PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996

Temporal correlations in a one-dimensional sandpile model
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We investigate numerically temporal correlations in a one-dimensional critical-slope sandpile model with
rules that on average conserve the number of particles. Our work is motivated by the existence of two
well-separated time scales in self-organized sandpile models, one related to the spreading of avalanches and the
other imposed by the external driving. We assume that avalanches are instantaneous events on the time scale
imposed by the external deposition and study the autocorrelation function of the series of successive avalanche
amplitudes. We find that the autocorrelation function has a log-normal form and for large system sizes tends to
a constant, implying that the temporal correlations become stronger in the limit of large system size. We
independently test this result by calculating the power spectrum of the series of successive avalanche lifetimes
and sizes. For large system sideshere is a frequency regime where the power spectrum tends totgpd
of noise, in agreement with the tendency of the autocorrelation function to approach a constant in large
systems[S1063-651X96)07212-1

PACS numbsd(s): 64.60.Lx

I. INTRODUCTION these models is a one-dimensional local-limiteéd ) model
with the local slope rules that trigger the avalanche dynam-

The concept of self-organized criticalitfpOC has been ics. The LL model shows an unexpectedly complicated be-
introduced by Bak, Tang, and Wiesenfdltl] in order to  havior[10], in contrast to the Bak-Tang-WiesenfdETW)
describe the tendency of complex dynamical systems tonodel, which is trivial ind=1.
evolve into a critical state without fine tuning external pa- The sandpile models are originally defined in the limit of
rameters. Here the critical state refers to the absence of irslow driving, meaning that each avalanche ends before an
trinsic length and time scales that reflects itself in the powerexternal perturbation starts a new one. Hwa and Kartlar
law distributions of relevant quantities. Bak, Tang, andgeneralized the LL moddB] in d=1 to a “running sand-
Wiesenfeld[1] have illustrated the basic ingredients of SOC pile,” which allows for different rates of the external driv-
on a simple cellular automaton model, i.e., the sandpiléng. In the slow-driving regime where avalanches are sepa-
model, defined on a discrete lattice dndimensions, where rate events, one recovers &2type of noise in the power
each site is characterized by a scalar variable that represergpectrum of the sand flow, in agreement with the temporal
a height. At each simulation step, the height of a randomijbehavior within the BTW critical-height model. In an
chosen site is increased by a fixed amount. Whenever thiatermediate-driving regime, where avalanches overlap, the
height exceeds a predefined threshold value the site relaxgspwer spectrum is found to beflbn a frequency interval
i.e., the particles are distributed to the nearest neighbors, athat increases with the lattice size. In a fast-driving regime,
cording to rules that locally conserve the number of particlesthe running sandpile exhibits system-wide discharge events
In this manner, event&@valanchesof various sizes and du- that are anticorrelated in time. Thus the running sandpile
rations occur. Except for the caseat 1, the model shows reveals a rich temporal behavior, including long-range tem-
nontrivial SOC behavior with power-law distributions of poral correlations, but only in the regime where avalanches
avalanche amplitudes. cannot be defined due to their mutual overlapping.

The basic motivation for introducing SOC was to explain  In the present paper we study the one-dimensional LL
the ubiquitously occurring long-range temporal correlationsmodel defined by Kadano#t al.[9] and simulate a series of
with a 1f-type power spectrum, which is characteristic of asuccessive avalanches. We investigate the temporal behavior
variety of dynamical processes such as resistance fluctuaf this series by calculating the power spectrum in a way
tions, the flow of sand in an hourglass, luminosity of starssimilar to that in Ref[11], as well as the autocorrelation
[2], the dynamics of traffic and the stock mark®}, and the  function. However, we are not interested in the sandpile ac-
rate of the human heartbegt,5]. Later analytical and nu- tivity on the microscopic time scale, i.e., the time scale of the
merical studie§6-8] on the sandpile model of Bak, Tang, spreading of the avalanche. Instead, we study the dynamics
and Wiesenfeld revealed, however, that the power spectrumf the sandpile model on the time scale imposed by the ex-
S(f) of the temporal activity scales asfi/ which corre- ternal driving. Our idea is based on the fact that in sandpile
sponds to correlations characteristic of random walk-typenodels there are always two time scales, one related to the

