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Sandpile model on the Sierpinski gasket fractal
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We investigate the sandpile model on the two-dimensional Sierpinski gasket fractal. We find that the model
displays interesting critical behavior, and we analyze the distribution functions of avalanche sizes, lifetimes,
and topplings and calculate the associated critical exponentd.51+0.04, «=1.63+0.04, and
pn=1.36=0.04. The avalanche size distribution shows power-law behavior modulated by logarithmic oscilla-
tions which can be related to the discrete scale invariance of the underlying lattice. Such a distribution can be
formally described by introducing a complex scaling exponént 7+i 8, where the real part corresponds
to the power law and the imaginary pa& is related to the period of the logarithmic oscillations.
[S1063-651%96)03907-4

PACS numbe(s): 64.60.Ak, 02.60.Cb

. INTRODUCTION D =1In3/In2~1.58. We calculate the distribution of avalanche
sizes, their lifetimes, and topplings. The avalanche size dis-
The concept of self-organized criticalitpOQ has been tribution shows a power-law behavior modulated by logarith-
introduced by Baket al. [1] to describe the tendency of a mic oscillations. This kind of oscillation has already been
large class of dynamical systems to spontaneously evolvebserved in the scaling functions of different systgibg],
into a critical state without fine tuning of any external pa-and here it can be related to the discrete scale invariant na-
rameter. Sandpile model4,2] have been introduced as an ture of the underlying fractal lattice. It is interesting to note
example of this kind of phenomena and have been widelghat complex scaling exponents have been recently detected
studied numerically and analyticalj8—7]. Two principal in earthquake statistid47].
analytical approaches have been followed: the first involves The measured scaling exponents vary with the system size
the group theory formalism introduced by Dhar and co-L and the values, extrapolated to—o, appear to differ
workers[8] and the second is a real-space renormalizatiorirom those computed on the Euclidean lattices. Computing
scheme recently developed by Pietronetcal. [9]. Other  expectation values, we are able to verify the relationships
theoretical approaches involve nonlinear continuous differbetween different critical exponents.
ential equation$10,11]. In addition, we investigate time correlations of the num-
Sandpile models are inspired by the dynamics of sandber of drops and topplings during the avalanche. Calculating
flowing along the slope of a pile. By adding sand grains tothe power spectra, we find that as in the case of the two-
the pile the system eventually reaches a stationary state chatimensional Euclidean lattidd 8,19 there are no long-range
acterized by avalanches of all length scales. The term crititemporal correlations.
cality refers here to the absence of any characteristic length
scale in this state. Sandpile models have been studied mostly
on Euclidean lattices. It has been shown that different kinds Il. THE MODEL
of Euclidean lattices do not affect the critical expondwis
This fact is similar to the universality observed in ordinary

critical phenomena. Moreover, in the case of the Bethe Iat'sitesL=2”+1 along one direction of the lattice and is used

tice one recovers the mean field resyit®,13. HOWGVGT’ hereafter as a measure of the system size. Within the sand-
sandpile models, to our knowledge, have not been studied on

X . . . . pile model, all the sites of the fractal lattice are exposed to
a fractal substrate, in particular on a simple deterministi

fractal such as that epitomized by the Sierpinski ga&e). he same local dynamical rules_;. The exceptions are the three
It has been shown, via specific calculatiofst] and apex sites Whgre the sand grains flow out_of the system. Th_e

through general rigorous analy$is5], that for the standard dynam|c§ begins wh_en V\(e.assouate an integer he'ght vart-

Ising model(and for some more general modets finitely aple;i with every lattice sita. A.t each Iatgr ?tep one lattice

ramified fractals no spontaneous magnetization can exist sﬂre] IS chosehn E;]t r.a?]dom anqtlts he'r?ht |sh|ncr_egse|d bly one.

