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A theoretical explanation of the phase diagram of ferroelectric liquid crystals in an external
magnetic or high-frequency electric field is given. The investigation is based on a rigorous treatment
of the problem within the phenomenological model, being an extension of the Pikin-Indenbom
model [Ferroelectrics 20, 151 (1978)]. The phase transition from the modulated Sm-C* phase to the
homogeneously ordered Sm-C phase is studied numerically. The relevant parameters of the model
are chosen in the best way to fit the experimentally obtained critical-field lines on two ferroelectric
liquid-crystalline compounds. As a result, the observed relationship between the critical field and
the helical pitch in zero field is theoretically confirmed. The critical-field line is investigated in the
vicinity of the Lifshitz point where the metastable states appear. In both compounds, the tricritical
point is found to be very close to the Lifshitz point, which seems to disagree with measurements
showing hysteresis at all temperatures. This contradiction is removed by showing that, in a sample
of a finite length along the helical axis, a slow pitch-relaxation process exists. Consequently, during
the critical-field measurements, the system is probably not in an equilibrium, which prevents the
continuous phase transition from taking place.
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I. INTRODUCTION

Among many remarkable properties of the ferroelectric
smectic-C* (Sm-C*) liquid-crystalline phase, a consider-
able attention has been paid to the behavior in external
magnetic or electric fields [1]. In spite of intensive stud-
ies of the behavior in external fields some open questions
still remain.

The first theoretical study of the phase diagram of the
Sm-C* liquid crystal under the influence of a magnetic
field applied parallel to smectic planes has been done by
Michelson [2,3]. Such a system can be, depending on
the temperature and on the magnetic field strength, in
one of the three phases, in the high-temperature disor-
dered smectic-A (Sm-A) phase, in the modulated Sm-C*
phase, or in the homogeneously tilted Sm-C' phase. In the
phase diagram in dependence on the temperature T' and
on the magnetic field strength H, the three phases are
separated by three transition lines, Sm-A~Sm-C*, Sm-
A—Sm-C, and Sm-C*—Sm-C which intersect in the Lif-
shitz point. Michelson has shown [2] that the wave vector
of the modulated Sm-C* phase goes continuously to zero
as we proceed along the Sm-A —Sm-C* transition line
towards the Lifshitz point. This feature was later exper-
imentally confirmed by MusSevi¢ et al. [4] on a sample of
p-(n-decyloxy benzylidene)-p-amino-(2-methylbutyl) cin-
namate (DOBAMBC). The same group [4,5] has exper-
imentally found the reentrant Sm-C* phase under the
influence of the magnetic field, which is a consequence of
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a nonmonotonous temperature dependence of the criti-
cal magnetic field. The critical magnetic field as a func-
tion of temperature has been observed to be related to
the temperature dependence of the helical pitch in zero
field [5-7]. The anomalous temperature dependence of
the pitch and the reentrance of the Sm-C* phase have
remained unexplained within the Pikin-Indenbom model
[8] used by Michelson [2]. The critical magnetic field is
within this model temperature independent if we neglect
the variation of the amplitude of the order parameter,
i.e., apply the constant-amplitude approximation (CAA).
In the vicinity of the Lifshitz temperature where the CAA
is not justified, the critical field is increased due to the
variation of the order parameter amplitude.

The first attempt to explain the reentrant Sm-C* phase
in an external magnetic field was made by Jacobs and
Benguigui [9,10]. In order to find the critical magnetic
field line they had to solve the problem numerically, using
the Pikin-Indenbom model extended by two additional
terms in the free-energy density. Within the Jacobs-
Benguigui model the pitch decreases monotonously with
lowering the temperature. Consequently, the critical
magnetic field increases by decreasing the temperature
within the CAA. However, in the vicinity of the Lif-
shitz temperature where the variation of the order pa-
rameter amplitude is considerable the critical field is in-
creased, leading to the reentrance of the Sm-C* phase.
The Jacobs-Benguigui model does not give any relation
between the maximum of the pitch and the reentrant phe-
nomena, although this property has been observed [5,7]
in DOBAMBC.
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Theoretically both models, the Pikin-Indenbom and
the Jacobs-Benguigui model, lead to the centinuous
phase transition except in the vicinity of the Lifshitz
point where the transition Sm-C*—Sm-C is of the first
order. There is thus a tricritical point on the Sm-
C* —Sm-C transition line, at which the order of the tran-
sition changes. The Jacobs-Benguigui model yields the
tricritical point on the critical field line, placed at about
the temperature at which the critical-field assumes the
minimal value. Experimentally, on the other hand, the
tricritical point has not been found. Moreover, most mea-
surements have shown [11,12] a discontinuous character
of the transition at all temperatures where the critical
field has been measured.

