+ E(AP; - APy)
-y
1 1
= Z_N‘Bj‘ljik+ﬁ‘ljij‘(1_lji‘)
ki
1
= —.P.-(1-p 11.32
N (1-pi) (11.32)
1
E(AR;-Ag) = b (1-g) (11.33)
E(Api-Ag) = Y E(APy-Aqj) + E(AP; - Agj)
-y
= Y S E(APy-APy) + E(AP; - Ag))
k£j 1
S1D 3) DRIV IRy R R
k£j 1
1 1
= Y Pt Py (L)
= N N
1 1
= 5 (Bi—pi-g) =5 Dy (11.34)

We derived eq. (11.33) in complete analogy to eq. (11.32), and we used eq. (11.33) to derive
eq. (11.34). Note that eq. (11.33) is similar to the equations we obtained for the variance
of the entropy and mutual information estimates in chapters 9 and 10: the covariance
between the estimates of the probabilities p; and ¢; is equal to the covariance between the
symbols A; and A; divided by the sample size N. This implies that the covariance between
the estimates of the probabilities p; and ¢; vanishes in the order of 1/N if the symbols A;
and A; are un-correlated, i.e., if D;; =0 for all 4,57 =1,2,...M.
By summing up all terms in eq. (11.28) we obtain
o’ (f%‘) x %'(B"(l—f%)—Q'sz'Pz"(l—%‘)—Q'Pij'%"(l—l%')
+ opleg (U= q) + ) pi (L= p) +2pi g5 - (Dyy). (11.35)
By eliminating F;; in favor of D;; and after some algebra we can express this result for

the variance of the correlation function estimates as follows:

D (1=2-p;) - (1 =2-q;) — Dyj)

picqi-(L=pi) - (1—q) (11.36)

zl==z~
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forall 7,7 =1,2,..., M.
For Bernoulli sequences, i.e. sequences for which D;; = 0 for all ¢, =1,2,..., M, this

result simplifies to

o (D) = 5w g (1= 0 - (1= ) + O (1/N?) (11.37)
forall 7,7 =1,2,..., M.

In contrast to the fluctuations of the mutual information function, which vanish in the
order of 1/N if the corresponding random variables approach statistical independence, the

fluctuations of the correlation functions remain in the order of 1/4/N even in the case of

statistical independence.

11.3 Summary

In this chapter we investigated statistical properties, specifically the bias and the variance,
of the natural estimator of correlation functions. We derived an exact analytic expression
of the correlation bias, and thus we could show that correlation functions are always biased
for k < N/2. We derived a first-order approximation of the correlation variance, which
will turn out to be of practical importance in later chapters, in which we will estimate

correlation functions from experimental data sets, such as DNA and amino acid sequences.



Chapter 12

Statistical Properties of Natural
Estimators of Generalized

Entropies

12.1 The Generalized Entropy Bias

This chapter is devoted to asymptotic length corrections of the entropy bias of I?q and I?;
As shown by numerical simulations in sections 4 and 5, though the variance is significantly
small both Bayes estimators produce biased entropy estimates. It is a general feature that
many estimators, in particular those minimizing the variance, share this property of being
biased. Consequently, the systematic deviation of the expectation value of the estimated
entropies from the true entropy value, namely the bias, has to be calculated and taken into

account in order to correct the bias of the observed estimates. Explicitly,

M
— A 1 1 5
Ay = EH,(N) = Hy (P) = 57— (Zﬁpf) (12.1)
q =1
defines the bias of the estimator I?q Here by E we denote the expectation value with re-
spect to the multinomial distribution: E(-) = N ZNM)P(N|@()5(Z£1 N;—N). Clearly,

an unbiased statistic satisfies A(-) = 0.
The problem encountered in deriving the bias of entropy estimators is that it is dif-
ficult to obtain a closed form expression. However, in this case one may still obtain an

approximation to the exact bias, for example, by expanding a power-series around the true

159
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values of E and applying E to each individual term within this series. The underlying
idea exploits the fact that any probability distribution can, in principle, be extensively
described by all of its moments. For the Bayes estimators derived in this work, this applies
to ¢ = n,n > 1. Expanding the exact entropy bias as a series in terms of (1/N)d with
d=1,2,..., we arrive at a d = 1 approximation by Taylor-expanding the entropies in
powers of (fi —p;)™, m € N, and truncating this series after the quadratic term.

As principles of this technique have been discussed in detail, e.g. in [Harris 1975,
Holste 1997], we will not elaborate on this in further detail here, but only present the final
results of the O(1/N) approximation of the entropy bias for the case ¢ = 2. Since

APl ey = [2@Npi+1) = 2N + M) Mp?| / (N + M)? (12.2)

we obtain the entropy bias of the order-2 Tsallis entropy as

Al = - L GNEM)2 _QMZQ) (12.3)
In 2 (N + M)

(note: the approximation is exact for the case ¢ = 2). In order to obtain order-2 Tsallis

entropy estimates that are unbiased in O(1/N), we define the estimator

B g,y LGN M2 - MZ) (12.4)
In 2 (N + M)

For the Bayes estimator of the Rényi entropy it is more difficult to calculate the entropy
bias. Given equidistributed states, we find that Elog(-) ~ log E(-) holds, and thus we can

get an approximation to the bias of E, which reads as:

AKy = - log,

N2+2(2N+M)/Zz] N 0( 1 ) (12.5)

And hence, in analogy to equation (12.4), we obtain Rényi entropy estimates I/(\'Q(l) that
are unbiased in O(1/N). For non-Bernoullian distributions fluctuations increase, which
render the above approximation to be, in general, no longer reliable. In this case, unbiased
estimates of Ky (in the order of O(1/N)) may be obtained by a transformation of the
unbiased Tsallis entropy H\Q(l).

According to the correction terms, c.f. expressions (12.3) and (12.5), the systematic
error depends on the individual probability components p; as well as the cardinality of

the alphabet M. Since the simulation performed in this investigation are not aimed at

a detailed analysis of finite-size effects but rather a study of the variances of the Bayes
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entropy estimator versus the frequency-count estimator, we insert the theoretical values of
p; in the above correction terms, i.e., we set p; = p;. In any attempt to estimate these
quantities from a sample of data points, it is crucial to the entropy bias by which method
we estimate the unknown variables p; (see, e.g., [Schmitt et al. 1993]). A study of the
quantification of the order-g entropy bias, using asymptotic length corrections, deserves

further investigations and will be undertaken in forthcoming work.



Part D



Chapter 13

Long-Range Correlations in DNA

Sequences and the Pseudo-Exon

Model

In this chapter we study the mutual information function introduced in chapter 3 as well as
correlation functions to DNA sequences. We find long-range period-3 oscillations of both
the mutual information function and several autocorrelation functions in genomic DNA of
yeast. We hypothesize that these triplet periodicities are caused by the nonuniformity of
the codon frequency distribution in coding DNA, and we test this hypothesis by a simple
stochastic model, which we term pseudo-exzon model. The pseudo-exon model concatenates
codons that are drawn statistically independently from a given (nonuniform) probability
distribution. We show that this simple model is sufficient to reproduce (even quantitatively)
the period-3 oscillations observed in the mutual information function and autocorrelation

functions of genomic DNA from yeast.

13.1 Introduction

As pointed out in chapter 4, six autocorrelation functions and three crosscorrelation func-
tions are required to detect all statistical dependences in quaternary sequences. We
emphasize that the mutual information function may serve as a natural and conve-
nient alternative or supplement to correlation functions [Ebeling et al. 1987, Herzel 1988,

Herzel et al. 1994a, Herzel et al. 1995]. With the aid of mutual information, a pronounced
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period three has been found at distances of more than 1000 base pairs in [Herzel et al. 1995].
Traditionally, long-range correlations are quantified by a power-law decay of the auto-

correlation functions

C(k) o k7, (13.1)

the intimately related 1/ f-spectra, or by anomalous diffusion. (These tools are reviewed
in [Stanley et al. 1994].) For DNA sequences, long-range correlations are relatively weak
[Herzel et al. 1994a], and therefore, we expand the mutual information in terms of our

D;;(k) that measure the deviations from statistical independence:

pij(k) = pi - pj + Dij(k). (13.2)

With the normalization (7), we obtain from a Taylor expansion

A 2

1k = ; LQ JZZ:I ZJ(’Z +O(D}). (13.3)

The linear terms vanish, since I (k) exhibits a minimum at D;;(k) = 0. Therefore, absolute

values of the mutual information are often very small compared to autocorrelation functions

[Herzel et al. 1994a]. In order to interpret these small values, a careful analysis of statistical
and systematic errors is required [Herzel et al. 1994a].

Autocorrelation functions are just bilinear forms of the matrix D (k) according to eq. (4),

and consequently, a power-law (60) together with eq. (62) implies
I(k) oc k™27, (13.4)

Hence, long-range correlations can easily be quantified by the mutual information as
well. Moreover, mutual information functions have been used to calculate symbolic spec-
tra, and an integrated version of I(k) has been studied [Herzel et al. 1995] in analogy to
random walk studies, which are directly related to integrated autocorrelation functions
[Peng et al. 1992].

Long-range power-law correlations in DNA sequences have been found in introns and
intergenic regions, which do not code for proteins [Peng et al. 1992, Stanley et al. 1994].
Their interpretation in terms of biological structure and function is, however, still debated

[Herzel et al. 1995, Stanley et al. 1994, Li et al. 1994, Grosberg 1993].
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13.2 Nonuniform Codon Usage

In the remainder of this chapter, we focus on the role of a nonuniform codon usage in
exons and demonstrate that, in sequences with long protein-coding segments (e.g., in yeast
DNA), the resulting periodicity plays a significant role.

Let us recall some well-known facts about the genetic code [Lewin 1997,
Watson et al. 1992, Berg & Singer 1992, Kolchanov & Lim 1994]: 61 codons (3-symbol-
words) of the possible 64 encode 20 different amino acids whereas the remaining 3 are used

as stop codons. For several reasons, the codon distribution is very nonuniform in exons

(e.g. p(CGA)=0.4% and p(CTG)=3.3% according to [Staden 1984]):

e The number of triplets coding for an amino acid is different. (For instance, Tryp-
tophan is coded only by TGG whereas Leucine, Serine, and Arginine are coded by

even six codons.)
e There are specific amino acid compositions for proteins.

e For any amino acid, a preference for certain codons with respect to others exists.
(These preferences are assumed to be related to the availability of t-RNAs and cor-

relate with the expression rate of genes.)

The different codon usage in exons and introns is widely exploited to detect protein-
coding segments in unknown DNA [Fickett 1982, Staden 1984, Lapedes et al. 1990,
Uberbacher & Mural 1991, Fickett & Tung 1992]. In the following we discuss the implica-

tions of a specific codon usage on correlation measures.

13.3 Positional Nucleotide Frequencies

A nonuniform codon usage introduces in general peculiarities of the base composition at
different positions in the reading frame. For example, the nucleotide G is more frequent at
position 1 (referring to the first symbol of codons) than at position 2 according to the tables
in [Staden 1984]. In order to demonstrate the effect of the reading frame on autocorrela-
tions and mutual information, we start with a representative table of relative frequencies

of A, C, G, and T in the three positions of the frame.
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position 1 position 2 position 3

A 0.326 0.337 0.335
C 0.179 0.217 0.164
G 0.262 0.100 0.171
T 0.233 0.346 0.330

These relative frequencies are obtained from a 6324 base pair long exon of the yeast
chromosome III [Oliver et al. 1992]. Obviously, there is only a week dependence of A on
the position, but a significant one of G and T. In the following the frequency of the ¢-th
nucleotide at the [-th position is denoted by pgl). The overall probability of symbol ¢ follows
directly by averaging over the three positions
4 4 plY

3

s (i=1..4). (13.5)

13.4 Pseudo-exon model

In order to estimate the effect of a nonuniform codon usage on correlation measures, we
make the simplifying assumption that subsequent codons are statistically independent.
This allows the direct calculation of the joint probabilities p;;(k) from tables as shown
above. For k > 3, the corresponding probabilities factorize due to our assumption of
independence. First we consider £k = 3,6,9, ..., i.e., the two symbols are in the same

position within the frame:

(1),.(1) (2),.(2) (3),.(3)
v, p; +p s+
pij(k) = — > L. (13.6)

For k= 4,7,10, ... we obtain

(1),.(2) (2),.(3) (3),.(1)
v, p; +p P+
pii (k) = J 3] | (13.7)

and distances k = 5,8, 11, ... lead to

(1, 3) L (2), (1) (3) (2)
N R S P 2
pij(k) = / 31 I, (13.8)
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Inspection of the last two expressions reveals that
pii(k=4,7,...) = p;i(k=5,8,...). (13.9)

Consequently, the values of the mutual information at these positions are identical. Hence,
the mutual information function exhibits a rather specific feature: It oscillates between the
two values I(3) = 1(6) = 1(9) = ... and I(4) = I(5) = I(7) = [(8) = I(10) = ... . Such a
period three of probabilities p;; (k) [Fickett 1982] and of the mutual information has indeed
been observed in DNA sequences [Ebeling et al. 1987, Herzel et al. 1995]. It follows from
eqs. (64)-(68) that

Dij(k)+ Dij(k+1)+ D;j(k+2)=0 (13.10)

for all ¢ and j and for all & > 3. Consequently, the sum over three consecutive values
of any correlation function vanishes, if the distance k is longer than or equal to three,
i.e., correlation and anticorrelation counterbalance each other within one period of three
nucleotides. This is relevant for random walk studies [Peng et al. 1992, Stanley et al. 1994],

which are related to integrated correlation functions.

13.5 Analysis of Yeast DNA

From the table given above, we obtain
I(k=3,6,..)=79-107" (13.11)

and

I(k=4,57,8,.)=29-10"" (13.12)

Figure 13.5 shows results of a Monte-Carlo simulation of a pseudo-exon generated by
concatenating independent codons. This is a Bernoulli-like process with 61 non-vanishing
probabilities corresponding to the relative frequencies of codons in the exon chosen to
generate the above table.

The graphs clearly demonstrate the expected periodicity of the GG-correlation function,
the small amplitude of the “non-biological” AC-GT-function, and the predicted feature of
the mutual information (high-low-low). The GG-autocorrelation function demonstrates
eq. (69): the sum over three consecutive k vanishes for £ > 3. Due to finite sample effects,
there are random fluctuations around the analytical values given in eqs. (70) and (71) (cf.

Appendix 1I).
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Figure 13.1: Two autocorrelation functions and the mutual information for a pseudo-
exon without codon-codon-interactions. We chose the 6324 base pair long exon starting
at position 278851 on chromosome III of the yeast Saccharomyces cerevisiae to derive
a representative codon usage table for yeast DNA. Then, we generated a 300000 base
pair long pseudo-exon by a random concatenation of 100000 codons according to this
table. The GG-autocorrelation function (upper graph) exposes a very strong periodicity,
since the probability to find the nucleotide G varies tremendously with its position in the
reading frame. The “non-biological” AC-GT-autocorrelation (middle graph) reveals only a
faint periodicity due to the fact that the corresponding probabilities are almost uniformly
distributed over the three possible positions in the frame. The pronounced periodicity
exhibited by the mutual information corresponds exactly to the predicted behavior. Note
that, despite the absolute values of the mutual information are really tiny, the differences
between the maxima at k = 3,6, ... and the minima at k = 4,5,7,8, ... are by far higher

than random fluctuations.
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13.6 Discussion

A nonuniform codon usage implies (even for independent codons) a persistent oscillation
of the joint probabilities p;;(k), and hence, of the correlation functions and the mutual
information. These oscillations can be used to design algorithms that discriminate coding
from noncoding sequences. A widely used technique considers the maximal and minimal
frequencies of A, C, G, and T in all three frames [Fickett 1982]. We emphasize that the

mutual information has some striking advantages compared to traditional methods:
e It detects any deviation from statistical independence.
o It takes into account all 16 joint probabilities.

e Due to the above properties of I(k), a single number can be chosen for classification:

the difference between I(k) for k = 3,6,9, ... and the remaining values.

e The statistical properties (bias, variance) of entropy-estimators have been extensively

studied (see Appendix II).

However, as shown below, correlation functions usually oscillate with larger amplitudes
than the mutual information function.

The period-three oscillations induced by the reading frame have consequences for the
interpretation of long-range correlations. Strictly speaking, DNA sequences are not sta-
tionary within exons since the probabilities p; depend on the position in the reading frame
(comparable to seasonal periodicities in climatic data). For distances much longer than
exons they should vanish, but protein-coding segments may extend over thousands of base
pairs, a distance which is typically analyzed in the context of long-range correlations
[Stanley et al. 1994, Li et al. 1994]. However, there are also other sources of long-range
correlations since they have been found in introns as well [Peng et al. 1992].

Finally, we exemplify that the theoretical results mentioned above are indeed rele-
vant for DNA sequences. For this purpose we present correlation functions and mu-
tual information derived from the complete DNA sequence of the yeast chromosome 111
[Oliver et al. 1992].

Figure 13.6 demonstrates that the shape of the mutual information and autocorrelation
functions of real DNA sequences is dominated by period-3-oscillations. As pointed out in

this section and illustrated in Figure 13.5, these oscillations are due to a nonuniform codon
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usage. We realize that the high specificity of autocorrelation functions and their dependence
on the chosen projection is not only of theoretical interest but also of practical importance

for analyzing biological sequences.

yeast chromosome Il
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Figure 13.2: Correlations of the 315338 base pair long DNA sequence of the yeast Sac-

mutual information AC-GT-autocorrelations GG-autocorrelations

charomyces cerevisiae chromosome 111 for distances k between 1 and 100 base pairs. The
dominating triplet-periodicity that is induced by the nonuniform codon usage in yeast can
easily be observed. The comparison of the upper two graphs reveals that the A4+C content
is indeed a poor indicator for a nonuniform codon usage. The mutual information function
displays its typical high-low-low-pattern, which can be exploited to discriminate exons from

introns. Note that the peak at k& = 3 reveals correlations between neighboring codons in

yeast DNA.

Figure 13.6 also reveals the interesting finding that the AC-GT-autocorrelation func-
tion (middle graph) shows a much weaker performance than, for instance, the GG-
autocorrelation function (upper graph), which is biologically interpretable. The predicted
periodicity of the mutual information function (high-low-low) is strikingly confirmed by
the lower graph (cf. Figure 1). In addition to those features of autocorrelations and the
mutual information function that are caused by a nonuniform codon usage, we can easily

observe further biological correlations. The high I(3)-value indicates, for example, existing
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correlations between adjacent codons in yeast DNA.
The decay of the envelopes of the mutual information and the autocorrelation func-
tions indicate biologically relevant correlations that, however, diminish with an increasing

distance k.
By increasing the correlation length k, we realize that all of the features discussed

above stay persistent up to distances of about 1000 base pairs. Figure 3 illustrates that the

oscillation behavior typical for exo%ﬁg‘feéfﬁsdﬁfélgc?ﬁ?‘é”ﬁwle at these length scales.
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Figure 13.3: Correlations of the complete DNA sequence of yeast chromosome III for

distances k between 900 and 1000 base pairs. The GG-autocorrelation function as well as
the mutual information maintain their dominating period-3-oscillations up to 1000 base
pairs. Remember that the reduced amplitudes are due to the small number of exons longer

than 1000 base pairs.

However, the absolute values of the mutual information derived from the DNA of yeast
chromosome III are by far lower than the theoretical values calculated in eqs. (70) and
(71). This can easily be understood if one takes into account that there are only a few
exons on the considered chromosome which are longer than 1000 base pairs. Hence, only a
small percentage of all coding regions contribute to the explained periodicity of the mutual

information function for these distances.
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Both, Figure 2 and Figure 3 clearly demonstrate that the nonuniform codon usage in
coding regions yields the main contribution to correlations in yeast DNA, since its induced

period-3-oscillations are the dominating pattern on almost all length scales.

13.7 Summary

We derived that a power-law decay of autocorrelation functions corresponds to a power-law
decay of the mutual information, where the exponent § in the mutual information function
is twice the exponent « of the autocorrelation functions.

We studied the mutual information function of protein-coding sequences, which are
characterized by specific codon usage tables. We showed that these tables allow the an-
alytical calculation of correlation measures under the assumption of independent codons.
We confirmed the predicted triplet-peak structure by direct analyses of yeast DNA. We
found that the nonuniform codon usage induces persistent oscillations up to scales of the

maximum exon length, which extends over thousands of base pairs.



Chapter 14

Correlations in DNA Sequences —
the Role of Protein Coding

Segments

In this chapter we propose one possible explanation for the recent observation of long-range
correlations in genomic DNA sequences. Protein coding segments (exons) exhibit persistent
correlations between their nucleotides with a pronounced period three. We show that this
periodicity, which is induced by the nonuniform codon usage, implies long-range correlation
over hundreds of base pairs if the length distribution of exons is taken into account. We
derive analytic expressions which relate the length distribution of exons to the correlation
decay, and we find agreement with numerical simulations. Finally, we analyze the decay of
the mutual information function in yeast chromosomes, in an E. coli chromosome region,
and in myosin heavy chain genes as representative examples. It turns out that in these

cases we can explain most of the long-range statistical dependences even quantitatively.

14.1 Introduction

The statistical analysis of DNA sequences is of importance for understanding the struc-
ture and function of genomes [Gatlin 1972, Trifonov & Brendel 1986, von Heijne 1987,
Bell & Marr 1990, Watson et al. 1992, Yockey 1992, Kolchanov & Lim 1994, Lewin 1997].
Statistical dependences between nucleotides have been analyzed for decades in various

contexts [Shepherd 1981, Fickett 1982, Ebeling et al. 1987, Herzel 1988, Trifonov 1989,
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Fickett et al. 1992, Grosse 1999]. Among physicists the detection of long-range correlations
has attracted much attention during the past years [Li & Kaneko 1992, Peng et al. 1992,
Voss 1992, Borstnik et al. 1993, Herzel et al. 1994a, Arneodo 1995, Herzel & Grosse 1995,
Herzel et al. 1995]. Using mutual information functions [Li & Kaneko 1992,
Herzel et al. 1994a, Herzel et al. 1995], autocorrelation functions [Borstnik et al. 1993,
Herzel & Grosse 1995], spectra [Voss 1992, Chechetkin & Turygin 1994], and random walk
analyses [Peng et al. 1992, Dreismann & Larhammer 1993, Stanley et al. 1994], correla-
tions ranging from a few base pairs (bp) up to 10* bp have been analyzed. However,
the biological interpretation of most of these findings remains still speculative.

From a molecular biological point of view, long-range correlations are not surprising
since the complex organization
of genomes involves many different scales. In fact, large variations in base composition
on scales of thousands of base pairs have been discussed extensively in the literature (see,
e.g., [Elton 1974, Bernardi et al. 1985, Korenberg & Rykowski 1988, Bernardi et al. 1985,
lkemura et al. 1990, Fickett et al. 1992, Karlin & Brendel 1993]). For example, Elton
[Elton 1974] reviews experimental data showing that DNA fragments up to 10* bp have
rather large variances of the G+C content. He points out that these variations cannot be ex-
plained by short-correlated fluctuations. In this way, long-range correlations have been in-
dicated already decades ago. Explicit examples of pronounced fluctuations of the G+C con-
tent together with the gene distribution with an approximate period of 10°> bp were provided
by the recent sequencing of yeast chromosomes [Feldmann et al. 1994, Dujon et al. 1994].

It has been pointed out by several authors that the mosaic structure of genomes is pre-
sumably responsible for long-range correlations [Herzel et al. 1994a, Bernardi et al. 1985,
Karlin & Brendel 1993]. Indeed, the organization of the genome is very complex: eu-
karyotic genes usually consist of several protein coding segments (exons) interrupted by
intervening sequences (introns). Moreover, there are regulatory elements such as promot-
ers, splice sites, enhancers, and silencers, which are sometimes up to thousands of base
pairs away from exons. Genomes of higher eukaryotes also comprise long stretches of DNA
without any obvious biological function containing, e.g., pseudo genes and various types of
repeats [Lewin 1997, Herzel et al. 1995, Herzel et al. 1994b)].

There are several models of DNA where a segmentational structure is postulated
[Elton 1974, Fickett et al. 1992, Churchill 1989, Buldyrev et al. 1993, Li et al. 1994]. El-

ton discusses, for example, the variance of the G+C content for a model with constant and
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exponentially distributed fragments [Elton 1974], and Buldyrev et al. study a Lévy-walk
model [Buldyrev et al. 1993]. However, hypothetical length distributions of fragments have
to be postulated in these papers.

Contrarily, we will show in this chapter that already the well-known length distribution
of exons generates long-ranging correlations. As a first step we demonstrate in section III
that a nonuniform codon usage in protein coding segments induces persistent period-three
oscillations. In that section we introduce a model by which we generate artificial DNA
sequences called pseudo-exons—a concatenation of statistically independent codons chosen
randomly from a given codon usage probability table. In sections IV and V, we emphasize
the central role of the length distribution of exons. We derive analytic expressions which
relate the exon length distribution to the correlation decay and show that these analytic
results are in perfect agreement with numerical simulations. In section VI, we apply these
theoretical considerations to several DNA sequences (yeast chromosomes, E. coli DNA, and
a myosin heavy chain gene).

We show that correlations on scales of hundreds of base pairs can be simulated even
quantitatively by taking into account solely the non-uniformity of the codon usage and the
length distribution of exons. In this way we relate well known biological facts to observed

long-range correlations between nucleotides.

14.2 Correlation measures

DNA sequences can be viewed as symbolic strings composed of the four “letters”
(A1, Az, Az, Ay) = (A,C,G,T) referring to the nucleotides adenine, cytosine, guanine,
and thymine. The probability to find the nucleotide A; is denoted by p; (i = 1,2,3,4).
Pair correlations within sequences can be measured by the joint probabilities p;;(k) to find
the symbol A; and k letters downstream the symbol A;. Then, statistical independence
of symbols in a distance k is defined by p;;(k) = p; - p;, which leads to the mutual in-
formation function I(k) [Yockey 1992, Herzel 1988, Herzel & Grosse 1995, Kullback 1959,
Herzel & Ebeling 1985, Li 1990] as a measure of statistical dependence:

1) = 3 w0 tog, 220 (14.1)

ig=1 vy

By choosing the logarithm to base 2, I(k) is measured in bit and gives the information

on the letter A; knowing the letter A;. The mutual information I(k) vanishes if, and
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only if, statistical independence holds, i.e., if all 16 joint probabilities p;;(k) factorize.
Consequently, the mutual information allows to detect any pair correlation.

More specific indicators of dependences are correlation functions. Their definition re-
quires an assignment of numbers a; to the corresponding symbols A;. Assuming ergodicity
and stationarity, the usual estimation of autocorrelation functions via averages over the

sequence

C'(k) = (a(n) a(n + k)) = (a(n)) (a(n + k) (14.2)

can be written in terms of the probabilities defined above:

Clk) = (Z_: Pz’j(k)'ai'ay‘)—(zpiai)(zpy‘%)
= D (pij(k) = pi-pj) - i - ;. (14.3)

=1
By definition, correlation functions measure only linear dependences. However, for quater-
nary sequences such as DNA, six properly chosen autocorrelation functions and three cross-
correlation functions can guarantee the statistical independence between all nucleotide-
pairs [Herzel & Grosse 1995].

Long-range correlations are often characterized by power-laws
C(k) o< k7. (14.4)

Such a scaling behavior can also be analyzed by using power-spectra or the random walk
approach with related scaling exponents [Stanley et al. 1994]. A power-law (4) implies also

a power-law decay of the mutual information function:
I(k) o k=27, (14.5)
This can be easily derived using a Taylor expansion in terms of
Dij(k) = pij (k) = pi - pj, (14.6)

which measure deviations from statistical independence. Since (k) has a minimum at

D;; =0, the sum over all linear terms vanishes, and we obtain

I(k) = L3~ Dyl
2-11122,7],:1 Di - P

+0(D3)). (14.7)
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In the Appendix we use this relation to discuss finite sample effects. Equation 7 illustrates
that the mutual information I(k) accumulates all pair correlations in a distance k. For
DNA sequences, the above 2nd order approximation is extremely close to the actual mutual
information because of the weakness of correlations (see, e.g., Figure 1). Since correlation
functions can be written as quadratic forms of the dependence matriz D;; (cf. Eq. (3) and

(6)), a scaling exponent v of correlation functions leads to an exponent 2v for the mutual

information.
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Figure 14.1: Mutual information function of the yeast chromosome XI (666,448 bp). The
periodicity due to the triplet code is visible even for distances above 1000 bp. The dashed
line marks the bias according to Eq.(8).

In this chapter we study mainly the decay of the mutual information function as

an overall measure of statistical dependences. In contrast to entropies of long “words”
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[Herzel et al. 1994a, Herzel et al. 1994b] the statistical and systematic errors of the mu-
tual information are relatively small since only 16 probabilities have to be estimated from
samples of thousands of nucleotides. For example, the bias of the mutual information for
a sample of size N has been calculated [Herzel 1988, Herzel & Grosse 1995] to be

9

Al =N

(14.8)

which is marked in some figures by a dashed line. Though this bias is small, it becomes
relevant for very weak correlations. Therefore, we discuss finite sample effects in some

detail in an Appendix.
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Figure 14.2: Period-three oscillations of the mutual information for a chromosome region

of Escherichia coli (strain K-12, 111,401 bp).
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Figure 14.3: Mutual information function of the HUMBMYH7 gene (20,855 bp from the
first to the last exon). The mean exon length is about 150 bp which is the characteristic

length of the decay of the pronounced period-three oscillations.
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14.3 Effects of a Nonuniform Codon Usage

Analyses of DNA sequences revealed that their correlation functions often exhibit
strong period-three components, which are induced by the genetic code [Shepherd 1981,
Fickett 1982, Ebeling et al. 1987, Chechetkin & Turygin 1994, Luo & Li 1991]. Figures 1-
3 exemplify these periodicities for yeast chromosome XI, an E. coli chromosome region,
and a myosin heavy chain gene.