any finite temperature. It might have happened that, by som _enever t e heignt on a sl ereaches the critical value

assumed analogy, no self-organized critical behavior ha§°_4’ the site bgcomes unstatieective and relaxes accord-

been expected so far to occur on the deterministic fractald"d © the following rules

However, we shall demonstrate that the SOC phenomenon

exists on the SG fractal and displays interesting features. z—z,—4, (1)

Specifically, we study numerically the critical height sand-

pile model on the SG lattice with the generator scaling base

b=2 which corresponds to the fractal dimension zj—z;+1, (2

Our cellular automata model is defined on the SG lattice
as shown in Fig. 1. The numberis related to the number of
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TABLE I. The fraction of sites having height equal z&-1, 2,
3, and 4 and the average heidiz) as found for different system
sizesL=2"+1 andn=3, 4, 5, 6, and 7.

n Py P2 Ps P4 (2)

3 0.075 0.143 0.306 0.476 3.18
4 0.070 0.136 0.302 0.492 3.22
5 0.069 0.133 0.299 0.499 3.23
6 0.068 0.132 0.298 0.501 3.23
7 0.068 0.132 0.298 0.502 3.23

nh=2

FIG. 1. An example of the SG lattice with the generdier2, at
the stage of constructiom= 2, and with linear sizé =5. Each site

Finally we study temporal correlations by considering the

number of active sites and the number of grains falling out of

the system at each time step. The power spectrum of this
signal falls off as

S(f)y~f¢.

In the Euclidean casep=2 showing the absence of long-

(10

has four neighbors except for the three apex sites with only tWOrange temporal correlations.
neighboring sites. The arrows indicate the direction of sand flow

from a chosen site.

wherej are the nearest neighborsiofThese rules conserve

Ill. SIMULATION RESULTS

We perform numerical simulations for different lattice

the total number of grains, except on the three apex sitesizes ranging froon=3 to n=7. The total number of sites

(independent of the system sjaghere two sand grains are
lost. Successive relaxation events generate the sand flow t
eventually brings the sand out of the system. Due to the loc

S, +1 of the system siza+ 1 is related to the number of sites

hgt of the system size via the equatiors, . ;=3S,— 3 with
ab,=3, which corresponds to a total number of lattice sites

conservation, imposed by the dynamical rules, the systerjoing fromS,=42 to S,=3282.
ﬂna”y evolves into the Stationary state characterized by the A Simp'e way to characterize the properties of the station-

balance between the input and the output flow.

ary state is to compute the fractigm of sites having height

The critical exponents are extracted from avalanche dis; =1 2, 3, and 4. We report these results in Table | for

tributions in the stationary state. We define the Szas the

different system sizes, together with an average height

number of distinct sites visited by an avalanche, the topplingrhe obtained values are very close to those found on the
sizem as the number of relaxation events, and the lifetimegyclidean latticd4,5).

T as the number of updating steps during an avalanche. All |n Fig, 2 we show the avalanche size distribution for dif-
these quantities are expected to be distributed as power lavigrent system sizes. One can see that there are quite a few

P(S)~S™7,
P(m)~m™#,

P(T)~T"¢,

avalanchegrepresented by the last peak of each distribution

©)
(4)
©)

where 7, u, and « are critical exponents of the respective
distribution function?(S), P(m), andP(T). We can relate
these exponents by considering conditional expectation val-
ues for an average avalanche s{&) and an average top-
pling size(m:) at a given avalanche lifetimé:

(Sn~T7, (6)

(mp)~T7, ()

and similar other relations. By taking into account the defi-
nitions of critical exponents, given by Eq&)—(7), scaling
relations between exponents can be derip&d

r=1+(a—1)/B, 8 FIG. 2. The distribution of avalanche sizes of the sandpile
model on a SG lattice. Different curves correspond to different

u=1+(a—1)/y. 9 system sizes. The arrows indicate the peaks in the distribution.
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FIG. 4. The distributions of avalanche sizes for a sandpile model
on a square lattice with four exiting points are depicted for several
system sized =4, 8, 16, and 32. Data fdt=16 andL=32 are
averaged at sizeS>50.