In a previous paper [13] we have proposed the phe-
nomenological model [14-17], which is an extension of
the Pikin-Indenbom model, to explain the behavior of
ferroelectric liquid crystals in an external magnetic field.
The rigorous numerical results have been compared (a)
to the results obtained within the CAA and (b) to the
rigorous numerical results of the Pikin-Indenbom model.
It has been shown that the Pikin-Indenbom model fails to
describe the observed critical-field line, except in a nar-
row temperature regime of the width about 0.1 K. The
result obtained within the CAA which gives the critical
magnetic field proportional to the inverse pitch in zero
field has been found to be valid at practically all temper-
atures.

The aim of the present paper is to describe the criti-
cal magnetic (high-frequency electric) field in dependence
on temperature in a way consistent with experimental re-
sults. We show that the model used also in our previous
paper [13] explains the relationship between the critical
field and helical pitch in zero field. We compare the the-
oretically obtained critical-field line with the measured
temperature dependence of the critical field on two fer-
roelectric liquid-crystalline compounds. The first com-
pound in which the critical magnetic field has been mea-
sured is DOBAMBC [4,5]. The other compound is a fer-
roelectric mixture FCS 101 (Hoffmann La Roche Ltd.) on
which the critical high-frequency electric field has been
determined [18,19] at field frequencies higher than 10
kHz. As theoretically predicted [20] the phase diagram
in the high-frequency electric field is similar to the one in
the magnetic field, including the Lifshitz point in which
all three phase transition lines intersect. On varying rele-
vant parameters of our model we find the best fit to both
experimentally obtained critical-field lines.

We study further the critical-field line in the vicinity
of the Lifshitz point and graphically determine the tri-
critical point. The stability limits of the modulated Sm-
C* phase and the homogeneously ordered Sm-C phase,
respectively, are obtained in the regime where the Sm-
C*—Sm-C phase transition is of the first order. Since
the tricritical point appears to be very close to the Lif-
shitz point, the Sm-C*+—Sm-C phase transition is ex-
pected to be continuous at all temperatures where the
critical fields have been measured. This does not agree
with most experimental results that show hysteresis and
thus a discontinuous character of the transition. We show
that this disagreement can be removed by taking into ac-

count a finite length of the sample along the helical axis
and the phason dynamics in such a system.

The paper is organized as follows. In Sec. IT our phe-
nomenological model is introduced and the numerical
treatment is described, which leads to the critical mag-
netic (or high-frequency electric) field line on the phase
diagram. All results are presented in Sec. III, where the
comparison to experimental data is given and a discontin-
uous Sm-C*—Sm-C phase transition is studied in detail.
In Sec. IV the content of the paper is briefly summarized
and the observed order of the Sm-C*+—Sm-C phase tran-
sition is discussed in terms of dynamics of finite samples.

II. THE PHENOMENOLOGICAL MODEL

A. Description of the model and its results
in zero field

In a Landau description of chiral smectic phases two
two-component order parameters are used. A projection
of the director to the smectic plane, the tilt & = (£1,&2)
is used as a primary order parameter and the in-plane
polarization P = (P, P,) as a secondary one, since the
latter is induced by the tilt as a consequence of the sym-
metry. The Pikin-Indenbom model is based on the free-
energy density

FR=2@+8) + 2@+’ - A% - 5%1)
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The first term in Eq. (1) is the only temperature-
dependent term, a = ao(T — Tp), where Tp is the critical
temperature of the Sm-A«+Sm-C phase transition for the
racemic mixture characterized by the absence of all chi-
ral terms. The constants ap and b are positive, ensuring
the continuity of the Sm-A+~Sm-C* phase transition in
the absence of external fields. The chiral A term is the
Lifshitz invariant, leading to the helical structure in the
Sm-C* phase and the K3 term is the elastic term. There
are two bilinear coupling terms between both order pa-
rameters, the flexoelectric i term of an achiral origin and
the chiral piezoelectric C term. The positive coefficient
€ denotes the high-temperature dielectric constant. In
this model the polarization P depends linearly upon the
tilt £ and its derivative d€/dz along the helical axis z, so
that it can be eliminated from Eq. (1). Effectively, the
free-energy density, Eq. (1), within the Pikin-Indenbom
model reduces to only the first four terms in Eq. (1),
where the original constants Tp, A, and K3 are replaced
by To = To + €C?/ag, A = A+ euC, and K3 = K3 — ep?.
The wave vector go corresponding to the helical pitch po,
go = 2m/po, is temperature independent, go = A/K3.
Comparing the Pikin-Indenbom model results with ex-
perimental data [17] a systematic and qualitative dis-
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agreement is found. Therefore it has become necessary
to add some invariants of higher order to the free-energy
density [Eq. (1)]

d d
H ) @) (6% - 0D

+ (P24 B’ - S (Pt~ BE) (2)

