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The dynamics of the phase of the molecular tilt in the helical ferroelectric liquid crystalline Sm-
C™ phase is studied within the Landau model. We show that a static electric field applied parallel
to smectic layers induces a gap in the excitation spectrum of the phase of the tilt at the edge of the
Brillouin zone. The gap is shown to grow linearly with the strength of the field up to a critical field
beyond which the helical structure finally unwinds. The influence of the phase-excitation dynamics
on the dielectric response is investigated in order to resolve the contradiction between experimental
findings and previous theoretical results. We find the dielectric strength of an infinitely large system
to decrease with the bias field and go to zero at the critical field in accordance with measurements.
In order to aquire a better understanding, the properties of a system of a finite length along the
helical axis are investigated. It is shown that the dielectric strength consists of two parts: one
related to the local variations of the phase of the tilt and the other related to the unwinding of
the whole helical structure. The former part of the dielectric strength vanishes at the critical field,
whereas the latter part diverges. In addition, the relaxation time for the unwinding of the helical
structure is found to increase with the length of the system and has a range in real planar samples
from minutes to hours. In conclusion, the dynamics of the tilt in a finite-size system is found to be
crucial in interpreting experimental as well as theoretical results.
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I. INTRODUCTION

Ferroelectricity in liquid crystals was predicted in 1975
by Meyer et al. [1] for compounds with chiral molecules
carrying transverse electric dipole moments, which or-
der in a certain temperature regime into a tilted smectic
phase. In the smectic liquid-crystalline phases, molecules
are arranged into layers. In the smectic-C' (Sm-C) phase
the molecular director is tilted with respect to the nor-
mal to the smectic layers. If constituent molecules are
chiral, the corresponding tilted smectic phase is called a
smectic-C* (Sm-C*) phase.

In the chiral ferroelectric Sm-C* phase the molecular
tilt rotates around the normal to smectic layers as we
proceed from one layer to another. As a consequence
of this rotation, a helical structure is formed with a pe-
riod, i.e., the helical pitch, on the order of thousands of
smectic layers [2]. An external magnetic or electric field
applied parallel to the smectic layers couples to the local
molecular director [3] and deforms the helical structure.
Such a field breaks the continuous helical symmetry and
induces a discrete periodic lattice along the helical axis,
usually referred to as the soliton lattice [4]. The lattice
constant of the soliton lattice increases with the field and
diverges at the critical field. At the critical field the he-
lical structure unwinds and the phase transition to the
homogeneously tilted Sm-C phase occurs. Rigorous the-
oretical studies [5] of the static properties of this soliton
lattice show that the structure can be described well us-
ing the constant amplitude approximation (CAA), i.e.,
by the phase of the two-component order parameter tilt
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£ neglecting the variations of the amplitude of the tilt.
However, the CAA is not valid close to T, (T, — T < 0.1
K). By T we denote the transition temperature from the
high-temperature smectic-A (Sm-A) phase to the Sm-C*
phase.

In the Sm-A phase, where the molecular director is
perpendicular to smectic layers, only fluctuations of the
amplitude of the tilt contribute to the low-frequency ex-
citation spectrum. At the Sm-A+Sm-C* phase transi-
tion, the spectrum splits into two branches [6]: one cor-
responding to excitations of the tilt amplitude and the
other to fluctuations of the phase of the tilt. Experi-
ments show that by excluding a narrow temperature re-
gion below T, amplitude excitations can be neglected in
comparison to phase excitations [7].

In this paper we investigate excitations of the phase
of the tilt in an external static electric field. In Sec. II
we show that the field induces a gap in the spectrum of
excitations of the phase of the tilt at the edge of the Bril-
louin zone. The gap is shown to grow linearly with the
field. The eigenmodes of these excitations are studied for
wave vectors at the center and at the edge of the Bril-
louin zone. Preliminary experimental results, obtained
by using light scattering methods, show the possibility of
the existence of the gap in the phase-excitation spectrum
at the edge of the Brillouin zone [8].

Phase excitations influence the dielectric response es-
pecially away from T, where the amplitude excitations
can be neglected. The measured dielectric strength de-
creases with the bias field and vanishes at the critical
field [9]. According to early theoretical predictions by
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Hudgk [10], the static susceptibility diverges at the crit-
ical field, which is in discrepancy with the experimental
results. Motivated by this lack of agreement, we present
in Sec. II our numerical results for the dielectric suscep-
tibility, which qualitatively agree with the experimental
findings.

To understand the difference between the predictions
given by Huddk and our present results described in Sec.
II, we study in Sec. III the influence of a finite system
length on the phase-excitation spectrum and the contri-
bution of the phase fluctuations to the dielectric response
[11]. We find that the susceptibility consists of two con-
tributions: one associated with the local reorientation of
the tilt and the other related to the unwinding of the
helical structure that affects the whole system [12]. The
unwinding of the helical structure is argued to be crucial
in understanding the results of dielectric measurements
as well as in interpreting theoretical calculations. We
then conclude that the slow dynamics of the unwinding
of the helical structure is the reason for the discrepancy
between the theory and measurements regarding the or-
der of the Sm-C*+ Sm-C phase transition induced by
the external field [4].

II. PHASE-EXCITATION SPECTRUM OF AN
INFINITELY LARGE SYSTEM IN A STATIC
ELECTRIC FIELD

In a system that is not in equilibrium a thermody-
namic force appears, which drives the system back to the
equilibrium. In this section we derive the equation that
governs the dynamics of the phase of the tilt E around its
equilibrium in a static electric field. The excitations are
studied as well as the influence of the field on the static
dielectric response.