modulated by oscillations with a perig@that can be related
to the scaling properties of the SG lattice. A self-similar
lattice is left invariant only by a discrete set of scale trans-
formations, namely, by those with a scaling parameter of the
form A=Db". Under this condition, it has been shoWail]
that the most general scale invariant function of the real-
space coordinates is a power-law multiplied by a logarithmi-
cally periodic function. These oscillations can be formally
described by introducing a complex scaling exponent
®) , f 7* =71+16 where the real part corresponds to the power-
‘ ‘ ‘ ' law exponent, while the imaginary pa#tis related to the
period of oscillations. In our caseé=2m/p=2mu/

FIG. 3. A snapshot of an avalanche on the Sierpinski gaskel’3=5.72. To extractr, we fit the distribution with a power

lattice (a) compared with an avalanche on the Euclidean squaréaW modulated by.a periodic'funption. _ '
lattice (b). Active sites are depicted in black and sites that have The last peak in the distribution of avalanche sizes is a

toppled at least once are colored in gray. consequence of the fact that at any system size there are only
three boundary points where the sand can flow out of the
system, in contrast to the Euclidean lattice where the number
curve which span the entire lattice. This occurs because thef boundary points increase in proportion to the system size.
balance between incoming and outgoing particles forces thelowever, one can study the effect of boundaries by calculat-
avalanches to reach the three apex sites. Due to the selfig the avalanche size distribution of the same sandpile
similarity of the underlying lattice, the same phenomenonmodel on the Euclidean lattice with only four boundary
occurs on all fractal substructures, which is manifested by @oints, e.g., the four corner sites of the square latficethe
series of peaks on each distribution curve. rest of the edge points periodic boundary conditions gpply
The phenomenon described above is reflected in a pecdhe results are shown in Fig. 4 for system sites4, 8,
liar behavior of the active sites during the evolution of anl6, and 32. The distributions are power laws with peaks at
avalanche: the active sites are localizgdpped within frac-  the total numbers of sites on the lattice.
tal substructures for many time steps. Such a trapping does In the SG case, we report in Figs. 5 and 6 the distributions
not occur in the Euclidean lattice where the active sites aref avalanche lifetimes and topplings in a double logarithmic
essentially on the avalanche front. This is apparent from Figplot. Both distributions display pure power-law behavior
3 where the active sites for a typical avalanche in the Euclidwithout any modulations. The power-law regimes grow with
ean square lattice are compared with an avalanche on tlbe system size.
fractal lattice. Similar differences which spring from differ-  As in the case of the Euclidean latti¢é], the scaling
ences in the topology of the lattices were noted beff2gégin ~ exponents depend on the system size. We can, however, ex-
a study of linear polymers on the diamond hierarchical lattract the asymptotic results by plotting the logarithm of the
tice. exponents versus 1/lgg., wherel is the linear size of the
The power-law behavior in a double logarithmic plot is lattice. This relationship is presented in Fig. 7, where we
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FIG. 5. The distribution of avalanche lifetimes of the sandpile  FIG. 7. The logarithm of the critical exponents found as a result
model on a SG lattice as calculated for different system sizes. Dataf a simulation for different lattice sizes plotted against 1{}hg
are logarithmically binned at lifetimeE>50. Estimations of the three exponents in the limit of infinitely large
lattice size(1/log;oL—0) are also shown. The extrapolated expo-
depict also the extrapolated critical exponents in the limitnents in the limitL — are 7,=1.51*+0.04, a,=1.63+0.04, and
n—o. We found the extrapolated values=1.51+0.04, M= 1.3620.04.
a,,=1.64+0.04, andu..=1.36+ 0.04 for the avalanche size,
lifetime and toppling distributions, respectively. The distri- relations given by Eqs(8) and(9), and using the estimated
bution functions presented in these figures have been calcgtitical exponents.., a.., andu... Thus we find the values
lated by averaging over!3 avalanches. B=1.24+0.12 andy=1.75+0.18, which are in agreement,
To check the consistency of our results we compute thavithin the numerical error, with the directly obtained values
scaling exponents of the conditional expectation values, i.efrom Fig. 8.
exponents related to the average avalanche & and Finally, within the scope of the sandpile modél, we
number of topplinggmy) in dependence on the lifetinie. calculate the temporal correlations of two quantities: the
Figure 8 shows results of our computation in a double loganhumber of particles which fall out of a system in a unit time
rithmic plot. The slopes in the figure correspond to the ex-2nd the number of topplings. The unit time in this case cor-
ponentsB andy as defined in Eqg6) and(7) and are found responds to one updating step of the lattice variables. We
to be =1.13+0.05 andy=1.73+0.05. These two values calculate the power spectra of the above two quantities. In
can be compared with the ones evaluated from the scaling
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FIG. 8. The average avalanche s{&) and the average num-
FIG. 6. The distribution of the number of topplings per ava- ber of topplings{my) as functions of the lifetim&, presented in a
lanche of the sandpile model on a SG lattice as calculated for difdouble logarithmic plot. The corresponding slopes are
ferent system sizes. Data are logarithmically binned at topplingd=1.13+0.05 andy=1.75+0.05. Data are logarithmically binned
sizesm>50. at lifetimesT>50.
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on the Sierpinski gasket lattice with the generator base
b=2. The lattice coordination number is the same as in the
two-dimensional square lattice and therefore the dynamical
rules of the sandpile model are exactly the same. The bound-
aries, however, are different, since on the SG lattice the sand
can flow out only through three sites at every scale. This fact
substantially changes the avalanche dynamics. The active
sites become trappdtbcalized and topple more than once
during a single avalanche.