and thus to define our phenomenological model [14-17].
The essential point of this model is the presence of an
achiral biquadratic coupling [14] (the © term) between
the tilt £ and the polarization P in addition to the bilin-
ear coupling (the C term). Constructing the microscopic
model [21] we have shown that the origin of this term is
in an additional bipolar ordering of transverse molecular
axes, being usually much larger than the polar order-
ing which leads to the piezoelectric C' coupling in the
free-energy density [Eq. 1]. This microscopic model also
explains the presence of the positive fourth-order term in
polarization (the 7 term) which is of the enthropic ori-
gin. In order to describe anomalous temperature depen-
dence of physical quantities (e.g., the pitch of the helix)
about 1 K below the critical temperature T, of the Sm-
A~Sm-C* phase transition it is sufficient to add only the
biquadratic coupling (the Q term) to the free-energy den-
sity [Eq. (1)]. The higher-order Lifshitz term (the d term)
accounts for the temperature dependence of the helical
pitch po at lower temperatures. The need for the term
of the sixth order in the tilt follows from the observed
temperature dependence of the specific heat near T, and
its importance has been pointed out independently by
Huang and co-workers, Carlsson and Dahl, and Birge-
neau et al. [22]. Within our model the polarization P
does not depend linearly upon the tilt £ and its derivative
d€/dz, so that both order parameters appear explicitly in
calculation in contrast to the case of the Pikin-Indenbom
(PI) model.

We are especially interested in temperature depen-
dence of the wave vector gop related to the pitch pg in
zero field,

_A v BR 4,
©=%tGe, T 5o
(3)

in the Pikin-Indenbom and our model, respectively. The
quantities ©¢ and P, are the magnitudes of both order
parameters in zero field. In the frame of our model the
ratio Py/©¢ sharply increases about 1 K below the criti-
cal temperature T, to an almost constant value at lower
temperatures. The wave vector qq is a sum of three terms
[Eq. (3)], the middle term which includes the ratio Py/©¢
is of an opposite sign to the sign of the first and the third
term. Consequently, the wave vector go first decreases
with decreasing temperature, reaches a minimum just
below T., and then increases monotonously as temper-
ature is lowered further. The anomalous behavior below
T, is hidden in the ratio Py/©¢ which strongly depends
on the strength of the biquadratic coupling (the 2 term).

qo,P1 = =— and

A A
K3

As the helical period in zero field is pg = 27/qp, its tem-
perature dependence is inverted compared to the wave
vector dependence.

The Jacobs-Benguigui model [9,10] which also orig-
inates in the Pikin-Indenbom model includes the first
term of Eq. (2), the ¢ term, and another one which can
be shown to be analogous to the d term in Eq. (2) (it dif-
fers for a factor and a total derivative from the d term),
in addition to the Pikin-Indenbom model terms defined
by Eq. (1). In the Jacobs-Benguigui model the polar-
ization P is still a linear function of the tilt £ and its
derivative d€/dz, so that only the tilt & suffices for a
complete description of the system. Due to an absence
of the biquadratic coupling, the Jacobs-Benguigui model
does not lead to anomalous temperature dependence of
physical quantities below T, and consequently the pitch
po decreases monotonously as temperature is lowered.

B. The presence of a magnetic
or a high-frequency electric field

If a magnetic field H is applied perpendicular to the he-
lical axis, H = (H, 0), the magnetic coupling term should
be added to the free-energy density [23]

fH = "'%XaH2£%7 (4)

where x, = Xx) — x. denotes the magnetic anisotropy.
The magnetic anisotropy is positive, x, > 0, in the com-
pound DOBAMBC. In this case the magnetic field tends
to align the tilt £ parallel to the field H.

In an electric field aligned parallel to the y axis, E =
(0, E), two couplings appear in the free-energy density

fe=—EPy - 3B, (5)

the former being a linear ferroelectric coupling and the
latter is a consequence of a dielectric anisotropy €, =
€| — €L. At very low frequencies of the field and small
field strengths the ferroelectric term dominates, whereas
at high frequencies (above some ten kHz) the polarization
can no longer follow the external field and only the static
part of the quadratic term contributes to the response.
In this latter case the couplings in Egs. (4) and (5) have
the same form. The phase diagram in the high-frequency
electric field is thus similar to the one in the magnetic
field as has already been pointed out [20]. In the case
of the ferroelectric mixture FCS 101 the anisotropy is
slightly negative, ¢, < 0, at field frequencies above 10
kHz, for which the phase diagram in the high-frequency
electric field has been experimentally determined [18,19].
The high-frequency electric field therefore tends to align
the tilt £ perpendicular to the field E in this compound.
The case of the high-frequency electric field with negative
dielectric anisotropy is similar to the case of the magnetic
field with negative magnetic anisotropy, if one replaces
XaH? by €,E¢/2 where Ej is the magnitude of the oscil-
lating field. The case of the negative magnetic anisotropy
differs from the case of the positive anisotropy only very
close to the critical temperature of the Sm-A«>Sm-C*
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phase transition. The phase diagram for both cases near
the Lifshitz point has been studied by Michelson [2,3].
However, at lower temperatures where the CAA is valid
both cases lead to the same temperature dependence of
the critical field.