In protein coding segments, 61 of the possible 64 codons (3-symbol-words) encode 20
different amino acids whereas the remaining 3 are used as stop codons. It has been discussed
[Bernardi et al. 1985, Ikemura 1981, Staden 1984, Sharp & Li 1987] that these codons are

used with quite different frequencies for several reasons:
e There are specific amino acid compositions for proteins.
e The number of triplets encoding an amino acid is different.
e For any amino acid, a preference of certain codons over others exists.

e The G+C content of the third codon position is correlated to the G4+C content of
the surrounding DNA region [Dujon et al. 1994].

In general, a nonuniform codon usage causes the concentration of each nucleotide to
be different in all three positions of the reading frame. As we will show in the following,
it is exactly this position asymmetry of all 4 nucleotides that introduces the pronounced
period-three pattern of correlation functions as well as the mutual information function.

In order to quantify the effect of a nonuniform codon usage on correlation measures,
we introduce a stochastic model that randomly concatenates subsequent codons. In the
following, we term the model sequences of independent codons chosen from a given codon
usage table pseudo-exon. As we will see, these pseudo-exons, which consist of statistically
independent codons, display periodic long-range correlations between their nucleotides.
Our next task is to analytically calculate the strength of these correlations, which was
shown to be a prominent long-range correlation pattern of real DNA (cf. Figures 1-3).

Let us start with the calculation of the mutual information of an infinitely long pseudo-
exon generated by such a Bernoulli-like process on the level of codons.

We denote the frequency of the i-th nucleotide at the m-th position by p(m) (m=1,2,3).

i
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The overall probability of symbol ¢ follows directly by averaging over the three positions

OO NINC)
p= 0 +p§ +P (i=1..4). (14.9)

The following table displays the 12 frequencies p(m)7 which are obtained from the

5805 bp of the protein coding segments from the intensively studied [Grosse 1999,
Buldyrev et al. 1993] human beta-myosin heavy chain (HUMBMYH7Y) gene.

position 1 position 2 position 3
A 0.296 0.437 0.079
C 0.248 0.184 0.343
G 0.351 0.123 0.471
T 0.105 0.256 0.107

The joint probabilities p;;(k) can be obtained directly from tables as shown above. For
k > 3, the corresponding probabilities factorize due to our assumption of independence.

First we consider k = 3,6,9, ..., i.e., the two symbols of the pair are in the same position

within the frame: 1) (1) (2) (2) (3) (3)
o 4+ 4 py py
Pij (k) = P p] & 3p] & p] . (1410)

For k= 4,7,10, ... we obtain

(1), 4 &,0) L 6) (1)
pigll) = L TR 3])] TR (14.11)

and distances k = 5,8, 11, ... lead to

(1)) L @) 1 3)(2)

Inspection of the last two expressions reveals that p;;(k = 4,7,...) = p;;(k = 5,8,...).
Consequently, the values of the mutual information at these positions are identical. The

above expressions allow us to calculate the in-frame mutual information
L, =1(k=3,6,9,..) (14.13)
and the out-of-frame mutual information

Ly =I(k=4,57,8,10,11,...). (14.14)
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Figure 14.4: Dashed line: Mutual information of a concatenation of all 40 exons (5,805
bp) of the HUMBMYHT gene (compare Figure 3). Full line: Corresponding pseudo-exon
(5,805 bp) generated from the codon usage table of the HUMBMYH7 gene.
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For example, the table given above yields

L, = 0.0247,
L = 0.0083.

The corresponding high-low-low pattern is indeed obvious in the examples graphed in
Figures 1-4. Figure 4 displays the period-three oscillations of a pseudo-exon that is indeed
quite similar to the mutual information of the corresponding exons.

In summary, for a single protein coding segment, a given codon usage table allows us
to analytically calculate the resulting period-three oscillations. However, genomes contain
many exons, introns, and intergenic sequences. Moreover, protein coding segments are
found in all three reading frames and on both DNA strands. Therefore, we are not surprised
by the fact that the mutual information function plotted in Figures 1-3 are decaying and
thus deviate from a purely repeated high-low-low pattern.

The next section is devoted to the role of the length distribution of exons, which indeed
strongly affects the decay properties of correlation measures. Taking into account these
length distributions, we can generalize the pseudo-exon model to stochastic models of genes

and even of whole chromosomes termed pseudo-chromosomes.

14.4 Length Distribution of Exons

(%)

We have discussed in the preceding section that the joint probabilities p;;” calculated within
an exon reflect the nonuniform codon usage. Since long stretches of DNA include many
different exons, only a fraction of pairs A; and A; are located on the same exon. More
precisely, an exon of length [ contains [ — k pairs contributing to the codon usage induced
periodicity. Consequently, the length distribution p(/) of exons in a given DNA will be
considered in this section.

We define p(l) as the probability distribution that an exon has a length /. In the next
section we discuss, for instance, a fixed length [ = L, exponential, and power-law distri-
butions p(l). Figure 5 shows a histogram of the lengths of exons for yeast chromosomes.
It can be seen that there are rather long protein coding segments. Regression reveals that
the empirical distribution can be approximated by an exponential decay (full line) and by

a power-law (dashed line) as well. Hence we discuss both cases in some detail.

For the sake of simplicity, we assume below that all exons are characterized by a single
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Figure 14.5: Histogram of open reading frames (ORF’s) longer than 500 bp from the yeast
chromosomes 11, I1X, and XI. Regression by an exponential function and a power-law decay

are indicated by full and dashed lines, respectively.
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codon usage table. This is, of course, a strong assumption since it is known that the codon
usage depends, e.g., on the degree of gene expression [lkemura 1981, Sharp & Li 1987].
However, Sharp and Li claim that “within species the differences are largely in the degree
rather than the direction of codon usage bias” [Sharp & Li 1987]. If whole chromosomes are
analyzed, one has to take into account that genes are located on both strands. Therefore we
use in our simulations of pseudo-chromosomes (see section VI) also complementary codon
usage tables.

As discussed in the preceding section the nonuniform codon usage leads to specific

statistical dependences within exons. These are quantified below by the dependence matrix
D" (k) = pii " (k) — pi*" - 5= (14.15)

In the following we denote the total fraction of protein coding sequences in a given
DNA sequence by F. For the yeast chromosomes we have, for example, F' ~ 0.7
[Feldmann et al. 1994]. The task is now to estimate the correlation decay for a given
sequence length N, fraction of coding segments I, and probability distribution p({).

The mean exon length is given by
1= 1-p(l). (14.16)
l

For yeast DNA, where genes exhibit only a few introns, the mean exon length is about 1400
bp. The typical length scale of human exons is a few hundred base pairs. However, there
are also exons with a length of several thousand base pairs (e.g. exon 11 of the BCRA1
gene comprises 3426 bp).
The expectation value n of the number of exons in a sequence of length N and an exon
fraction F' is
F-N

= (14.17)

Consequently, the average number of exons with a length [ is given by

__ PN -p()
n(l)=pl) 1= ———. 14.18
(1) = o) -5 = s (14.18)
Since we focus in this chapter on correlations due to the nonuniform codon usage, we
neglect statistical dependences of pairs A; and A; which are not within the same exon.

This implies, for example, that the base composition in exons and introns is considered to

be the same. Generalizations of this simplified approach are discussed in the final section.
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Since every exon contributes [ — k pairs, we obtain the number Z(k) of pairs which are

located in the same exon:

lma:r

Z(ky= > (I—k)n(l). (14.19)

I=k+1
Here, overlaps of protein coding segments have been neglected. The total number of
pairs in a distance k is N — k, and hence, the overall deviations D;;(k) from statistical

independence are given by
_ Z(k)
 N-—k

This result can now explain the decay of correlation functions and the mutual infor-

Di; (k) - DEF (k). (14.20)

mation function, since both measures can be obtained from the decay of the D;;(k) (cf.
Eqs.(3)-(7)). It can be seen that beside the internal period-3 oscillations described by
Dgro (k) we obtain a k-dependent pre-factor related via Z(k) to the exon length distri-
bution. Since we are primarily interested in the long-ranging correlations, we focus in the
following on the envelope

-k

E(k) o ~— "0 (14.21)
l

This formula is a central result of this chapter. It elucidates the immediate effect of the
length distribution of exons on the decay properties of correlation measures, which we will

exemplify in the following section.

14.5 Models of Length Distributions

Now we illustrate the considerations of the preceding section for 3 representative probability
distributions p(l), namely a uniform, an exponential, and a power-law distribution.

We analytically derive the corresponding decay laws and test the predictions using
pseudo-genes'. These consist of interspersed pseudo-exons within a random sea, i.e., sta-
tistically independent letters with the same base composition as the pseudo-exons. The
length of each exon is chosen randomly from the distribution p(/) under consideration. In
all simulations in this section we have chosen the codon usage table of the HUMBMYH7

gene studied in section I1I. Details of the simulations are described in the figure captions.

"We use this terminus in analogy to pseudo-ezonsand pseudo-chromosomesfor corresponding stochastic

model sequences. It should not be confused with knocked out genes which are termed pseudo genes as well.
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Figure 14.6: Mutual information of a 10¢ bp long random sequence. Within a “random

sea” of independent letters A, C, G, and T, 1000 pseudo-exons of a length 600 bp have

been interspersed. For small k, we observe the expected period-three oscillations between

F2I;, and F*1,, (see Eqs. (7) and (20)). Please note that Eq. (24) predicts exactly the

parabolic decay between k£ = 0 and k& = 600.
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As a first model we discuss a fixed length of all protein coding segments [ = L,
p(l) = dir.. (14.22)

This yields
F-N
n=n(L) = — (14.23)

For k < L we obtain essentially a linear decay of the envelope F'(k):

F-N L—-k L—k

E(k)

The k-dependence of the denominator can be neglected for N > L. The resulting linear

decay of D;;(k) implies a quadratic decay of the mutual information function (cf. Eq. (7)).
Such a parabola is seen in Figure 6 for a pseudo-gene with constant exon length.

Of course, it is more realistic to assume an exponentially decaying length distribution

(compare Figure 5). As above in Eq. (24), we neglect the k-dependence of the denominator.

For the sake of simplicity, we further replace the summation in Eq. (21) by an integration

from k to infinity. Then an exponential length distribution
p(l) = X exp (=Al) (14.25)
gives an exponential decay of the envelope:
E(k) < F -\ /:o(z — k) -p(l) dl = F exp (). (14.26)

Figure 7 displays the results for a corresponding simulation of a pseudo-gene.
As a last example we consider a power-law decay from a lower cut-off length L,,;, with

an exponent 5 > 2:
p()=(B-1) LI 177 for 1> Ly, (14.27)

and zero otherwise. The mean value of the length is then given by

51

[ =—— L. 14.28
o (14.28)
After integration we obtain a power-law decay of the envelope for &k > L,,,:
F .52
E(k) a1 k2P, (14.29)

The log-log presentation of the mutual information in Figure 8 indicates indeed a power-law

for a simulation of a corresponding pseudo-gene.
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Figure 14.7: Mutual information of a 10® bp long sequence containing 1000 pseudo-exons
with exponentially distributed lengths (mean value 600 bp). The logarithmic vertical scale

reveals the predicted exponential decay.
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Figure 14.8: Mutual information of a 7-10° bp long sequence with 7000 pseudo-exons. The

parameters of the exon length distribution are L,,;, = 150 and § = %.
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These examples show how the length distribution of exons affects the decay of corre-
lations, which are due the nonuniform codon usage. In the next section we show that our
considerations apply to DNA sequences and that a considerable amount of observed cor-
relations can be predicted just by knowing codon usage tables and the length distribution

of exons.

14.6 Applications to DNA Sequences

In this section we apply our concept to representative DNA sequences. It was already
demonstrated in Figure 1 that the periodicity due to the nonuniform codon usage plays a
significant role in yeast DNA. This is due to large fraction of coding sequences (F' = 0.7)
and rather long exons (compare Figure 5). In order to quantify the effect of exons on cor-
relations we generate pseudo-chromosomes as follows: codon usage tables are taken from
long yeast genes as a basis for the simulation of pseudo-exons (see section IlI). In order
to simulate strand symmetry, 50 % of the pseudo-exons are generated with the comple-
mentary codon usage table. The empirical histogram from the corresponding chromosome
is taken as length distribution for the interspersed pseudo-exons. In between the pseudo-
exons Bernoulli sequences with the same base composition are inserted. In this way a
stochastic model of a chromosome is defined which incorporates only well-known features
— the nonuniform codon usage and the alternation of coding segments and intervening
sequences.

Figure 9 reveals that the decay for the pseudo-chromosomes is quite similar to the
actual decay for the yeast chromosomes. Only for small k& additional correlations can be
seen which are discussed in the final section.

Similar agreement was also found for codon usage tables from other protein coding
segments and for some strand asymmetry.

Significant long-range correlations in the yeast chromosome 111 up to several kilo base
pairs have been reported by Munson et al. [Munson 1992]. The existence of such corre-
lations is indeed corroborated by our mutual information analysis. However, they exist
also in a pseudo-chromosome (see Figure 9), and hence, the length distribution of exons is
sufficient to explain these correlations.

In the same way as for the yeast chromosome, we generated a stochastic model of a DNA

region of E. coli (see Figure 2). Figure 10 shows a comparison of the mutual information
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Figure 14.9: Decay of the mutual information function for yeast chromosomes (thin lines)
and the corresponding pseudo-chromosomes (thick lines). In order to reduce the strong
fluctuations (compare Figure 1) and to focus on the decay we have applied a 99 bp run-
ning average. Upper graph: Chromosome III. The codon usage table was taken from the
temperature-sensitive lethal TSM1 protein (4,221 bp). Lower graph: Chromosome XI,
table from the ORF which encodes dynein (12,276 bp).
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Figure 14.10: Mutual information decay for the E. coli chromosome region (thin line) and
a corresponding pseudo-region with the same length distribution of pseudo-exons. The
codon usage table was taken from the isoleucil-tRNA ligase (2,811 bp). As in Figure 9 a

99 bp running average was applied.

Finally, we discuss the correlation decay in the myosin heavy chain gene M74000 of
Brugia malayi. We have chosen this gene since the 15 exons constitute about 68 % of the
total gene. Consequently, the correlations due to the exons and their length distribution are
more pronounced then in genes with only a few percent of exons.? The codon usage-table

and empirical length distribution of the analyzed gene are taken to generate a pseudo-

2In fact, the decay for the human myosin heavy chain depicted in Figure 3 is also strongly influenced by

correlations within its introns.
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gene as described in section V. Since there are fairly long exons in this gene, Figure 11
displays the expected long tail of the envelope. Quite similar correlations are found in
the corresponding pseudo-gene (thick line) pointing to the fact that most correlations are
solely due to the length distribution of exons.

It turns out that for such relatively short DNA sequences a careful calculation of the

bias (dashed line in Figure 11) is necessary for a correct interpretation of the decay.
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Figure 14.11: Comparison of the smoothed mutual information (99 bp running average)
of Brugia malayi myosin heavy chain gene (8,600 bp from the first to the last exon) and a
corresponding random sequence with the same exon length distribution and codon usage.
Since the sample size decreases with the distance there is a clear increase of the bias (see

also the Appendix).
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14.7 Summary and Discussion

This chapter was devoted to relate a significant part of observed long-range correlations
to the pattern of protein coding segments. We have shown that the triplet code induces
via a nonuniform codon usage persistent oscillations of correlation measures. By taking
into account the length distributions of exons, a long-ranging decay of the mutual infor-
mation function and correlation functions could be predicted. For example, a power-law
distribution of the exon length implies a power-law decay of correlation measures.

Pseudo-chromosomes based on the empirical length distribution in yeast chromosomes
exhibit a quite similar decay of correlations and, therefore, most of the correlations in
yeast DNA could be traced back to a simple origin. Our considerations apply to all parts
of genomes where coding segments constitute a significant portion of the DNA such as
bacteria or retroviruses. This was exemplified for a DNA region of E. coli and for a myosin
heavy chain gene with a large fraction of exons.

Typically, in higher eukaryotes only a few percent of the DNA are protein coding
regions. Consequently, observed long-range correlation in DNA as the human S3-globin
region [Peng et al. 1992] or in genes with very long introns [Li & Kaneko 1992] cannot be
explained simply by the nonuniform codon usage within exons. Moreover, the well-known
compositional variations along chromosomes on scales above 10°> bp [Bernardi et al. 1985,
Feldmann et al. 1994, Dujon et al. 1994] are beyond the scope of our analysis.

Our concept is however more generally applicable. It can be formulated as follows:
e look for fragments of differing statistical properties,

e analyze its length distribution,

e define appropriate (stochastic) pseudo-sequences,

e analyze their correlation decay,

e compare it with the empirical mutual information.

Related stochastic models of the DNA heterogeneity have a long tradition [Elton 1974,
Fickett et al. 1992, Herzel et al. 1994b, Buldyrev et al. 1993], but these models are based
on hypothetical length distributions of fragments. Contrarily, our approach simply exploits

the well-known length distribution of exons.
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Figure 14.12: Mutual information of yeast chromosomes I1I (full line), IX (dashed line), XI
(dotted line) for short distances. In order to eliminate the dominating period-three oscilla-
tions, we apply a running average over 3 bp. The comparison with a pseudo-chromosome

(thick line) reveals additional correlations (in particular a 10-11 bp period).
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As a first step of a more general approach, Schmitt et al. [Schmitt et al. 1996] recently
studied length distributions of over-represented “words” termed modules. We suggest to
analyze also length distributions of—for example—isochores [Bernardi 1989], gene clusters,
dispersed repeats, simple-sequence DNA, or CpG islands. If one takes into account different
compositions of exons and introns, the length distribution of introns comes into play as
well. We expect that stochastic models which include the actual length distributions of
all these segments can relate most observed long-range correlations to known biological
structures.

Though we have quantitatively explained the origin of long-range correlations in
mostly protein coding sequences, many questions remain open. For example, correla-
tions within introns and intergenic sequences were not the subject of this chapter. More-
over, we have seen in Figure 9 additional correlations in yeast DNA for small distances,
which cannot be explained by our pseudo-exon concept. Figure 12 displays an exam-
ple of such a peak structure with a periodicity of about 10 bp. These peaks may re-
flect the pitch of DNA, i.e., a 10.5 bp periodicity that has been found in curved DNA
[Trifonov & Sussman 1980, Konopka & Smythers 1987] and DNA folded into nucleosomes
[loshikhes et al. 1992]. Additionally, the well-known 3-4 amino acid periodicities in a-
helical proteins [Herzel 1988, Kanehisa & Tsong 1980, White 1994, Schmitt et al. 1997] are
a possible source of the observed peak structure.

In summary, we have shown in this chapter that the length distribution of exons in real
DNA induces long-range correlations which can be described by appropriate stochastic
models. We stress, finally, that beyond these correlations other DNA base-pair fluctua-
tions exist on various scales [Trifonov 1989, Li & Kaneko 1992, Peng et al. 1992, Voss 1992,
Bernardi 1989, Dujon et al. 1994]. Their role for the chromosome organization and gene

expression has still to be explored.



Chapter 15

Interpreting Correlations in DNA

and Protein Sequences

Understanding the complex organization of genomes as well as predicting the location of
genes and the possible structure of the gene products are some of the most important prob-
lems in current molecular biology. Many statistical techniques are used to address these
issues. A central role among them play correlation functions. In this chapter we study the
decay of the entire 4 X 4 dimensional covariance matrix of DNA sequences. We apply this
covariance analysis to human chromosomal regions, yeast DNA, and bacterial genomes,
and we interpret the three most pronounced statistical features — long-range correlations, a
period 3, and a period 10-11 — using known biological facts about the structure of genomes.
For example, we relate the slowly decaying long-range G4C correlations to dispersed re-
peats and CpG islands. We show quantitatively that the 3-base-pair-periodicity is caused
to a significant degree by the nonuniformity of the codon usage in protein coding segments.
We also show that periodicities of 10-11 base-pairs in yeast DNA may possibly originate
from an alternation of hydrophobic and hydrophilic amino acids in their corresponding

protein sequences.

15.1 Introduction

Correlation functions of DNA and protein sequences have been widely studied in order to
understand the complex organization of genomes. Many correlation measures, such as bi-

nary correlation functions [Trifonov & Sussman 1980, Shepherd et al. 1981], power spectra
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[Voss 1992], random walk variances [Peng et al. 1992], or the mutual information function
[Ebeling et al. 1987, Li & Kaneko 1992] have been employed to address these questions.

Correlation functions of DNA sequences (as well as power spectra or the intimately re-
lated random walk approaches [Stanley et al. 1994]) are based on the assignment of num-
bers to the nucleotides A, C, G, and T. Analyzing only single mappings of numbers to
symbols limits the utility of those approaches. In particular, it can be shown that even
the infinite set of all possible autocorrelation functions of a given quaternary sequence
cannot measure all statistical dependences between the four symbols A, C, G, and T. As
pointed out in [Herzel & Grosse 1995], it is necessary to analyze at least three crosscorre-
lation functions in addition to at least six autocorrelation functions, in order to gather all
information about statistical dependences in quaternary sequences. Therefore, we study
the full spectrum of 16 elementary correlation functions and emphasize in this chapter
that the comparison of different correlation functions can give insight into the biological
meaning of observed correlations.

First, we discuss long-range correlations in long human DNA sequences. It turns out
that the correlation decay depends strongly on the parameters of the chosen correlation
function.

For the interpretation of observed periodicities of 10-11 base-pairs (bp), a comparison
of different correlation functions points to their biological origin: an alternation of hy-
drophobic and hydrophilic amino acids, which induces specific periodicities in correlation

functions.

15.2 Symbols and Definitions

Correlation functions of numerical time series {#,} are defined by

Coa(k) = (@exor) = (To)(Topr), (15.1)

where (...) denotes the time average over the entire sequence {z;}. In case of analyzing
symbolic sequences, e.g. if z, € {A, C, G, T}, it is necessary to map those symbols {z,}
to numbers {y;}, before these numbers {y,} can then be multiplied. In the following, we
will denote these symbol-to-number-assignments by the vectors @ = (a, ¢, g,t) or l;, where
a stands for the real number mapped to nucleotide A, etc.

In our figures we present, for example, adenine (A) autocorrelation functions C44 (k)

with @ = b = (1,0,0,0), crosscorrelation functions Car(k) with @ = (1,0,0,0) and b=
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(0,0,0,1), autocorrelation functions of the weakly binding nucleotides (A and T) Cww
with @=b = (1,0,0,1), or purine autocorrelation functions Crp with @ = b= (1,0,1,0).

In order to express the autocorrelation function of a given sequence {z,} and a given
mapping @ = b in terms of the statistical dependences between all 4 x 4 pairs of nucleotides,
let us denote the probability of a nucleotide to occur in the sequence {z,} by p; (i =
1,2, 3,4) and the pair probability to find nucleotide ¢ at a certain position and the nucleotide
J exactly k nucleotides downstream by p;; (k) (4,7 = 1,2,3,4).

Then, the statistical dependences between all nucleotides can be quantified by the
4 x 4 numbers D;;(k) = p;;(k) — pip;, which form the so called “dependence matrix”
[Herzel & Grosse 1995].

Using these notations, any correlation function C.z(k) can be expressed as a bilinear

form of the dependence matrix, i.e. [Weiss & Herzel 1997]

4 4

Caplk) = Y aibjpij(k) — (Z: aiPi)(Z: bip;) = Y aibiDij(k). (15.2)

i,j=1 =1
Another measure of pair correlations, which has the mathematical property to map all
statistical dependences onto a single number, is the mutual information [Kullback 1959].
Here we define the mutual information function as the amount of information (in bit)
that one obtains about a hidden nucleotide by getting to know the nucleotide k& positions

upstream. In mathematical terms, the mutual information function I(k) is defined by

(15.3)

This function vanishes if and only if all D;;(k) are equal to zero. Therefore, I(k) = 0
implies the statistical independence of all nucleotides in all distances k.

By Taylor expanding the mutual information function I(k) as a function of the joint
probabilities p;;(k) about the points of statistical independence p; - p;, we can establish an
analytic relation between I (k) and the covariance functions D;;(k):

4 2
1= 53 X T

7]:1

+ 0Dy (k)?) (15.4)

Since statistical dependences are usually extremely weak in biosequences, the
O(D;;(k)?) terms can be neglected. This means that the mutual information function

is approximately equal to the weighed sum over the squares of all 16 covariances.
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15.3 Long-range correlations in human DNA

This section is devoted to the analysis of correlations in two long chromosome regions:
HSFLNG6PD (219,447 bp) — a chromosome X region — and HUMTCRB (684,973 bp) — the
human T-cell receptor beta locus. We exemplify, that different “alphabets”, i.e. different
assignments of numbers to nucleotides, lead to quite different correlation functions in single
sequences. A particular feature, the slow decay of the G+C correlations is related to well-
known biological structures.

Earlier studies of chromosome regions (e. g. [Peng et al. 1992, Peng et al. 1994]) using

the random walk approach provided indications of a power law decay:
CRR(k) ~ k7 (15.5)

In [Peng et al. 1992], autocorrelations corresponding to our notation @ = b= (1,0,1,0)
have been analyzed. Since the random walk exponent « [Peng et al. 1992] is intimately
related to v via

v =2-2aq, (15.6)
we can directly compare their observations with correlation patterns of Crr(k).

Consequently, values of o = 0.61 (human T-cell receptor alpha/delta locus
[Peng et al. 1994]) or o« = 0.71 (human beta-globin region [Peng et al. 1992]) correspond
to v = 0.78 or v = 0.58 respectively. According to Eq. (15.4) one expects the mutual
information to have a power-law exponent of 2v, since (k) is in a good approximation
the sum of squared correlation functions. The upper curve in Figure 1, however, reveals
that the mutual information function decays relatively slowly (corresponding to v = 0.35).
In order to understand which correlations govern the decay of the mutual information,
we analyze all 16 auto- and crosscorrelations. It turns out that their decay differs dras-
tically. In Figure 1 two representative examples are shown: In accordance with earlier
studies [Peng et al. 1992, Peng et al. 1994] the correlation function C'rr decays relatively
fast (v & 0.66), whereas Cyw decays slowly (v & 0.29). Similarly, the T-cell receptor beta
locus exhibits a wide range of exponents for different entries of the covariance matrix, such
as v & 0.49 for Cyww, v = 0.70 for Crg, and v = 0.48 for I (k). Obviously, the decay of
the mutual information is dominated by the slow decay of Cyw, i. e. autocorrelations of
the A+T or — equivalently — the G+C content.

The observed slow decay of the G+C correlations quantifies various earlier indica-

tions of long-ranging variations of the G4C content in DNA sequences [Elton 1974,
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Bernardi et al. 1985, Fickett et al. 1992, Bettecken et al. 1992]. There are many well-

known sources of G+C variations in human DNA:
e difference in G4C content in coding and noncoding regions [Fickett 1982]
e Alu repeats (G4C rich, up to 300 bp long [Korenberg & Rykowski 1988])
e L1 repeats (G+C poor, up to 6400 bp long [Korenberg & Rykowski 1988])
e CpG islands (typically 500-2000 bp long [Clay et al. 1995])

The length distribution of these structures and their clustering in isochores
[Bernardi et al. 1985, Korenberg & Rykowski 1988, Tkemura et al. 1990] induce long-
ranging fluctuations of the G4+C content. Using the documentation of the chromosome
regions studied, we can discuss these features more specifically: The G+C rich chromo-
some X region from which Figure 1 is derived contains more than 300 Alu repeats and 17
CpG islands with a mean length of about 1000 bp. These regions can easily explain the

slow decay of the Cyyw correlation function.

15.4 Periodicities in yeast and bacterial DNA

In the following we will show that the comparison of different correlation functions is
also helpful to understand short-range periodicities of DNA sequences. It is well known
that correlation functions of coding segments exhibit pronounced period-three oscilla-
tions [Trifonov & Sussman 1980, Shepherd et al. 1981]. This is a simple consequence of
the nonuniform frame dependent nucleotide probabilities, which in turn is caused by the
nonuniform codon usage. In particular, there is typically an excess of guanine (G) in the
position 1 of the reading frame [Staden 1984] which leads to strong period-3-oscillations
of the GG-autocorrelation (compare Figure 2). If the open reading frame is not inter-
rupted by introns the period-three oscillations may extend over thousands of base-pairs
[Herzel & Grosse 1995]. The decay of the envelope can be calculated from the length
distribution of coding segments. It was shown in [Herzel & Grosse 1997] that long-range
correlations in yeast DNA can be explained by the long tail in the exon length distribution.

In addition to the period 3, an oscillation of the mutual information with a pe-
riod of 10-11 base pairs has recently been detected in several yeast chromosomes

[Herzel & Grosse 1997]. These periodicities become visible in Figure 2 after applying 3
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bp running averages leading to the thick lines. It turns out that the 10-11 bp periodicity is
strong in Cy4 (or Crr) autocorrelation functions but weak in the Cgg (or Coc) functions.
Moreover, the crosscorrelation function C 47 exhibits a phase shift of half a period. We
will discuss these features in the next section in connection with protein sequences.

Since the autocorrelation function of weak the nucleotides A and T can be written as
Cww =Casa+Crr+Car+Cra (15.7)

one expects particularly strong oscillations for Cyw. Indeed, we find a rather strong
periodicity in bacterial sequences, which is illustrated by Fig 3.