The tilt E and the polarization P are expressed in terms
of magnitudes ©, P and the phase ®: f: O(cos ®,sin @)
and P = P(—sin®,cos ®). Within the CAA only the
phase ® is allowed to vary, whereas the magnitudes ©
and P are kept constant. The relevant part of the Landau
free energy per unit area is

“+oo
F = / [%K:;G)zd) 2 _ K30%0® — EPcos<I>] dz .
(1)

By K3 we denote an elastic constant and by go = 27/po
the wave vector of the helical pitch po in a zero field. We
choose the z axis to be parallel to the helical axis. Only
the linear ferroelectric coupling between the polarization
P and the field E = (0, E) is taken into account, whereas
the quadratic coupling due to a dielectric anisotropy is
neglected.

The dynamics of small fluctuations of the order pa-
rameter around the equilibrium is governed by Landau-
Khalatnikov equations [13]. Within the CAA the
Landau-Khalatnikov equations reduce to one equation
for the phase ®(z,t)
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where v is a rotational viscosity. After introducing di-
mensionless variables for the coordinate Z = mgoz/4, the
time £ = (7/4)2y "' K3g2t, and the field 0 = E/E,, where
E, = (w/4)2K30%¢2/P is the critical field at which the
Sm-C*+> Sm-C phase transition takes place, Eq. (2) is
expressed in a dimensionless form

@;2 — osin® = Qt" (3)

As we are interested in small fluctuations of the phase
®(%,%) around the equilibrium, we write the solution
®(z,t) of the nonlinear partial differential Eq. (3) as a
sum of a static solution ®¢(Z) and a small fluctuating
part o(2,f), ®(2,1) = ®o(Z) + ¢(2,%). The static equi-
librium solution ®¢(2) for a given field E is a periodic
solution of the sine-Gordon equation [14], which is ex-
pressed in terms of the Jacobi elliptic sine function

®o(2) = arccos{2sn’[\/oz/k — K(k);k] — 1}. (4)

The modulus k € [0, 1] is related to the field o through
the equation k = \/oE(k) and K (k), E(k) are complete
elliptic integrals of the first and the second kind, respec-
tively. The modulated equilibrium state determined by
Eq. (4) is periodic with a dimensionless period p, which
depends on the reduced bias field o, p = 2kK (k) /+/0.

After linearizing Eq. (3) around the equilibrium solu-
tion ®¢(Z), the equation for ¢(2,?) is obtained

pzz — ocos(®) p = ¢;. (5)

According to Eq. (5) the system approaches on equilib-
rium exponentially and thus ¢(Z,) can be written as
a product ¢(2,f) = @o(Z) exp(—£/7), where 7 is a di-
mensionless characteristic time associated with the exci-
tation. The problem of solving Eq. (5) is an eigenvalue
one. Different eigenfunctions ¢o correspond to different
eigenvalues k2(1 + 0~ 1771) through the equation

d?po(a 1

Tl _ (9k%sn(as k)~ K2(1+ 0~ )] pu(@) - (6)
We introduced a new independent variable a = /o z/k —
K (k). The relaxation frequencies ¥~1, which determine
the phase-excitation spectrum, are directly related to the
eigenvalues k2(1 + o~ 1771).

A. Field-induced gap

Equation (6) is the Lamé equation of first order [15].
It is of the same form as a stationary Schrodinger equa-
tion in one dimension for a particle in a periodic elliptic
potential. This equation is not rare in condensed matter
physics: it describes small fluctuations of a flux-line lat-
tice in superconductors of type II [16], phase-excitations
in cholesterics [17], and also excitations of ferroelectric
liquid crystals in an external magnetic field [18]. The
solutions of this equation are expressed in terms of the
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Jacobi eta H(a; k), theta ©(a; k), and zeta Z(a; k) func-
tions

H(a + ao; k)

o(ci k) exp[—aZ(ao; k)], (7)

wo(a; ag; k) =

whereas the eigenvalues determine the eigenfrequencies
771 through the relation

771 = -ka—z dn®(co; k) . (8)
By dn(a; k) we denote the Jacobi elliptic delta function.
The parameter ap is an index that plays the role of a
wave vector, i.e., it determines the wavelength of the
excitation. Equation (8) is a dispersion relation that
determines the phase-excitation spectrum at a given
field o.

As the potential in the Schrodinger-like equation (6)
is periodic, the solution ¢o(c;cp;k) that describes the
phase excitation must have Bloch form. The argument
of the exponent in Eq. (7) thus has to be imaginary,
i.e., ig,, where g, is a wave vector, inversely propor-
tional to the wavelength of the excitation A, g4 = 27/A.
Each phase excitation is characterized by the wave vec-
tor ¢, so that the corresponding Bloch function can be
denoted by ¥, (o) instead of po(a;ap;k). In the fol-
lowing the Bloch form ¥, (a) will be used. By taking
into account the properties of Bloch functions under the
translation for a lattice constant ar = 2K (k) on one side
and the translational properties of the Jacobi functions
[19] H(a;k), ©(a; k), and Z(a; k) on the other, we find
the relationship between the complex parameter ay and
the wave vector g,

1 .
da = :i:iqa,c — 1Z(ag) - (9)

Here g4 = 2m/ar = w/K (k) is the dimensionless criti-
cal wave vector associated with the lattice constant ar in
areal space. The double sign in Eq. (9) reflects the trans-
lational invariance in the reciprocal space for the critical
wave vector ¢4 .. In the following we choose the Brillouin
zone corresponding to go € [¢a,c — 9a,c/2) Ga,c + da,c/2]-
In order to obtain real values of g, the parameter ag
should be chosen in such a way as to yield an imaginary
value for Z(ap). The zeta function Z(a;k) is quasiperi-
odic, i.e., it is periodic in a real argument with the period
2K (k) and it is a monotonic function of an imaginary ar-
gument. The values of Z(ao) are imaginary in two cases:
(a) when ag = iy or (b) when ag = K (k) + iy. Here y is
a real parameter. These two cases determine two relax-
ation frequency bands and the gap in between. The gap
splits the phase-excitation spectrum into two branches:
(a) the upper opticlike branch and (b) the lower acousti-
clike branch. The gap appears at the edge of the Brillouin
zone at the wave vectors go = ga,c £ ga,c/2. The phase-
excitation spectrum and its splitting in the external static
electric field are shown schematically in Fig. 1.