processes, i.e., with no long-range correlations. evolution of an avalanche and the other one imposed by the
Different dynamical rules have been investigated thatexternal driving. Moreover, it is believed that SOC behavior
yield a variety of SOC universality classes. Kadanetffal.  is possible only in the limit of slow driving, which is when

[9] introduced a series of such models by modifying thethe two time scales are well separaf&d]. On the time scale
threshold condition and local rules of relaxation. Amongof the external driving that we are investigating, avalanches
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are instantaneous events no matter how large the lifetime @verage value in the steady state, with the input flow of par-
the size of an avalanche. As a measure of the activity in onécles compensated by the output flow through the absorbing
time step one can take either the lifetime of the avalanche awall.
the number of different sites involved in the avalanche, i.e. In our simulation, we start the sandpile dynamics with a
the size of the avalanche, or some other quantity related ttandom distribution of slopes, corresponding to an “over-
the avalanche amplitude. loaded” system, i.e., the initial mass is much larger com-
In Sec. Il we briefly describe the model and its basicpared to the mean stationary mass. We allow the system to
ingredients. We also present numerical results for the avarelax and reach the stationary state, then we record succes-
lanche lifetime and size distributions, which we show to ex-sive avalanche lifetime$ and successive avalanche si&s
hibit multifractal scaling, consistent with earlier results on (the number of distinct sites involved in an avalanchiee
related quantitief9]. In Sec. Ill we present numerical results two time series, avalanche lifetim&$t) and avalanche sizes
for the autocorrelation function and power spectrum, correS(t), are then analyzed in two way&) calculating the cor-
sponding to the series of successive avalanche lifetimes andlation function, defined as
sizes. Our results show that the form of the correlation func-

tion is log-normal, tending to a constant for large system Ca(n)=(A(DA(t+ 7)) = (A(1))?, 2
sizes, meaning that the temporal correlations become stron- o o ]
ger in larger systems. where A(t) is either the avalanche lifetim&(t) or size

S(t) at a time stept, and (b) using a Fourier transform to
calculate the corresponding power spectrlp({l) as a

II. THE LOCAL-LIMITED MODEL function of the frequency

The one-dimensional LL model developed by Kadanoff _ 5
et al. [9] is a non-Abelian sandpile model with evolution PA(Q)=|AAD]I, G
rules that depend on the local slope. An avalanche starg(g

whenever the local slope increases beyond a preset thresh here 7 denotes a Fourier transform. According to the
P Y b iener-Khinchin theorem13], a power spectrur? () of

value. The boundary conditions consist of one reflecting and - : ; . )
: .~ a given time signalA(t) is a Fourier transform of the auto-
one absorbing wall, and produce an average flux of particles

. . orrelation function Ca(7)=(A(t)A(t+7)). The power
from the reflecting end to the absorbing end. The lack of AN 4
translational invariance and the existence of the “trappin spectraPy(Q2) and P<(Q), if calculated directly from the

sites” make this model complicated. It has been shown thaime series, provide independent quantifications of temporal

the multifractal scaling of the distribution of relaxation correlations.
events and drop sizes might be more appropriate than finite-
size scaling[9]. A scaling theory based on two diverging . RESULTS

length scales has also been develofid. _ _ We find that the distributions of avalanche lifetimes
We consider the LL model defined on a one-dimensionahy 1y anq sizesD(S) scale in a multifractal way in agree-
lattice of lengthL. Each lattice sitd is associated with @ \nany with the scaling of drop sizes and general behavior of
local sl'opeai , def!ned as the difference in he|ght' between,o model[9]. Figures 1a) and Xb) show multifractal scal-
two neighboring sitesg;=h; —h; ., where the variablé g fynctions for avalanche amplitudds i.e., lifetimes and
represents the height of the sandpile at theisi@ne updat- 765, respectively, as found by rescaling the calculated dis-