In [Herzel & Grosse 1997] possible explanations for the observed 10-11 bp periodicities
have been proposed: DNA bending [Trifonov & Sussman 1980] or nucleosomal signals (see
[Marini et al. 1982, loshikhes et al. 1996] for details) or periodicities of the correspond-
ing protein sequences [Weiss & Herzel 1997, Kanehisa & Tsong 1980, Schmitt et al. 1997,
Zhurkin 1981]. If the nucleosomal pattern would be the major source of the 10-11 base-pair
oscillation, they should be detectable in noncoding DNA as well. Since we find no pro-
nounced peaks 10,11 or 21 bp in introns or human chromosome regions (compare Figure
1), we now test the hypothesis [Zhurkin 1981] that the observed periodicities are induced

by correlations in protein sequences.

15.5 Correlations in protein sequences

Proteins are composed of 20 amino acids. Therefore, correlations can be characterized
by a dependence matrix D;;(k) with 20 X 20 entries. After taking into account normal-
ization constraints for the elements D;;(k), still 19 x 19 of those D;; can be independent
[Herzel & Grosse 1995].

Consequently, there is a lot of freedom in the choice of the assignment vectors @ and
l;, and correlations depend strongly on the chosen vectors @ and b. If @ and b contain
only zeros and ones, any vector can be considered as a classification of the 20 amino acids
into two groups. In [Weiss & Herzel 1997] correlation functions of 107 classifications have
been studied. It turned out that the strongest correlation signals are associated with two
groups of amino acids: L, I, V, F', M (mostly hydrophobic and non-polar) and E, K, D, R,
Q (hydrophilic and polar). In Figure 4 the corresponding auto- and crosscorrelations are

shown for a global set of 2912 proteins [White 1994].
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Averaging over many protein sequences reduces statistical fluctuations and reveals rep-
resentative correlation patterns. It can be seen in Figure 4 that there are significant auto-
correlations at 3 and 4 residues. This means that hydrophobic (and -likewise— hydrophilic)
amino acids have a preferred distance of 3-4 amino acids. The peak of the crosscorrelation
at k = 2 indicates that there is a tendency of L, I, V, I, M to alternate with E, K, D, R, Q.
These patterns are related to a-helices - a frequent secondary structure element of folded
proteins [Schmitt et al. 1997]. A typical a-helix has a helical repeat of about 3.6 residues
[Creighton 1993]. If the helix would have, say, hydrophobic residues preferentially on one
side, the corresponding protein sequence would have a 3.6 residue periodicity corresponding
to a 10.8 nucleotides in the associated DNA sequence.

The genetic code is strongly degenerated, since 64 triplets of nucleotides are mapped
onto stop signals plus 20 amino acids. For example, leucine is encoded by 6 different codons.
It is therefore not evident that the relatively weak correlations of protein sequences can
induce significant periodicities in the corresponding DNA sequences. It turns out that the
middle letter of the codons is closely related to the biochemical properties of the amino
acid. More specifically, all five amino acids L, I, V, I, and M have at that position a T and
E, K, D, and Q posses an A in the middle of all their codons. Consequently, a distance of
3 hydrophobic (or hydrophilic) amino acids implies an occurrence of an TT (or AA) pair
in a distance of k¥ = 9 nucleotides. Note that there is indeed a peak at £ = 9 in C'44 in
Figure 1. Moreover, an alternation of hydrophobic and hydrophilic amino acids implies a
phase shifted oscillation of C'47 as in Figure 1.

In order to test the hypothesis that the observed periodicities in DNA sequences (see
Figures 2, 3) are caused by the correlations in the amino acid sequences of the expressed
proteins, we design the following experiment: We start with the global set of 2912 protein
sequences, and translate the amino acid sequences back to pseudo-DNA sequences by using
a uniform codon usage, i. e. codons are selected randomly with equal probability for each
codon. In this way we guarantee that no additional correlation (e. g. another overlapping
code in the third position) is introduced. Therefore, the resulting periodicities will be a
consequence of the correlations in the protein sequences only.

The resulting Figure 5 resembles clearly the periodicities shown in Figure 2. The strong
period-three oscillations of C'gg, the 10-11 bp periodicities of C'44 and C'47 , and even the
phase shift of C'44 and C'47 (that we observed in real DNA) are reproduced. This provides

a strong indication that the observed oscillations of 10-11 bp are mainly due to correlations
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in protein sequences.

15.6 Discussion

We demonstrated that an analysis of specific correlation functions of biosequences al-
lows the interpretation of several observed correlations in terms of well-known biological
structures. A careful detection of specific correlation patterns provides also a basis for
the detection of structural elements. For example, a quantification of the period three
by the mutual information function allows to distinguish coding from noncoding regions
[Grosse et al. 1999]. Correlations in protein sequences can be exploited to predict the
structural class of protein [Weiss & Herzel 1997].

A central result of this chapter is the explanation of the 10-11 base-pair periodicities
in yeast and bacterial DNA. The close relation of the middle nucleotide of the codon to
the biochemical properties hydrophobicity and polarity induces a direct correspondence
between hydrophobicity oscillations of protein sequences and correlations of protein coding
DNA sequences.

Interestingly, it has been found that nucleosomal patterns are quite similar to the
protein-induced correlation patterns [loshikhes et al. 1996, Denisov et al. 1997]: there is
a preference of AA and TT pairs in a distance of about 10.3 bp and a phase shift of
5-6 nucleotides between A and T to assist bending around nucleosomes. This implies
that nucleosomes can use nucleotide patterns induced by the encoded proteins for their
positioning. This coincidence might reflect a coevolution of packaging DNA into chromatin
and the amino acid and codon usage.

So far we have not found significant periodicities of 10-11 bases in introns. This would
be an indication against the nucleosome formation in the intron regions of genomic DNA.
However, since introns constitute a substantial proportion of the genomic DNA, and most
of the genomic DNA is packed in chromatin [Holde 1988], the nucleosomes must also form
in the intron regions. Experimental work on the reconstruction of chromatin on ¢cDNA
has demonstrated that the cDNA fails to fold into a unique organized chromatin struc-
ture [Liu et al. 1995]. There is the following explanation of this apparent contradiction
between the presence of the nucleosomes on the intronic sequences and the absence of
a corresponding sequence pattern: the nucleosome sequence pattern is very weak. Only

3 - 5 dinucleotides AA and TT, properly distributed along the sequence, are sufficient
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to direct the nucleosome to its position [Bolshoy et al. 1996]. These signal dinucleotides
may occupy any 3 - 5 positions of 12 available preferred positions for AA and 12 for TT
[loshikhes et al. 1996]. Actually, such a weak and degenerate pattern is not infrequent
even in random sequences. This means that even without specific sequence biases intronic
regions of DNA may (and do) contain many sites with sufficient nucleosome specificities.
An analysis of the sequence patterns in a large database of nucleosome sequences experi-
mentally mapped in the introns may eventually clarify this point.

The similarity between Figure 2 from yeast DNA and Figure 5 from protein sequences is
a strong indication that the amino acid correlations are the dominating origin of the 10-11
bp periodicities in yeast. The oscillations in Figure 4 from prokaryotes exhibit somewhat
different features: They are stronger, persist over more than 100 bp, and have a slightly
larger period of about 11 bp. Consequently, additional sources of these periodicities have
to be taken into account.

One attractive explanation could be that the period 11 reflects folding of the naturally
supercoiled prokaryotic DNA. The inter-wound right-handed super-helices in bacteria have
a normal super-helical density of 0.04 - 0.05 which corresponds to 200 - 250 base pairs
per one super-helical turn [Vologodskii 1992]. In order to stabilize and/or synchronize
this writhe, the prokaryotic DNA molecules may contain regions of intrinsically curved
and twisted DNA with corresponding periodic biases. The right-handed super-helix would
require a sequence period higher than the helical repeat of free DNA, very much like
the left-handed super-helix of the nucleosomal DNA requires a period lower than the free
DNA helical repeat [Ulanovsky & Trifonov 1983]. The actual excess would depend on the
particular geometry of the super-helix, which, however, is largely unknown.

While we restricted ourselves in this chapter to the analysis and explanation of known
correlation features, it is our hope that this conceptual approach might help to find yet

unknown patterns in DNA and protein sequences.
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Chapter 16

Species Independence of Mutual

Information in Coding and

Noncoding DNA

We explore if there exist universal statistical patterns that are different in coding and
noncoding DNA and can be found in all living organisms, regardless of their phylogenetic
origin. We find that (i) the mutual information function 7 has a significantly different
functional form in coding and noncoding DNA. We further find that (i) the probabil-
ity distributions of the average mutual information I are significantly different in coding
and noncoding DNA, while (iii) they are almost the same for organisms of all taxonomic
classes. Surprisingly, we find that Z is capable of predicting coding regions as accurately

as organism-specific coding measures.

16.1 Introduction

DNA carries the genetic information of most living organisms, and the goal of genome
projects is to uncover that genetic information. Hence, genomes of many different species,
ranging from simple bacteria to complex vertebrates, are currently being sequenced. As
automated sequencing techniques have started to produce a rapidly growing amount of
raw DNA sequences, the extraction of information from these sequences becomes a scien-
tific challenge. A large fraction of an organism’s DNA is not used for encoding proteins

[Lewin 1997, Lodish et al. 1995, Alberts et al. 1994]. Hence, one basic task in the analysis
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of DNA sequences is the identification of coding regions. Since biochemical techniques
alone are not sufficient for identifying all coding regions in every genome, researchers from
many fields have been attempting to find statistical patterns that are different in coding
and noncoding DNA [Fickett 1982, Staden 1982, Guigé et al. 1992, Fickett & Tung 1992,
Fickett 1996, Burset & Guigd 1996, Claverie 1997]. Such patterns have been found, but
none seems to be species independent. Hence, traditional coding measures [Comment 1]
based on these patterns need to be trained on organism-specific data sets before they can
be applied to identify coding DNA. This training-set dependence limits the applicability
of traditional coding measures, as many new genomes are currently being sequenced for

which training sets do not exist.

16.2 Mutual Information Function

In search for species-independent statistical patterns that are different in coding and non-
coding DNA, we study the mutual information function Z(k), which quantifies the amount
of information (in units of bits) that can be obtained from one nucleotide X about another
nucleotide Y that is located k nucleotides downstream from X [Comment 2]. Within the
framework of statistical mechanics Z can be interpreted as follows. Consider a compound
system (X,Y) consisting of the two subsystems X and Y. Let p; denote the probability
of finding system X in state ¢, let ¢; denote the probability of finding system Y in state
J, and let P;; denote the joint probability of finding the compound system (X,Y) in state
(7,7). Then the entropies of the systems X, Y, and (X,Y) are defined by

%[X] = _kBZpilnpi7
H]Y] = —kBqulnqj, and
J
H[X,Y] = —kp)_ PjlnPy,
%)

where kg denotes the Boltzmann constant. If X and Y are statistically independent, then
HIX]+ H[Y] = H[X,Y], since the Boltzmann entropy is extensive. If X and Y are
statistically dependent, then the sum of the entropies of the subsystems X and Y is strictly
greater than the entropy of the compound system (X,Y), i. e. H[X]+ H[Y] > H[X,Y].
The mutual information Z[X,Y] is defined as the difference of the sum of the entropies of
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the subsystems and the entropy of the compound system,
I[X,Y] = H[X]+H[Y]-HX,Y]

If kp is replaced by 1/1n 2, then Z[X, Y] quantifies the amount of information in X about
Y in units of bits [Shannon 1948].

The following two examples may serve to illustrate the intuitive (and information theo-
retic) meaning of I(k). Consider a random, uncorrelated sequence, in which each nucleotide
occurs independently of any other nucleotide in the sequence. Intuitively it is clear that
we cannot obtain any information from any nucleotide X about any nucleotide Y, so I (k)
should be zero for all distances k. Indeed I(k) = 0 for all k according to Eq. (16.1), since
the statement that all nucleotides are statistically independent can be mathematically for-
mulated by the set of equalities: P;;(k) = p; - p; for all 7, j, and k. From these equalities
it follows that all the logarithms appearing in Eq. (16.1) are zero, and hence the sum in
Eq. (16.1) is equal to zero.

As a second example consider a sequence in which each nucleotide occurring with equal
probability p; = 1/4 is determined by the previous nucleotide. In this case we will be able
to determine the identity of nucleotide Y by learning the identity of X. Intuitively we say
we obtain an information of 2 bits about Y by learning the identity of X. Indeed I(k) =2
by Eq. (16.1), so again Eq. (16.1) agrees with our intuition. For quaternary sequences [ (k)
always ranges from 0 to 2, and for most DNA sequences (k) is close to 0, which states that
in a typical DNA sequence the information in nucleotide X about nucleotide Y is small.
If 1(k) is monotonically decreasing with k, it means that the information in nucleotide X
about nucleotide Y gets smaller as the distance k between X and Y increases.

Two obvious but noteworthy properties of Z[X, Y] are (i) Z[X,Y] = Z[Y, X], so the
amount of information in X about Y is equal to the amount of information in ¥ about X,
and (ii) Z[X,Y] > 0, so the amount of information is always non-negative, and it is equal
to zero if and only if X and Y are statistically independent. We choose P;;(k) to denote
the joint probability of finding the pair of nucleotides n; and n; (n;,n; € {A,C,G,T})
spaced by a gap of k — 1 nucleotides, and we define p; = 37, P;(k) and ¢; = 37, P (k).

Then
P (k)

4
I(k)= ) P;(k)log, it
i

7,75=1

(16.1)

quantifies the degree of statistical dependence between the nucleotides X and Y spaced by

a gap of k — 1 nucleotides, and we study 7 as a function of k for coding and noncoding
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DNA of all eukaryotic organisms available in GenBank release 111 [Comment 3].

Figure 1 shows Z (k) for coding and noncoding human DNA. We find that for noncoding
DNA Z(k) decays to zero, whereas for coding DNA Z(k) oscillates between two values, the
in-frame mutual information Z;, at distances k that are multiples of 3 and the out-of-frame

mutual information Z,,; at all other values of k.

16.3 Average Mutual Information

The oscillatory behavior of Z(k) in coding DNA is a consequence of the presence of the
genetic code (which maps non-overlapping nucleotide triplets (codons) to amino acids)
and the non-uniformity of the codon frequency distribution. The fact that the codon
frequencies are non-uniformly distributed in almost all genes of all organisms is well
known to biologists, and arises because (i) the frequency distribution of amino acids
is non-uniform, (ii) the number of synonymous codons [Comment 4] that encode one
amino acid varies from 1 to 6, and (iii) the frequency distribution of synonymous codons
is non-uniform [lkemura 1981]. A simple model that reflects the non-uniformity of the
codon frequency distribution, but neglects any other correlation, is the pseudo-exzon model
[Herzel et al. 1995], which concatenates codons randomly chosen from a given probabil-
ity distribution (Qa44,...,OrrT), Where Qxyz denotes the probability of codon XY 7
(X,Y,Z € {A,C,G,T}). As the pseudo-exon model has been shown to reproduce the
period-3 oscillations in genomic DNA [Herzel et al. 1995], we use the model assumption
of neglecting weak correlations between codons in order to express the joint probabilities
P;;(k) in terms of the 12 positional nucleotide probabilities pgm) [Comment 5] of finding
nucleotide n; at position m € {1,2,3} in an arbitrarily chosen reading frame [Comment 6]

as follows [Staden 1982, Herzel et al. 1995]:

. PP 4 pt P 4 pEpE) for k=13,6,9, ..
(k) = 5 pp? 4 4 ppl) for k=4,7,10,. (16.2)
PP+ p P 4 pPp for ke =5,8,11, ..
It is clear that P;;(k) is invariant under shifts of the reading frame, because the expressions
on the r. h. s. of Eq. (16.2) are invariant under cyclic permutations of the upper indices
(1,2,3). Since the second and third line on the r. h. s. of Eq. (16.2) are identical after
transposition of the lower indices (¢, j), we obtain P;;(k =4,7,10,...) = P;;(k=5,8,11,...),
which implies that Z(k) computed from P;; (k) of Eq. (16.2) will assume only two different
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Figure 16.1: Mutual information function, Z(k), of coding (thin line) and noncoding (thick
line) human DNA, from GenBank release 111 [Comment 3]. We cut all human, non-
mitochondrial DNA sequences into non-overlapping fragments of length 500 bp, starting at
the 5’-end. We compute the mutual information function of each fragment, correct for the
finite length effect [Herzel et al. 1995], and display the average over all mutual information
functions (of coding and noncoding DNA separately). While Z(k) for noncoding DNA
monotonically decays to zero as k increases, Z(k) of coding DNA shows persistent period-3

oscillations.



213

values, Zi, = 7(3,6,9,...) and Zi, = Z(4,5,7,8,10,11,...).

In order to construct a coding measure that can predict whether a single sequence

(m)

is coding or noncoding, we sample from each sequence the 12 frequencies p; ’, compute
P;; (k) from pgm) by using Eq. (16.2), and then compute
Tn=2Z(3) and Zow =7Z(4) =Z(5) (16.3)

by plugging P;; (k) and p; = (pgl) + pgz) —I—pg?’))/S into Eq. (16.1).

We find that In (fin) and In (Ioy¢) are almost linearly dependent, and are thus highly
correlated (correlation coefficient C' = 0.96 for both coding and noncoding DNA). This
simplifies the question of how to combine I, and I, into a single quantity, as almost
any combination will yield approximately the same accuracy. For the sake of obtaining a
simple coding measure with a natural and intuitive interpretation, we compute from Z;,

and Zyyt the average mutual information
f = Pin . Iin + Pout . Iout7 (164)

where P;, = 1/3 and Pyt = 2/3 denote the occurrence probabilities of Zy, and Zoys. 7
quantifies the average amount of information one obtains about a nucleotide X by learning
both the identity of any other nucleotide Y in the same DNA sequence and whether the
distance k between X and Y is a multiple of 3. We expect that due to the presence of the
genetic code Z will be typically greater in coding than in noncoding DNA.

The practical implementation of the algorithm looks as follows:

1. Count the number of occurrences of nucleotide n; € {A,C,G, T} in position m €
{1,2,3} of an arbitrarily chosen reading frame in a given DNA sequence of length!

N. Denote that number by Ni(m).

2. Divide Ni(m) by N/3, the total number of nucleotides occurring in position m, and

define the positional nucleotide frequency pgm) = 3-Ni(m)/N. Note that the positional
(m)

nucleotide frequencies are normalized to 1, that is S %, p; =1 for all m.
3. Compute P;;(3) and P;(4) from pgm) by using Eq. (16.2).
4. Define p; = 322 _, pgm)/S7 which is the overall, normalized frequency of nucleotide

;.

'For the sake of simplicity, assume N be a multiple of 3.
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5. Compute [(3) and [(4) from P;;(3), P;;(4), and p; by using Eq. (16.1). Define
Iin =1(3) and Loy = 1(4) as well as P, = 1/3 and Poy = 2/3.

6. Compute the average mutual information (AMI) by using Eq. (16.4).

The source code is available upon request from ivo@bu.edu.

16.4 Accuracy of the Average Mutual Information

First, we investigate how accurately Z can distinguish coding from noncoding DNA. In
order to compare the accuracy by which Z can distinguish coding from noncoding DNA
with the accuracy of traditional coding measures, we use the standard benchmark test and
data sets of Fickett and Tung [Fickett & Tung 1992]. Figure 2 shows the Z-histograms
for coding and noncoding human DNA sequences of length 108 bp from the data sets of
Fickett and Tung [Fickett & Tung 1992]. Since Z does not require prior training, we show
the Z-histograms for both the training and the test set. We find that for both data sets
the AMI distributions are significantly different for coding and noncoding DNA.

The accuracy A is defined as follows: Denote by p.(Z) and p,(Z) the probability density
functions of Z for coding and noncoding DNA (see Figure 16.4). Define the overlap integral
O(T) = [ M(Z)dZ, where M(Z) denotes the maximum of the two values p.(Z) and p,(Z)

at position Z. In statistical terms, O(Z) can be expressed as the sum of T, and T,,
O(T) =T, + T,, where T, (T,,) denotes the fraction of true positives (true negatives) over
all positives (all negatives) [Comment 8]. Hence, the accuracy, defined by A(Z) = O(T)/2,
ranges from from 1/2 (no discrimination) to 1 (perfect discrimination) [Comment 9].

Table 1 shows the accuracy of the top 8 phase-independent coding measures as ranked
in Fickett and Tung [Fickett & Tung 1992] and the accuracy of Z computed on exactly the
same data sets.

We find that the AMI is as accurate as many of the traditional coding measures, which
are trained on organism-specific data sets [Fickett & Tung 1992], in contrast to the AMI,
which does not require prior training.

We find that the accuracy of Z (A(Z) = 0.69,0.76,0.81 for human DNA sequences of
lengths N = 54,108, 162 bp) is higher than the accuracy of many of the 21 traditional cod-
ing measures from Ref. [Fickett & Tung 1992]. In particular, A(Z) is comparable to the ac-
curacy of the hexamer measure H, (A(H) = 0.70,0.73,0.74), which is the most accurate of

the 21 frame-independent [Comment 6] coding measures from Ref. [Fickett & Tung 1992].
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Figure 16.2: Z-distributions of data sets humg108a (solid lines) and humg108b (dashed lines)
of Fickett and Tung [Fickett & Tung 1992] for coding DNA (thin lines) and noncoding
DNA (thick lines). In both data sets the Z-distribution of noncoding DNA is centered
at significantly smaller values than the Z-distribution of coding DNA. The cumulative
distribution functions of Z presented in the inset show that Z allows a discrimination of

coding and noncoding DNA with an accuracy of approximately 76%.
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‘ ‘ Coding Measure 54 bp 108 bp 162 bp
1. | Hexamer 70.5% 73.1% 74.2%
2. | Position Asymmetry 70.2% 76.6% 80.6%
3. | Dicodon Usage 70.2% 72.9% 73.9%
4. | TFourier 69.9% 76.5% 80.8%
5. | Hexamer-1 69.9% 72.6% 73.8%
6. | Hexamer-2 69.9% 72.6% 73.8%
7. Run 66.6% 70.3% 71.3%
8. | Codon Usage 65.2% 68.0% 69.5%

9. awmi 69.2%  76.1%  80.7%

Table 16.1: Accuracy of 8 coding measures and the AMI. We compare the accuracies
of the best 8 phase-independent coding measures as evaluated by Fickett and Tung
[Fickett & Tung 1992] to the accuracy of the AMI for three sets of coding and noncod-
ing human DNA sequences of lengths 54 bp, 108 bp, and 162 bp. We find that, on all
three length scales, the accuracy of the AMI (without prior training) is comparable to the

accuracy of traditional coding measures (after prior training).

This finding is interesting, because H (like all other 20 traditional coding measures) is
trained on species-specific data sets, and Z is not. If the Z-distributions turn out to be
species independent, then Z could be used without prior training to distinguish coding

from noncoding DNA in all species, regardless of their taxonomic origin.

16.5 Species Independence of the Average Mutual Informa-
tion

After having found that—without prior training—the AMI can distinguish coding from
noncoding DNA as accurately as traditional coding measures, the question arises if the
probability distribution functions of the AMI are species-independent. Figure 2 shows
the Z-distributions for coding and noncoding DNA sequences from species of different
taxonomic orders, phyla, and kingdoms. We find that the Z-distributions are significantly
different for coding and noncoding DNA, while they are almost identical for all taxonomic
sets. In order to supplement this qualitative finding by a quantitative analysis, we present

in Table 1 the means and variances of log,, Z. Table 1 shows that the means are significantly
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Table 16.2: Means (variances) of log;,Z for coding and noncoding DNA of 6 taxonomic
sets. While the means of log,,Z are significantly different in coding and noncoding DNA,
they are almost the same for all taxonomic sets. Also the variances of log,,Z are almost
the same for all taxonomic sets, supplementing the visual finding from Figure 2 that the

Z-distributions are nearly species-independent.
noncoding  coding

primates -2.52 (0.31) -2.04 (0.30)
non-primate vertebrates -2.54 (0.39) -2.06 (0.30)
vertebrates -2.53 (0.34) -2.05 (0.30)
invertebrates -2.50 (0.33) -2.04 (0.32)
animals -2.52 (0.34) -2.05 (0.31)
plants -2.48 (0.31) -2.09 (0.31)

different for coding and noncoding DNA, and that the means and variances are almost the
same for all species. This finding is in agreement with the visual finding based on Figure 2
that the Z-distributions are species independent and significantly different in coding and

noncoding DNA.

16.6 Quantification of the Species Independence

In order to quantitatively compare the “species independence” of the AMI to the “species
independence” of the codon usage, we introduce a quantity that we call the degree of
species dependence (DSD). Define z; and y; (i = 1,..., M) to be the usage frequencies of
the M = 64 codons for two non-overlapping sets of 1024 DNA sequences of length 108 bp.

Denote by
2(X,Y) —f: (= v)® gy (16.5)
D :
the normalized “distance” between two histograms X = (21,...,2n) and Y =

(y1,...,ynm). Let A, A, B, and B, denote the four possible histograms for coding
and noncoding DNA from the taxonomic groups A and B. We define the DSD to be the
ratio of the average distance between species and the average distance between coding and

noncoding DNA,
(Ao B) + X (A, B,)
XA(An A +X3(B., B,)

We analyze the degree of species dependence of the codon usage on four taxonomic

DSD = (16.6)
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Figure 16.3: Z-distributions of coding DNA (thin lines) and noncoding DNA (thick lines)
from all eukaryotic DNA sequences in GenBank release 111 [Comment 3]. We cut all
sequences into non-overlapping fragments of length 54 bp [Comment 7], starting at the
5-end. We compute Z of each DNA fragment and show the Z-histograms for coding
and noncoding DNA, for each of the 4 disjoint taxonomic sets (primates, non-primate
vertebrates, invertebrates, plants) separately. We find that (i) for all taxonomic sets p,,(Z)
is centered at significantly smaller values than p.(Z), while (ii) p.(Z) and p,(Z) of different

taxonomic sets are almost identical. The close similarity of the Z-distributions for different

taxonomic classes, phyla, and kingdoms illustrates the species independence of p.(Z) and

pn(Z).
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levels by comparing primates with non-primate mammals, mammals with non-mammalian
vertebrates, vertebrates with invertebrates, and animals with plants. We randomly parti-
tion the set of all GenBank-111 sequences into non-overlapping blocks of 1024 sequences,
and compare all possible combinations of these blocks. Table 2 shows the average DSD

over these combinations.

Table 16.3: The degree of species dependence of the codon usage and the AMI. Column 1
displays the DSD of the codon usage; the value of 0.01 in row 1 states that the codon usage
differences between primates and non-primate mammals are only 1% of the differences
between coding and noncoding DNA. When DNA is analyzed from species belonging to
different taxonomic classes, phyla, or kingdoms (rows 2, 3, and 4), the DSD becomes larger,
which quantifies the well-known fact that the codon usage is strongly species dependent.
Columns 2 displays the degree of species dependence of the AMI, which we compute in
the same way (and for the same sets of sequences) as for the codon usage. The degree of
species dependence of the AMI never exceeds 0.02, quantifying the finding from Figure 3
that the AMI distributions are species independent.

class  of organism H codon usage ‘ AMI ‘
primates — non-primate mammals 0.01 0.01
mammals — non-mammalian vertebrates 0.10 0.01
vertebrates — invertebrates 0.69 0.01
animals —  plants 0.58 0.02

Column 1 of Table 2 shows that the degree of species dependence of the codon
usage is quite small (0.01) when primates are compared to non-primate mammals.
This states that the codon usage is not identical in primates and non-primate mam-
mals, but it is so similar that the codon usage differences between primates and non-
primate mammals is about 100 times smaller than the differences between exons and
introns. When we compare vertebrates to invertebrates, the degree of species de-
pendence increases to about 0.69, which states that the differences between species
are approximately 2/3 as large as the differences between exons and introns. The
data from column 1 are consistent with the well-known fact that the codon usage is
species dependent [Fiers & Grosjean 1979, Tkemura 1981, Sharp & Li 1987, Bulmer 1987,
Bernardi 1989, Nakamura et al. 1996, Karlin & Mrazek 1997].
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Next, we analyze the degree of species dependence of the AMI by discretizing the
continuous AMI distributions as follows: when comparing two AMI distributions X and
Y (see Figure 3), we map the AMI values into M = 64 bins in such a way that each bin
i € {1,..., M} contains the same number of data points z; + y;. We then compute the
DSD of these discretized AMI distributions X and Y for the same blocks of 1024 sequences
of length 108 bp as we used to calculate the DSD of the codon usage distributions.

We find (column 2 of Table 2) that the AMI differences between primates and non-
primate mammals are about 100 times smaller than the AMI differences between exons
and introns. It is surprising that the degree of species dependence remains of the order
of 0.01 when mammals are compared to non-mammalian vertebrates, or when vertebrates
are compared to invertebrates. Even when DNA from animals is compared to DNA from
plants, the AMI yields a degree of species dependence of only 0.02. The data from column
2 are in agreement with the observation, based on Figure 2 and Figure 3, that the AMI
distributions are species independent. This species independence, in connection with the
finding that the accuracy of the AMI is comparable to the accuracy of traditional coding
measures, suggests that the AMI might possibly be useful for the recognition of protein-
coding regions in genomes for which training sets do not exist.

In search for a possible origin of the observed species independence, we attempt to
develop simple models that are able to reproduce the Z-distributions for coding and non-

coding DNA.

16.7 Understanding the Species Dependence for Noncoding
DNA

We first present a model that reproduces the Z-distributions for noncoding DNA. For a
random, uncorrelated sequence of arbitrary composition (p1, ps, ..., p4), we can derive the
asymptotic form of the probability density function p(Z) as follows: expand Z(k) about
P;; (k) — pip;, and truncate the Taylor series after the quadratic term. The constant term
vanishes because Z(k) = 0 at P;;(k) = p;p;, and the linear terms vanish because Z(k)
achieves its minimum at P;(k) = p;p;. Hence, we obtain
1 (Byk) = pipj)?
In 2 Y 2pip;

I(k) (16.7)
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where the symbol o indicates that we neglect terms of O ((P;; — pip;)®). Substituting
P;;(k) (for k = 3,4,5) by the expressions on the r. h. s. of Eq. (16.2) and expressing
Z=(Z(3)+Z(4)+Z(5))/3in terms of pgm) yields

= 1 (p{"™) = p)? :
Toxi— (Z 27) : (16.8)

im D

For a random, uncorrelated sequence
the probability density function of N3, (pgm) — pi)?/pi converges, for asymptotically
large sequence length N, to a y?-distribution with 6 degrees of freedom [Cramer 1946].