In order to understand the behavior of the Sm-C*
phase in a magnetic field, the equilibrium state of the
system has to be found in terms of spatial dependences
of the order parameters at a given temperature and at
a given field. Let us denote the magnitudes of the tilt
¢ and the polarization P by © and P, and the phases
]

K30 — pP'sin¥ — pP¥ cos¥ — a® — b0°

® and & in such a way that £ = ©(cos®,sin®) and
P = P(—sin®,cos®). In the absence of the field the
two order parameters are perpendicular, so that & = &.
In an external magnetic field H = (H,0) the equations
for two two-component order parameters are obtained by
minimization of the free-energy functional. For the mag-
nitude © and the phase ® of the tilt £ one gets two non-
linear differential equations of the second order, whereas
two nonlinear algebraic equations are found for the mag-

nitude P of the polarization and for the phase difference
U= 9,

— O + 2000  + 4d063%%

—K30®2 + puP® cos¥ + CPcos¥ + QOP%cos®¥ + xo H2O cos?® = 0,

K302%0" + 2K;00'® — 2000  —4d0°%0" — u©'Pcos¥U — puOP cos¥

+uOPY sin¥ — 1x,H?6%5in2® = 0,

(6)

1P + nP3 — 40 sin¥ — pO® cos¥ — COcos ¥ — NO2Pcos’T = 0,

—14©'Pcos¥ + uOP® sin¥ + COPsin¥ + 1062P2sin2¥ = 0.

We obtain the previously mentioned CAA solution by
keeping constant the magnitudes © and P of the two or-
der parameters. This approximation leads to the sine-
Gordon equation for the phase ® of the tilt £ with the
phase difference ¥ = 0, similar to the one describing
cholesterics in a magnetic field [24]. The solution is of
a multisoliton type with the soliton density going con-
tinuously to zero as the critical field HSAA or E§AA
at which the second-order Sm-C*—Sm-C phase transi-
tion takes place is approached from below. In this ap-
proximation the critical magnetic HSAA or critical high-
frequency electric field E’OC,QXA is proportional to the wave
vector go related to the helical period in zero field po,
go = 27 /po,

caa _ T [Ks T
R PA N

where qq is given by Eq. (3).

Close to the Sm-A «—Sm-C phase transition the CAA
is not justified, since the magnitudes of the two order
parameters are not constant. Equations (6) have to be
solved in a rigorous way. This can only be done numer-
ically. The numerical treatment of Egs. (6) is similar to
the one introduced by Jacobs and Benguigui [9,10]. The
only additional difficulty is that in Egs. (6) the deriva-
tives P’ and ¥ are required, so that one has to include
two additional equations for P’ and ¥', which we get by

2K3
28 00, (7
| €a IQO ( )

[

taking derivatives of the last two equations in Egs. (6).
Altogether we have to solve six nonlinear equations, two
of them differential, the others algebraic. The procedure
is as follows: One linearizes all equations around the trial
solution, solves six linear equations, corrects the trial so-
lution, and iterates until the desired accuracy is reached.
As an initial approximated solution the solution of the
sine-Gordon equation is used for the phase ®, whereas
the amplitudes are taken to be constant and the phase
difference ¥ = 0.

In order to reduce the number of parameters in our cal-
culation we introduce dimensionless parameters for the
temperature ¢t and the magnetic field h or high-frequency
electric field eg,

LT he 0 = 20, (8)
Eo,L

t = ——

T

where the Lifshitz temperatures, TI:" in the case of posi-

tive anisotropy and T in the case of negative anisotropy,
and the Lifshitz fields Hy and Ep ; define both Lifshitz
points [2],

T = Tp + 4T,

and
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respectively, where the temperature scale is T* =
A?/ao K3 with renormalized constants Ty = Ty + €C? /a0,
A = A+ euC and K3 = K3 —eu?. The Jacobs-Benguigui
model as well as ours differ from the Pikin-Indenbom
model only in some terms of a higher order, which do not
affect the Sm-A «—Sm-C* phase transition line. Thus the
Lifshitz field and the Lifshitz temperature are the same
in all three models.

There are 12 coefficients in our model. The num-
ber of adjustable parameters can be reduced by fixing

the scales for the coordinate z* = v/cK3/b, for the tilt
magnitude 6* = \/175, for the polarization magnitude
P* = +/eb® /¢, and for the free-energy density f* = b%/c?,
so that only six dimensionless parameters remain,

233
,\:é /_g’ 5= d~, nzTIEb’
b K3 CK3 c?

€ C./ce Qeb
=M PTTe o 7T

In order to find the critical field h. or eg. at a given
temperature ¢, we increase the field h or ey until the free
energy of the modulated Sm-C* phase equals the free en-
ergy of the homogeneous Sm-C phase. At a given point
(h,t) or (ep,t) on the phase diagram Egs. (6) have to be
solved on a period p using the periodic boundary condi-
tions. The period p enters the calculation as a parameter,
so that a minimization of the free energy with respect to
p is required. However, this additional minimization is
needed only at temperatures t where the Sm-C*—Sm-
C transition is discontinuous and the soliton density is
finite at the transition. At temperatures t where the tran-
sition is expected to be continuous the soliton density at
the transition is zero and we only look for a single soli-
ton solution (p — o) of Egs. (6) with fixed asymptotic
boundary conditions.