Both branches are depicted in Fig. 2 for a few different
values of the bias field 0 = E/FE.. The gap at ¢ = ¢. +
gc/2 increases linearly with the field, as shown in Fig. 3,
where in addition to the gap A the relaxation frequencies
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FIG. 1. The phase-excitation spectrum in an external elec-
tric field is shown schematically in an extended zone pre-
sentation. The two branches are separated by the gap at
q=+q./2,%£3q./2,....

of the acousticlike and opticlike excitation with ¢ = ¢. &+
gc/2 are depicted.

In a zero field the phase-excitation spectrum is
parabolic with the center at ¢ = go. The phase excitation
in the center corresponds to the zero-frequency Goldstone
mode: such an excitation describes a rigid rotation of the
helix as a whole or a sliding of the helix along the z axis.
The width of the Brillouin zone goes to zero continuously
as the field approaches its critical value. Although the
field breaks the continuous helical symmetry, there is still
an excitation with a zero relaxation frequency in the cen-
ter of the Brillouin zone, at ¢ = g.. This zero-frequency
mode is a consequence of a continuous degeneracy of the
modulated phase: the translation of domain walls along
the helical axis does not change the free energy of the
system. The existence of the zero-frequency excitation
mode below the critical field can be predicted without
calculations using merely symmetry arguments. The ho-
mogeneously tilted Sm-C phase above the critical field
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FIG. 2. Spectrum of phase excitations in an external static
electric field that is perpendicular to the helical axis. Four
different curves correspond to four different field strengths.
The width of the zone goes to zero as the field approaches
the critical field value. The gap at ¢ = g. & ¢./2 splits the
phase-excitation spectrum into the lower acousticlike and the
upper opticlike branch.
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FIG. 3. Relaxation frequencies 7..' and Top of the phase
excitations with the wave vector ¢ = gc + g./2. Their dif-
ference A = ‘ro_pl — 7. represents the gap in relaxation fre-
quencies, which is proportional to the field and assumes its
maximal value (7/4)%y ' Kaq? at the critical field.

has a continuous translational symmetry apart from the
discrete structure due to smectic ordering. On lowering
the field from above to below the critical field the continu-
ous translational symmetry is spontaneously broken and
only a discrete translational invariance due to the soli-
ton lattice remains. Therefore, in the Sm-C* phase be-
low the critical field a Goldstone-like [20], zero-frequency
mode should exist, whereas in the Sm-C phase there can
be only opticlike phase excitations with nonzero relax-
ation frequencies. The branch of phase excitations is in
this sense analogous to spin density waves in an isotropic
Heisenberg ferromagnet where the continuous rotational
symmetry is broken in the low-temperature phase.

B. Eigenmodes of phase-excitations

What kind of an excitation corresponds to the com-
plex Bloch function in a real space? The Bloch function
VU, (@) and its complex conjugate ¥; (a) are both solu-
tions of the Lamé equation (6) with a real elliptic poten-
tial. Since the Lamé equation is linear, two linear combi-
nations ¥} = (Vg +¥; )/2and ¥ = (¥, —P; )/2i
will also solve Eq. (6). These two real functions describe
two phase excitations on a given branch with the wave
vector ¢o. The two phase excitations could hypotheti-
cally be induced by an electric field (the field could be
oriented parallel or perpendicular to the bias field), which
is modulated sinusoidally (with a period 27 /g, ) along the
helical axis. The two excitations thus change the in-plane
polarization parallel and perpendicular to the bias field,
respectively.

There are three special points in the phase-excitation
spectrum where the Bloch function is real: at the cen-
ter of the Brillouin zone ¢ = g, and at the edges of the
Brillouin zone ¢ = g. + g./2. The acousticlike phase
excitation with ¢ = ¢. corresponds to a rigid transla-
tion of domain walls along the helical axis, as shown in
Fig. 4. The corresponding Bloch function is proportional

3895

T T T T I T T T T

m - E/Ec=1-107%

1 | 1 | I | 1 | 1
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 08 1

z2/p

FIG. 4. Excitation on the acousticlike branch with the
wave vector ¢ = g. corresponds to a homogeneous transla-
tion of domain walls along the helical axis. The associated
relaxation frequency is equal to zero at all field strengths be-
low the critical one.

to the Jacobi elliptic delta function Wg° = o dn(a; k).
The acousticlike phase excitation with ¢ = g¢. £ ¢./2,
which is presented in Fig. 5, corresponds to shifts of
the two neighboring domain walls: as one wall moves
to the left, the other one moves to the right. The do-
main between the two walls grows while the neighboring
domain shrinks. It is not difficult to see that this exci-
tation changes the local polarization along the bias field.
The corresponding Bloch function is proportional to the
Jacobi elliptic cosine function, \I';:,c tqa./2 X cn(a; k).
The opticlike phase excitation with ¢ = g, & ¢./2 is de-
picted in Fig. 6. This excitation changes the width of
domain walls: as one wall gets wider the neighboring one
becomes narrower. The in-plane polarization perpendic-
ular to the bias field is changed and the corresponding
Bloch function is proportional to the Jacobi elliptic sine
function, \I’::c:l:qa,c/z o sn(a; k).