Hence, we obtain that p(Z) converges, for asymptotically large N, to

p(D) (N\T—Q)S NT e NVIVT, (16.9)

Figure 3(a) shows p(Z) from Eq. (16.9) and the Z-histograms for noncoding human DNA
for N = 54 bp, 108 bp, and 162 bp. We find that (i) the Z-distributions for noncoding
DNA collapse after rescaling with a factor of N2, and that (ii) the Z-distributions can
be approximated by Eq. (16.9). The agreement of the theoretical with the experimental
Z-distributions states that the species independence of the Z-distributions for noncoding
DNA may be attributed to the absence of the genetic code in noncoding DNA of all living

species.

16.8 Understanding the Species Dependence for Coding
DNA

We now test if the species-independence of the Z-distributions for coding DNA may be
reproduced by a simple model that incorporates the presence of a reading frame. We
generate a random, uncorrelated sequence where the probability of obtaining nucleotide n;
at position m is given by pgm) [Comment 10]. Figure 3(b) shows the Z-histograms for the
model sequences and for human coding DNA sequences of length N = 54 bp. We find that
the Z-distribution of the model sequences is significantly different from the Z-distribution
of human coding DNA sequences. We perform the same analyses for different organisms,
ranging from simple bacteria to complex vertebrates, as well as for different N, and we

find that in all cases the modeled Z-distributions cannot reproduce the Z-distributions

of experimental, coding DNA. This result shows that the presence of a reading frame in
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Figure 16.4: Rescaled Z-distributions of model and experimental, coding and noncoding
DNA [Comment 3]. Figure 3(a) shows the histograms of log;, N2Z for noncoding human
DNA for N = 54 bp (o), 108 bp (O), and 162 bp (<), and the corresponding y? probability
density function with 6 degrees of freedom (thick line). In addition to the observation
(Figure 2) that the Z-distributions are almost identical for different species, we find that
(i) the rescaled Z-distributions collapse for all taxonomic sets and for all N, and that
(ii) they agree with the x? probability density function. Hence, the species independence
of the Z-distributions for noncoding DNA may be explained by the absence of a reading
frame in noncoding DNA of all species. Figure 3(b) shows the histograms of log;q N2Z for
coding human DNA sequences of length N = 54 bp (o), the corresponding non-central x?
probability density function (thick line), and the central y? probability density function
(thin dotted line). We find that (i) the modeled Z-distribution (thick line) is indeed shifted
to higher Z-values than the Z-distribution of noncoding DNA (thin dotted line), but that
(ii) the Z-distribution of the model sequences (o) is significantly different from the Z-
distribution of coding human DNA. The significant difference between the modeled and
the experimental Z-distribution states that the presence of a reading frame is not sufficient

to reproduce the species-independent 7 distributions for coding DNA (Figure 2).
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coding DNA is not sufficient to reproduce the Z-distributions of experimental, coding DNA,
and thus cannot explain the observed species-independence for coding DNA. This finding
leads us to the conclusion that there must exist additional correlations or inhomogeneities
[Comment 11] in coding DNA, which are responsible for the observed species-independence

of the Z-distributions.

16.9 Conclusions

We reported the finding of a species-independent statistical quantity, the average mutual
information Z, whose probability distribution function is significantly different in coding
and noncoding DNA. We showed that Z can distinguish coding from noncoding DNA
as accurately as traditional coding measures, which all require prior training on species-
specific DNA data sets. The capability of Z to distinguish coding from noncoding DNA
without prior training and irrespective of its phylogenetic origin suggests that Z might
be useful to identify coding regions in genomes for which training sets do not exist. In
an attempt to understand the origin of the observed species-independence of Z, we found
that the species-independence of p,(Z) may result from the absence of a reading frame in
noncoding DNA. We derived analytically the Z-distribution for an ensemble of random,
uncorrelated sequences of arbitrary composition, and we showed that this distribution
is consistent with the observed Z-distribution of noncoding DNA for all species and all
sequence lengths N. For coding DNA, we could show that the presence of a reading frame
in coding DNA sequences is not sufficient to reproduce the observed Z-distributions of
coding DNA. This finding makes it tempting to conjecture that additional correlations or
inhomogeneities are a vital and species-independent ingredient of coding DNA sequences

of any living organism.



Chapter 17

Optimization of Coding Measures
Using Positional Dependence of

Nucleotide Frequencies

In this chapter we study the discrimination accuracy of coding measures based on the
positional dependence of nucleotide frequencies, and we analyze the statistical dependences
between coding measures and different A4+T content. We introduce two generalized coding
measures, the position asymmetry D, and the position information function 7, and we
study how accurately D, and I, can distinguish coding from non-coding DNA as a function
of the parameters p and g. We determine the parameter values p* and ¢* for which D, and
I, distinguish coding from non-coding DNA most accurately. We find that p* and ¢* vary
only little with the length of the studied DNA sequence. Moreover, we find that D« and

I« yield accuracies comparable to the accuracy of customarily employed coding measures.

17.1 Introduction

Recognition of protein-coding regions in novel sequenced DNA by statistical and
information-theoretic means constitutes a challenging problem in computational molec-
ular biology (Fickett 1996; Searls, 1998). This task has received considerable attention in
the last decade, as large-scale sequencing projects generate primary un-annotated DNA
sequences in an exponentially increasing amount. Genes of higher eukaryotes consist of

expressed regions (exons) which are interrupted by intragenic regions (introns). Exons and
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introns, respectively, posses distinctive statistical features which can be exploited to dis-
criminate protein-coding versus non-coding DNA. Conventional algorithms for gene-finding
integrate heterogeneous types of information, namely the search by content and the search
by signal. A third type of information is derived from database similarity searches. Gene
search by content signifies for a given sequence the potential to which it is coding. Gene
search by signal involves the detection of binding sites and other signals in the surround-
ings of a gene, such as promoters, splice sites, translation initiation and termination sites,
and poly(A)-sites. To predict the most likely gene structure from the primary transcript
gene search by content is typically combined with the search by signal using probabilis-
tic (hidden Markov) models of DNA, discriminant analysis, or neural networks. Several
pertinent models have been proposed and applied to the gene-identification problem in a
computer program. Some examples of such programs include GenelD (Guigé et al. 1992),
GeneParser (Snyder & Stormo 1993), GENMARK (Borodovsky & Meclninch 1993), Gen-
Lang (Dong & Searls 1994), FGENEH (Solovyev et al. 1994), GRAIL 1I (Xu et al. 1994),
MZEF (Zhang 1997); GENSCAN (Burge & Karlin 1997), GeneGenerator (Kleffe et al.
1998), GLIMMER (Salzberg et al. 1998). The advantages and disadvantages of several
gene-identification algorithms have been evaluated recently (Fickett 1996; Burset & Guigé
1996; Claverie 1997) as well as the application of algorithms in conjunction (Murakami
& Takagi 1998). Computer-based prediction is nowadays customarily used to provide the
initial annotation of genes (Fleischman et al. 1995; Nelson et al. 1999).

The most prominent statistical feature in exons is the existence of a reading frame
with an associated codon usage. The reading frame induces a triplet periodicity in coding
sequences, while it is absent in non-coding sequences. In general, a nonuniform codon usage
gives rise to a different concentration of each nucleotide in the positions of the reading
frame. Possible reasons for the nonuniformity of the codon usage are (i) the nonuniform
amino acid composition of proteins, (ii) the unequal number of codons encoding different
amino acids, and (iii) the nonuniform distribution of synonymous codons.

We study coding measures based on the positional dependence of nucleotide frequen-
cies. Coding measures correlate with the likelihood that a certain region in DNA is protein-
coding and, apart from gene identification, they are applicable to shotgun sequencing exper-
iment (whether non-assembled DNA fragments occur in coding regions) and mRNA /cDNA
matching analysis (whether pieces of ¢cDNA from expressed mRNAs occur in the trans-

lated segment of mRNA). Evaluated coding measures can be applied to DNA sequences
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without prior training. We show that coding measures can be directly derived from the
corresponding DNA sequence. The the number of variables used to discriminate coding
versus non-coding DNA is 4 x 3 (nucleotide x triplet position). On the one hand, this
has the advantage to overcome statistical noise, but on the other hand the disadvantage to
neglect information not encoded in the codon composition, such as codon-codon interac-
tions. Various coding measures have been developed to quantify the positional dependence
of nucleotide frequencies and applied in computer programs. Some of them include the
prevalence for the use of codons of the form RNY (here R = purine, Y = pyrimidine,
and N = any nucleotide) (Shepherd 1981), the nonuniform positional nucleotide usage
(Fickett 1982; Staden 1984; Fickett & Tung 1992), the different G4C content (Bibb et al.
1984), the detection of characteristic periodicities (Silvermann & Linsker 1986; Tiwari et
al. 1997), the higher concentration of G in the first codon position (Trifonov 1987), the
positional dependence of entropy (Amalgor 1985; Grosse et al., 1999a) and of nucleotide
pair correlations (Grosse et al. 1999b).

We introduce generalized coding measures and study how accurately the position asym-
metry function D, and the position information function I, distinguish coding from non-
coding DNA in dependence on the parameter values p and g. We search for parameter
values which maximize the discrimination accuracy, and we contrast and compare these
optimum parameters with conventionally used parameters. Our study shows that exon
recognition with optimum parameters yields comparable results in accuracy as currently
employed coding measures, some of which require a much higher number of parameters.
We make use of two different sequence data sets to evaluate the accuracy: (i) to connect
our studies to previous work we use data from standardized benchmarks of Fickett & Tung
(1992), and in addition (ii) we use recent data from GenBank (release 111 1999). Since the
discrimination accuracy of many coding measures has been shown to depend strongly on
the A4+T content (Guigéd & Fickett 1995), we examine also the statistical dependences of
coding measure functions on different A+T content of DNA sequences. We conduct this
analysis using graphical methods and tests for non-linear and linear statistical dependences.

The content of this study is as follows. In section 2 we introduce the frame dependence
matrix from which we derive current coding measures. We discuss how a certain measure
captures the positional dependence of nucleotide frequencies and supplement the discussion
by an example. In this context, we examine the statistical dependence of coding measures

on the A4+T content of the query sequence. In section 3 we introduce the data sets prepared.
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We turn to the performance of coding measures and evaluate explicitly the discrimination
accuracy of the positional information measure /. In section 4 we introduce generalized
coding measures as function of parameters. We discuss properties of these functions and
evaluate the discrimination accuracy as a parameter-dependent function. We search for
those parameters which extract optimally the discriminating features to distinguish coding
versus non-coding DNA. We contrast and compare our results with conventionally used

parameter values and with the performance of established coding measures.

17.2 Currently Applied Coding Measures

We consider a moving window of length 3 - N along a DNA sequence and decompose
the window into N successive non-overlapping triplets. Let F(b|l) denote the number
of occurrences of base b (= 1,2,3,4 = A,C,G,T) at the triplet position [ € (1,2,3).
The corresponding relative frequencies are defined by f(b|l) = F(b|l)/N. Let the frame
dependence matriz F be the matrix in which each element contains f(b|/). Then, F has
4 x 3 elements where due to normalization 9 suffice to fully determine it. Furthermore, we
separate the mean f(b) of base b according to f(b|l) = f(b) 4+ d(b|l) as the elements of the
vector . The mean of base b is calculated from f(b) = 3°7_; f(b|{)/3. The residuals d(b|l)
enter as elements of the matrix D. The entries of D represent the positional deviations
from occurrences expected by chance. Obviously, F is complementary to D and f.

The notations are visualized in the following sketch, in which the data are obtained
from the 5085 bp long protein-coding sequence from the intensively studied (Buldyrev et
al. 1993) human beta-myosin heavy chain (HUMBMYHTY) gene:

DNA sequence segment containing 5085 basepairs (bp)

atg ggagattcggagatggcagtetttggegectgecgeccectacctgegeaagtcagag ... ... ttgaatgaggag
Moving window of length 54 bp
gga gat tcg gag. .. ...aag tca
N=18 triplets of the above window
Gly Asp Ser Glu... ...Lys Ser

Amino acid sequence

From the decomposition we calculate the elements f(b|l), f(b), and d(b]l). For the above
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window they read (for illustrative purposes the elements have round-off errors of 0.01):

0.11 0.22 0.17 0.17 —-0.06 0.05 0.00
F o— 0.17 0.39 0.39 Cf= 0.32 Jand D= -0.15  0.07  0.07
0.50 0.17 0.33 0.33 0.17 -0.16  0.00
0.22 0.22 0.11 0.18 0.04 0.04 -0.07

Note that in this way, e.g., the excess (lack) of G in the first (second) codon position as
well as the high G4+C content in the third codon position become apparent.

At this stage, we briefly reconsider currently applied coding measures proposed to
capture the discriminating features in F, or D and f, in a single scalar coding potential. We
outline the mechanism concerning how a nonuniform codon usage affects a certain measure.
Later on this will allow us to introduce a framework of generalized coding measures. For

illustration, we include calculations for the above window.

o TestCode (Fickett 1982). The base compositional asymmetry is quantified in a linear
weighted sum containing eight parameters, four of them are given by f(b). The
asymmetry A(b) of base b is defined by the ratios of the maximal and minimal values

of F'(b|l). The resulting weighted overall coding measure is calculated to be

B 4 ‘ maxle(17273){F(b|l)} (b -
4= Z{W(b) minle(17273){F(b|l)}_|_1+ (0) f(b)} (17.1)

b=1

where the weights W (b) and w(b) are determined by training sets of exons and introns,
and the additional 1 in the denominator has been introduced to avoid the divergence
in the case F'(b|l) = 0. In order to construct a parameter-independent measure, we

set W(b) =1 and w(b) = 0. Then,

4 F(b) + maxe(1,2,3{d(b]1)}
bZ:; {f(b) + minle(1,2,3){d(b|l)} + l/N}

measures the largest positional deviation from the mean. If we substitute the values

A

(17.2)

from f and D according to the window given above, we obtain A = 9.23 as a measure

for its coding potential.

e Uneven positional base frequencies (Staden 1984). The deviation of the positional
base concentration from its mean are used to define the distances |d(b|l)|. This

coding measure reads

Dy = > > [d(b|n)]. (17.3)
b=1 (=1



229

The introduction of the index “1” will become clear in the context later on. Sub-
stituting the values from the sample window, we obtain D; = 0.88. To contrast
this outcome with non-coding DNA, we make the simplifying assumption that each
base b shows no dependence on the triplet position, f(b|1) = f(b|2) = f(b|3). Hence
d(b|l) = 0 due to the absence of any frame dependence, and the coding potential

according to this model vanishes.

Position asymmetry (Fickett & Tung 1992). The sample variance is used to quantify

the positional spread of the mean frequencies f(b), using

Dy = iid%bu). (17.4)
b=1 (=1

Obviously, this coding measure is closely related to the one proposed by Staden
(1984). Applying eqn (17.4) to the sample window yields Dy = 0.10, and for the

model of non-coding sequences Dy = 0.

Fourier measure (Silverman & Linsker 1986). The square of the Fourier transform
(the power spectrum) is derived from 4 (each for one base) binary translated DNA
sequences. Assigning some base b at the nth window position U, (b) = 8,5 (where

dap = 1 if @ = b, and it is 0 otherwise), the power spectrum can be calculated from

4 N —iomfon |2
P(f) = > Lzt V() o7 (17.5)
b=1

3-N

3N

where f = J% with m = 1,...,25%. Commonly m = N is used to extract one

3-N
scalar coding measure P(%) from the spectrum signifying the period-3 amplitude.
Interestingly, it has been observed (Guigé 1999) that P(%) and D, measure the same
coding potential. Since ﬁ N U, (b) = f(b), it can be analytically shown that by
using eI as weights, P(%) is up to a constant equal to Dy (Grosse, unpublished).
Consequently, P(%) can be derived from the frame dependence matrix F. The full
spectrum can in fact be used to overcome statistical noise (Tiwari et al. 1997) using
the ratio %, where the average (P(f)) can computed from f2(b).

Positional information. For each position [, the position entropy H, (/) can be calcu-
lated from f(b|l) (Shannon 1948; Schneider 1997). Likewise, the entropy correspond-

ing to the mean H; can be calculated from f(b). Considering each H,(l) in isolation

(Amalgor 1985) results to poor discrimination accuracy (Fickett&Tung 1992). To
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obtain an accurate coding measure it turns out that difference between H, and the
average of H,(l) is appropriate, defining the positional information as (Grosse et al.

1999a)

i

= S (b) -log, f( %ZZ]‘ (B]1) - log,, F(b1). (17.6)

b=1 (=1 b=1

If we use the relation f(b,1) = f(b|l) - f(I) and introduce f(I) = 34—, f(b,) as the
relative frequency to find b at the [th triplet position, the positional information can

be written as a mutual information between positional nucleotides. This gives rise to

SN (b, 1) - log, (%) . (17.7)

b=11=1
I is the average information in base b about the position [ (and vice versa) measured

in units of bits. In case of the window above, we obtain I; = 0.09 (bits/bp). For
non-coding DNA, f(b,[) factorizes to f(b) - f({), and Iy = 0 vanishes.

Average mutual information (Grosse et al. 1999b). The mutual information I (k)
as a function of the base pair (a,b) separated by a distance k is used. Under the
simplifying assumption that the DNA sequence consists of statistically independent
codons (Herzel & Grosse 1995), the corresponding frequencies fi(a,b) factorize and

can be obtained from F according to

F(al1) - FBID) + F(al2) - FB2) + F(al3)- FBI3)  k=3,6,9,...
Jilasb) = 3-8 Flall)- FOI2)+ flal2) - FO3) + F(al3) - 01D k=4,7,10,...
fla|l) - f(bI3)+ f(a]2) - £(B|1) + f(al3) - f(b|2) k=25,8,11,...

Transposition of the subscripts @ and b shows that fy(a,b) = fi41(b,a) for k =
4,7,10,... and, consequently, /(k) assumes only two values: the in-frame and the
out-of-frame mutual information, I, for £ = 3,6,9... and I,y for k =4,5,7,8,...
The average is used to define

7 Iin 2'Iou
I = #

] (17.8)

Eqn (17.8) quantifies the average mutual information shared by a and b given the

distance k between a and b is a multiple of 3. For the window above, the overall
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result is calculated to be I = 0.005 (bits/bp), whereas we find I = 0 (bits/bp) for
non-coding DNA.

In the following section we will evaluate how accurate the coding measure [; distin-
guishes coding versus non-coding DNA. We introduce the data on which this study will be
conducted, sketch the evaluation technique, and study the statistical dependence of I; on

different A+T content.

17.3 Discrimination Accuracy of Positional Information

If we apply a coding measure to sets of exons and introns, we can derive histograms as
estimates for the associated probability distributions. A perfect coding measure would
generate two non-overlapping histograms. In practical applications, however, histograms
overlap due to the finite length of windows. We evaluate the performance of coding mea-

sures as follows:

1. Using the abbreviations T (true), F (false), P (positives), and N (negatives), we
denote the relative number of coding sequences correctly predicted as coding by the
sensitivity Sn = %. In the same manner, we denote for non-coding sequences
the specificity Sp = %.

2. We determine the threshold above which a sample window is assigned to the exon
class or the intron class by imposing equal relative errors on exons and on introns,
writing Sn = Sp.

3. Eventually, we quantify the accuracy of a coding measure to yield correct predictions

Sn+Sp

: 1
as —5—-, ranging from 5

(no discrimination) to 1 (perfect discrimination).

To compare the accuracy by which the positional information /; can distinguish coding
versus non-coding DNA with the accuracy of other coding measures, we use standard
benchmarks and recent data sets of human DNA. By set A, we refer to sequences from the
Fickett & Tung (1992) benchmark data set (extracted from GenBank databases in 1992).
Since Iy does not require prior training, we evaluate Iy for both the training (Atraining)
and the test set (A¢est). Recently, this data set has been used by Yan et al. (1998) to re-
evaluate the accuracy of the Fourier measure using a length-shuffled version. Instead of the
complete benchmark data, there a subset of 1000 (500 coding, 500 non-coding) sequences
for training and (500, 500) for testing was used. In order to avoid the possibility that
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one data set might not reflect real performance, we make use of an additional sequence
set B, by which we refer all human sequence files extracted from GenBank release 111.
For this application, non-overlapping fully protein-coding and fully non-coding sequence
windows of length L bp were obtained by partitioning the above sequences longer than L
into windows! of length L. When Fickett & Tung (1992) evaluated the accuracy of the
entropy measure H,(l) (Amalgor 1985), it performed only moderately in distinguishing
coding versus non-coding DNA. We already mentioned in the previous section that this is
mainly due to the use of H,({) in isolation, rather than to consider I;, namely the difference
H, — (H(l));. In this section, we will show that the positional information I, is superior
to the entropy I, (I) by evaluating the accuracy of I; on datasets A¢raining, Atest, and B.
I, varies from one window to another. We estimate the probability density function
P(1y) (Q(1y)) by applying I; to coding (non-coding) DNA. Figure 1 shows the resulting /-
A and B. We find that both coding and non-coding DNA

histograms for sets A ipines
have unimodal /;-histograms with distinct maxima. We detect that for either data set
the /,-histograms are significantly different for coding and non-coding DNA, although the
histograms overlap owing to the finite window length. In each data set I-histograms for
non-coding DNA are centered at significantly smaller values than the histograms of coding
A

DNA. Figure 1 also shows that the I; histograms for sets A and B are similar.

traning? * ‘test?

Hence, the accuracy by which I, distinguishes between coding and non-coding DNA does
not sensitively vary when evaluated on human DNA sequences from GenBank releases in
1992 and 1999. Fickett & Tung (1992) state the accuracy of the entropy measure H,(l)
for windows of length 108 bp with 63.1%. The inset shows that /; allows a discrimination
of coding versus non-coding DNA with an accuracy of approximately 76% evidencing that
a novel application of entropy constitutes indeed a powerful coding measure (Grosse et al.
1999a). We also evaluate the accuracy of the coding measures A, I, D,, and D, discussed

in the previous section. Table 1 shows in part (a) the accuracy as obtained by application

to A A and B.

traning? ‘tests

In Figure 1, we observe for coding sequences a small but detectable shift causing the

overlap between P(Iy) and Q(I;) to become larger when using set B. We examine whether

"Number of coding (non-coding) windows: Atraining 54 bp: 20,456 (125,132), 108 bp: 7,086 (58,118), and
162 bp: 3,512 (36,502). Aess 54 bp: 22,902 (122,138), 108 bp: 8,192 (57,032), and 162 bp: 4,266 (35,602).
Set B 54 bp: 595,194 (171,677), 108 bp: 282,876 (81,110), 162 bp: 178,520 (51,078), and 1080 bp: 4482
(15,984).
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this slight decrease in accuracy is possibly related to a biased A+T content toward low
regions. This would signify the sensibility of the performance of Iy with respect to A+T
content variations in databases. Figure 2 shows the A+T content of the data sets and
displays mean and variance of Iy binned to 20 intervals. From the figure we can conclude
that one possible explanation for the worsening in accuracy is indeed the difference in the
individual A+T content of the data sets. A comparison of the top graphs shows that set B

contains more sequences with high A4+T content as compared to sets A or Aiit- The

training
bottom graphs show that the discrimination is more accurate for sequences with low A+T
content. It is a general feature that many coding measures share this property of being
dependent on the A+T content (see, e.g., Guigé & Fickett 1995). While [; is practically
independent on the A4+T content of non-coding sequences, it shows a dependence on the
A+4T content of coding sequences and decays with increasing content.

The linear and non-linear statistical dependences captured by Figure 2, which is in
essence a scatter plot binned to 20 ranges, can be quantified. We therefore calculate the
correlation coefficient C'(X,Y) between I; (=X) and the window A+T content (=Y) to
measure linear correlations. Nonlinear correlations can be quantified by calculating the
uncertainty coefficient U(X,Y). Details for the calculation of correlation and uncertainty
coefficients are consigned to the Appendix. Table 2 shows in part (a) results of C'(X,Y) and
in part (b) results of U(X,Y) applied to data samples derived from X = A, I, D;, D,, and
I,;. We observe for all coding measures weak linear and non-linear dependences for introns,
whereas we observe clear linear anti-correlations and higher non-linear correlation for exons.
Because U(X,Y) accumulates all pair correlations (Herzel & Grosse 1997), the weakness
of correlations between introns and A+T content implies that U(X,Y) o< C*(X,Y). We
also note that values of C'(X,Y) and U(X,Y) are in general higher for sets A¢raining OF
Atest than for set B, a feature related to the lower overall A+T content of set B.

17.4 Optimization of Coding Measures

In this section, we introduce generalized coding measures. Inspecting the measures Dy and
Dy, as defined in eqn (17.3) and (17.4), we realize that these are actually just two special

values of the coding measure function

D, = ZZ|d(b|l)|p, (17.9)

b=1[=1
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where p can take on any real number. D, recovers the measure of Staden (1984) for p =1
and the measure of Fickett&Tung (1992) for p = 2. We refer to eqn (17.9) as position
asymmetry function.

Another coding measure function is obtained in the realm of entropy. Recall that Iy
can be expressed as the difference H, — (H,(l)),. According to Rényi (1970), there exists
a natural extension of the ordinary entropy to entropies H, characterized by a parameter
g which can take on any real number. Introducing 7, = Sy f4(b), the Rényi entropies
are defined as H, = %. If we now substitute H, for Hy in eqn (17.6), we define the
position information function as

1 3
I, = H, - g-lZ:Hq(l)
=1

logy (Thy F1(0)) 1 . logy (T f2(810))
= _g-z .

1_q =1 1_q

(17.10)

Equivalently, we can write the above expression using f(I) as

L& e (Sl 1) 1)
L = 1, l;f(l) lgz( SN ) (17.11)

Taking the limit ¢ — 1, I, recovers the positional information Iy as defined in eqn (17.7).
The generalizations D, and I, comprise the focus of the remaining studies. The moti-
vation to introduce coding measure functions stems from the insight that up until now the
coding potential of most DNA sequences has been studied by computing, e.g., D, D,, and
I;. That is, just one or two points in an infinite spectrum of discriminating functions D,
and I,. Hence, one is effectively neglecting discriminating features which may be present
in the whole spectrum of D, and I,. Here we generalize the method of coding measures in
such a way that all coding measures D,, and [, can be computed from a sequence window.
We study the discrimination accuracy of D, (I,) as a function of p (¢) and evaluate optimal
parameters which distinguish coding versus non-coding DNA most accurately.

Note the mechanism of how a parameter change affects a coding measure. Consider, for
instance, [,. The parameter ¢ plays a role similar to a weight. A change of ¢ will change
the relative weight that f(b) and f(b|l) contribute to the coding potential. The higher ¢,
the more heavily the larger frequencies contribute, and vice versa. In the limit ¢ — oo,
only the highest frequencies contribute. On the other hand, ¢ < 0 weights the contribution

of lower frequencies. Hence, varying ¢ allows for all discriminant features captured by



235

the compositional bias of codon positions in /. In a similar manner, the same reasoning
applies to 1), by considering moments of order p.

We study the discrimination accuracy of coding measure functions by applying D, and
I, to Atrainings Atest; and B. We compute the accuracy as a function of p and ¢, respectively,
and compare the results with the accuracy of current coding measures. In order to compare
the accuracy with previously obtained results on benchmarks, in this evaluation windows
have lengths 54, 108, and 162 bp. Figure shows the accuracy for D, s a function of
p € [~10,10] and Figure 4 for [, a and ¢ € [~10,10] for windows of length 108 bp. The
accuracy exhibits in either case a strong dependence on the parameters values, Both D,
and [, have a significant higher accuracy for p, ¢ > 0 as compared to p, ¢ < 0. After passing
through zero, the accuracy of D, attains its global maximum and then varies only little
for p € [0,10]. The accuracy of I, shows a pronounced peak at about ¢ = 2 and decays
steeply when ¢ increases. If we consider D, and I, as coding measure functions of integer
parameters, we find that D, and I, yield the maximum accuracy with I, being the most
accurate measure. While p = 2 regains the position asymmetry (Fickett & Tung 1992)
as the most effective D, coding measure, for ¢ = 2, we obtain that I, constitutes a novel
coding measures.

In numerical experiments with windows of length 54 and 162 bp we could observe qual-
itatively similar results. Table 1 summarizes our findings. Part (a) shows the accuracy
of current and generalized coding measures using positional dependence of nucleotide fre-
quencies for distinguishing coding versus non-coding DNA for the three different window
sizes. Part (b) lists the most effective (phase-independent) coding measures after prior
training on set Atraining fOT set A¢ese according to Fickett & Tung (1992). Part (b) also
shows the number of parameters required for discrimination (for the Fourier it depends
on the number of spectral lines used from the total spectrum, and for the Run measure it
depends on the number of runs of “non-trivial” subsets). The results point out that both
D, and I, yield a comparable accuracy as customarily used coding measures after prior
training, some of which require a much higher number of parameters. Since D, and I, can
be computed efficiently (we extract 12 positional nucleotide frequencies from a window)
and need not be trained on prior data sets, generalizations of coding measures could easily
be incorporated into existing algorithms.

Having determined the optimal parameters p,,, and ¢, we examine the statistical

dependence of D, and I, at p,; and g,,; on the A+T content. Table 2 shows for several



236

parameter values adjacent to p,.. and ¢, in part (a) linear and in part (b) non-linear
statistical dependences of Dp and Iq on the A4+T content. Dp shows overall weak correla-
tions for non-coding DNA, but persistent anti-correlations for coding DNA. On the other
hand, I, correlates in the linear realm lesser with coding DNA when ¢ is increased, albeit
correlations decrease in the non-linear realm for non-coding DNA.