(11)

III. RESULTS AND DISCUSSION
A. Comparison to experimental data

In DOBAMBC the critical magnetic field [4,5] H. and
the helical pitch [6] in zero field po have been measured
as functions of temperature. The relationship H, o< 1/pg
has been tested experimentally [5]. A similar relation-
ship has been noticed also in the compound FCS 101 on
which the critical high-frequency electric field Ey . and
the helical pitch in zero field py have been determined
experimentally in dependence on temperature [18,19].

In the previous paper [13] we have taken the following
values of dimensionless parameters given by Eq. (11):
A= —24x10"2 6 = —1.27 x 1072, k = 10, @ =
—5.92 x 1072, 3 = —8.0 x 1072, and v = 2.26. Those

values have been obtained by a global analysis [16] of all
measured quantities in DOBAMBC.

Here we study the measured critical field and the heli-
cal pitch in zero field for each compound separately. We
adjust the parameters of our model in order to obtain the
best fit to experimental data on the critical field. In a
fitting procedure based on the least-squares method only
three of the six adjustable parameters given by Eq. (11)
are allowed to vary: the parameter § governing the be-
havior of the helical pitch pp at low temperatures, the
parameter v which accounts for the anomaly in the pitch
just below the critical temperature T, of the Sm-A «—Sm-
C* phase transition, and the parameter a which is related
to the flexoelectric y term. Those three parameters in-
fluence the temperature dependence of the helical pitch,
but the choice is not the only one possible. Due to similar
properties of both compounds, all six parameters are ex-
pected to remain of about the same order of magnitude,
so that to the other three parameters the same values
are assumed as in the previous paper [13]. The results of
this fitting are in addition to the parameters §, «, and
v, also the scale for the temperature 7™, the scale for
the coordinate z*, and the Lifshitz field Hf, or Eg . As
expected also those three parameters which were allowed
to change remain of the same order of magnitude as the
original values above. It should be mentioned that the
temperature dependence of the tilt in zero field is not very
sensitive to such small variations of the three parameters
which we vary. Moreover, the comparison between the
theoretically obtained and the experimentally measured
tilt in DOBAMBC shows good agreement.

The results are presented in Fig. 1 for DOBAMBC
and in Fig. 2 for FCS 101. On both figures the crosses
represent measured [4-6] values of the critical magnetic
(in DOBAMBC) or high-frequency electric [18,19] field
(in FCS 101). The circles correspond to the inverse values

25

20
15
HelT)
10
5 -
1 1 I 1 I
UU 1 2 3 4 5 6
Te-T (K)
FIG. 1. The critical magnetic field H. is shown as

a function of temperature in DOBAMBC. Crosses corre-
spond to measured values of the critical field, circles to
the inverse pitch in zero field, (19.1 T um)/po, and the
solid curve represents the fit with dimensionless parame-
ters A = —2.40 x 1072, § = —3.16 x 1073, « = 10,
o= —342x107%, 8 = —8.00 x 1072, and v = 4.21. The
scales for the coordinate and for the temperature scale are
2z* = 3.79 x 1073 pym and T* = 6.65 x 10~* K, whereas the
Lifshitz field is equal to Hy = 24.5 T. LP denotes the Lifshitz
point.
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FIG. 2. The critical high-frequency electric field Ep,. is
shown as a function of temperature in FCS 101. Crosses
correspond to measured values of the critical field, circles
to the inverse pitch in zero field, 13.2 x 10° V/m um/po,
and the solid curve represents the fit with dimensionless pa-
rameters A = —2.40 x 1072, § = —7.25 x 1073, x = 10,
a = —3.98 x 1072, 3 = —8.00 x 1072, and v = 3.72. The
scales for the coordinate and for the temperature scale are
2* = 9.44 x 1072 pm and T* = 9.87 x 10™* K, whereas the
Lifshitz field is equal to Eo,z ~ 6.79 x 10 V/m.

of the pitch in zero field multiplied by a measured average
of the product between the critical field and the pitch in
zero field. The solid curves are theoretical curves for the
critical fields which coincide with the results of the CAA
given by Egs. (7) almost at all temperatures, except in
the very vicinity of the Lifshitz point where experimental
data are not available anyway. The difference between
the rigorous and the CA A result can be noticed only very
close to the Lifshitz point. Here the rigorous critical field
increases sharply to the Lifshitz field value, whereas the
CAA critical field remains constant, having the value of
about 7 /4 of the Lifshitz field. This proves our general
conclusions [13] about the validity of this approximation.
The Pikin-Indenbom model results deviate from results
of the presented model at temperatures 7, — T > 0.1 K
which is also in agreement with the previously reported
results [13].