ing step in the simulation consists of two partar a site i ripytion functions in a double logarithmic plot
chosen randomly and a particle is added to it éoda re-

laxing procedure is applied for sites with local slope larger log;sD (A(a))

than some threshold value; until all the slopes in the sys- Al@) =00 (L) (4)
tem are smaller than or equal &q.. Adding a unit sand to ! 0

sitei increasesr; and decreases;_;. During the relaxation, \yhere a=log,o(A/A)/l0g;o(L/L,) is an independent vari-

n; particles are transferred from skeo the neighboring site  gpje andA, andL, are the best fit parameters to the scaling.
k+1, so that the local slope is “distributed” to nearest Figures 1a) and Xb) show rescaled distribution functions

neighbors according to the rules obtained for various system sizes. The two scaling functions
f+(a) andfg(a) are fit to a cubic form{solid lines in Fig. 1
oi—0—=2N¢, O =01 tN, oo~ 011N, to obtain approximate analytical expressions for the scaling

(1) functions.

In accordance with the multifractal scaling of distribution
whereny=2 is needed in order to obtain nontrivial behavior functions, the moment$éA%) can be expressed as integrals
[9]. The above rules can easily be translated into rules foweighted by the distribution function. Using a saddle-point
local heightsh; by taking into account the local slope defi- approximation to the integrals we find that the moments
nition, oy=h;—h;,; and the boundary conditions,=h,; (A9 scale withL as
(reflecting wal) and h, ;=0 (absorbing wall. There are
several conservation laws and sum rules that are associated (A% ~logh2(L/Lg) LAA@, (5
with the LL model[9]. One of these laws is the conservation
of mass(the total number of particlesvhich is found also in  Here BA(0)=(1+q)ao(q)+ falae(q)) and ag(q) repre-
the critical-height sandpile models, such as the BTW modelsents the maximal value of a function{h) a+ f 5(«) with
The total mass of the sandpile fluctuates around a constangéspect to an independent variallefor a given moment
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FIG. 1. Multifractal scaling functionga) f{(«) and(b) fg(a)
for the avalanche lifetimeB(T) and the number of different sites ju]
participating in the avalanchig(S), respectively. System sizes are 35 O lifetimes: B,=1.02 .
L=64, 128, 256, 512, 1024, and 2048. The numerical data are O sizes: B,=1.07
binned logarithmically with a binning parametet’2 The param- ge
eters from the fits arky=0.025= 0.002 andl ,= 0.25+ 0.02 for the = 30 .
case of avalanche lifetimes and ,=0.020+0.002 and "d,e_
Sy=0.20+0.02 for the case of avalanche sizes. The solid lines are &
the fits to a cubic form, i.ef(a)=ag+a;x+a,x>+azx°. The pa- {25} .
rameters of the fits ar@,=—0.39, a;=—0.67, a,=3.64, and 12-
a;=—6.09 (lifetimes) anday=—0.20,a,= —2.28,a,=8.00, and k4
a;=—9.62(sizes. 20 T
g. The result, Eq.(5), is a power law with a logarithmic a=2
correction. We tested this analytical scaling form for the mo- 15,5 v m " a5 55
ments(T% and(S") as a function of the system sitefor © : ) log. (L) : )
g=1/2,q=1, andg=2. The results are plotted in Fig. 2 and e
the corresponding exponengq) are given in Table I. FIG. 2. Scaling of the moments of the lifetimé§?) and sizes