We further investigate the dependence of the maximum accuracy at popt (V) and gope (V)
on the number of triplets NV in a window. To conduct this study we evaluate the accuracy
of D, (I,) as a function of p (¢) in consideration of the length N. We partition all human
sequences from GenBank into non-overlapping fully protein-coding and fully non-coding
sequences longer than 1080 bp into windows of 1080 bp. We then study the accuracy
for windows of length which differ two orders of magnitude, ranging from 1080 to 27
bp, while keeping the overall number of bases constant. Figures 5 and 6 represent our
findings. Figure 5 shows that pop¢ is approximately independent on N, while Figure 6
shows this approximate independence for g,p¢. We note, however, that the sharp accuracy
profile derived from I, becomes less pronounced with increasing length NN, reflecting that 7,
becomes practically parameter-independent in the limit of large window length. As such,
usage of ¢ope plays an important role when using a window with only moderate length,
e.g. in the order of N ~ 100 bp. Indeed, this situation is quite relevant, for human DNA
sequences have an average exon length of ~150 bp and have even been reported to range

down to the order of 10 bp (Deutsch & Long,1999).

17.5 Conclusions

We generalized coding measures as functions of parameters. We study the position asym-
metry function, D, and the position information function, /,. Within this framework, for
special values of p and ¢ the functions D, and I, include several current coding measures:
the uneven positional frequency (p = 1), the position asymmetry (p = 2), respectively the
Fourier measure, and the position entropy (¢ = 1).

We study the discrimination accuracy of D, and [, as a function of the parameters p
and q. We find that the accuracy of how well D, and [, distinguish protein-coding versus
non-coding DNA shows a strong dependence on p and ¢. Our findings reveal that the
accuracy of D, (I,) as a function of p (¢) can be used to search for optimal parameters

that extract most discriminating features to distinguish coding versus non-coding DNA.
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The accuracy of coding measures presented here can thus be maximized using optimal
parameters popt O Gopt. In integer parameter space we find D, and I, to be the most
accurate coding measures, where I, = 3.7, f(I) - log, {23:1 L2, 0/, (f (D) f(l))ﬂ
Whereas D, establishes the position asymmetry as the most accurate coding measure, I,
constitutes a novel coding measure.

It has been noted that DNA sequences available in current databases are biased, e.g.
towards atypical codon usage or low A4+T compositional samples as shown in Figure 1,
and this in turn could affect the performance of gene identification algorithms. In this re-
gard, coding measures using positional dependent nucleotide frequencies are advantageous
in that they can be applied without prior training. To access the A4+T content dependence,
we examine linear and non-linear statistical relationships between coding measures and the
A+4T content of windows extracted from recent data. We find both current and generalized
coding measures D, and I, (at popt and gopt) relatively insensitive to the A+T content of
non-coding sequences and clearly anti-correlated to the A4+T content of coding sequences.
While D, exhibits persistent correlations between the A+T content and parameter values
adjacent to popy, linear (non-linear) correlations between the A4T content and [, decrease
(increase) for parameter values ¢ > q,,. Further research directions will include a com-
prehensive analysis of the dependence of coding measures on the A+T content of model
and database sequence sets. The applied combination of linear and non-linear analysis can
easily be used to detect statistical dependences in more sophisticated coding measures, e.g.
based on dicodon interrelations.

We study the accuracy profile of D, (I,) at their optimal parameters p,,; (o) as a
function of the number of triplets N used to evaluate the coding potential. Our findings
show pooe(N) = popt and g (N) & g, approximately independent on N, thus avoiding
the expendable fine-tuning of parameters. The computation of D, and I, is efficient and
can be supplemented by existing algorithms that search for gene signals, e.g., start and
stop codons, splice junctions, and promoter sequences. The coding measures presented here
are universal in that they are not species-specific in detecting positional dependences of
nucleotide frequencies from F. The optimization of D, and I, does not sensitively depend
on any predefined window length and perform reasonably well for window sizes as moderate

as 54 bp.
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Figure 17.1: Histograms of [; for human exons (right) and introns (left) of length 108
bp. The corresponding cumulative distributions are shown in the inset. While the values
of I; fluctuate from window to window, their distribution is almost the same irrespective

of A Aot or B. For all three data sets, the [;-histograms of non-coding DNA

training’
are centered at significantly smaller values as compared to coding DNA. For A ... the
mean g and standard deviation o for exons (introns) are p(logl;) = —2.39 (—3.36) and

o(log ;) = 0.70 (0.68), for A p(logly) = —2.41 (—3.38) and o(logl,) = 0.74 (0.69),
and for B p(logl;) = —2.52 (—=3.41) and o(logl;) = 0.69 (0.66). For coding DNA, we

observe a small but significant shift of set B with respect to both A and A.. Both

training
distributions show an overlap, the enclosed area of which specifies how accurately we can

distinguish coding versus non-coding DNA. The inset shows that [y performs on A iying

and A, with approximately 76%), and on set B with approximately 75% accuracy.
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Figure 17.2: We study the dependence of I; on the A4+T content for exons (thick graph)
and introns (thin) in Ay sining (2); Agese (P), and B (c). To calibrate error bars, we equate
the number of coding sequences with the number of non-coding sequences in all three
figures (each class comprising 7000 sequences). In the top, we display the histograms of
the overall A4+T content as derived from the data sets. The overall A+T content of exons

is approximately 45% in A 43% in Aqeq, and 47% in B. For introns, it is 52%, 51%,

training?
and 54%. In the bottom, we show the dependence of log I, on the A+T content, by binning
the A+T values to 20 bins and computing the mean and standard deviation of I; per bin.
The overlap of error bars indicates that the discrimination of exons from introns is less

accurate for high A+T content.
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Figure 17.3: The accuracy of D, as a function of the parameter p evaluated on Ay ipine;
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crossing. The accuracy exhibits two distinct maxima, one local for p < 0. For p > 0,
the accuracy of D, reaches its global maximum, and it shows a plateau-like behavior for

P > popt While decaying flatly.
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Figure 17.5: Accuracy of D, as a function of the parameter p for different window lengths
(from bottom to top the lengths read: 27, 30, 36, 45, 54, 60, 72, 90, 108, 120, 135,180, 216,
270, 360, 540, and 1080 bp). To guide the eye, the 108 bp length is graphed as a thick
line. The value pypy (<) at which D, distinguishes most accurately coding from versus
non-coding DNA is relatively insensitive to the window length. The broken line indicates
the mean value of all optimal p with (p,,;) = 1.6 and standard deviation A(pepi) = 0.3
as estimated on all lengths shown. The fluctuations increase for small (< 60) windows.
We note the shape of the accuracy spectrum (two maxima, distinct better performance for

p > 0) remains overall unchanged when varying the window size.



245

1, (%)

[V

o

>

O

©

-

>

(&)

O

©

c

S

s

©

£

£

S

o

5 i —— SetB
O 550 : Set B (108 bp)

: < Maxima
50.0 : :
5.0

10.0

Figure 17.6: Accuracy of I, as a function of the parameter ¢ for different window lengths

for set B (as described in Figure 5). The value gop¢ (<) at which [ distinguishes most

accurately coding versus non-coding DNA is approximately length-independent. The mean

value of all optimal ¢ results to (g,,;) = 1.7 and standard deviation to A(gept) = (0.2). We

observe that for increasing length the sharp profile flattens out and becomes a unimodal

function of q.
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a. Coding measures based on positional dependence of nucleotide frequencies

54 bp 108 bp 162 bp 54 bp 108 bp 162 bp 54 bp 108 bp 162 bp
A 68.9 75.9 79.6 68.3 75.1 79.3 66.9 74.2 79.3
Dy 69.9 76.6 80.9 69.4 76.3 79.8 68.0 75.1 79.4
Dy 70.2 76.8 80.8 70.0 76.6 80.1 68.0 75.5 80.5
Ds 69.8 76.7 80.4 69.9 76.7 80.3 68.1 75.3 80.3
Dy 69.5 76.4 80.1 69.5 76.3 80.0 67.9 75.1 80.0
I 69.7 76.4 80.6 69.6 76.1 80.1 67.6 75.2 80.3
I 69.2 76.6 80.7 69.0 75.9 80.0 67.1 75.1 80.2
Is 70.6 77.2 81.1 70.2 76.9 80.6 69.1 76.2 80.9
Is 69.6 76.6 80.4 68.9 75.2 79.2 68.4 75.3 79.9
Iy 68.7 75.1 78.8 67.9 73.6 77.2 67.6 73.9 78.2
b. Most accurate coding measures
Coding measure Number of input Set Apegt
parameters 54 bp 108 bp 162 bp

Hexamer 4096 70.5 73.1 74.2

Position asymmetry 12 70.2 76.6 80.6

Dicodon usage 4096 70.2 72.9 73.9

Fourier 8 69.9 76.5 80.8

Hexamer-1 4096 69.9 72.6 73.8

Hexamer-2 4096 69.9 72.6 73.8

Run 6 66.6 70.3 71.3

Codon usage 64 65.2 68.0 69.5

Comparison of the generalized coding measures, D, and I, with currently used algorithms.

Part (a) shows the accuracy as obtained by applying current (A, I) and generalized (D

p?

I,) coding measures evaluated on the benchmark test of Fickett & Tung (1992) for three

different window sizes. Since these measures require no prior training, we also apply them

to the training set. Part (b) shows the percentage average of correctly predicted coding

and non-coding DNA regions for 8 coding measures evaluated in Fickett & Tung (1992)

as the most accurate discriminator of coding versus non-coding windows of lengths equal
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to 54, 108, and 162 bp. The corresponding number of parameters is given. Note that for
optimum parameters, popi and ¢,.¢, D, and I, are as accurate as conventional measures

(after prior training).
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Tab. 2. Statistical dependences on the A4+T content

a. Correlation coefficient

Data set A D, D, D, D, I I 1 I 1,
Atraining  -0.39 -0.31 -0.31 -0.31 -0.31 -0.35 -0.36 -0.20 -0.08 0.00
0.01 -0.02 -0.03 -0.03 -0.03 0.00 0.00 -0.04 -0.06 -0.06

Atest -0.42 -0.33 -0.35 -0.36 -035 -0.37 -0.38 -0.22 -0.07 -0.02
-0.03 -0.06 -0.06 -0.05 -0.05 -0.04 -0.04 -0.05 -0.03 -0.02
B -0.23 -0.20 -0.20 -0.20 -0.20 -0.21 -0.22 -0.14 -0.07 -0.03

0.03 -0.04 -0.04 -0.04 -0.04 -0.01 0.00 -0.13 -0.20 -0.23

b. Uncertainty coefficient

Dataset A D, D, Dy D, I I, I, I, I,
Atvaining  0.06  0.04 0.04 0.04 0.04 0.05 0.05 0.03 0.03 0.03
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04

Atest 0.06 0.05 0.06 005 0.05 005 0.05 0.03 0.02 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04
B 0.02 0.02 0.02 002 0.02 002 0.00 0.01 0.02 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04

Linear (a) and non-linear (b) statistical dependences of current and generalized coding

measures on the A+T content evaluated for exons and introns of length 108 bp from

A
I‘alnlng7
We state results within 0.01 precision (|JC(X,Y)| or |U(X,Y)| < 0.01 are stated as zero),

Ais» and B. For each set we choose for each class a subset of 7000 sequences.

and the calculation of the uncertainty coeflicient was performed by distributing the data
on an array covered by M = 4 x4 bins. We note that all currently applied coding measures
correlate only weakly to the A+T content of non-coding sequences, while they show clear
anti-correlations to the A+T content of coding sequences. The statistical dependence of D,
remains approximately persistent for parameter values adjacent to p,.. Linear correlations
between [, and the A+T content of coding sequences decay, whereas non-linear correlations

between I, and the A+T content of non-coding sequences rise for ¢ > q,;.



Chapter 18

Identification of Protein-Coding
Regions in DNA Sequences using
an Entropic Segmentation Method

In this chapter we present a new approach to the problem of the statistical identification
of DNA coding regions. This approach has two features: (i) DNA sequences are described
by using a 12-letter alphabet instead of the usual 4-letter alphabet, and (ii) compositional
domains are used instead of moving windows. We find that this method is highly accurate
in finding borders between coding and noncoding regions and requires no “prior training”
on known data sets. We also obtain more accurate results than those obtained with moving

windows in the discrimination of coding from noncoding DNA.

18.1 Introduction

With the availability of the complete genomes of great number of prokaryotic organisms
and several eukaryotic ones (yeast, worm), the second phase of genome projects is starting:
the functional genomics, i.e. the search for the different functional elements which make
up the DNA sequences [McKusick 1998]. The computational identification of functional
regions (genes, exons, promoters, enhancers, etc.) is an arduous task and the predictive
accuracy of current methods, although adequate in genomes for which a significant fraction
of genes are previously known [Burset & Guigd 1996], remains rather low when faced with

the large anonymous genomic sequences now being generated by genome projects. So, new
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strategies are needed.

A variety of information is used by current gene identification methods, as potential
sequence signals involved in gene specification or sequence similarity database searches.
In addition, and more importantly, at the core of all gene identification programs, always
exist one or more coding measures (see [Fickett 1998, Guigé 1999] for reviews). These
measures are typically computed on a moving window, which slides along the sequence.
The window length and the step size become thus critical parameters for gene identification.
Unfortunately, there do not exist criteria to choose appropriate values for these parameters.
Whether a larger window is more or less statistically significant than a shorter one cannot be
decided, and the same is true for the step. Consequently, fixing both parameters introduces

an unavoidable subjectivity in the analysis.

18.2 Entropic Segmentation Algorithm

We propose here a new method for the computational recognition of protein coding re-
gions in genomic sequences, based on the compositional segmentation of the sequence
[Bernaola-Galvan et al. 1996, Roméan-Rolddn et al. 1998, Oliver et al. 1999]. The compo-
sitional domains obtained are homogeneous and are defined statistically, so they lack the
arbitrariness of moving windows. Once domains are obtained, any of the existing standard
methods of discriminating coding from noncoding DNA can be applied.

One of the most relevant and well-known statistical features of coding regions is the
nonuniform codon usage [Grantham et al. 1981]. This means that inside coding regions not
all triplets of nucleotides (called codons) occur with the same probability. In particular
the probability of appearance of a nucleotide is different in each of the three positions of
the triplets [Shepherd et al. 1981, Staden 1982, Fickett 1982, Herzel & Grosse 1995]. This
may be due to the restrictions imposed by the genetic code and also probably to some
kind of preferences in the synonymous codon usage, but no matter what its origin is,
this feature is not present in noncoding DNA, so this property can be used to distinguish
between coding and noncoding DNA. In fact, based on these differences, the first generation
of gene prediction programs, designed to identify approximate locations of coding regions
in genomic DNA were developed [Staden 1982, Fickett 1982].

Here we develop a segmentation algorithm based on a 12-symbol alphabet. We define

the phase of position, 7, of a nucleotide to the number j =7 mod 3, where j € {0, 1,2}. So,
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each of the nucleotides of the DNA sequences can be substituted by one of the following
symbols: Ao = {Ag, Ay, Ay, Ty, 11,15, Co,C1,Co, Go,G1,G2}, where, for example, T
means that we have found a nucleotide T" with phase = 2.

Our aim is to divide a DNA sequence into segments in such a way as to maximize
the difference in composition between them, and where the composition is measured by
the frequency vector related to this 12-symbol alphabet. We hope these segments will
correspond to alternating coding and noncoding regions. The method we describe here
is the same introduced in [Bernaola-Galvan et al. 1996] with several improvements. This
method has been used to define a measure of DNA sequence compositional complexity
[Romédn-Roldan et al. 1998], to describe the complexity of several DNA sequence models
[Bernaola-Galvan et al. 1999], to study the compositional structure of the sixteen chromo-
somes of Yeast [Li et al. 1998] and, recently, to determine statistically the mobility edge of
one-dimensional disordered materials [Carpena & Bernaola-Galvan 1999].

To compute the difference in composition between two regions of DNA, in order to
decide whether they are different domains or not we use the Jensen-Shannon measure
(JS).

Consider a DNA sequence composed of symbols belonging to Ay, and define the 12-
symbol frequency vector F = {fy;}, where £ € {A,T,C,G} and j € {0, 1,2}, where f;; is
the relative number of nucleotides of type ¢ with phase j. Given two sequences of lengths

n1 and ng with frequency vectors F; and F5 , the JS is defined as:

IS (Fi, Fo) = H(F) — {"—N1H (F1) + "—NQH (}'2)} , (18.1)

where N = ny + ng, F = TF + 2F; is the frequency vector of the entire sequence

obtained concatenating both subsequences, and H (F) is the Shannon entropy, defined by:

H(F)==>_ fi;log, fo;- (18.2)
0

Among other interesting properties [Bernaola-Galvén et al. 1996], JS is almost not af-

fected by the different size of the sequences being compared.

18.3 Applications to DNA Sequences

To test the ability of JS to separate coding from noncoding DNA | we do the following control

experiments. First we take a known coding DNA sequence and a known noncoding one,
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concatenate them, and go along the resulting sequence with a moving pointer, computing
JS for the subsequence at the left and the subsequence at the right of the pointer. The
results are shown in Figure 18.1(a) (solid line). Note that the maximum is clearly obtained
in the boundary between both regions (vertical dashed line). We also test the effect of
inserting one and two nucleotides between the original sequences. This does not affect the
global composition but changes the phase of the nucleotides of the second sequence and
hence, the resulting frequency vector F of the right hand side sequence can be considerably
different from the original. As can be seen, the maximum value of JS is again obtained
in the boundary between the two subsequences and the values are very close to the ones
obtained without shift. This is due to the fact that in noncoding DNA all three phases are
almost indistinguishable.

Sometimes, especially in prokaryotic genomes, the coding regions are separated by a
very small noncoding region, too small to be separately identified on an statistical basis.
JS is able to distinguish such coding regions, provided they are in different phases, even
if they are in consecutive subregions. The only drawback is that if the regions are in the
same phase they would be identified as only one coding region, but they could be easily
separated by other methods. To show this, we analyze in Figure 18.1(b) two coding DNA
regions, following the same as in Figure 18.1(a). The solid line (the two regions are in
phase) reach very low values and does not seem to present a maximum in the boundary of
both regions (vertical dashed line). On the other hand, when we introduce a phase shift
(dashed and dotted line) we obtain very high values of JS and the maximum is clearly
reached in the vicinity of the boundary.

To partition a natural DNA sequence which, in general, will be composed of several
coding and noncoding regions, we search for the partition that maximizes the compo-
sitional difference between segments, as measured by JS. If the number of such regions
is large, the problem presents high complexity, so we can use the heuristic algorithm
[Roman-Roldan et al. 1998]. In brief the procedure works as follows: we move a sliding
pointer along the sequence which divides at each position the sequence into two subse-
quences and we compute JS. We select the point at which JS reaches its maximum value
(JSmax) and compute its statistical significance (see below). If this significance exceeds a
given threshold s, then the sequence is cut at this point. Otherwise the sequence remains
undivided. The procedure continues recursively for each of the two resulting subsequences

created by each cut. Before a new cut is accepted, we check that the subsequences formed
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Figure 18.1: (a) JS vs. cutting position for a sequence obtained by joining a coding region
(gene carB of bacteria E. coli, 3,222 bp long) and a noncoding region (intergenic region
between genes leuQ and ilvl of bacterium E. coli, 389 bp long); the dashed vertical line is
the border between both regions. (b) JS vs. cutting position for a sequence obtained by
joining two coding regions: genes carB (3,222 bp) and polB (2,463 bp) of the bacterium E.

coli. The dashed vertical line is the boundary between the two regions.
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Figure 18.2: Comparison between the known coding regions of Rickettsia (shaded areas)

and the cuts obtained at significance level s = 99% (dotted lines).

by the cut remain significantly different from their neighbors. The process stops when
none of the possible cutting points has a significance level exceeding s. We say that such
a sequence is segmented at the “s significance level.”

The significance level syax(2) of a possible cutting point with JSy.x = @ is defined as

the probability of obtaining this value or lower within a random sequence:
Smax(2) = Prob{JSpmax < z}. (18.3)

As smax(2) does not seem to admit an easy analytical expression, we have obtained an
approximation [Comment 12].

In Figure 18.2 we show the results of the segmentation of a region of the genome of
the bacterium Rickettsia prowazekii. The shaded areas correspond to the coding regions
obtained from annotations (GenBank acc. AJ235269 [Anderson et al. 1998]), and the ver-

tical dotted lines are the positions of the cuts produced by the segmentation algorithm.
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Note the good agreement between cuts and known coding region borders. Note also that,
as can be inferred from Figure 18.1(b), the algorithm does not detect the border between
two very close coding regions in the same phase (marked with an arrow in Figure 18.2).
In order to quantify the coincidence between cuts obtained using the segmentation
algorithm and known borders between coding and noncoding regions, we introduce the
following quantity:
DE% Zmlnjl\l;;— ¢l ‘|‘meil3;_ ¢l 7 (18.4)

i j
where {b;} is the set of all borders between coding and noncoding regions, and {c;} is the
set of all cuts produced by the segmentation, and N the total length of the sequence. The
first summation measures the discrepancy between cuts and borders by adding for each real
border the distance to the closest cut. The second summation performs the same operation
but now including for each cut the distance to the closest real border. Both summations are
needed to take into account not only the correctness in the position of the cuts (D would
be zero just when cuts and borders coincide), but also the different number of borders and
cuts. For instance, if the number of cuts is large, the first summation would be very small
(because it would be easy to find a cut near any border) but the second summation would
be very big. On the contrary, if the number of cuts is very small, the second summation
would be also small (one has to sum just a few terms) but the first one would reach a very
big value. D can be viewed as an average of the error in the determination of the correct
boundaries between coding and noncoding regions, so (1 — D) is a reasonable measure of
the accuracy of the method.

Figure 18.3 plots 100(1 — D) for the segmentations of three bacterial complete genomes
at several significance levels. The accuracy of the method is reasonably good (between
70-80%), especially since the method cannot separate adjacent phase-coding regions (see

Figure 18.2).

18.4 Discussion

For the sake of comparison with other methods, we also include results obtained for the
same bacterium with a sliding window, which moves along the sequence and, at each
position, some discriminant function is evaluated [Comment 13]. The central nucleotide of

the window is considered to be coding when the value of the discriminant function is above
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a certain threshold, and noncoding when it is below. The positions where the discriminant
function equals the threshold are proposed to be borders between coding and noncoding
regions. The main problem with this method is the determination of the threshold: the
only way to obtain it is to do a training, i.e. to analyze a sequence for which coding
and noncoding regions are known and to choose the value which maximizes the number of
matches for each window size.

In Figure 18.3(a) we also include the values of 100(1 — D) obtained with the sliding
window approach. These values are always clearly below those obtained using the segmen-
tation algorithm. One advantage of our method is that the segmentation algorithm is not
very sensitive to a change of significance level. In fact, any segmentation with a significance
level within the range 90 — 95% (the usual range) gives similar results. On the other hand,
the choice of the window size seems to be critical, and the optimal values are different for
each bacteria. At this point, it is important to recall that the segmentation method does
not use any a priori biological information, i.e. it does not require previous training.

Up to now we have used the segmentation algorithm only to detect borders between
coding and noncoding DNA, but there is no criterion to decide whether a domain is a
coding or a noncoding region. In order to do this we can evaluate a discriminant function
[Comment 13] and decide whether a segment is composed by coding or noncoding DNA. In
Figure 18.3(b) we compare the accuracy of segmentation and moving windows approaches.
Here the accuracy is defined [Burset & Guigd 1996] as:
1 [tp tn]

;

1-D"=—
2

P (18.5)
where tp (tn) is the number of nucleotides correctly identified as coding (noncoding) and
p (n) is the total number of nucleotides identified as coding (noncoding). Again, the
results for segments are better than those obtained with moving windows and the choice
of significance level is much less critical than the choice of window length.

In conclusion, we have introduced a new method capable of locating borders between
coding and noncoding regions without using any a priori biological information. In addition

the domains obtained by means of the segmentation procedure improve the accuracy of

the known discriminant functions.
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Figure 18.3: (a) Comparison of the accuracy of segmentation (open symbols) and sliding
window (closed symbols) approaches in finding borders between coding and noncoding
regions for three complete bacterial genomes: Rickettsia prowazekii (O), Escherichia coli
(A), and Methanococcus jannaschii (O); we find the best results when the training of the
windows is carried out using the same sequence as the one analyzed. (b) Comparison of
the accuracy of segmentation and sliding window approach in identifying coding DNA.
The discriminant function and the training is the same as used in (a), the threshold value
used with the segments is obtained by interpolating the values obtained for the moving

windows.



Appendix A

Constructing a Basis of Linearly

Independent Correlation Functions

In this Appendix, we ask whether the # free symmetric parameters S;; (¢,7 = 1..A—

1,7 < j) can be estimated from a certain set of A1)

5— autocorrelation functions of sequences

composed by A symbols.
Let us consider autocorrelation functions where we assign the numbers 1 and 0 to all
symbols Aj...A). In our notation, a; € {0,1} for all ¢ = 1...A. In order to simplify further

considerations for A-ary sequences, we introduce the following denotations:

Q

(2) = 0(07...707(11':1,0,...,0) (11)
C(ivj) = C(O,...,O,aFl,0,...,0,a]=1,07~~~70)' (1‘2)

In words, we assign the number 1 to the symbol A; and the number 0 to all other symbols
to define €', Analogously, we assign the number 1 to the symbols A; and A; and the
number 0 to all other symbols to define /(7).

Now we use relation (19) to express the A — 1 autocorrelation functions C'9) for i =
1...A—1and the <A;1) = W autocorrelation functions C'+9) for i, j = 1. A=1,i < j
in terms of 5;;.
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i) =S5+ 55+ 5:+S5;;. (1.4)

This leads directly to the following expressions for the independent entries .S;;

Si; = 4 (1.5)

forall ,7 =1..A—1.
This means that all entries of the symmetric matrix S are unambiguously determined
by the (A — 1) 4+ (A=1)-(A=2) A~(A2—1) autocorrelation functions C() and C(+9). Hence,

2
this set of #

autocorrelation functions can be regarded as a basis in the sense that

A-(A=1)
2

all autocorrelation functions of A-ary sequences are a linear combination of those

basic ones.



Appendix B

Jensen’s Inequality

In this appendix, we will present Jensen’s inequality, which can also be found in [Jaglom

1965] or [McEliece 1977]. In a second step, we will apply Jensen’s inequality to the functions
f(z) = —In(2) and g(z) = 2 - In(x).

Definition B.1 The real-valued function f(z) is said to be convex on the interval I, if

Fltrar+ (1 —t)-a0) <t-fla))+(1—1) - flzs) (2.1)

for all xy, 29 € I and all t € [0, 1].
If strict equality holds whenever 1 # x5 and 0 < t < 1, f(x) is said to be strictly

convex on [.

If fis sufficiently smooth, we can test f for convexity by calculus and obtain that f is
convex iff f”(x) > 0 on I. If, furthermore, f”(x) > 0 except for a finite number of points,

then f is strictly convex on 1.

Theorem B.1 (Jensen’s inequality) Let X be a random variable and F(X) its distri-
bution function being concentrated on 1. If the expectation value F(X) exists and if f(x)

is a convex function on I, then Jensen’s inequality says that
E(f(X)) > f(E(X)). (2.2)

Furthermore, if f(x) is strictly convex, Jensen’s inequality is strict unless X is concen-

trated at a single point xq.
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Geometrically, Jensen’s inequality says that if a mass distribution is placed on the graph
of the convex function f(z), its resulting center of mass will lie above or on the graph of
f(@).

Let us now consider, for example, the function f(z) = —log(z), which is strictly convex

for all positive z, since its second derivative 1/2? exists and is positive for all z > 0.

Let S = {21,232, ...,zar} be a discrete set of real numbers, and let p(z;) a nonnegative
function that obeys
M
> p(zi) =1 (2.3)
=1

Then S becomes a discrete sample space in the obvious way. Let ¢(2;) be any other

nonnegative function defined on S, and define the random variable X by

q(xi)
X xT;) = 2.4
(z:) () (2.4)
Since
S q(z:)
E(log(X)) =Y p(x) - log : (2.5)
=1 p(xl)
and
M
E(X) = Z (]($2) ’ 5p(xi),07 (26)
=1
we obtain
M M
— > p(z:) -log(p(z:)) < = pla:) - log(g(:)) + log(a), (2.7)
=1 =1
if @ denotes the sum in £(X), and we exploit Jensen’s inequality
E(log(X)) < log(E(X)). (2.8)
Furthermore, since f(z) = —log(x) is strictly convex, equality holds if, and only if,

q(z;) = - p(z;) for all 7 such that p(z;) # 0.

Hence, we can state the following theorem.

Theorem B.2 Let I be a discrete set of integers, and let p; be a set of positive real numbers

such that
dopi=1 (2.9)
i€l

If q; is any other set of positive real numbers with

Y gi=a, (2.10)

el
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then
— > pi-log(pi) < = pi-log(qi) + log(a), (2.11)
i€l el

with equality if, and only if, ¢; = - p; for alli € 1.

Let us finally display Jensen’s inequality for g(z) = 2 - log(z): since g is strict convex,

we obtain
Z z; -log(a;) - P(x;) > p; - log(p:), (2.12)
el

which will turn out to be very helpful in chapters 3, 9, and 10.



Appendix C

Steiner’s Theorem and the
Expectation Value of the
Maximum Likelihood Variance

Estimator

The task that we are going to solve in this section is the calculation of the expectation
value of the maximum likelihood estimator of the variance of a normal population.