The eigenmodes in the three special points of the
phase-excitation spectrum are analogous to the eigen-

n

®(z]) 0

-
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FIG. 5. Excitation on the acousticlike branch with the
wave vector ¢ = g. * gc/2: the positions of the two neigh-
boring domain walls are shifted in opposite directions.
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FIG. 6. Excitation on the opticlike branch with
q = gc £ qc/2. The widths of the domains are altered. As
one domain gets wider, the neighboring one shrinks.

modes in the phonon spectrum of a diatomic linear chain
of identical atoms connected by springs of alternating
strengths: one soft and the other hard [21]. Stretching
the soft springs corresponds to changing of the width
of domains and stretching the hard springs is related to
varying the domain walls’ widths. The corresponding
zero-frequency mode is associated in this case with a ho-
mogeneous translation of the whole chain of springs and
atoms.

C. Dielectric response in a bias electric field

Here the dielectric response of an infinitely large sys-
tem to a time-dependent field applied either parallel or
perpendicularly to the static bias field is investigated. In
an external static electric field only the phase excitations
with wave vectors ¢ = 0, +q., £2q., ... influence the di-
electric response. The acousticlike phase excitation with
g = ¢ does not affect the average polarization of the sys-
tem because it represents the translation of the lattice
as a whole and thus cannot contribute to the response.
The main contribution is expected from an opticlike ex-
citation with ¢ = 0. The contributions from opticlike
excitations with ¢ = 2¢q.,3¢.,... can be neglected since
their relaxation frequencies are higher and the contribu-
tions correspondingly smaller.

The two opticlike phase excitations with ¢ = 0 are
shown in Figs. 7 and 8: they can be excited by a small
homogeneous field that is parallel and perpendicular to
the bias field, respectively. The corresponding relaxation
frequency, which is the same for both excitations, is de-
picted in Fig. 9 in dependence on the bias field. This
frequency is almost unaltered at small bias fields and is
slightly lowered as the field approaches its critical value,
where it assumes (7/4)2 ~ 0.79 of its zero field value.
At fields higher than the critical one the relaxation fre-
quency increases linearly with the field.

Knowing the Bloch functions of the opticlike phase
excitation with ¢ = 0, we can calculate the dielectric
strength of the response in dependence on the bias field.
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FIG. 7. Excitation on the opticlike branch with the wave
vector ¢ = 0. Such a phase-excitation mode can be excited
by applying an electric field parallel to the static bias field.

The results are presented in Fig. 10. The static dielectric
response to a small field that is applied parallel to the
bias field decreases with the bias field. At the critical
field where the polarization in each layer is parallel to
the bias field, the additional field does not induce any
polarization along the bias field and consequently the di-
electric strength at the critical bias field is zero. The
static dielectric response to a small field that is applied
perpendicularly to the bias field increases with the field.
In this case the response is proportional to an average
polarization along the bias field that grows with the field
up to the critical field. Above the critical field both re-
sponses are independent of the bias field.

According to the above results the static dielectric re-
sponse to a small field that is parallel to the bias field
decreases with the bias field, which is in agreement with
measured data [9]. This, however, contradicts the static
susceptibility, which has been shown by Hudak [10] to
diverge logarithmically at the critical field. In his calcu-
lation the dynamic behavior of the system was not taken

e E/Ec=1-10"%

olz) 0

-TC

FIG. 8. Excitation on the opticlike branch with the wave
vector ¢ = 0. Such a phase-excitation mode can be excited
by applying an electric field perpendicular to the static bias
field.
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FIG. 9. The relaxation frequency, which is associated with
the-opticlike phase excitations with ¢ = 0, is depicted as a
function of the bias electric field.

into account and the strong increase of the static sus-
ceptibility below the critical field is a result of the vari-
ation of the helical pitch under the influence of the field
change. On the other hand, it was noted by the author
himself that in a macroscopically large system the change
of the helical period requires large rotations of the direc-
tor. In the following we will show that in an infinitely
large system the phase excitation that corresponds to the
unwinding of the helical structure should have an infinite
relaxation time.

III. EFFECTS OF FINITE DIMENSIONS

Results of the preceding section are based on the inves-
tigation of phase excitations in an infinitely large system,
whereas in experiments the sample is always finite along
the helical axis. The helical period in such a finite sys-
tem in dependence on the field has been shown recently
to exhibit finite jumps [11] at some field values where
the number of domain walls in the sample is changed by
one. However, in a system that is large enough, a discon-
tinuous field behavior of the period is less pronounced

12 T T T T T

1.0+

08 -

X 06

04 |- i

02| L i

0 02 04 0.6 08 1.0 12
E/Ec

FIG. 10. A static dielectric response as calculated numer-
ically in dependence on the strength of the bias electric field
is presented in two cases: when an additional field is parallel
to the bias field (x!!) and when an additional field is perpen-
dicular to the bias field (x).
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and the curve practically agrees with the result for an
infinitely large system. Although the static behavior of a
thick sample is almost the same as in an infinite system,
the dynamical behavior is expected [12] to be influenced
essentially by finite dimensions.

A. Dielectric response of a finite system
in a zero bias field

In order to understand the dynamical behavior of a fi-
nite sample, its dielectric response in a zero bias field is
studied. A system of finite length along the helical axis
is polarized unless there is exactly an integer number of
helical periods in the system. In the absence of exter-
nal fields we denote the dipole moment of the sample by
p. Here we investigate the dielectric response of a sys-
tem to a time-dependent electric field 6E = §Epcoswt
applied perpendicularly to the helical axis. The deriva-
tion of the dielectric susceptibility in dependence on the
field frequency is given in the Appendix. The dielectric
susceptibility is a 2 x 2 tensor and the two eigenvalues
are given by Egs. (A11)-(A13). The eigenvalues x! and
x* correspond to the complex susceptibilities that mea-
sure the linear response to a time-dependent field ap-
plied parallel ((5E || P) and perpendicularly (6E 1 P
to the dipole moment p, respectively. The last term in
Eq. (A11), which gives xg. o 6(f2) and xi, x 1/Q [a di-
mensionless frequency Q = yw/(K3g2)], corresponds to a
rigid rotation of the helix as a whole. This contribution
disappears only when L = kpg, with k being an integer,
i.e., when the total static dipole moment p vanishes. This
part of the response of the system can be understood in
the following way. The nonzero dipole moment p’ breaks
the axial symmetry in the smectic plane in comparison
to the case p = 0. The presence of this additional zero-
frequency relaxation mode can be predicted on the basis
of the Goldstone theorem [20] as a consequence of the
broken (continuous) axial symmetry.