In relation to the standard critical phenomena it is inter-
esting to note how the dimensionality and the topology of the
i lattice affect the critical behavior of the model. In one di-

. mension, the critical height sandpile model is trivial in that
avalanches are not power-law distribufdd. A similar be-
havior occurs, for example, in the Ising model where no
f phase transition is observed in dimension less than two. We
have shown, however, that on a finitely ramified fractal, the
FIG. 9. Power spectra of the number of particles which drop outsandpile has nontrivial critical behavior, in contrast to the

of the systentstars and of the number of topplinggliamond$in |sing model which has no phase transition on such a fractal
a given time step. The data for three system sizes are depicted, frogttice [14,15.

n=5 to n=7. The results show 17 type of spectra, which indi-

. ) ; Finally, we note that self-similar lattices have been
cates an exponential decay of time correlations. It can be observedroven verv helpful in constructing exact real-space renor-
that the frequency at which thef#/type of the spectrum crosses P y P 9 P

over to the white noise typé.e., the flat part of the spectrondue malization group transformatiofi22,23 for standard critical

to the finite size of the system, decreases with the lattice size. ~Ph€nomena. Having demonstrated that self-organized criti-
cality can exist on a fractal lattice, it would be beneficial to

find such a transformation for this model, trying to link the

both cases we find aff/ type of spectrum. Thereby, the type figorous approach of Dhar and co-worké8 with the real-

of temporal correlations turns out to be the same as in thepace renormalization scheme presente(®ja4].

original model on a two-dimensional square lattjd8,19. Note added in proofAfter finishing this work we came to
Our results are presented in Fig. 9. The flattening of theknow about recent observations of complex critical expo-
1/f? spectrum at small frequencies is due to finite size efnents; we thank D. Sornetf@5] for calling these to our
fects. In contrast to other scaling exponents presented in thattention.

paper, the exponents of power spectra do not vary with the

system size, that is, theff/type of spectrum corresponds to

an exponential decay of temporal correlations independently ACKNOWLEDGMENTS

of the system size.
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