The experimental results in DOBAMBC (5] and in FCS
101 [18,19] show that the product of the critical magnetic
(high-frequency electric) field and the helical pitch in zero
field is practically temperature independent. The model
we use confirms this experimental result. Our results
show that at all temperatures where the critical fields
have been measured, Egs. (7) are valid. Thus all the
model parameters that influence the pitch in zero field
also influence the critical magnetic and high-frequency
electric fields in compounds similar to DOBAMBC and
FCS 101. The anomaly in the temperature dependence
of the helical pitch thus leads to the reentrant Sm-C*
phase in these systems.

B. The regime of a discontinuous Sm-C*— Sm-C
phase transition

The determination of the tricritical point is presented
graphically in Figs. 3(a) and 3(b) for both cases of posi-

Xa>0
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FIG. 3. Determination of the tricritical point (TCP) in
both cases, of the positive (a) and of the negative anisotropy
(b), based on the analysis of Jacobs and Walker. The
hatched area corresponds to temperatures and field strengths
for which the interaction between two solitons is attractive.
The Sm-C*—Sm-C transition line is calculated numerically
in both cases.

tive and negative anisotropy, respectively. The positions
of both tricritical points are obtained by using the anal-
ysis of Jacobs and Walker [25] who have studied the
asymptotic interaction between two solitons in a sta-
ble multisoliton solution of Euler-Lagrange equations de-
scribing the charge density wave system. The asymptotic
behavior which decides about the order of the transition
reflects itself in the asymptotic behavior of single soli-
ton solutions at a given point on the critical-field line.
Whenever this behavior is pure exponential, the asymp-
totic interaction is repulsive and the transition is contin-
uous and if it is an exponentially damped sinusoid, this
interaction is attractive and the transition discontinuous.
The hatched regions in Fig. 3 correspond to temperatures
and field strengths at which the asymptotic interaction
between two solitons is attractive and the phase transi-
tion Sm-C*+Sm-C discontinuous.

According to the results of the preceding subsection the
temperature scales are in both compounds of the order
of T* =~ 1073 K. Therefore the area where the asymp-
totic interaction between two solitons is attractive is in
DOBAMBC as well as in FCS 101 placed very close to the
Lifshitz point. Consequently, the tricritical point is too
close to the Lifshitz point to be detected experimentally.

It should be pointed out that the field variation of
the Sm-A —Sm-C* phase transition temperature as well
depends on the temperature scale T*. In the case of
DOBAMBC and FCS 101 the scale is so small that this
dependence is very weak, T; =~ T, where T, is the Sm-
A —Sm-C* transition temperature in zero field. How-
ever, there are such compounds (e.g., CE-8) where the
temperature scale T* is expected to be much larger [12]
and consequently the dependence of the Sm-A «—Sm-C*
phase transition temperature on the field stronger. In
such systems the tricritical point itself would be shifted
to lower temperatures where it could in principle be de-
tected.

For compounds similar to DOBAMBC and to FCS 101
the whole range of the first-order Sm-C*—Sm-C transi-
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tion is in the temperature regime where the magnitudes
of both order parameters are small, so that the addi-
tional terms of higher order given by Eq. (2) can be
neglected. The properties of the system in the vicinity
of the tricritical point can be studied within the Pikin-
Indenbom model, defined by the free-energy density ex-
pansion, Eq. (1). In the following the behavior near the
tricritical point is considered only in the case of positive
magnetic anisotropy, in the other case the behavior is
expected to be similar.

In Fig. 4 three lines hZ (t), hc(t), and hF(t) are de-
picted in the regime where the Sm-C*—Sm-C phase
transition is discontinuous. The critical line h (t) repre-
sents the stability line of the homogeneous Sm-C' phase,
along which the free energy of the single soliton solution
equals the free energy of the homogeneous state, and the
critical line h} (t) is the stability limit of the modulated
Sm-C* phase. The critical field line h.(t) between the two
stability limits is the line along which the free energy of
the equilibrium soliton lattice is equal to the free energy
of the homogeneous state. Metastable states appear at
fields and temperatures between the two stability limits.
As the free energies are analytic functions near the Lif-
shitz point and near the tricritical point, the three critical
lines are expected to intersect with common tangents in
those two points. At a given temperature the differences
between the fields A7, h., and A}, as seen from Fig. 4,
are of the order of a few percent. In the following we
show how the stability limit A} (¢) and the critical-field
line h.(t) can be determined.