As shown in the Appendix, the sums in Egs. (Al11)
can be expressed explicitly by evaluating partial sums

separately. In Figs. 11 and 12 the results for both re-

sponses, xlllie, xlllm and Xge» Xi.,, are depicted for four dif-

ferent lengths L of the system in dependence on the field
frequency. All the lengths L are chosen in such a way
that the total dipole moment is fixed in order to study

only the effect of the system length L along the helical

axis. The peaks in xlllm and xi., appear at two different

characteristic frequencies: (a) at wo = vy~ !K3g2, which
is associated with a relaxation at a constant pitch, and
(b) at wy = v 1K3q2;,, which is associated with the un-
winding of the helical structure. The wavelength A that
corresponds t0 gmin = 27/ is the largest wavelength al-
lowed in a system of the length L. For the field SE | 7

the smallest allowed wave vector is qﬂﬂn = n/L, while in
the case 6E L p the smallest wave vector is g, = 27 /L.
This can be noticed by analyzing the expressions (A11)

and it can be observed on comparing Figs. 11 and 12

(wg = wi/4). In both cases the relaxation frequency w;
depends on the length L of the system: as the length
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L of the system increases, the relaxation frequency w;
decreases as wy o< L™2.

An interesting question is what happens to the com-
plex susceptibility xre + ¢ X1m as the length L gets larger
and larger. In the following only the response to the field
that is parallel to p is studied. The results obtained by
taking the limit L — oo at 2 > 0 of the expression for
X!l in Eq. (A12) yield

_7r2P 1 _7r2 Q
XRe = 35 E. 1+ Q2’

P
Xtm = 50 B, 1+ Q2
(10)

where the superscripts are omitted. This is exactly the
result of an infinite system at fixed helical period, so that
only the contribution at 2 = 1 (at w = wq) is present. In
the case 2 = 0, which has to be treated separately, there
are additional contributions to xre and Xim that depend
on the dimensionless length { = 2L/py. By assuming that
the dimensionless length [ is very large but still finite, we
find
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FIG. 11. The real and the imaginary part of the com-
plex susceptibility, which measures the response to the
time-dependent field applied parallel to the dipole moment
P, are shown in dependence on the frequency of the field. Dif-
ferent curves correspond to different lengths L of the system:
2L /po = 10.7,50.7,200.7, and 1000.7.
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P n? 2
XRe(2 — 0) = 5 3 [1 + 2cos®(7l/2)],
2
%"—‘(n —0) = 52 {”—2 [1 + 4cos?(wl/2)]
4

ul l; cos®(ml/2) } (11)

In the limit [ — oo the last term in xRe remains finite
while the last term in xim /S diverges. From Egs. (A11)-
(A13) we derive the rigorous expression for the real part
of the susceptibility of an infinite system
P n? 1
()= = | — o/ , 12
@ = 535 | ToaE + 0] (12)
where the last contribution Xp = 2lim;_, o cos?(wl/2) is
nonzero only at the zero frequency 2 = 0. Using the
Kramers-Kronig relation [13] between the real and the
imaginary part of the susceptibility we find
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FIG. 12. The real and the imaginary part of the com-
plex susceptibility, which measures the response to the
time-dependent field applied perpendicularly to the dipole
moment p, are shown in dependence on the frequency of the
field. Different curves correspond to different lengths L of the
system: 2L /po = 10.7,50.7,200.7, and 1000.7.
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P =2 Q T .
XIm(2) = E. 32 [W + EXO Q5(9)] . (13)

The limit I — oo should be taken at a fixed value of
the total dipole moment p of the system: the number of
periods in the system is increased in such a way that the
value of cos?(wl/2) is unaltered.

In a system of infinite length along the helical axis the
phase-excitation mode that unwinds the helical structure
cannot be excited in a finite time. The zero relaxation
frequency mode derived above is not a consequence of
a vanishingly small thermodynamic force as it is in the
case of soft and Goldstone modes, but it is a result of
infinitely large rotations of the director needed to unwind
the helical structure.

B. Phase-excitation spectrum of a finite system

The problem of the phase-excitation spectrum of a fi-
nite system is analogous to the problem of the phonon
spectrum of a finite crystal. In an infinitely large crystal
the phonon excitations with all wavelengths contribute
to the spectrum: the spectrum is continuous. In a finite
crystal one usually applies periodic boundary conditions
for Bloch functions that describe phonon excitations.
Since not all phonon excitations satisfy the boundary
conditions, only discrete values of phonon wavelengths
are allowed: the spectrum is discrete. The phonon-
excitation profiles with the allowed wave vectors are,
however, the same as in an infinite crystal.