The distributions themselves do not provide information<sq> for (8 q=1/2, (b) g=1, and(c) q=2, calculated from the
about correlations between successive avalanche amplitudes;merically obtained distribution functions. The results are fit to a
The information on temporal correlations can be extractehower law with a logarithmic correction in accordance with the
from the correlation function€+(t) andCs(t) and/or from  myjifractal scaling. The corresponding scaling exponents are pre-
the power spectr@+({}) andPg({}). The calculated corre- sented in Table I.
lation functions are depicted in Fig. 3 for different system

sizes. The solid lines correspond to fits to the log-normavhere the coefficieny, is expected to scale with the system
form size L, while the characteristic tim&@, is expected to be

) independent of the system size. The scalingygfand yg
Ca(7)=Ca(Ta)exr — yalogio( 7/Ta) ], (6)  with the system sizé& is presented in Fig. 4. Both coeffi-
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TABLE I. Summary of exponentg,(q) defined in Eq(5). T v T T

q Br Bs

0.6 | Olifetime v, E
1/2 0.20+0.02 0.210.02 Oslze v,
1 0.45-0.02 0.470.02 0.8 | i
2 1.02£0.02 1.07:0.02.
3 a0l 1
8
cients decrease with the system size L roughlyLas’ gk |

Thus, for largeL the correlations become stronger, i.e.,
Ca(7) tends to a constant, independentrof

To determine the type of temporal correlations in another 14
way, we calculate also the power spectra of the two time
seriesT(t) andS(t). The results are presented in Fig. 5. The -1.6 L . L .
structure of both calculated power spectra is as follgwsn 15 20 25 loa.. L 3.0 35 4.0
the large frequency regime, which corresponds to short time 910
lags, the power spectra seem to be “white,” indicating an FIG. 4. Dependence of the parametessand ys from the log-
absence of any correlations between successive avalanchﬁg' T S

.. . o rmal fit given by Eq. (6) on L. The slopes are
(i) the white spectrum crosses over to &-tiype noise in an yr=—0.53+ 0903 andy)sl= _2_5(14_20_03_ P
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lanche lifetimesC+(7) and (b) sizesCg(7) calculated for system

sizesL=64, 128, 256, 512, 1024, 2048, and 4096. The data are FIG. 5. Power spectra of series of avalanche lifetimes and sizes
binned with the binning parametet2 Solid lines are log-normal  (a) P+(Q) and(b) P<(Q), calculated numerically for system sizes
fits with the parametery; and yg that scale withL as shown in  L=64, 128, ...,8192. The data are binned with the binning pa-
Fig. 4. rameter 3’2,
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intermediate frequency regim@ii) for relatively small sys- power spectrum indicate the presence of nontrivial temporal
tem sized, there is another regime of the spectrum at lowcorrelations of the log-normal form.

frequencies, where the spectrum indicates the presence of The local-limited model that we study belongs to the fam-
temporal anticorrelations. Featur@i) seems not to be ily of directed critical slope-type model8]. It is not a typi-
present in the power spectra that correspond to large systeaal sandpile model, since the distributions of avalanche life-
sizes. However, this may be due to insufficient maximumtimes and sizes are not simple power laws. Rather, the
observation time t,.., Which in our simulations is distributions of avalanche amplitudes exhibit multifractal
tmax= 218 The structure of the spectra described above iscaling and the average avalanche amplitude scales with the
consistent with a log-normal form of the correlation func- system size as a power law with a logarithmic correction.
tions. We verified, using the Wiener-Khinchin theorem, that A natural question that arises from the above results is
this specific form of the power spectrum is obtained by awhether such temporal correlations found in the one-
Fourier transform of the log-normal functional dependencedimensional local-limited model are characteristic also for

of the correlation function, given by E¢6). other sandpile-type models, such as the undirected critical-
height model[1]. Another question is also whether these
IV. SUMMARY correlations persist in higher dimensions. Unfortunately, the

] local-limited model displays trivial behavior in two dimen-
In summary, we study temporal behavior of a one-sjons. To answer these questions more systematic numerical

dimensional sandpile model. In our numerical analysis Weyork on different types of sandpile models should be done.
assume two well-separated time scales, one associated with
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