At a given point (h,t) on the phase diagram an average
free-energy density f,, can be defined

075 080 085

1 1

1
090 095 100
h

FIG. 4. The phase diagram in an external magnetic field
near the Sm-A «Sm-C* transition line for the case of the pos-
itive anisotropy calculated on the basis of the Pikin-Indenbom
model. The three critical lines hZ (t), hc(t), and ht(t) are
shown to intersect in the Lifshitz point and in the tricritical
point. The metastable states exist between the stability lines
hZ (t) and hZ(t).
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where f is a free-energy density of the modulated Sm-
C* phase, Eq. (1), f. = —(@ — xaH?)?/4 is the free-
energy density of the homogeneous Sm-C phase, and
@ = ao(T—T5). The average free-energy density, Eq. (12),
is still a function of the period L on which the multi-
soliton solution is obtained. The period L is defined by
the relationship ®(z + L) = m + ®(z). In Figs. 5(a)
and 5(b) the average free-energy density in dimension-
less form f = fay/fo (where fo = A%/bK32) is depicted as
a function of a wave vector normalized to the wave vector
go = 27/po in zero field, ¢ = po/2L, for different values
of the field h. Figure 5(a) indicates the wave vector de-
pendence of f for the temperature ¢t = 2 in the regime
of the first-order transition. It can be seen that the min-
imum of f at a finite ¢ # 0 is getting less pronounced
by increasing the field from h < h7 to h = h} where it
disappears. Due to the presence of a metastable state in
the region h; < h < h7, there are always two minima of
f, one at ¢ = 0 and the other at q # 0. Figure 5(b) refers
to the temperature t = 10 at which the Sm-C*+—Sm-C
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FIG. 5. The normalized average free-energy density
f = fav/fo (where fo = A%/bK32) is depicted as a function
of the wave vector g at two different reduced temperatures,
(a) t =2 and (b) t = 10. In the case (a) the Sm-C*—Sm-C
phase transition is discontinuous and the four curves corre-
spond to four different reduced fields increasing from h < hg
to h > h}. For fields h € [hZ,h] f obtains two minima,
whereas for fields outside this region where the transition is
continuous f has only one minimum as in the case (b).
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transition is continuous. There is only one stable state in
this regime, so that the average free-energy density f has
only one minimum in both cases, h < h, and h > h.. By
increasing the field from h < h, the minimum at g # 0
moves to smaller wave vectors and continuously trans-
forms into the minimum at ¢ = 0 when h = h.,. The
equilibrium state is determined by the wave vector ¢ at
which the average free-energy density is minimal. The
equilibrium wave vector ¢ = po/2L is presented in Fig. 6
as a function of the field h at the reduced temperature
t = 2. The limits of stability h; and h} are designated
as well.

The CAA breaks down in the vicinity of the Lifshitz
point, at about ¢ < 20. We are interested in the be-
havior of the critical field ASA* obtained on the basis of
this approximation in comparison to the rigorous criti-
cal field value h. at reduced temperatures ¢t € (10,200).
On this temperature interval the transition is continu-
ous and the Pikin-Indenbom model is appropriate. One
can find out analytically how the result of the CAA ap-
proaches the rigorous result when the temperature is
lowered, i.e., the reduced temperature ¢ is increased.
It can be shown that the relative difference between
the exact H. and the approximated critical field H CCAA,
AH./H. = (H, — HSAA)/H,, behaves as

AH, 1
H, CT.-T

(13)

at low temperatures T'. This result has been confirmed
numerically as well. According to the temperature scale
for the two compounds considered in the preceding sub-
section the analytically predicted relationship, Eq. (13),
is valid at temperatures T for which 7, — T > 0.01 K.
At T, — T = 0.01 K the relative critical-field difference
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FIG. 6. The wave vector g of the pitch within the
Pikin-Indenbom model is presented at fixed reduced temper-
ature ¢ = 2 as a function of the reduced field in the case of
the positive anisotropy. The jump of ¢ occurs at h = he..
The limits of stability A7 and h} are marked. For reduced
fields A € [hZ,hc] the metastable state is the homogeneous
state with ¢ = 0, whereas the stable state is a modulated
state with g # 0. For reduced fields h € [h., h¥] the situation
is reversed. The two dashed curves between h. and h. and
between h. and h} represent the metastable states.

is about AH./H. =~ 0.01 and at lower temperatures T it
decreases as (T.—T)~!. The CAA is therefore valid at all
temperatures 7, — T > 0.01 K. The temperature interval
where the CAA is valid again depends on the tempera-
ture scale T*. However, its validity in a particular sys-
tem can only be determined numerically by comparing
the CAA and rigorous numerical results.

IV. CONCLUSIONS

To summarize, we have studied theoretically the Sm-
C*—Sm-C phase transition induced either by a mag-
netic or a high-frequency electric field on the basis of
the phenomenological model which is an extension of
the Pikin-Indenbom model. Our aim was to explain
theoretically the phase diagram in the magnetic (high-
frequency electric) field consistently with experimental
findings [5,18,19].