Our investigation of the dynamics of phase excitations
in a system of finite length L along the helical axis is
based on the Landau-Khalatnikov equation (2). We write
the solution ®(2,t) of the dimensionless equation (3) as
a sum of the static solution [11] ®¢(Z) at a given reduced
field o and the fluctuating part, which can be expressed
as po(Z) exp(—£/7), so that we obtain the following equa-
tion for the amplitude ¢o(Z):

0o(2) = [0cos®y — 7 po(2). (14)
The potential in the Schrédinger-like equation (14) is de-
fined for 2 € [~L/2,+L/2] where L is a dimensionless
length of the system L= mqoL /4. The equilibrium phase
profile ®o(Z) that determines the form of the potential de-
scribes a periodic structure with a dimensionless period
pr = 2K (x)/+/0 and can be expressed as

cos(®o/2) = sn[vo (2 + Z0)/k; K],

- L K S+
ZO—E + FF(——T’K> ,

where k = 2V E/[(4/7)2E. + 4Ecos?(®_/2)], ®_ is the
value of the phase at the lower free boundary, ®_ =
®¢(2 = —L/2), and E, is the critical field of an infinitely
large system. By introducing a new variable a = /o (z +
Zo)/k, Eq. (14) transforms to an equation that has the
form of the Lamé equation except that the potential is
defined on a finite interval only

(15)
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20 (a
g%g_) = [2x%sn*(a; ) — K*(1 + 07177 )] po(a)
(16)

i.e., for a € [@_, oy ], where

a_ =F(H;m>, a+=a_+ﬁf4. (17)
K

2

The excitation with a given wave vector g, on each of the
two branches can be expressed as a linear combination of
the two real solutions ¥} and ¥ of the Lamé equation,
respectively,

D, (o) = AV (o) + B'I’;a (a). (18)
The allowed wave vectors g, are determined by the
boundary conditions at «_ and a4: the derivatives
d®, (a)/do are zero at both boundaries a_ and ay.
These two conditions, applied to the ansatz (18), lead
to a system of two homogeneous linear equations for the
coefficients A and B that can be solved if and only if the
determinant of the system is zero

d‘~II;1';x
da

dv;,
da

_ 4
da

A
da

=0. (19)

a. ay ay

The above equation determines the discrete values of
wave vectors that are allowed in the phase-excitation
spectrum. This spectrum is presented in Fig. 13. The
critical wave vector g. = 2m/py determines the width of
the Brillouin zone. Its value depends on the bias field.
Since the period pr, of the helix changes discontinuously,
the critical wave vector also exhibits jumps at the same
values of the field. Unless there is exactly an integer
number of helical periods in the system, the excitations
with ¢ = 0 and ¢ = ¢. + g./2 (i.e., special points of the
spectrum where the associated Bloch function is real) are
not allowed in the phase-excitation spectrum of a finite
system. The number of allowed wave vectors within the
Brillouin zone of the width g, is given approximately by
4c/9m = 2L/pr, where gq,, = w/L is the wave vector

1.2 T T T T T T T T T
1.0 s
-1
1q 0.8 My
-1K 2
Y K3qq 06k

0.4

0.2

FIG. 13. The dispersion relation of phase excitations of a
finite system with the length L = 10.7po along the helical axis
is discrete. The solid lines belong to an infinitely large system.
Different curves correspond to different field strengths.
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associated with the phase excitation of the largest wave-
length.

C. Influence of finite dimensions
on the dielectric response in a bias field

The contribution to the dielectric response from the
phase excitation with the wave vector g, is proportional

to (f0+L U, cos®odz)?, where U, is the correspond-
ing Bloch function. For a very large length L this in-
tegral is zero unless g, matches the wave vector as-
sociated with the modulation of the equilibrium state.
Thus, in the limit L — oo only phase excitations with
q = 0,%q.,+2q,, ... contribute to the response. On the
other hand, the dielectric response of a finite system is in-
fluenced by all the allowed phase excitations. The major
part of the contribution to the dielectric response, how-
ever, originates in the allowed phase-excitation modes
with wave vectors closest to ¢ = 0, +q., £2¢., ... . In a sys-
tem with a length of many helical pitches, the main part
of the dielectric response is determined by the lowest-
frequency phase excitations: the opticlike excitation with
the wave vector g from the interval ¢ € [—-n/L,+n /L] and
the acousticlike excitation with the wave vector q from
the interval ¢ € [¢. — 7/L,q. + 7/L]. The phase excita-
tion with ¢ = 0 is associated with the local reorientation
of the tilt and the in-plane polarization at a constant he-
lical period. The phase excitation with ¢ = ¢. changes
the helical period, except in the special case when there
is exactly an integer number of helical periods in the sys-
tem. In this special case the excitation with ¢ = ¢, is
allowed, but since it only shifts the domain walls along
the helical axis and does not affect the polarization of the
system, it does not contribute to the response.

In an external bias field just below the critical field all
the allowed phase excitations contribute to the dielectric
response, since the system below the critical field consists
of small number of helical periods. However, a character-
istic time that the system needs to reach an equilibrium
is determined by the phase excitation with the longest
possible relaxation time. Such an acousticlike excitation
is associated with the wave vector ¢ = ¢. and changes the
helical period. The corresponding relaxation frequency is
depicted in Fig. 14(a) in dependence on the bias field at
a few different lengths L of the system. The jumps that
occur at some special field values are due to the jumps
in the critical wave vector g.. The relaxation frequency
is lowered under the influence of the bias field and goes
almost to zero at the critical field.

The phase-excitation frequency at ¢ = 0 on the optic
branch is presented in Fig. 14(b) as a function of the bias
field. The observed jumps are due to the discontinuous
behavior of the critical wave vector g.. In contrast to
the relaxation frequency in Fig. 14(a), the relaxation fre-
quency in Fig. 14(b) does not depend much on the length
L of the system apart from the discontinuous behavior
which is more pronounced at smaller lengths L.