Following eq. (6.19)

0% = ﬁZ($i—f)22 NZ(JUZ'—&)Q— (z — )? (3.1)

for all real constants «.
By setting o = p, we obtain an expression for the variance that is, in our examples,
easier to calculate than the standard form for a = 0.

The expectation value of the variance estimator is then

N
1
N (x; — ,u)Q) = ¢ by definition, we come up with

=1

Since F (

B (o) =0 =-B (@ -p?). (3.3)
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In other words, the mean difference between the true sample variance and its maximum
likelihood estimate is not zero but equal to the mean quadratic deviation of the estimated
mean from the sample mean.

This is exactly Steiner’s Theorem, which states that the momentum of inertia of a rigid
body with respect to an arbitrary point p is equal to its momentum of inertia with respect
to its center of mass plus its mass multiplied by the squared distance between p and its
center of mass.

Our remaining task is now to calculate the mean quadratic fluctuations of & around pu

drawn from a sample of size NV of a normal population.

Since
B(@) = B(u), (3.4
we can rewrite
B((@ - 1)) = 0(a), (3.5
which can be decomposed as
2 (= 2 1 al 1 2 Ly
o’ (Z)=o0 (ﬁ;xz):mga (xi):ﬁ-a, (3.6)
since the events #; (1 = 1,2, ..., N) are statistically independent.

Hence, we obtain from eqs. (6.19) and (3.6):

B (02) = % o2, (3.7)



Appendix D

Maximum Likelihood Estimators

D.1 Maximum Likelihood Estimator of the Probability Vec-
tor in the Multinomial Case
In this section, we will derive the maximum likelihood estimator for the probability vector

P = (p1,p2, ---, Pm) containing the probabilities p; of an M-sided die to show up its face

1. Let the sample size, i.e., the number of times we are rolling the die, be N. Then the

likelihood to sample the sequence zq, zg, ...,z is given by
M k
L($17$27"'7$N;@: Hpjj (41)
i=1

with & being the vector containing the absolute frequencies £; of rolling an j, i.e.,
k= (ki ko, ... kng) (4.2)

with

| =

By

N
k== b0 J) (4.3)

forall j=1,2,..., M.
Recall that x; = j if the die shows up its face j after getting rolled the ¢-th time and
that d(z — y) denotes the Kronecker symbol, which is 1 for 2 = y and 0 otherwise.
Maximizing L(z1, 22, ...,2N;P) = ﬁl pfj under the constraint % p; = 1 leads to the
= -

71=1
following M equations with A being the Lagrange multiplier belonging to the normalization



266

Mo M
O\ILpy =A- L Zpi—1
= = =0 (4.4)
forall i =1,2,...,M.

This yields for k; > 0 and p; > 0

constraint:

kz M k
— - I[p/ —2=0 (4.5)
P
71=1
or
ﬁ Py
pi _ =1
where (' is a constant for all ¢ = 1,2, ..., M.
Since
M
dopi=1 (4.7)
=1
and

=1
we immediately obtain
1
C=— 4.9
< (19)
and thus
i = L (4.10)
Pi = N .

foralli=1,2,...,M and k; > 0.
For k; = 0, we realize that the likelihood L(E;ﬁ) = L(z1, %3, ..., xN; P) becomes maximal
by estimating the corresponding p; = 0.
Hence, the maximum likelihood estimator can be expressed in the following closed form
for all k; and e = 1,2, ..., M:
Pi = — (4.11)

which reflects the standard recipe to choose the relative frequency % as an estimator of

the probability p;.
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D.2 Maximum Likelihood Estimator of the Shannon En-
tropy

In this section, we will derive the maximum likelihood estimator for the Shannon Entropy
H(p)=—p-In(p) — (1 = p) - In(1 — p) of a coin with the probability p to show up its head
and 1 — p to show up its tail.

Let 2; € {0,1} be the discrete random variables corresponding to the outcomes tail or
head up in the i-th experiment of flipping the coin.

The likelihood to observe the sequence x1, za, ..., xn is then
L(zy, 22, ey anip) = p - (L= p)¥ 7" (4.12)

with k£ = ]ZV: x; being the absolute frequency of tossing a head.

We :au’ze:,lhowever7 interested in the likelihood (21,3, ...,z n; H) to produce a certain
sequence i, g, ...,xn under the condition of a given H. Introducing the conditional
probability P(p|H) that a coin has the probability p provided its Shannon entropy is H,

this likelihood can be rewritten as

L(z1,22,...,zn; H)

= /L(achx%...,x]\r;p) -P(p|H) dp (4.13)
= %-(L(xl,xz,...,x]\r;p)—l—(L(acl,wg,...,x]\r;l—p)) (4.14)
— % (pk.(1_p)N—k_|_(1_p)k.pN—k) (4.15)

since the function H (p) is symmetric with respect to p = 1/2 and thus
Hp)=H(1—p). (4.16)
Maximizing 2 - L(z1, x2, ..., xn; H) yields the equation
keph (=N (N = k)t (1= p) N
— k(=) N (N =R (L= )t N T =0 (4.17)

for the maximum likelihood estimator of H = H (p).

At this point, we realize that the maximum likelihood estimator of the Shannon entropy,

H(zy,29,...,2N) = H(p(z1, 22, ..., xN)) with p(z1, 22, ..., zx) which can be obtained as the
solution of eq. (4.17), is not equal to the so called natural estimator given by

k(xl,xg,...,xN))

H(z1,29,...,2n) = H (

~ (4.18)
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Epilogue: Please realize that the solution of eq. (4.17) yields the maximum likelihood
estimator for all symmetric functions f(p), i.e., all functions for which the equality f(p) =
f(1 — p) holds, since this is the only assumption we need to come from eq. (4.13) to
eq. (4.14).

Hence, the maximum likelihood estimator of the variance o2 of the binomially dis-

tributed k, which is given by
2_p-(1-p)
=L 4.1

can be determined by solving eq. (4.17) and then calculating

g

072 _ p($17$2, 7$N) : (1 - P($17$27 7$N))

(4.20)



Appendix E

Bayes Estimators

E.1 Laplace Estimator

In this section, we want to derive the Bayes estimator for the probability vector p of an
M-sided die from a sample of size N under the prior assumption of a uniform distribution
of 7.

Let us define the random variables x; to be j if the outcome of the ¢-th experiment of
rolling the die is that the die shows up its face j (j =1,2,..., M).

Our task is to minimize the functional

F[f(z1, 29, ..rzn)] = // / (1,22, ey TN) — p)2

P(zy,29,...,2N|p) - P(p) dp (5.1)

where
ﬁ: (P17P27---7PM) (52)
and p; is the probability of the die to show its face 1.

The integral is taken over the entire parameter space of p which is here the M — 1

dimensional simplex given by

pi >0 (5.3)
forall i =1,2,...,M and

Zpi =1 (5.4)
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Since k = (ky, ko, ..., kag) with

1 N
ki == w0z - j), (5.5)

J =1

and d(z;— j) being the Kronecker symbol defined by §(z —y) = 1 for 2 = y and 0 otherwise

is multinomially distributed, the conditional probabilities can be explicitly given by
- N\ M |
P(ay, 29, ..., an|p) = Pk|p) = (E) Sl (5.6)
=1

with (%7) being the multinomial coefficient defined as

N\ N!
S B N I A (5.7)

The vector Ig, which contains the absolute frequencies k; of the outcomes j of our
experiment, turns out to be a better handle of describing our sample than the vector
(1,22, ...,2N) and is thus preferred in the future.

Rewriting the scalar product in eq. (5.1) leads to

M
FFR] = X [ [ [0 - )t PED - PG4 = min, (5

which can be solved by

iy = L Lo o s

= K (5.10)
[ ] (7)1 rnas

if an individual minimizing of all summands in eq. (5.8) is compatible with the minimization
of the sum.

Before we can try to calculate the integrals above, we have to specify our prior assump-
tion about the probability density of the vector p. Again, as described in section 6.5.2,
we start with the weakest possible assumption about the p, namely that we do not know

anything about this vector except the p; be normalized. Then, the maximum entropy
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principle suggests the prior probability density be uniform on the simplex given in eqs. 5.3

and 5.4.

Under this assumption, which is also called the Bayes hypothesis, the Bayes estimator

for the probability p; of an M-sided die becomes

() T
fi(k) = T :
[ () Tatam

From appendix H.3, we obtain

//m/@)wﬁw@

1
Nt kj+1 Ne—k.LM—
= . (1 = »p 5+ 2d .
/kj!-(N—kj_|_M_2)! Pj (1= pj) Dj
0
and
N\ M o
() fio
=1
1 N
= : k; N—k.+M—2
- -p (1 —p; j dn.
O/k]‘!-(N—kj+M_2)! p] ( p]) Pj
since
M
Zpi—l
=1
and
M
> ki=N
=1

As we show in appendix H.1,

1
k _ _ i+ D) (N =k + M —2)!
/pf“-(l—pj)N kj+M zdpj: ( J ) ((N_|_]\4])l )
0

and
k]‘!-(N—k]‘—I—M—Q)!
(N+M-1)!

1
k _ _
0

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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Hence,

I
IR

At this point, we realize that the individual minimization of the summands in eq. (5.8)

(5.18)

reveals estimators for the probabilities p;, which only depend on %; but not on the remaining

M — 1 components of the vector k. Hence, the estimator

(B) = (A F), FalR), ooy fra(B) (5.19)
is the Bayes estimator of the probability vector p of an M-sided die under the assumption

of a uniform prior probability density of p, which is also called the Laplace estimator.

E.2 Bayes Estimator of the Shannon Entropy - Part II

In chapter 7, we have derived the Bayes estimator of the Shannon entropy H (p) = — E ;-
In(p;) under the assumption of a uniform prior probability density on the simplex {p}
The same job was done in a brilliant, however, yet unpublished work by David Wolpert
[1993], who calculated the appearing integrals by applying Laplace’s convolution theorem
and ended up with the result that the Bayes estimator of the Shannon entropy is given by

the following equation:

M. ki +
-y W (ki +2, N+ M +1), (5.20)
=1 N
in which
AP (ke +2 N+ M +1) = W (k; +2) — dD(N + M + 1), (5.21)
and
dln (I'(2))
Wy = 2229
oW (z) = o (5.22)

where ['(z) is the gamma-function of the real positive numbers z.

In this section we will show that this finding and our result displayed in eq. (7.14) are
indeed identical.

The scientific value that we see in this proof of consistency arises from being convinced

that only a few people would like to implement a subroutine computing the logarithm of the
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gamma-function and its derivative, but all programmers are certainly able to implement a
subroutine calculating a finite harmonic sum.

Starting with the first poly-gamma-function, we obtain

dln (I'(z)) T'(2)

=) 0z () (5-23)
! 1 tz—l
= | —dt- 24
[oa-c (.24
0
by exploiting the Gaussian formula [Bronstein & Semendjajew 1989] and
C' = lim (Zn: L ln(n)) (5.25)
n—»00 k )
k=1
defining Euler’s constant.
For integer z,
1— ¢t z z—1
ﬁ:t +7T 4+ (5.26)
and hence,
1
11—t z—2 z—3
/ﬁdt = /t +TT 4+t 1dt (5.27)
0 0
S + ! + +1+1 (5.28)
Coz=1 z=2 72 '
for integer z > 2.
Thus we obtain
N+M 1
AP (b +2, N+ M+1)=- Y =, (5.29)
j=ki42 7

which proves the desired identity.

E.3 Binary Rényi Entropy Estimator

Under the assumption of a uniform prior probability density, Q(p) = const, the Bayes

estimator of the binary Rényi entropy of order ¢ can be written as

— 1 1
Kqll, o) = 1= q W/ (Ni, Ny)

[ -9 o [+ (-] 630
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for all Ny + Ny = N. Using the normalization constant (8.38), we rewrite equation (5.30)

in the form

1 1 (N +2) 1 N N
K, (N, N d 1(] = 2]
o(N1, V) = 1n21—qF(N1—|—1) (Ny+ 1) X {q/o ppt (1—p)Zlnp

L (5 e ()]}

The first term on the right hand side of (5.31) can be calculated to become

1
q/o dpp™ (L=p)inp =g % (o dp ™ (1-p)™)
=q 5 B(Ni1+1,N2+1)

=—¢B(N; +1,No+1) (Zﬁm 1%1) (5.32)

In the remaining term in equation (5.31), we change the coordinate @ = (1 — p)/p and thus

arrive at
- 11 N
K,(Ny, Ny) = 3l =g (1 (N1, Ng) — :Z ) (5.33)
where we define
I'(N +2) {/m N ~(N+2) }
1, (N, Ny) = de 2 [14+ 2 In (1 + z2?) 5. 5.34
(N Vo) = it { [1+ 4] (1+e0) (530



Appendix F

Bayes Estimators of Generalized

Entropies

In this appendix, we present a generalized derivation of the Bayes estimator of generalized
entropies. This derivation is more general than the derivation from chapter 8 in the sense
that here we give up the restriction to a uniform a-priori probability density function. In
the following we compute the Bayes estimator of Rényi and Tsallis entropies under the

a-priori assumption of a Dirichlet probability density function.

F.1 Motivation

The demand made upon computational analysis of observed symbolic sequences has been
increasing in the last decade. Here, the concept of entropy receives applications, and the
generalizations according to Tsallis H;T) and Rényi H;R) provide whole-spectra of entropies
characterized by an order g.

An enduring practical problem lies in the estimation of these entropies from observed
data. The finite size of data sets can lead to serious systematic and statistical estimation
errors. We focus on the problem of estimating generalized entropies from limited data
samples and derive a Bayes estimator of the Tsallis entropy, HgT) , including the (¢ = 1)
Shannon entropy.

By extending our previous results on statistical entropy estimation of symbol sequences

[Holste et al. 1998], we use a prior distribution over the probabilities which is of Dirichlet-
type. Using the relationship between H;T) and HSR), we utilize the Bayes entropy estimator
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H;T) to estimate the Rényi entropy H;R) from observed data. The Bayes estimator yields
the smallest mean-squared deviation from the true parameter as compared with any other
estimator. We compare the Bayes entropy estimators with the frequency-count estima-
tors of H;T) and HSR). Numerical simulations reveal that the Bayes entropy estimator
reduces statistical estimation errors of generalized entropies for statistical processes such

as generated by higher-order Markov models.

F.2 Introduction

Building on the works of Shannon [Shannon 1948], generalized entropies have been ex-
tensively applied to characterize complex behavior in models and real systems. As the
Shannon entropy, H, is formally defined as an average value, the idea underlying a gen-
eralization is to replace the average of logarithms by an average of powers. This gives
rise to generalized Rényi and Tsallis entropies of order ¢, H;R) and HST), respectively
[Rényi 1970, Tsallis 1988, Curado & Tsallis 1991].

The order ¢ applies to describe inhomogeneous structures of the probability distribution
associated with the stochastic process under consideration. From both order-g entropies,
H;R) and HSR), the Shannon entropy is obtained in the limit ¢ — 1. Applications of
order-¢ entropies occur in a variety of fields of sciences like, e.g., nonlinear dynamical
systems [Beck & Schldgl 1993, Grassberger et al. 1991, Pompe 1993], statistical thermo-
dynamics or evolutionary programming [Tsallis Entropies], and computational molecular
biology [Amalgor 1985, Herzel et al. 1994b, Li 1997, Strait & Dewey 1996]. Here we ad-
dress the problem of estimating generalized entropies from samples of observed data.

Entropy is based on probabilities which are, however, a priori unknown. Under the
assumption of a stationary process, we consider data sets to be composed of N data
points, each chosen from M possible different outcomes. In almost any practical situation
the observer only obtains a snapshot of the stochastic process, and hence an enduring
problem arises when entropies are to be estimated from limited samples. Replacing these
probabilities by the sampled relative frequencies produces large statistical and systematic
deviations of estimates from the true value [Harris 1975, Herzel 1988].

This problem becomes severe when the number of data points NV is of the order of mag-

nitude of the number of different states, N ~ O(M), which can occur e.g., in practical esti-

mations of correlations [Grassberger et al. 1991, Schiirmann & Grassberger 1996], the vari-
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ability in neural spike trains [Steveninck et al. 1997, Schneider et al. 1986], or in computa-
tional biology [Li 1997]. In those cases the choice of an estimator with small deviations from
the true (though unknown) value becomes important. Several different estimators of the
Shannon entropy have been developed [Ebeling et al. 1995, Grassberger 1988, Herzel 1988,
Schmitt et al. 1993]. Specific estimators for the Rényi entropy and for the dimensions re-
lated to them have also been derived [Grassberger 1988, Pawelzik & Schuster 1987].
Using Bayes estimation, we derive an estimator of generalized entropies. The Bayes
estimator possesses the optimal property to minimize the mean-squared deviation of the
estimate from the true value, subject to a prior distribution. We derive the Bayes estimator

(T)

of the order-¢ Tsallis entropy H, ' under the prior assumption of a Dirichlet distribution.
We discuss properties of the estimator H;T) and contrast the result obtained with the usual
frequency-count estimator. Using the relationship connecting H;T) with H;R), we propose a
method on how to extract the Rényi entropy from observed data. We test the performance
of the Bayes entropy estimator, by using both homogeneous and inhomogeneous Markov

processes with zero- and five-step memories derived from biological sequence data of the

prokaryote H. influenzae.

F.3 Generalized entropy analysis

In this section, we outline the concept of generalized entropies, and we add some remarks
about their similarities and differences.

Consider a random variable A that assumes M different discrete values a;, ¢ = 1...M.
Associated with A is a probability vector P = (p1,...,pa) with components p; = p(A =
a;). The p;’s are defined on a simplex comprised by {P | Vi : p; > 0AYM p; =1}, The set
of all possible outcomes is referred to as the state space of size M. The Shannon entropy

of A is defined as o
H(P)=—(ldpi)p = =Y _pi ldp; (6.1)
=1

where (-)p is the average over P. Due to the dual base of the logarithm (ld), the entropy
is measured in units of bits per symbol. A distinctive property of Eqn. 6.1, which is not
shared by generalized entropies, is that the entropy of a composite event can be given as
the sum of the marginal and the conditional entropy.

It follows from Eqn. 6.1 that events having either a particularly high or low frequency

of occurrence do not contribute much to the Shannon entropy. In order to weight particular
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regions, one can consider the following partition function

M
Z,(P) = e =30 (¢€R). (6.2)

In the spirit of statistical mechanics, by introducing the “energy” F; = —Ildp; and iden-
tifying ¢ as inverse temperature 3, Z, plays the same role as the partition function of a
system which is embedded in a heath bath.

Varying ¢ allows for the monitoring of the inhomogeneous structure of P: for
larger ¢, the larger individual probabilities p; dominate Z,. On the other hand, for
smaller ¢, the smaller p; become dominant. Note that Zg = M and Z; = 1.
Building upon the above partition function, the order-¢g Tsallis entropy is defined as
[Tsallis 1988, Curado & Tsallis 1991]

H(T(P) = éZqEA_)q— 1_ ﬁ«’% 1__(] 1>P, (6.3)
Similarly, the order-¢ Rényi entropy is given by [Rényi 1970]

1d7, (A L
ae) = A g g (6.4)
-4
In the above expression, <p?>i,/q is the generalized g-average of the numbers p;. By inspec-

tion, H;T) and H;R) are functionally related through

H®MP) = - i p In [1 +(1—¢)In2 HéT)(P)} (6.5)

and

HOP) = - ! —exp (1) n2 H(P)] - 1. (6.6)

We see that H;T) and H;R) are monotonic functions of one another for fixed ¢, and they

posses the following properties:

. H;T) and H;R) > 0. Global maxima (minima) are attained at p; = 1/M Vi for ¢ > 0
(¢ <0).

° H;T) and H;R) are monotonically decreasing functions of ¢ for arbitrary P.

° H;T) is a concave (convex) function of p;, for any ¢ > 0 (¢ < 0). The curvature of

H;R) upon ¢ is nontrivial [Tsallis Entropies]. Yet we find two inequalities hold: H;R)

is a convex (concave) function of P for ¢ < 0 (0 < ¢ < 1).
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e Tor two independent random variables, H;R)(A,B) is additive, i.e., H;R)(P,Q) =

aP@)+a"(Q), and H is pseudo-additive, i.e., H(P,Q) = HD(P) +

BM(Q) + (1B P H"(Q).

The motivation to introduce generalized entropies stems from the advantage that through
the characterizing order ¢ we arrive at a whole-spectrum of entropies. Entropy spectra, in
particular the differences between entropies of different order ¢ contain information about
the underlying process. In the light of the fact that (i) H;R) is additive but neither concave
or convex, and (ii) that H;T) is convex (concave) but not additive, it is remarkable that

vet by Eqn. 6.5 and 6.6 we are able to switch between two types of entropies of order g¢.

F.4 Bayes entropy estimation

In this section, we will first describe how to preprocess the necessary variables from sequence
data and we outline the concept of Bayes estimation.

For a given sequence Sy of N observed data points, we define the vector F = N/N,
which stores the relative frequencies of occurrence. Its ith component contains f; = N;/N,
the ratio of the number of occurrences of symbol ¢ and the total number of symbols in the
sequence N = Zf\il N;. We derive N; independently from Sp such that N is multinomially
distributed?

PINIP) = o ol n (6:7)
with the normalization constant

Nyl Nyy!

Z(N) = — T
In Bayes estimation, the first quantity one would wish to write down is the posterior
distribution for the vector P given the observed frequencies IN. For a given stochastic pro-
cess under consideration, the individual components p; of P always take on a specific value.

Yet we can use a prior distribution P(P|AU) as a conditioner to embody our (subjective)

assumptions about P. This allows for the direct inclusion of specific knowledge about the

'Note that N is multinomially distributed only in the case of independent identical-distributed data
points. Otherwise, Eqn. 6.7 can only serve as an approximation which, however, is often the case in

practical situations.
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parameters p;. We choose the p; to obey a Dirichlet distribution [MacKay & Peto 1994],

namely

1 UL — Up—

with the normalization constant
U'(Auyg) - -T'(Auar)
[
The vector U = (uy,...,ups) is the expectation value of P(P|AU), writing

Z(\U) =

[dP P(P|AU)P = U. It is positive in each component u;, and it is normalized though
the scalar A > 0. In case that U = 1/), the Dirichlet distribution simply reduces to the
assumption of a homogeneous probability density on the simplex, P(P|1) = I'(M). The
role of A is that it measures how different we expect typical vectors P to be from the
expectation (P)pp|yuy) = U.

We are now in a position to write down the complete distribution of P, given the data

N and the parameterization U,
P(N|P)P(P|AU)
P(N|AU)
[ p™ ™ 2 (N) /2 (00)
P(N|AU)
where the normalization constant is obtained by integration over the simplex
JdP I} pruem N
Z(N)Z(AU)
In the above expression, P(P|AU) is called the prior, P(N|P) is called the likelihood, the
data-dependent term P(N|AU) is called the evidence (how much the data N are in favor

of AU), and P(P|N, AU) is called the posterior distribution. The latter quantity can be

P (P|N, \U)

P(N|]AU) =

understood as summarizing what we know about P is what we knew before the experiment
[P(P|AU)] and what the observables conveyed us P(N|P).

The Bayes entropy estimator [Berger 1985, Wolpert & Wolf 1995], which emerges

as the expectation value of H;T) over the posterior distribution, HgT) = <H§T)>P(P|N7AU),

(T)

minimizes the mean-squared deviations of its estimates from the true value H; "/, constraint

to a prior distribution. Inserting Eqn. 6.8, we have
HID(N,AU) = /dP 1" (P)P(P|N,U)

[dp 2" (P)P(N|P)P(P|AU)
[dP P(N|P)P(P[\U)

(6.10)
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In order to obtain HgT) , we note that it suffices to calculate the Bayes estimator of the
partition function, Z, , writing

1 1

(MN,\U) = ———
(N, AU) In21—g¢q

[2,(N,A0) - 1. (6.11)

Evaluating expression 6.11 yields [Holste et al. 1998]

5(NAU) = %{F(m—l—l—l—q) I'(R+ M) }

I'(r;+1) 'R+ M+ q)

forall r;y € R, r; = Au; — 14+ N; and R = wa r; = A— M + N. Note that the parameter
interval for which Z, is defined is ¢ € (—Upnin, 00) with Upin = miny{w;}. If all r; are
integers, the I'-functions simplify to their factorial representation. For instance, for ¢ = 1
and u; = 1/M the Bayes estimation of the probability is given by (N, + 1/M)/(N + 1).
According to Schiirmann & Grassberger [Schiirmann & Grassberger 1996], this is the esti-
mator found numerically to yield ‘best’ entropy estimates when inserted as an estimator for
the individual probability p;. Here we realize that it corresponds to choose a homogeneous
Dirichlet distribution over the simplex.

As H;T) is a generalization of the Shannon entropy, the same is expected to hold for

the Bayes entropy estimator of H. For integer r;, the limit ¢ — 1 yields

M R+M
o~ 1 r,+1 1
Hi(N,AU) = — . 12
1N, AU) In2 % R—|—M(n;+2n) (6.12)
For U = 1/X, this is identical with the result derived in [Grosse 1996,

Wolpert & Wolf 1995].

We now turn to the Bayes estimator of the Rényi entropy %gR) . Substituting H;R)
for H;T) in Eqn. 6.10, the problem of deriving the Bayes entropy estimator reduces to
the calculation of the integral HgR)(N, AU) x [dP 1dZ,(P)P(N|P)P(P|AU). Even in the

simplest case, namely for a 2-letter alphabet, no analytical expression could be derived.

Therefore we seek another strategy which is of practical use, in particular in the multi-
variate case. We propose to use the closed-form result of Z, for the estimation of %QR) ,
by making use of the relationship between H;T) and HSR). We first estimate H;T) from

data, and then compute H;R) through Eqn. 6.5. After these preliminary remarks, we write

down the (indirect) Bayes entropy estimator of HgR)

H(N,\U) = ﬁ 1dZ, (N, A\U). (6.13)
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Figure F.1: The rank-ordered hexamer (6-letter) distribution of the complete DNA se-
quence of H. influenzae displayed as a double-logarithmic plot (O). For a comparison, the

rank ordered distribution of a corresponding Bernoulli sequence of same length has been

included in the figure (4).
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In this section, we test the performance of the Bayes entropy estimators. We generate by

Monte-Carlo simulations synthetic sequence data and investigate the statistical properties

of H;T) and H;R) for both Bayes entropy estimators and frequency-count estimators.
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order g
(R)
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Figure F.2: Comparison of entropy estimators: H, ~ with parameter set M = 4096, N =

8000, P = 1/M. We observe the smaller variance of the Bayes entropy estimator (thick

line, the black curve corresponds to U = 2/ and the grey curve corresponds to U = 1/X)

as compared with the frequency-count estimator (thin line) for a single realization for

each order q. We observe the significant small width of the variance of the Bayes entropy

estimator as compared with the frequency-count estimator.

We focus on the case where the size of the alphabet M is in the order of the number
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of data points N, and we investigate the sample variance of the entropy estimators?, by

performing the following simulations:

0.0
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[
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order g

Figure F.3: Comparison of entropy estimates: H;R) with parameter set M = 4096, N =
4000 P = 1/M, and U = 2/X. We observe that fluctuations of the Bayes entropy estimator
(thick line, the black curve corresponds to U = 2/X and the grey curve corresponds to
U = 1/)) are strongly suppressed as compared with the frequency-count estimator (thin

line) for a single realization for each order g. The significant small width of the variance

of the Bayes entropy estimator as compared with the frequency-count estimator is visible.

1. We simulate homogeneous 0-step Markov processes. Considering the interval ¢ €

(0,50) and incrementing ¢ by Ag = 0.1, we monitor the estimates for a single re-

?Frequency-counts are directly obtained by sampling the relative frequencies f; from sequence data.
Replacing the individual probability p; by their sampled relative frequency f:, the frequency-count entropy
estimator is respectively given by /HEZT) = [Zq(F) — 1]/(1 —gq) and /HEZR) = [leq(F)]/(l —q).
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alization for each ¢ (and hence, allowing fluctuations to become visible rather them
averaging them out), we study the observed variance of the Rényi entropy estimates
and hence compare the Bayes entropy estimator with the frequency-count estimator.

The outcome of the numerics is shown in Figure 2 and 3.

2. We simulate 0-step homogeneous and 5-step inhomogeneous memory Markov pro-
cess. In the latter case, the transition probabilities are taken from the complete
1,830, 240 nucleotides long DNA sequence of the prokaryotic genome of H. influen-
zae [Fleischman et al. 1995]. The probability vector P inauenzac, derived from the
above DNA sequence is used to test the performance of the Bayes entropy estimator
versus the frequency-counts estimator. In either case, P = 1/M or Py infuenzae,
a sequence Sy is randomly generated from which we estimate the entropy values.
In this test, we can also compute the ‘true’ hexamer entropies (taking the relative
frequencies as probabilities by definition). The difference between the estimated and
the theoretical values defines a random variable, which we define as the entropy es-

timate deviation from true. Generating an ensemble of sequences {S](\zf)}g,looo and

estimating the order-2 entropies HéR) and HQ(T)7 we calculate the histograms of the

entropy estimate distribution and compare the sample variance of both estimators.

The outcome of the numerics is shown in Figure 4 and 5.

Figure 1 shows the rank-ordered distribution obtained from both the DNA sequence of
H. influenzae and from a sequence of same length derived from a homogeneous 0-step
Markov process. It can be seen that the DNA sequence is far more inhomogeneous than
the realization of the latter process. The derived frequencies can be regarded as a typical
example representing hexamer distributions in (prokaryotic) DNA.

These studies demonstrate the merit of the Bayes entropy estimator as compared with
the frequency-count estimator in deriving reliable estimates from small samples: the vari-
ances of the Bayes estimates are significantly smaller than the variances of the frequency-

count estimates for both homogeneous 0-step and inhomogeneous 5-step Markov processes.