The reentrant behavior of ferroelectric liquid crystals
has been investigated for the first time [9,10] by Ja-
cobs and Benguigui. Within the constant-amplitude ap-
proximation their model yields the critical magnetic field
which increases monotonously on lowering the tempera-
ture. In the vicinity of the Lifshitz point where the mag-
nitudes of both order parameters are not constant the
critical field is increased compared to the CAA value, so
that the critical-field line becomes nonmonotonous, lead-
ing to the reentrant behavior. Within their model there
is no relation between the maximum of the pitch and the
reentrant phenomenon, which does not agree with exper-
imental results [5,18,19]. The Jacobs-Benguigui model
is appropriate to describe the critical magnetic field
in compounds [26] in which the helical pitch decreases
monotonously on lowering temperature. The minimum
of the critical magnetic field in these systems and thus the
reentrance of the Sm-C™ phase would appear close to the
Lifshitz temperature where the constant-amplitude ap-
proximation is not valid. Unfortunately, measurements
of the critical magnetic field in such systems are not avail-
able.

The model we use comprises the Jacobs-Benguigui
model as a special case and accounts also for more realis-
tic systems with an anomalous temperature dependence
of the pitch [6,19] and other physical quantities. It leads
to the reentrant behavior of the Sm-C* phase already
within the constant-amplitude approximation. The crit-
ical magnetic (high-frequency electric) field is found to
be inversely proportional to the helical pitch in zero
field, confirming the experimental findings [5,18,19] in
DOBAMBC and FCS 101. The relationship between the
critical field and helical pitch breaks down only very close
to the Lifshitz temperature T, Tr — T < 10~2 K, where
the critical field has not been measured anyway.

In this paper the comparison of the theoretical results
to experimental data has been done. The model param-
eters have been adjusted to give the best fit to measured
data on two ferroelectric liquid-crystalline compounds,
in DOBAMBC and in the mixture FCS 101. Our anal-
ysis shows that the nonmonotonous temperature depen-
dence of the critical magnetic or high-frequency electric
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field is in these compounds directly related to the anoma-
lous temperature dependence of the helical pitch in zero
field, since the CAA results given by Egs. (7) are valid
at practically all temperatures where the critical fields
have been measured. The minimum of the critical field
at about Tr, — T' =~ 1 K thus corresponds to the max-
imum of the helical pitch in both compounds [5,18,19].
On the other hand, the validity of the Pikin-Indenbom
model is restricted to a narrow temperature interval be-
low the Lifshitz point, T, — T < 0.1 K. Due to a small
temperature scale, T* ~ 10~3 K, the critical temperature
T, of the Sm-A —~Sm-C* phase transition is practically
field independent, i.e., T, =~ T7..

The tricritical point in both samples has been found
to be so close to the Lifshitz point that in the temper-
ature regime where measurements are mostly done the
Sm-C*—Sm-C phase transition should be continuous.
However, most experiments performed on samples in the
bookshelf geometry [11] show a discontinuous character
of the transition, although in the case of the homeotropic
geometry a continuous transition is possible [12]. This
discrepancy can be understood by considering the dy-
namics in finite samples. The zero field relaxation rate
of the dynamical process which corresponds to the relax-
ation of the helical period is expected to be very low. Its
relaxation frequency in a finite sample can be estimated
within the CAA. We denote the sample length along the
helical axis by d and assume that at both boundaries the
molecular director is free to rotate on the smectic cone.
We look for such a dynamical process which changes the
length of the helical pitch and costs the least energy. The
phason dynamics in zero field is usually presented by the
phase fluctuation spectrum [27], showing the inverse re-

laxation time 'rp_h1 in dependence on the wave vector q,

TP“hl = v 1K3(q — q0)%2. Here v is the rotational vis-

cosity and go is the critical wave vector related to the
helical period po in zero field, go = 27/po. The pha-
son mode at the critical wave vector gg corresponds to
the rotation of the helix as a whole and it costs no en-
ergy. The phase fluctuation we are looking at has a wave-
length A = 2d and is associated with the phason mode at
g = qo = 7/d, so that the inverse relaxation time equals
Trobe = 7 'Ka(w/d)?. The relaxation time Trelax can
be expressed in terms of the Goldstone mode frequency
fe = [2mmpn(g = 0)]7! = (2my)~1 K392, which can be
determined by dielectric measurements, as

_ 1 (i)
T 2mfe \po/)

The relaxation time is proportional to the square of the
sample thickness d and can be quite long in thick sam-
ples. This result is similar to the one obtained by a
more detailed analysis on cholesterics [28]. Using typi-
cal values for the helical period [4] pp & 1 um and for the
Goldstone mode frequency [29] ranging from 100 Hz to
1 kHz, one can estimate 7relax in the homeotropic geom-
etry, where d ~ 100 um represents the sample thickness
between the plates, and in the bookshelf geometry, re-
spectively, where d ~ 1 cm is a linear dimension along
the electrodes. In the former case 72, assumes the val-

ues from a few tenths of a second to a few seconds and

in the latter case 72,,, ranges from a few minutes to few

hours (72, ~ 10* 72,..). Especially in the case of the
bookshelf geometry this relaxation time is long compared
to the time in which the critical field is normally mea-
sured. Consequently, the observed first-order character
of the Sm-C*—Sm-C phase transition might be a result
of the fact that during the experiment the system is not
in equilibrium.
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