IV. CONCLUSIONS

An external electric field applied parallel to the smec-
tic layers in the liquid-crystalline Sm-C* phase induces
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FIG. 14. (a) Relaxation frequency 7__ La o of the excitation
with the largest wavelength allowed in a system of a finite
length L along the helical axis. Different curves correspond
to different lengths L of the system. (b) Relaxation frequency
'rq;lo of an opticlike excitation with the wavelength ¢ ~ 0.
Two different curves are presented, which correspond to two
different lengths L.

a one-dimensional lattice along the helical axis. In this
paper we study excitations of the phase of the tilt of this
soliton lattice to the lowest order. The phase-excitation
spectrum is found to be equivalent to the energy spec-
trum of a particle moving in a one-dimensional periodic
elliptic potential. It is shown that the field induces a
gap in the phase-excitation spectrum at the edge of the
Brillouin zone. In addition, we show that the gap grows
linearly with the field. In contrast to the gap induced by
an external magnetic field [18], which can be detected by
dielectric measurements, the gap induced by the electric
field can be observed only using quasielastic light scat-
tering methods. Although there is experimental evidence
hinting towards the existence of the gap [8], precise and
unambiguous experimental results are still lacking.

We also investigate the influence of the fluctuations
of the phase of the tilt on the dielectric response in a
bias electric field in order to understand better the ex-
perimental results [9] as well as previous theoretical pre-
dictions [10], which contradict each other. The dielectric
response to an additional static electric field is calculated
for two possible geometries of the sample: for the field to
which the response is measured parallel and perpendic-
ularly to the bias field, respectively. For the case of the
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field that is parallel to the bias field our numerical results
can be compared to the measured ones [9]. Our results
are in qualitative agreement with experimental findings;
namely, the static susceptibility decreases with the bias
field and goes to zero at the critical field. For the case
of the field that is perpendicular to the bias field, to our
knowledge, no experimental data exist so far.

We show that, as a consequence of a finite system size
along the helical axis, two relaxation processes contribute
to the static susceptibility. One of these relaxation pro-
cesses changes the phase of the tilt locally and does not
alter the pitch, while the other one is related to the un-
winding of the whole helical structure. This last process
causes the susceptibility to increase with the field and
ultimately diverge at the critical field. This unwinding
process is also associated with the relaxation time that
increases quadratically with the system length. In the
limit of an infinitely large system, our calculation shows
that the unwinding process cannot contribute to the di-
electric response because the relaxation time needed to
unwind the whole helicoidal structure is infinite. Most
dielectric as well as optical measurements do not allow
for a complete relaxation of the helical structure in order
for it to reach an equilibrium. This means that only the
local reorientations of the tilt contribute to the measured
quantities.

As argued in one of our previous papers [5], the relax-
ation time related to the unwinding of the helical struc-
ture, which depends strongly on the length of the system
along the helical axis, can be about three orders of mag-
nitude larger in planar samples compared to homeotropic
samples. For example, in a planar sample the length L
along the helical axis is usually of the order of 1 cm, which
yields the relaxation time related to the unwinding rang-
ing from 1 min to a few hours. Such planar samples are
typically used in the critical-electric-field measurements
[22] There are two reasons for this: first, the planar ge-
ometry allows for an observation of the helical structure
under the polarizing microscope and second, it is difficult
to apply an electric field parallel to smectic layers in the
homeotropic geometry. The slow unwinding process in
planar samples can be responsible for the observed first-
order character of the Sm-C*+Sm-C phase transition,
which contradicts the second-order character predicted
by the Landau theory [4].

The problem discussed above i.e., the existence of a
slow dynamical process that influences the behavior of
measured static quantities, is similar to the one in solid
ferroelectrics of the type K2SeO,4, which exhibit a phase
transition from the incommensurate to the commensu-
rate phase. The slow dynamical process in this case cor-
responds to the motion of the domain walls. Similarly,
as in the case discussed above, there was a discrepancy
between the mean-field predictions [23] and the experi-
mentally observed behavior of the dielectric susceptibil-
ity. Holakovsky and Dvofak [24] explained this apparent
disagreement by assuming that the time-dependent field
with the frequency 1 kHz, to which the dielectric response
is usually measured, cannot move the domain walls. This
assumption lead, as in our case, to a qualitative agree-
ment between theoretically predicted and measured be-
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havior of the dielectric susceptibility.

The phase excitation as calculated in the present work,
which changes the period of the modulated structure,
cannot change the number of domain walls in the system.
Namely, in our description the phase of the tilt changes
continuously in space and time. On the other hand, in a
real sample the change of the number of domain walls is
an activation process; i.e., the system has to overcome
a free-energy barrier in order to come to equilibrium
[25,26]. From this point of view, the predicted relax-
ation frequency of the unwinding process, which changes
the helical period, is only a rough estimate of the rate at
which walls are pushed out of a sample.
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APPENDIX: DIELECTRIC RESPONSE OF A
FINITE SYSTEM IN A ZERO BIAS FIELD

Here a dielectric response of a system with the length L
along the helical axis is investigated in a zero bias field for
a general case when there is an arbitrary angle between
the time-dependent field SE = 5150 cos wt to which the
system responds and the dipole moment p. Again only
the phase ® of the tilt é' is allowed to vary according to the
Landau-Khalatnikov equation (2), where we set E = 0.
Free boundaries, at z = 0 and at z = L, yield the bound-
ary conditions d®/dz |(,—0)= go and d®/dz |(.=r)= qo-
We can make an ansatz for ®(z,t) that already takes into
account the boundary conditions

®(z,t) = goz + olt) + Ean(t) cos(ngmz), (Al)

n=1

where ¢,, = w/L is a wave vector associated with the
largest possible wavelength allowed in a finite system.
The phase ¢ describes a rigid rotation of the helix as a
whole.

The dissipation function D and the free energy F can
be expanded up to second order in the coefficients o, (t)
and po(?)