F.6 Conclusions

We derived the Bayes estimator for generalized entropies, H;T) and HSR), for a discrete set

of data points. Our approach of deriving the estimators H;T) and H;R) is motivated by
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Figure F.4: Histograms of entropy estimates: H;R) with parameter set M = 4096, N =

4000, P = 1/M, U = 1/A, and ¢ = 2. We observe the smaller variance of the Bayes

entropy estimator as compared with the frequency-count estimator.
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the requirement to estimate generalized entropies from realizations where the total sample
size N is of the order of magnitude of the size of the state space M. Both entropy estima-
tors are obtained from the estimator of the partition function, Z,, which could be used to

estimate further related quantities like, e.g., generalized dimensions. A comparative study

2000

1000

absolute frequency

O L 1 1 L
-0.0003 -0.0002 -0.0001 0.0000 0.0001
entropy estimate deviation from true

Figure F.5: Histograms of entropy estimates: H;T) with parameter set M = 4096, N =
8000, Py influanzac, U = 1/A, and ¢ = 2. We observe the smaller variance of the Bayes

entropy estimator as compared with the frequency-count estimator.

of the accuracy by which the Bayes entropy estimator and the frequency-count estima-
tors estimate H;R) and HéT) associated to 0-step homogeneous and 5-step inhomogeneous
Markov models demonstrates the strength of the Bayes entropy estimator. Over the whole
range of order ¢ considered, the Bayes entropy estimator outperforms the frequency-count
estimator by a significantly smaller variance of its estimates. This makes the Bayes entropy

estimator appropriate to be applied in situations where the sample size N is of the order
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of the size of the state space M.

The numerical simulations demonstrate that for the P-vectors considered is this work,
the Bayes entropy estimator leads to variances which are significantly smaller as compared
to the variances of the frequency-counts estimators of generalized entropies extracted from
small samples.

The Bayes entropy estimators have been derived under the assumption of a Dirichlet
prior distribution. The specific parameterization (U) is application-dependent. Given
no further information about P, a homogeneous distribution constitutes the least biased
guess; this does not mean that the individual probabilities p; are equidistributed, but rather
that all vectors P are equiprobable. The central result in Eqn. 6.12 allows for the direct

implementation of individual situation-tailored a prioriinformation.



Appendix G

Approximation of the Shannon

Entropy H(p) for all p € [0, 1]

In this section, we will present an alternative to the Taylor expansion of the Shannon
entropy, and thus outline alternative approaches to calculating the expectation value, the
variance, or even higher moments of the distribution of observed Shannon entropies.

The weak point of all Taylor approximations is, as we have seen in chapter 9, the
divergence of the power series I (¥) = io: % ag) (@i — pi)¥ for a; > 2 pi.

k=01:=1
One possibility of circumventing these divergences is to compute the power series ex-

pansion of H (&) about the point & = (%, %, e %) or about points with components even
greater than one half. However, this approximation is fairly bad, i.e., it converges only
slowly to H(Z).

Hence, we present an approximation derived from the theory of linear regression that

combines the following two features:

e it converges for all ; € [0,1] and all i =1,2,.... M
and

e it converges quickly to the limit function H(Z).

Imagine we are given a cloud of n points in the z-y-plane and are to determine a

function

f($;007017"'70m) = Zkak (71)
k=0
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that optimally fits the points. Here, ‘optimally’ means that we search for those 8, (k =
0,1,...,m) for which the sum of the squared deviations between the f(z;) and the y;
becomes minimal, i.e.,
n
Z (f(x;;60,01,....0m) — yi)2 = min. (7.2)
=1
Now it is our goal to approximate the cloud consisting of an infinite number of points
given by y = —x -In(z) with a uniform density on the interval [0, 1] by a finite power series
E 0 - x*
We substitute the finite sums over all points by definite integrals and thus end up with

the following analytic problem:

1
/(f(x;@o,Ol, b)) —y(2)? dz = min, (7.3)
0
with -
f($;007017"'70m) = Zkak (74)
k=0
and
y(z) = -z -In(x). (7.5)

We can either try to solve this problem numerically, which would however shift our
analytic problem to a numerical one by back-substituting the above integral by a finite
sum, or to solve the integrals analytically, which would then reduce our analytic problem
to an algebraic one.

The latter goal is indeed achievable, because closed form expressions for all appearing

integrals can be derived.
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= > Ay-0,-0;+2) B;-6;+C (7.6)
i,j=0 i=0
by defining
1
" 1
A = Fdy = —— .
j= [atar = o (7.7)
0
1
1 \2
BZE/xH'l 1n(x)dw=J(i+170)=—<i+—2) v (7.8)
0
and
1
C = /x2 . lnz(x) dx. (7.9)
0
Minimizing
S Ay-0i-0,+2 Bi-6;i+C (7.10)
1,j=0 1=0

leads to the following m + 1 equations for all £ = 0,1, ..., m:

2-Akk-0k—|—2(1—5ik)-Aik-0i+2(1—5kj)-Akj-0j+2-Bk:0 (7.11)

=0 7=0

Since A;; = Aj;, we obtain

m
> Ag -8 =-By (7.12)
=0
for all £ = 0,1, ..., m, which can be displayed in the following matrix representation of a
system of linear equations:
1 1 1 1
T3 s 0o 5
11 1 9 1
2 3 m+2 ] 1 _ 32 (7.13)
S EER T 9 1
m+1l  m4+2 2.m+1 m (m+2)2
- . .. _ 1 g _
Let A be the (m + 1) x (m + 1) matrix containing the elements Aj; = 57, 0 =
(6o, 01, ..., 8,,) be the vector containing our regression parameters, and B= (Bo, B1y -, Bp)

be the inhomogeneity vector of our system of linear equations. Then, our system
A9 =BT (7.14)

is uniquely solvable by

67 = A=t . BT (7.15)



292

if Ais regular, i.e., if A1 exists.
Our next task will thus be the inversion of the matrix A given by the elements A =

for2,7=0,1,.

Z+]+1
Doing it by hand is no fun for m > 5. Hence, a numerical inversion of the matrix A

seems to be the only alternative. But unfortunately, almost all programs fail to derive
proper results for increasing m. The reason for this dilemma is fairly simple: the matrix
A, which is called the Hilbert matriz, is ill conditioned. This means that this matrix looks
as if it were singular although it is indeed regular. In other words, all eigenvalues of this
matrix are nonzero, but extremely small.

The question that we have not yet answered is whether the Hilbert matrix is indeed
regular. In the following paragraph, we will prove the regularity by displaying the inverse

matrix explicitly.

Theorem G.1 Let A be the n x n Hilbert matrix defined by its elements

1
T4 g+1 (7.16)

Then the inverse matriz A=' is given by the elements

o CUMRE
S G ER iR U 0 -I1 RN (A

k=1

Multiplying the matrix A~ by the inhomogeneity vector B yields our desired vector 6
containing the coefficients of our power series approximating y(z) = —z - In(z).

This power series expansion can eventually be used to derive approximations (in any
order) for the expectation value, the variance, or even higher moments of the Shannon en-

tropy estimates distribution, since all moments of the multinomial distribution are known.



Appendix H

Useful Integrals and Sums

This section is devoted to the derivation of some analytic expressions for the following

integrals, which we are frequently using throughout our work:

I(p;s,t) = /p“’ (1—p)'dp (8.1)
and )
J(s,t) = /p“’ (1=p)" - In(p) dp (8.2)

for any s € N and t € N as well as

K (p1; kj, M, N)

1-p1 1-p1—p2 1—p1—pa—..—Prr—2 N "
- / / / (;g) I el dpyi—s - dpsdpa. (8.3)
p2=0 p3=0 pam—1=0 =2

In section H.4, we will derive the marginal distribution of the component k; (i =
1,2,..., M) of a multinomially distributed vector k= (k1, k2, ..., kar), which confronts us

with the finite sum

N—kl N—kl—kQ l—kl—kg—...—kM_Q N M
SURTSTEVED S SRR SHR Y 1 (Y
=2

ko=0  k3=0 kyr—1=0

for 1 = 1.
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H.1 The Indefinite Integral I(p;s,t)

The indefinite integral I(p;s,t) = /ps (1 — p)'dp is obtainable by partial integration,
which yields

/ps-(l—p)tdp = Sil-ps“-(l— / p)~tdp
— 8_|1_1 p*tt (1—p)t+(8+1)%(8+2) pPr(1-p!
i s
; Z_: sl ! . ‘p5+i+1_(1_p)t—i
pad (s+i+ D! (t—2)!
i (s+k§i.i!t_k)!/ps+’“-(1—p)t"“dp (8.5)

after k times partial integration for integer k& < t.

For k = t, we obtain

I(p;s,t) = /p
sl ! . .
— s+i+1 1— t—1
2:0 (s+i+ 1) (t—10)! P ( P)
sl
sttt
+ (s+t+1)! P
! 8' t' s+1+1 1 t—1 8.6
N ;s—l—z—l—l (t—i)!'p (=) (8.6)
by defining
0_ 1 _ 0 —
0 _]1)1_>ml(1 p) = 1. (8.7)

Hence, the definite integral with limits 0 and 1 becomes

; Tog!
so(1—p)tdp= —>2"" 8.8
0/19 (1—p)dp it (8.8)

H.2 The Definite Integral J(s,t)

Since we have obtained an analytic expression for I(p;s,t) = [ p®- (1 —p)' dt, we can easily

1
derive J(s,t) = [p*- (1 — p)' - In(p) dp by partial integration:
0
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1 1
[ 0= ) dp = s G — [ 1is) s (59)
0 0
Since
lim " -In(p) = lim p* -In(p) = 0 (8.10)

for all k € M\{0},
[1(ps5,1) - In(p)]p = 0. (8.11)

1
The remaining term, [ I(p;s,t) - Zl)dp7 yields:
0

1 1
1 ¢ sl , :
I(p;s,t)-—dp = T (1 —p)iThd
/(p787)pp /ZS+Z+1 Y (L-p)~dp
0 0 =
! 1! ;
sl-t! . .
— s+, 1— t—1 d
ZZ;(SHH) (t—i)!o/p (L=p)"dp
B ! sh-t! (s+a)!-(t—1)!
oS (st -0 (st 1)
sl !
= A2
(s+t+1';s+z+1 (8.12)
Hence,
1 t
(st /51 ) In(p) d st Z (8.13)
— . _ - In = — .
(s;,t) = [p*-(1—p L P 8+Z+1
0 Z
H.3 The Definite Integral K(p;;k;, M, N)
In this subsection, we will display an analytic expression for the definite integral
K(p1; ki, M,N) =
1-p11-p1—p2 1-p1—p2—..—Ppr—2 M
N ks
(IZ) I P dpar—1 - - - dps dpa, (8.14)
=2

p2=0 ps3=0 par—1=0

which almost always appears if Bayes estimators of multinomially distributed likelihoods
P(k|p) are to be derived.

Since a complete mathematical proof is too long to get displayed in this work, we just

present the main ideas and recommend all interested readers to exercise the induction by

themselves.
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First, the following variable substitutions seem to be recommendable:
ap=1—pr—p2—..—p (8.15)

and

Ni=N-—ky—ky—...— ki (8.16)

forall i =1,2,...,M.

Then, we can rewrite

K(p1;k, M,N) =

o5} a XM —2
Mo (Y e ) (M),
ky) ky ) 77 ks ) 0 ka1

pr=0 pa=0 pr-1=0
Ph - (a2 — pa—a) N2t dpyy - dpy dps, (8.17)
since
@ = Qg1 = Pitl (8.18)
and
N;— Niy1 = ki (8.19)

forall i =1,2,...,M — 1.
Finally, calculating the integral

NUN kDU v (3.20)
(N —=k)!'-(N+1+1)!

for all positive real «, integer NV, and integer k < N, starting the induction, and calculating
the occurring integrals as outlined above yields

N
kil - (N — k1 + M — 2)!

N-ki+M-2 (8.21)

K(p1; k1, M,N) = P (1= pr)
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)N—kl—I—M—Q

This result — the proportionality to p]fl (1=p1 — can easily be interpreted

in the following way. The quotient of the two integrals

fp)-pF - (1 =p)NFdp

O

(8.22)

1
EJI"p’“'(l—p)N"“dp

can be read as the expectation value of the posterior density of the function f(p) under
the prior assumption of uniformly distributed p, which is identical to the Bayes estimator

for f(p) under the Bayes hypothesis for p:

o=

f(p) - P(klp) - P(p) dp
k) = . (8.23)
E)I”P(/’Clp) - P(p) dp

Let us now consider the multinomial case and assume f be a function that only depends

on one component of p. Without loss of generality, let p; be the only component that f

depends on, i.e. f = f(p1).
Then, under the assumption of a uniform prior distribution of p, the Bayes estimator

for f(p1) becomes

[ (py) - P(k|) - P(5) dF
[ P(k|p) - P(5) dp

fpr) oyt (L= p)N=R (1= )M -2 dp,

= - (8.24)

[pf (1= p)N=R - (1= p)M-2dp,
0

fky =

O

This, however, is exactly the one-dimensional Bayes estimator of the function f(p1)
with the prior density

P(p1) ~ (1= p)M2, (8.25)

where the proportionality constant can be derived from the normalization constraint, which

eventually yields
P(p) = (M =1)-(1-p)¥ 2 (8.26)

H.4 The Finite Sum S(py;k;, M, N)

In this section, we will show that the marginal distribution of the component k; of a

multinomially distributed vector k is binomially distributed with parameters p; and N,
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if the parameters of the underlying multinomial distribution are p'= (p1, p2,-.-s Piy -, PM)
and N.
Without loss of generality, we consider the marginal distribution of the component &y

of the vector lg, which is multinomially distributed according to
- N\ M
P(k;p,N) = (E) S (8.27)
=1

with p; being the probability that an M-sided die shows up its face ¢ and k; being the
absolute frequency of observing the i-th face in a sample of size V.
Let us first introduce a generalized binomial formula by rewriting the Ni-th power of

a sum over M — 1 positive real numbers ¢; as

M Ny M Ny Ny N, M Ni—ko
Yo = (e+Xe) =X (1) (Lo
j:2 j:3 ko=0 2 j:.?)

Ni—ko—ks
N1 Ni—ko M
Ny k Ny — ke k
= Z(k)‘f]22' Z ( Jes )"]33' ]Z:;I‘]j

2

ko =0 k=0
- M-—2
Ni— Y ky
glz le_:kl ijf (N1) (N1 — kz)
ko=0 k3=0 kyr—1=0 k‘z k3
Ny —ko—ks— .. — kpo
( 1 2 k3 2)q§2q§3q§}4
M-1
N\ 5 ok
{k1} 1=2
where the sum is to be taken over all vectors k; = (ka, ks, ..., kar) of positive integers k; for
which the equality
M
> kj=N (8.29)
=2

holds.
If we now set Ny = N —k, p; = ¢; for j = 2,3,..., M, and exploit the normalization

constraint

M
Y pj=1-p, (8.30)
=2
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we immediately realize

s (e - (2)x (2) 11

{k1} i=1 (K1} i=2
N
= (k ) -p’fl S(L=p)N TR (8.31)
1
Since this derivation is possible for all « = 1,2, ..., M, we obtain the general result
N\ M N\ . L
2 (1;’) 1_[1qu - (kz) i (L= p)N TR (8.32)
]:

{ki}
forall N, k; < N, and k; = (k1, k2, oy kic1, kiga, -, kag), which states that all components
of a multinomially distributed vector are binomially distributed. This result, however, must
not mislead us to the wrong conclusion that all components are statistically independent.
The reverse is right, i.e., all components of a multinomially distributed vector are mutually

dependent.

H.5 The normalization constant W

Under the assumption of a stationary, independent distributed sample of data points, the
conditional probability density to observe a sample with occupation numbers { Ny, ..., Nas}
is given by the multinomial distribution P(N|p) = Cyx 1M, pY. Here the multinomial
coefficient reads as C' g = N!/ [TY, N;!, and the size of the sample is N = "M, N,.

We define W’(Z\7) = W(Z\_f)/CN Then, with a uniform prior probability density, the

reduced normalization constant reads as
. 1 . M N
W) = o [ PIH Q@ = [ TLde#)". (3.33)
NS S =1

Introducing the auxiliary variable £; =1 — Zle pi, the explicit integral takes on the form

1 kn—o

- ky
W’(N):/ dplp]lvl/ dpgp]?V?---/ Nar |
p1=0 p2=0 ppr—1=0

Nur—
dppr—1 PMﬂfll (kM—z - PM—l)

(8.34)

In the above expression, all integrals are of the type [ du u®(£ — u)b. Changing co-ordinates

u = &v, these integrals can be rewritten in terms of ordinary Beta-functions

/5 du v (€ —u)’ = T Bla+1,b+1) (8.35)
0
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for all positive real numbers ¢ and b, and B(a,b) = ['(a)I'(b)/I'(a + b). The relation
[(n+ 1) = n! holds for n € V.
Using relation (8.35), we may integrate equation (8.34) over pas_; to get

= 1 N k1 N
W/(N) = B(NM—l + 1, Ny + 1) X / dpy pi* / dpy py>
r1=0 p2=0
kar—s
/ dpnri—2 PM 9 (kM 3~ PM-— 2)(NM_1+NM+1) }
Py —2=0
Completing the iteration for all but the integration over py, this yields
M-1 M-1

W'(N) = H B(No 41, 32 Njgt + (M —m)) x

i=m

{ / dp: P (1—p1) (Zj; NJ+(M_2)) }

Expressing the Beta-functions in terms of Gamma-functions, we obtain W'(py; 1\7) in the
form

H]‘]\iz F(Nj + 1)
(M, N+ M -1

W (p1; N) = 19]1Vl ) (1= p1) (EJN;NJHM_Q)) : (8.36)

Inspecting the above expression, we realize that equation (8.36) can, in fact, be readily

written down for a general ¢th component:

N o TN+ 1) 16 )N +(M -2
W (pi; N) = pi* i = (1 _pi)(ZJ 0= 0-2).
P (M, (1= 6)Nj + M — 1)
(8.37)
Integrating (8.37) over p;, we arrive at the normalization constant
¥ ! v (N +1
W(N) = Cg dp; W (pi; N) = TV +1) (8.38)

ER)



Appendix 1

Characteristic Functions

In this appendix, we will briefly introduce characteristic functions f]—g(t_j of a discrete random
vector k with the probability distribution P (lg), which we will then calculate to display

the first moments of the multinomial distribution given by
_ N\ M
P (k) = (E)l;llp : (9.1)

where k& = (k1, k2, ..., kar) denotes the M-dimensional vector containing the nonnegative

integers k; constrained by
M
> ki=N (9.2)
=1

and p'= (p1, p2, ..., pm) denotes the M-dimensional probability vector containing the non-

negative reals p; obeying the constraint

M
> pi=1 (9.3)

More detailed introductions of characteristic functions containing a set of valuable
theorems can be found, e.g., in [Bronstein & Semendjajew 1989], [Rényi 1982], or [Fisz
1989].

The table of the central multinomial moments displayed at the bottom of this appendix

can also be found in [Harris 1975].

Definition 1.1 Let k be a random variable with its distribution function F'(k). Then we
define the characteristic function fj(¢) as the expectation value of the numbers exp(i kt),
€.,

fult) = / expl(i kt) dF (k). (9.4)
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By expanding exp(i kt), we obtain

N 2 N 3 SN ) n
fk<t>:E(1+m+<”;f> + 0 +---):Z’ It (9.5)

where 7, denotes the n-th central moment of £, i.e.,
e = E (k") = /k” dF (k). (9.6)

Differentiating n times and then setting ¢ = 0 gives

i, = [8n8c’;kn(t)]t:07 (9.7)

i.e., the n-th derivative of the characteristic function f(¢) yields the n-th moment of k.

Considering the binomial distribution, we obtain

al N
=Y exp(ikt) - (k) (=N = (prexpit) +1-p)N  (9.8)
k=0

and thus all moments by differentiating this function.

Let us now consider the characteristic function of multivariate distributions.

Definition 1.2 Let k be a random vector and F(lg) its distribution function. Then we
define the characteristic function fg(f) as the expectation value of the numbers exp(i Ef),
€.,

e /exp(iéﬂ dF (). (9.9)

Hence, the characteristic function of a multinomially distributed vector k is given by

N M M
fr() = Z(E)'pri'l:[exp(ikiti)

-

{k}

= Z( ) lj_w[pZ exp(it;))

(£} =1
M N

(Z pi - exp(i tz)) (9.10)
=1

according to appendix H.4.
In analogy to the univariate case, we obtain all higher moments of the multinomial

distribution by differentiating the characteristic function f]—%(tj



Let us, in the remainder of this appendix, display the first centered moments fip,; 1, .0

defined by

,unl ng ...7ny

which can be obtained by completely elementary methods from the moments 7,, 5, .. »

M1

Ha

H3

Ha

H11

H21

31

H22

Hit11

H211

Hi111

4+ 0+ 1 1 |

E((kt = Np))™ - (k2= Np2)™ -+ (ki = Np)™),

0

N‘(Pl—P%)

N (pr—3-pi+2-p)

3N (pi —2-p{ +pi)

N (pr—T7-pi+12-p] - 6-pj)

=N -p1-p2

N-(2-pi-p2—p1-p2)

3NZ- (p} - p2—pi p2)

N (=6-p} p2+6-p-py—p1-p2)
N2‘(3‘P%‘P§—P%'P2—P1'P§+P1'pz)
N-(=6-pf-p5+2-pi-pa+2-p1-p3—p1-p2)
2N -p1-p2-ps3
N?-(3-pl-p2-ps—p1-p2-Pp3)
N-(=6-pf-p2-p3+2-p1-p2-pa)

3N%-py-py-p3-pa—6N-p1-ps-p3-pa
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(9.11)

(9.12)

(9.13)
(9.14)

(9.18)

(9.19)
(9.20)

(9.21)
(9.22)



Appendix J

Mean and Variance of In \?

In this appendix, we derive the mean and variance of the logarithm of a y2-distributed
random variable.

Let X; be i.i. d. continuous random variables with outcomes z; and probability density

functions
1=
P(z;) = e 2 10.1
()= = (10.1)
for ¢+ = 1,2,3,...,00. Let Y, be the continuous random variable with outcomes y,, =
S, 2. Then the probability density function of Y,, is
y%_le_%
mY) = —m— 10.2
@m(v) = Tar ) (10.2)

The distribution of X; is called normal distribution with mean 0 and variance 1, and the
distribution of Y, is called x? distribution with m degrees of freedom. Eq. (10.2) can be

derived in (at least) two ways:

1. Complete Induction over m

e Compute by brute force (but easily)

_Y
e 2

Qiy) = N (10.3)
and Ly
Qs(y) = /Ole(ac)Ql(y ~ayde = (10.4)
e Show that
Quir) = [ Q(@)@nly - 0)da (10.5)

forall m=1,2,...,00.
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e This implies that the sum of k independent y2-distributed random variables with
my, My, ..., my, degrees of freedom is y?-distributed with m = my +mqy+...+my

degrees of freedom, i. e.

Qo) = [ Qo (£)Qualy — ). (10.6)

2. Characteristic Functions

e Define the characteristic function

() = /OOO Qum(z)e™dx (10.7)

and compute

Aty =(1-20)7%. (10.8)

e Use the convolution theorem, which states that the characteristic function of
the sum of independent random variables is equal to the product of their char-

acteristic functions, to obtain

fn) = ()= (1—2t)"% (10.9)
e Perform the inverse Laplace transform on f,,(¢) to obtain eq. (10.2).
e Obviously
Fritns ) = [ Qs ()6

The n-th moment, (y"), of the x? distribution with m degrees of freedom can be

obtained by brute force integration,

(y >E/ Qm(y)y"dy =2 % (10.11)
0 (%)
or, more elegantly, by Taylor-expanding the generating function,
fnlt) = [T Quin)erdy
%] yt 2 yt 3
= / Qu ()1 4yt + 2 4 WOF ,) +..)dy
0 2 3!
N N
= W+t )5+ W) g+ (10.12)
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yielding
d" f (t) L% +n)
L _o=2" 10.1
y") o T@ (10.13)
in agreement with eq. (10.11). From
W) = 1 (10.14)
Wy = m, (10.15)
W = mim+2), (10.16)
we obtain
o*(y) = (y*) — (y)* = 2m. (10.17)
The first two moments of In y can be obtained by brute force integration,
(Iny) = /0 Qm(y) Inydy
= 2+ vo(5), (10.18)
(In*y) = /0 Qu(y) In® y dy
m m m
= 1n22+1n4¢0(5)-I-Qﬁg(?)‘l-%(?)v (10.19)

or by performing the variable transformation z = In y and computing the moments (z) and

(2%) of the density

dy emZ;SZ
R,(2)=0Qnly)=—=—Fm——. 10.20
(= Qu = Sy (10.20)
The characteristic function of R, (2) is
o0 %+t
gm (t) = / R (2)e”dz = wa, (10.21)
—c0 I3

and the first and second derivatives of g¢,,(t) evaluated at ¢ = 0 yield eqs. (10.18) and

(10.19), where
d"n ['(2)

is the polygamma function. Hence, we obtain
2 — .2 2 m
o“(Iny) = (In“y) — (Iny)” = 1&1(5) (10.23)

With
1
v = lim ——lInn (10.24)

n—0oo

k=1 k
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being Fuler’s constant, we obtain for m = 6

3
(Iny) =In2+4 g~ (10.25)
and )
o (lny) = % - % (10.26)



Appendix K

Definitions of ¢’ and U

In this appendix, we detail the calculation of the correlation coefficient, C'(X,Y), and the
uncertainty coefficient, U(X,Y).

K.1 Rank-Ordered Correlation Coefficient C

Linear statistical dependences can be quantified by calculating the correlation coeflicient
C(X,Y) of two random variables X and Y. C(X,Y) ranges from -1 to 1, where (—)1
corresponds to perfect sample (anti-)correlation, and 0 is the value for linearly statistically
independent samples. Denote the average over the data set by ( ), and define the covari-
ance 0%y = ((x — Z)(y — ¥))s and the mean values 7 = - 9 s and § = + S Y.
C(X,Y) is defined as (Sachs 1984)
o2
cxyy) = —&—
oxx "9yvy
In this study, we use rank numbers rather than direct measurements, since then
C'(X,Y) becomes independent on monotonic scaling. We obtain rank numbers through
X" ={ri(x)}, where r;(z) is the rank of the ith element of the original data sample per-
muted according to r;(z) = #{jlz; < z;,1 <5 < S}
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K.2 Uncertainty Coefficient U

We use the uncertainty coefficient U(X,Y) to quantify non-linear statistical dependences.
U(X,Y) is defined as (Press et al. 1992)

H(X)+ H(Y)- H(X,Y)

UXY) = 2=y sm0y)

where H(X) = —YM_ p,. -logy p,n. Eqn (11.1) is the (normalized) mutual information
in X about Y (Shannon 1948). The marginal entropies, H(X) and H(Y), and the joint
entropy, H(X,Y) are computed as follows:

1. Distribute X and Y on an array consisting of M x M bins such that the marginal
probabilities Pr(X = z,,) = p,,, and Pr(Y = y,,) = p,, are uniform, that is p,, = p, =
1/M. Consequently, we have H(X) = H(Y) = log, M.

2. Determine the joint probabilities, Pr{X = z,,,Y = y,} = psn,,» from the distribution
of X and Y on the array of M? bins..

3. Calculate U(X,Y) according to eqn (11.1). Since the marginal probabilities obey «a

priori a uniform distribution, we compute U(X,Y) =2 — Fligf}\); .

U(X,Y) ranges from 0 to 1, where 0 corresponds to the case in which X and Y are

statistically independent, and 1 to the case in which X and Y are interdependent.



Appendix L

Scale Invariance and
Non-Self-Averaging Behavior in a

Simple Fragmentation Process

In this chapter we investigate statistical properties of a simple recursive fragmentation
processes. We show that the fragment length distribution is purely algebraic, and that
the fragmentation process is non-self-averaging. Additionally, extremal properties, e.g.,
the distribution of the largest fragment, exhibit an infinite number of singularities. In
d-dimensions, the volume distribution is given by a sum of d power-laws, and consequently,

the small-size tail diverges algebraically.

L.1 Introduction

Numerous physical phenomena are characterized by a set of variables, say {z;}, which
evolves according to a random process, and are subject to the conservation law 3, x; =
const. An important example of such a stochastic process is fragmentation, with ap-
plications ranging from geology [Turcotte 1996] and fracture [Lawn & Wilshaw 1975]
to the breakup of liquid droplets [Shinnar 1961] and atomic nuclei [Chase et al. 1998,
Redner 1990]. Other examples include spin glasses [Mezard et al. 1987], where z; repre-
sents the equilibrium probability of of finding the system in the j*" valley, genetic popula-
tions, where z; is the frequency of the 7 allele [Higgs 1995, Derrida & Jung-Muller 1999],
and random Boolean networks [Kauffman 1993, Flyvbjerg & Kjaer].
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Our primary motivation arises from applications of a DNA segmentation algorithm
[Bernaola-Galvan et al. 1996, Romaén-Roldan et al. 1998, Bernaola-Galvéan et al. 1999,
Li et al. 1998, Bernaola-Galvan et al. 1999, Oliver et al. 1999], which is used to decom-
pose a heterogeneous DNA sequence into homogeneous sub-sequences. The segmentation
algorithm attempts to divide recursively a given heterogeneous sequence into two sub-
sequences. For each possible “break point” one computes a heterogeneity measure, for
example, the Jensen-Shannon divergence [Lin 1991], and chooses that “break point” at
which the heterogeneity measure is maximal. If that maximal value is greater than some
predefined confidence level, the sequence is divided into two sub-sequences, and the out-
lined segmentation procedure is repeated recursively for both sub-sequences. Otherwise,
the sequence does not undergo further segmentation, and it is considered homogeneous with
the given confidence level. To evaluate whether the length distributions of the resulting
fragments from DNA sequences are significantly different from the length distribution of
fragments resulting from random, uncorrelated sequence, we derive the latter distribution

here.

L.2 Recursive Fragmentation Process

Specifically, we investigate the following recursive fragmentation process. We start with
the unit interval and choose a break point [ in [0, 1] with a uniform probability density.
Then, with probability p, the interval is divided into two fragments of lengths [ and 1 — [,
while with probability ¢ = 1 — p, the interval becomes “frozen” and is never fragmented
any further. If the interval is fragmented, we recursively apply the above fragmentation
procedure to both of the resulting fragments.
First, let us examine the average total number of fragments, N. Since with probability
g a single fragment is produced, and with probability p the process is repeated with two
fragments, N satisfies N = ¢ + 2pN, yielding
N {q/(1—2p)7 if p<1/2;

(12.1)
00, if p>1/2.

The average total number of fragments becomes infinite at the critical point p. = 1/2,

reflecting the critical nature of the underlying branching process [Harris 1989].
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L.3 Fragment Length Distribution

Next, we study P(z), the density of fragments of length . The recursive nature of the

process can be used to obtain the fragment length density

Ld

P(a) = ¢6(z — 1) + zp/ W p (f) . (12.2)
z Y Y

The gain term indicates that a fragment can be created only from a larger fragment, and

the y=! kernel reflects the uniform fragmentation density. Eq. (12.2) can be solved by

introducing the Mellin transform
M{(s) = /dw v P(2). (12.3)

Eqgs. (12.2) and (12.3) yield M(s) = ¢+ 2ps~'M(s), which implies

2pq
5—2p

M(s)=q+ (12.4)

The average total number M (1) = N is consistent with Eq. (12.1), and the total fragment
length M (2) = 1 is conserved in accord with 1 = [dz 2 P(z). (Here and in the following
all integrals with unspecified limits are taken over the interval 0 < @ < 1.) The inverse

Mellin transform of Eq. (12.4) gives
P(z) = ¢5(z — 1) + 2pga~ . (12.5)

Apart from the obvious delta function, the length density is a purely algebraic function. In
particular, the fragment distribution diverges algebraically in the limit of small fragments.
Interestingly, given such an algebraic divergence near the origin P(z) ~ z~7, length con-
servation restricts the exponent range to v < 2. In our case v = 2p, and since 0 < p < 1,
the entire range of acceptable exponents emerges by tuning the only control parameter p.

Interestingly, at the critical point p. = %, the fragment length distribution becomes
independent of the initial interval length. Starting from an interval of length L, Eq. (12.5)

can be generalized to yield
P(x) = ¢6(x — L) 4 2pqL* ~*Pz =2,

Thus, the critical point may be detected by observing that point at which the segment

distribution becomes independent of the original interval length.
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L.4 Multidimensional Generalization

The recursive fragmentation process can be generalized to d dimensions. For instance,
in two dimensions we start with the unit square, choose a point (21, 22) with a uniform
probability density, and divide, with probability p, the original square into four rectangles
of sizes x1 X z3, 1 X (1 — 23), (1 — 1) X 22, and (1 — 21) X (1 — z2). With probability
¢, the square becomes frozen and we never again attempt to fragment it. The process is
repeated recursively for each fragment produced in the previous step.

Let P(z1,...,24) be the probability density of fragments of size z; X .-+ X z4.

P(z1,...,24) satisfies

P(zq,...,2q) = qH(S( i—1)
+ 2% /del <y1 ﬁ) (12.6)

el Yd
Following the steps leading to Eq. (12 4), we find that the d-dimensional Mellin transform,
defined by M(s1,...,s4) = [TIh, da; 57 P(xy, . . ., 24), satisfies
Oéd
M(s1,...,8q4) = [1—%71_[2 132—0451]7 (12.7)
with o = 2pt/4.

The overall number of fragments is N = M(1,...,1) = ¢/(1 — 27p) if p < 277, and
N — oo if p > 27%. One can verify that the total volume M (2,...,2) = 1 is conserved.
Interestingly, there is an additional infinite set of conserved quantities: all moments whose

indices belong to the hyper-surface

d
[Isi=2" (12.8)
=1
satisfy M(s7,...,s)) = 1. In a continuous time formulation of this process, which is similar

(but not identical) to the special case p = 1, the same moments were found to be integrals of
motion [Krapivsky & Ben-Naim 1996]. The existence of an infinite number of conservation

laws is surprising, because only the volume conservation has a clear physical justification.

L.5 Volume Distribution in d Dimensions

Next, we study the volume density P(V), defined by

P(V) = /dwl coedag Pry, . 2)8(V = T 20)- (12.9)
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The Mellin transform M(s) = [dVV*~1P(V) can be obtained from Eq. (12.7) by setting

s; = s,
ad
M(s)=q |1+ 5| (12.10)

— o

1/d, Using the d™ root of unity, ¢ = e2™/4 and the identity sdl—l =

with @ = 2p
%Zi;é %, M (s) can be expressed as a sum over simple poles at ac”. Consequently,

the inverse Mellin transform is given by a linear combination of d power laws
o2 k
PVy=q|6(V-1)+=> v, 12.11
v) q[< R ] (12.11)

One can verify that P(V') equals its complex conjugate, and hence P(V) is real. Addition-
ally, the one-dimensional case (12.5) is recovered by setting d = 1.
The small-volume tail of the distribution can be obtained by noting that the sum in

Eq. (12.11) is dominated by the first term in the series, which leads to
P(V)~ AV as V0, (12.12)
with Ay = ag/d. Although the value of the exponent changes, the possible range of
exponents for this process remains the same since 0 < 2p'/4 < 1 when 0 < p < 1. In the
infinite dimension limit, P(V) becomes universal: P(V) ~ V=2,
The leading behavior of P(V') in the large size limit can be derived by using the Taylor
expansion and the identity Zi;é ¢k = dpo for n=10,...,d — 1. One finds that in higher

dimensions the volume distribution vanishes algebraically near its maximum value,
P(V)~By(1-V)"&1 as V1, (12.13)

with By = a/(d — 1)!.

L.6 Fragment Length Distribution in d Dimensions

The entire multivariate fragment length density can be derived by performing the in-

ad

verse Mellin transform of Eq. (12.7). We expand the geometric series T o=t =
i=1 S — &
+1
S so T, (%)n , and perform the inverse Mellin transform for each variable separately

by using the identity [ dx 21 {ln ﬂn = nls~"~!. Hence, we obtain

d
P(z1,...,2q) = ¢ [H S(zi — 1) + o Fy(2)], (12.14)
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with the shorthand notations

0 oy d d 1/d
F = — = In — . 12.15
=S e (i) =
The small size behavior of P(xy,...,24) can be obtained by using the steepest decent

method. The leading tail behavior, Fy(z) ~ (27‘1’2’)%6251 for z > 1, corresponds to the
case when at least one of the lengths is small, i. e. 2; < 1. Hence, we find an unusual
“log-stretched-exponential” expression

1-d d
P(z1,...,2q) ~/z/a € (12.16)

L.7 Non-Self-Averaging Behavior

The fragment length density represents an average over infinitely many realizations of
the fragmentation process, and hence does not capture sample to sample fluctuations.
These fluctuations are particularly important in non-self-averaging systems, where sample
to sample fluctuations do not vanish in the thermodynamic limit. Useful quantities to
characterize disordered systems, which are often non-self-averaging [Mezard et al. 1987,

Derrida 1997], are the moments Y,, defined by
Y= af, (12.17)

where the sum runs over all fragments.
We are interested in the average values (Y,) and (Y,Yp). For integer a, (Y,) is the
probability that a points randomly chosen in the unit interval belong to the same fragment.

The expected value of Y, satisfies
(Yao) = g+ p(Ya) /dy "+ (1—y)°]. (12.18)

The first term corresponds to the case where the unit interval is not fragmented, and the

second term corresponds to the case where fragmentation occurs. Eq. (12.18) gives

2p
Yo)=¢q|1l+ — 12.19
vy=ai+ ] (12.19)
if o >2p—1,and (Y,) - oo if @ < 2p — 1. As expected, Eq. (12.19) agrees with the

moments of P(z) (12.5), (Y,) = [ dxz 2®P(2).



316

Higher order averages do not follow directly from the fragment density. For example,
consider for example (Y, Yp). For integer av and 3, (Y,Y3) is the probability that, if a4 3
points are chosen at random, the first o points all lie on the same fragment, and the last

oints all lie on another (possibly the same) fragment. ({Y,Y3s) satisfies
Bp p y g ]
YY) = a+p(a¥s) [dy [y 4 (- )]

+ ) [dy [y (-5 (- ]

yielding
<YaY5> = q—|——2pq
a+p+1-2p
Y)Y
4 9T+ DIG+1)  ()0)

a4+ 54+1) a+f+1-2p
if ,3>2p—1and a+ 3 >2p—1,and (Y,Y3) — oo otherwise.

Note that (Y, Ys) # (Ya)(Y3), and in particular (Y.2) # (Y.?). Hence, fluctuations in Y
do not vanish in the thermodynamic limit, which states that the recursive fragmentation
process is non-self-averaging. While for p < 1/2 non-self-averaging behavior is expected
because the total number of fragments is finite, the emergence of non-self-averaging quan-
tities for p > 1/2 is surprising. Hence, statistical properties obtained by averaging over
all realizations are insufficient to probe sample to sample fluctuations. In principle, higher

order averages such as (Y_') can be calculated recursively by the procedure outlined above.

L.8 Length Distribution of the Largest Fragment

Extremal properties provide an additional probe of sample to sample fluctuations. Specif-
ically, let us consider £(z), the length density of the largest fragment. For a self-averaging
fragmentation processes with an infinite number of fragments one expects £(z) — é(z) in
the thermodynamic limit. To see that £(z) is non-trivial for any p, let us first determine
L(z) for x > 1/2. In this region,

L(z) = g8(z — 1) —I—p/l L, (f) . (12.20)

Y Y

If the original unit interval is not fragmented, the largest fragment is obviously the unit
interval. If the first fragmentation is performed, only one of the two resulting fragments
can be larger than = > 1/2. Therefore, only subsequent breaking of this fragment (of
length y > 2) can contribute to £(z), which explains Eq. (12.20).
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Eq. (12.20) is similar to Eq. (12.2), and can be solved by the same technique to give
L(z)=¢qd(x —1)+pga™  for z>1/2. (12.21)

In the complementary case of z < 1/2, L(x) satisfies

L d
o = ofl 2e(:)

1-z Y Yy
l—xd

el () ()
1/2 Y Y -y
l—xd

el Se(s) e ()
1/2 Y -y Y

The first term on the right-hand side of this equation is constructed as in Eq. (12.20): if

we first break the unit interval into two fragments of lengths y > 1/2 and 1 — y, then for
1 —y < 2« the longest fragment is produced by breaking the fragment of length y. The next
two terms describe the situation when 1 — y > 2, so the longest fragment can arise out
of breaking any of the two fragments. The factors £_(u) = [y dv L(v) guarantee that the
longest fragment of length 2 comes from the fragment of length v in the first generation.
1

we can compute L(z) for & < x < 1 by

Since we already know L(z) for z > 1 3

2
substituting the expression for £(z) into the above equation. Similarly, we can compute
L(z) for ﬁ << % Clearly, £(z) is analytic in the intervals (klﬁ, %), but singular at
the boundaries of these intervals, namely at z = 1/k. These singularities (we loosely use the
term singularity to denote the existence of only a finite number of derivatives at = 1/k)
become weaker as k increases. Singularities at @ = 1/k appear to be a generic property
of several disordered systems, including random walks, spin glasses, random maps, and
random trees [Chase et al. 1998, Higgs 1995, Derrida & Jung-Muller 1999, Derrida 1997,

Derrida & Flyvbjerg 1987, Frachebourg et al. 1995, Derrida & Flyvbjerg 1988].

L.9 Summary

We have found that the recursive fragmentation process is scale free, i.e., the frag-
ment length distribution is purely algebraic. In higher dimensions, the volume distri-
bution is a linear combination of d power laws, and consequently, an algebraic diver-
gence characterizes the small-fragment tail of the distribution. A number of experi-
mental fragmentation studies, where solid objects impact a hard surface, report alge-

braic mass (or equivalently volume) distributions with exponents ranging from 1 to 2
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[Oddershede et al. 1993, Kadono 1997]. As in such situations a fragment may impact the
surface more than once, the recursive fragmentation process may serve as a starting point
to model those experimental fragmentation processes. We have found that the recursive
fragmentation process exhibits features that are typical of complex and disordered systems,
such as non-self-averaging behavior and the existence of an infinite number of singulari-
ties in the distribution of the largest fragment. These features indicate that even in the
thermodynamic limit sample to sample fluctuations remain, and that knowledge of first
order averages may not be sufficient for characterizing the system. This implies that ex-
perimental results obtained from DNA sequences must be handled with great care, as large
sample to sample fluctuations (from DNA of different organisms) are expected and do not

necessarily reflect organism-specific biological features.



Appendix M

How random are random

numbers?

Random numbers were needed to perform most simulations in this work and they are gen-
erally required in many areas of statistical physics, e.g. stochastic optimization, Monte-
Carlo methods or stochastic simulation [Ebeling & Feistel 1982, Allen & Tildesley 90,
Schnakenberg 1995]. Random numbers are usually generated by a pseudo random number
generator (PRNG). A problem with all PRNG is that pseudo random sequences gener-
ated in this way contain weak correlations that may lead to spurious simulation results
[Ferrenberg et al. 1992].

In this appendix a simple and efficient method [Beule & Grosse 1996] for testing ran-
domness is introduced and applied to several widely used PRNGs in order to detect weak
correlations in pseudo random sequences and helps to determine which PRNGs are suitable

for sampling large discrete spaces.

M.1 Pseudo Random Numbers

A PRNG is an iterative map F' of a number (or a set of numbers) z; onto a new num-
ber 2,41 = F(z;). The map is chosen in such a way that for suitable initial values
zo the sequence {z;} (or parts of it) appear randomly distributed in a certain interval
[Marsaglia 1992]. The pseudo random numbers generated in this way have several desirable

features: they are reproducible (e.g. for counter checking results) and produced efficiently
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without any special equipment!'. An overview of the many possibilities for choosing the
map F'(z;) and the corresponding initial values is given in [Knuth 1981, Marsaglia 1992].

Because of (binary) coding in computers the number of different values z; is limited
and PRNGs are periodic. For many PRNGs the length of this period can be determined
analytically or at least estimated [Marsaglia 1992, Knuth 1981]. Besides periodicity the
sequences z; can contain further correlations. For good generators these correlations
are quite small and therefore difficult to detect especially because any correlation mea-
sure has finite-size effects, that simulate correlations even in truly random finite sequences
[Herzel et al. 1994a, Grosse 1995]. Nevertheless these small correlations - especially if sam-
pling high dimensional or fine structured spaces - may lead to spurious simulation results

[Ferrenberg et al. 1992].

M.2 What is a random sequence?

Before proceeding to actual tests for PRNGs a more precise definition of random has to
be given. Even for infinite sequences it is difficult to define random in such a way that
on the one hand there are random sequences and on the other hand no contradiction to
the intuitive understanding of random arises cf. [Knuth 1981]. When performing empirical
tests of PRNGs one is always restricted to finite sequences. It seems impossible to give a
proper definition of random for a finite sequence because any sequence of given length has
equal probability. However, everybody will agree that the decimal sequence 897932384626
appears to be more random then 919191919191, 1234567890123 or 000000000000. A typical
finite sequence of length N is characterized by the fact that all finite subsequences of
length k for any k£ < log, N will appear with equal probability p(k). Here X is the size
of the alphabet i.e. the number of different letters in the sequence. There are M = A*
different sequences of length k and therefore p(k) = 1/M. Sequences that have the desired
distribution for a given k are called k-distributed [Knuth 1981].

M.3 An example
Let us consider a PRNG of the widely used class of linear-congruential generators:

41 = F(z;) = (a-2;+ ¢) mod m, j>0, (13.1)

'True random numbers can be generated e.g. from thermal electron noise [Knuth 1981].
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where a,c,m and z; are integer. The quality of a linear-congruential generator (LCG)
depends on the proper choice of the parameter a,c, m,zo. As an instructive example we
consider @ = 137, ¢ = 187, and m = 256. For any initial value (13.1) will generate
equidistributed (1-distributed) pseudo random numbers of period 256 [Knuth 1981].

In order to randomly sample the fields of a chess board with 8 x 8 fields one will need
2-distributed coordinates (yz;,y2;4+1). These y; might be generated from the 3 leading
bits of z; i.e. y; = x; >> 5, where >> denotes the bit-shift operator. It will turn out
that the pairs of coordinates (y2;,y2;41) are not chosen with equal probability. If the
coordinates are generated from the last 3 bits of z; i.e. y; = z; mod 8, one will always
select the same field while never reaching any other. The reason for this non-uniform
distribution are correlations between x; and z;1; that cause the pseudo random numbers
(227, ¥241) to fill only a fraction? of the possible [0,255] x [0, 255] space. Therefore the
coordinates (y2;, y2;41) do not properly sample the fields of the chess board. The sequence
of y; coordinates are not 2-distributed and simulations on a 8 x 8 grid may lead to spurious
results.

A better choice of the parameter a, ¢, m, zo (especially larger values for @ and m) will
improve the situation, but if larger chess boards or higher dimensional spaces are considered
the problem will appear again. The effect that was just described is well known for linear-
congruential PRNGs [Marsaglia 1968] and it is even possible to determine the maximal
distance between neighboring d-tuples (2;41,...,%j4+q4) wWith the help of the semi-empirical
spectral-test [Knuth 1981]. For PRNGs that are not of the linear-congruential type one

can not perform this test.

M.4 Bit-Decay

In order to test whether a sequence of length N is k-distributed one can determine the
probability of any subsequence (serial test) or some subsequences (poker test) of length
k and compare it with the expectation value p(k) [Knuth 1981]. Another possibility is
to determine the number of sequences that did not appear up to length ¢ [Stauffer 1996,
Beule & Grosse 1996]. In the chess-board example (A = 8, k = 2) this means to ask: how

many fields have not been selected after the coordinates have been generated ¢ times.

2The reason for this is the reconstruction of the attractor of the underlying nonlinear map by means of

delay coordinates.
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For a large number of fields M = A? the nature of this test can be understood easily
by considering the analogy to the radioactive decay. Radioactive nuclei decay randomly,
independently of their position and with a fixed rate. Hence the number of remaining
(not decayed) nuclei follows the well known exponential decay law. For a random sequence
(using the definition given above) all M cells are selected with the same fixed probability
1/M. For M > 1 one has a Poisson process and the expectation value (f(¢)) for the

number of cells, that were not selected after ¢ trials decays exponentially:
(f(t)) = Mexp (—t/M)  for 1< M=, (13.2)

Not k-distributed sequences lead in general to deviations from the exponential decay law
(13.2), cf. [Beule & Grosse 1996]. Expectation value and standard deviation of f(¢) can be
given exactly even for finite M, see section M.7.

The information whether a cell has been selected can be stored by a single bit. Therefore
the bit-decay can be used as an efficient test of the quality of the PRNG generating the
sequence. It allows to test whether a given sequence of pseudo random numbers is k-

distributed.

M.5 Expectation Value

In order to calculate the expectation value for f(¢) after ¢ trials consider the binary variable
X;(t) (1 =1,2,...,M). Let X;(t) = 1 if the i-th cells is empty after ¢ trials and X;(¢) =0
otherwise. The number of empty cells is given by [Feller 1968]

M
F) =3 Xilt) (13.3)

Therefore the expectation value (f(¢)) of empty cells after ¢ trials is given by

M M
(f(1)) = <Z: Xi(t)> = E<X¢(t)> : (13.4)

The probability of selecting a single fixed cell 7 in a single trial is p = 1/M. Therefore the
probability that the cell is empty after ¢ trials is: A(t) = (X;(¢)) = (1 — p)’. This gives the

exponential decay law

(f) =M1 —-p)'=Mexp(=b-t) with b=In(M/(M-1)). (13.5)
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M.6 Variance

The variance of the number of empty cells f(¢) is defined by

Sft) = (FO)P) = (f1)?
= D (GMP D (X)) - X)) = Y (X)) - (X;(1) (13.6)
7 i£] 0]
= D (X)) = (X)) + D ((Xalt) - X5(6) — (Xa(1) - (X;(1)))
i i#j
= D (X)) = (X(0) - (X;(0))) + Y cou(Xy(t), X(t)) -
i i#]

In each sum every term gives the same contribution because all cells are equal. Therefore

one finds for the variance

*(f(1) = M- (X1(t)?) = (Xa())*) + M - (M = 1) - cov(X1(t), X»(t))
= M- (A(t) = A" + M- (M = 1) [(1 = 2p)" = A(1)’] (13.7)
= M-A®t)— (M-A®)* +M - (M —1)-(1-2p)..

The statistics of the bit-decay can be related to the finite-size effects of the topological
entropy” , see [Beule & Grosse 1996] for details.

M.7 Distribution

The probability distribution P(f,t, M) for occupying M — f of the M = \* cells in ¢ trials
is given by [Feller 1968]:

M-—f . Nt
P(f,t,M) = (sz) : Z_: (1) (M, f) : (1— f%) : (13.8)

J

In the limit M — oo the number of occupied cells is given by a Poisson distribution.

M.8 Tests

The behavior of the bit-decay for a variety of sequences with different correlations has
been discussed in [Beule & Grosse 1996]. Here only the advantages and limitations of two

selected PRNGs will be presented:

®The limit ¢ — 0 of the Rényi entropies [Rényi 1970].



(i) LCG16807: The linear-congruential PRNG (13.1) with the parameter ¢ = 16807,
c =0, m =2 -1, and 29 = 1 defined as the minimal standard PRNG in
[Press et al. 1992]. The period length of this generator is 2.1 - 10% [Marsaglia 1992].

(i) RAND55: A so called lagged-Fibonacci PRNG with the iteration
x; = (255 — ¥j_24) mod m , (13.9)

initialized with 55 positive integers and with m = 23% [Knuth 1981]. The length of
the period is 7.7 - 10%® [Marsaglia 1992].

For the stochastic simulations of 2 and 3-dimensional systems one needs random coordinates
that are at least 1-distributed, 2-distributed, and 3-distributed. As all modern PRNGs
easily pass tests for 1-distribution bit-decay tests for & = 2 and k£ = 3 for different A
are performed here. The cell coordinates y; are again generated from subsequent pseudo
random integers x;. It is important to generate y; from the leading bits of the z; as this
results in a much better distribution of the y;, cf. section M.3 and [Knuth 1981]. First the
sequences LCG16807 and RANDS5 are used to sample a chess board of 256 x 256 fields,
i.e. A =256 and k& = 2. The number of cells that are empty after ¢ trials is shown in Figure
M.1 together with the expectation value (f(t)) given by the exponential decay (13.5).

In order to assess whether the observed deviations are are significant one has to compare
these deviations with the standard deviation o( f(¢)) obtained from (13.6). This comparison
is shown in Figure M.2 For the chosen parameter A = 256 and k& = 2 the deviations are
within the expected range.

Thus the pseudo random coordinates generated from LCG16807 and RANDS5 for the
256 x 256 grid can be considered 2-distributed according to this test. The situation changes
when one considers finer grids (Figure M.3) or higher dimensions (Figure M.4). In these two
figures the deviations f(t) — (f(¢)) are plotted in units of the standard deviation o(f(¢)).

For LCG16807 one finds significant deviations from the exponential decay up to +14 ¢
and —H2 . This shows that this generator is not suitable for properly sampling the spaces
under consideration. Similar deviations are already found for smaller A and may lead to
spurious results in simulations [Beule & Grosse 1996]. Lattices where A is close to a power
of 2 are especially prone to this problem. The lagged-Fibonacci generator RANDSS shows
a significantly better performance even for these large high dimensional lattices. Therefore
RANDS55 was chosen as the standard random number generator for all simulation in this

work.
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Figure M.1: Bit-decay f(t) for k = 2 and A = 256 compared with the expected exponential
decay (13.5) for the pseudo random sequences RAND55 and LCG16807.
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Figure M.2: Bit-decay for £ = 2 and A = 256: deviations of f(¢) from the mean (f(¢))
for the pseudo random sequences RANDSS and LCG16807 compared with the standard

deviation a(f(t)).
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Figure M.3: Bit-decay for £ = 2 and A = 3000: deviations f(¢) — (f(¢)) in units of the
standard deviation o(f(t)) for RAND55 and LCG16807. Deviations from the exponential
decay up to +14¢ are found for LCG16807. RANDS55 only shows deviations in the expected

range.
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Figure M.4: Bit-decay for £ = 3 and A = 300 deviations f(t) — (f(t)) in units of the
standard deviation o(f(t)) for RAND55 and LCG16807. Deviations from the exponential
decay up to —52¢ are found for LCG16807. RANDS55 only shows deviations in the expected

range.
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M.9 Conclusions

Weak correlations are always present between subsequent pseudo random numbers due to
the deterministic character of PRNGs. When sampling fine structured or high dimensional
spaces these correlations may lead to spurious results because the sampling becomes non-
uniform. The bit-decay method allows to detects weak correlations and thus reveals the
limitations of popular PRNGs. It can help in selecting proper PRNGs suitable for the
planed stochastic simulations. In conclusion, we agree with Donald Knuth: “Random

number generators should not be chosen at random.”
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[Comment 1] A coding measure is function f that maps a statistical pattern ¥ to a real
number y = f(Z) such that the probability distribution functions of y are different
in coding and noncoding DNA. Typically, # is high dimensional, and f depends
on many empirical parameters. Typically, these parameters vary significantly from
species to species. Hence, these parameters must be fitted by empirical analyses of
species-specific data sets. The process of fitting the parameters is called training of

the coding measure.

[Comment 2] The mutual information function is similar to, but different from, autocor-
relation functions [Li 1989, Herzel & Grosse 1995, Herzel & Grosse 1997]. Its main
advantage over correlation functions is that it does not require any mapping of sym-
bols to numbers, which affects the analysis of symbolic sequences by correlation
functions, because correlation functions are not invariant under changes of the map.
Moreover, the mutual information function is capable of detecting any deviation from

statistical independence, whereas—by definition—correlation functions measure only
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linear dependences. Hence, we use the mutual information function in our analysis

of DNA sequences.

[Comment 3] We use all eukaryotic DNA sequences from GenBank release 111 (D. A. Ben-
son , M. S. Boguski, D. J. Lipman, J. Ostell, B. F. Ouellette, B. A. Rapp, and D. L.
Wheeler. Nucl. Acids Res. 27, 12-17 (1999), £tp://ncbi.nlm.nih.gov/genbank/).

[Comment 4] There are 4° = 64 codons, 3 of which are stop codons, and 61 of which encode
20 amino acids. Hence, the genetic code is degenerate, i. e. there are (many) amino
acids that are encoded by more than one codon. All codons that encode the same

amino acid are called synonymous codons.

[Comment 5] Mathematically, pgm) can be defined in terms of () xyz as follows: p

> vz Qniyz, p? = >x.z®@xnz, and p? = >oxy @xvn,

(1)

i

[Comment 6] Since the genetic code is a non-overlapping triplet code, there are three
frames in which a DNA sequence can be translated into an amino acid sequence. In
the cell, only one of the three reading frames encodes the proper amino acid, but in

our statistical analysis the choice of the reading frame is arbitrary in the sense that

P;; (k) is invariant under shifts of the reading frame.

[Comment 7] We choose the length to be 54 bp in order to allow a comparison with the
standard data set created in Ref. [Fickett 1992], which consists of sequences of length
54 bp.

[Comment 8] Here, true positives (true negatives) refer to correctly-predicted coding (non-
coding) sequences, and positives (negatives) refer to all coding (noncoding) sequences.
Hence, T, (1)) denotes the fraction of correctly predicted coding (noncoding) se-
quences over all coding (noncoding) sequences. Mathematically, 7, and 7}, are de-
fined by T, = [0(pe(Z) — pn(Z))dT and T,, = [ 0(p,(T) — p.(Z))dZ, where 6 denotes
the Heavyside function, i. e. #(z) =1 for 2 > 0 and #(z) = 0 for z < 0.

[Comment 9] If p.(Z) and p,(Z) were identical, O(Z) would be equal to 1. If P.(Z) and
pn(Z) were completely disjoint (non-overlapping), O(Z) would be equal to 2.

(m)

[Comment 10] For the probabilities p;’ we choose the total number of nucleotides n; in

position m of the biological reading frame divided by the total number of nucleotides



350

from exactly the same set of coding human sequences to which the model sequences

are compared.

[Comment 11] By correlations or inhomogeneities we mean that the probability distribu-

(m)

,~ are not constant, but vary along the DNA sequence from gene to gene and

(m)

7

tions p
also within a gene. These variations of the probability distributions p:~’ seem to be

a typical feature of coding DNA of any living organism.

[Comment 12] By means of numerical simulation, we find that to a good approximation

Smax(2) = Prob{JSpmax < 2} = [Fo(8-2N1In2- 2)]”, where aw = 2.45 In(N) — 9.87,
§ = 0.84, N is the size of the sequence or subsequence to be split and and F, (z)
is the y2-distribution function with v degrees of freedom. Here v = 9 because there
are 3 constraints: y_, fr; = 1/3 for j = 0,1, 2, i.e. the number of nucleotides in each

phase is 1/3 of the total.

[Comment 13] A discriminant function is any function that can be computed on a region
of a DNA sequence which reaches different values for coding and non coding DNA. In
particular we use here , ; | fo — 3f¢;], where f;; is the relative number of nucleotides
of type £ with phase j, and fy is the relative number of nucleotides of type £ in any
of the three phases. See R. Staden Nucl. Acid Res. 21, 551 (1984).
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