_1 2 .2 1 2 = -2
D = ;70°Lgg + ;7O LY a2,

n=1
_ Tqm 2 ¢ 2. 2
.7-'—~——4 K30 ;n a;
20E P

cos(goL/2 + o) sin(goL/2)

oo
a
—6E Pqq E : "

x[(—1)" cos(goL + o) — cos o] . (A2)
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Knowing the dissipation function and the free energy of
the system, the Landau-Khalatnikov equations can be
expressed as

0Ly — — 2EP

sin(goL/2) sin(goL/2 + ¥o),

1
5707 Lén = - fg—"‘Ks@%zan

+SEP g (-1) cos(q20L+ o) — cos Py ,
9 — 7’}
(A3)

where only the linear terms in §E are considered.

In the absence of the field the phase ® is a linear func-
tion of z, ® = g9z + @0, and o determines the direction
of the dipole moment p, which is arbitrary, so that in this
case the equilibrium state of the system is continuously
degenerate (o can assume any value). In a static elec-
tric field the dipole moment p turns into the direction of
the field, so that po = mn — goL/2, where an integer m
is chosen in such a way that the dipole moment p = |p]

p (—1)™sin(goL/2)
90/2

is positive (m is thus equal to 0 or 1). Instead of ¢o(t) we

define the angle vo(t) = po(t) — mm + goL/2, which is an

angle between p and the external field § E. The Landau-

Khalatnikov equations can be written in a simple form

SEP

‘7—92— K1 sin o,

p= (A4)

‘i’():

Gn=—Ap,n*a, — §EB,, (A5)
where the coefficients A4,, and B,, are
A, =v"'K3 2,
(AS)
_ P 2¢2 o [ Fusindo, n =2k
" 402 g2 — n2g2, Ko cos Yo, n=2k+1
and the parameters x; and ko are
m Sin(goL/2) m €08(¢0L/2)
= (—1)m 22 = (—1)m 2o/ 2)
K1 ( ) qOL/Z I K2 ( ) qOL/2
(A7)

Taking into account the initial condition (¢ = 0) = fo,
we find the solution for o(t)

(SEoPKl Sinﬁo

sin wt .
vO2w

po(t) = Bo — (A8)
The result (A8) corresponds to a small rigid oscillation
of the helix as a whole around an initial position, given
|

Il 2
1
XRe _ ™ [1

P/E. 321+Q2 l 8

sin('zrl)] ~

- RrI
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by the angle By between the dipole moment 5 and the
oscillating field 8E = 6E, coswt. This response is delayed
in phase for /2. The amplitudes a,, (t) can be written as
sums of two terms: one that is in phase with the external
field and another that is delayed for 7 /2:

on(t) = a); coswt + af , sinwt, (A9)
where af ; and af , are
0 _ (SEO Bn Tn
Ol =~ T a2
’ 1+ w27?
8Eo B,, w2
e R (A10)

and the parameter 7, is equal to 7, = v/(K3n2¢2,). The
response depends on the initial angle By between 5 and
SE. In this case the susceptibility is a 2 X 2 tensor. One
eigenvector is determined by Gy = 0 (JE || P) and the
other one by 8o = 7/2 (§E L 7). The real and the imag-
inary part of the susceptibility xg{e and xi‘m in the case
of Bp = 0 and the real and the imaginary part xg, and
Xi., in the case By = m/2, respectively, can be expressed
in terms of infinite sums

P , L=l
3E. 1* cos ( 5
(2k + 1)2

* 2 @+ D)7+ o0 (2 4 17— B

I _ P 602 2 [l
XI“‘—2E'CIQCOS (2)
1

) ,,Zﬂ [(2k + 1)* + 14Q2] [(2k + 1)2 — 2|2’
(2k)?

P . 7\ —
XRe = 5 [ sin’ (?) > [(2k)* + 1902] [(2k)2 — 172

k=1

[ —
XRe =

sin? (7

a/2
79/2) 50,
P wl
L _ 602 in2 [ T
xIm—-2Elesm (2)

— 1
* & (@R + [ — PP

1P sin®(wl/2) 1
4FE, 12 Q’

+ (A11)
where | = qo/q¢m = 2L/po is a dimensionless length of the
system and Q = yw/(K3q3) is a dimensionless frequency.
The expressions in Eq. (A11) can be evaluated explicitly.
The analytical result can be derived in the form

72 sin(l) 1

xl (1+Q2)2

RL _ 1

cos?(ml/2)

8Vl Va1 + Q2)

il cos™(m !
+ 175 2(nl/2) [\/ﬁ \/ﬁm]

1+ Q2)2°
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oixd, _r 1 [ sin@)] «?sin(e) 1
"P/E.  321+9Q2 | x| 8 wl  (1+Q2)2
I It It
e 2 RL T R, RL 1
T 1/2 1/2 + :
sV ) s s T a2 [m m/ﬁ] T+ )
Xge _ ™ 1 N sin(nl)]  #? sin(xl) Q% -1
P/E. 32 1+Q2 wl | 16 wl  (1+Q2)2
T . VOR: T . (Q2-1)R:
T 1/2 - 1/2)~2 — =
aa™™ ) ey T gt Y )\/§(1+92)2
Q Ixg, 7 1 14 sin(mwl) N 72 sin(nl) 1 o sin?(wl/2) 1
P/E.  321+0Q2 l 8 =« (1+Q2)2 16 (xl/2)2 Q2
(22 -1)R% ™ 2 RE
— l/2 Al12
S /) G (el 2) S (A12)
where R and R are
- sinh(wl,/Q/2) + sin(7l/2/2)
* 7 cosh(mly/Q2/2) + cos(mly/Q/2)
. sinh(wl,/Q/2) % sin(wl/Q/2)

cos(ml/Q/2)
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