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We present a statistical density map method derived from condensed matter physics to quantify microcolumns, the fundam
utational unit of the cerebral cortex. This method provides measures for microcolumnar strength, width, spacing, length, and p
e applied this method to Nissl-stained 30�m thick frozen sections from areas 46, TE, and TL of rhesus monkey brains, areas tha

isually in microcolumnarity and are associated with different cognitive functions. Our results indicate that microcolumns in these
imilar in width, spacing, and periodicity, but are stronger (possess a higher neuronal density) in area TE, as compared to areas
e modeled the effect of section orientation on microcolumnar spacing and demonstrated that this method provides an adequ

f spacing. We also modeled disruption of microcolumnarity by performing simulations that randomly displace neurons and dem
hat displacements of only one neuronal diameter effectively eliminate microcolumnar organization. These results indicate that o
ap method is sensitive enough to detect and quantify subtle differences in microcolumnar organization that may occur in the
evelopment, aging, and neuropathology, as well as between areas and species.
2004 Elsevier B.V. All rights reserved.

eywords:Microcolumns; Cerebral cortex; Primate brain; Modeling; Correlation; Neuronal organization

. Introduction

The most prominent feature of cortex is the arrangement
f neurons into layers with classical “neocortex” identified as
aving six layers. Because these layers differ in thickness, cell

ype, and cell density from one part of the cortex to another,
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these “laminar” differences have been used to subdivid
cortex into different regions (e.g.Brodmann, 1909; Vogt an
Vogt, 1919; von Economo and Koskinas, 1925; Von Bo
and Bailey, 1947; Petrides and Pandya, 1994). It has also bee
noted that different cortical regions display a “vertical” or
nization of neurons grouped into columnar arrangement
take two forms: macrocolumns, approximately 0.4–0.5
in diameter (Mountcastle, 1957; Calvin, 1995), and micro
columns or minicolumns approximately 30�m in diamete
(Jones, 2000).

Macrocolumns were first identified functionally
Mountcastle (1957), who described groups of neurons in
matosensory cortex that respond to light touch alterna
with laterally adjacent groups that respond to joint an
muscle stimulation. These groups form a mosaic wi
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periodicity of about 0.5 mm. Similarly,Hubel and Wiesel
(1963, 1969, 1977)using both monkeys and cats discov-
ered alternating macrocolumns of neurons in the visual cor-
tex that respond preferentially to the right or to the left eye.
These “ocular dominance columns” have a spacing of about
0.4 mm. In addition, they discovered within the ocular dom-
inance columns smaller micro- or mini-columns of neurons
that respond preferentially to lines in a particular orientation.

Once these physiological minicolumns were recognized,
it was noted that vertically organized columns of this ap-
proximate size are visible in many cortical areas under low
magnification and are composed of perhaps 100 neurons
stretching from layer V through layer II. To prove that the
physiological and morphologically defined minicolumns or
microcolumns are identical to the physiologically defined
minicolumn would require directly measuring the response
of a majority of the neurons in a single histologically iden-
tified microcolumn, but this has yet to be done. Neverthe-
less, current data on the microcolumn indicate that the neu-
rons within the microcolumn receive common inputs, have
common outputs, are interconnected, and may well consti-
tute a fundamental computational unit of the cerebral cor-
tex (e.g.Szentagothai, 1975; Swindale, 1990; Purves et al.,
1992; Saleem et al., 1993; Van Hoesen and Solodkin, 1993;
Buxhoeveden et al., 1996; Mountcastle, 1997; Buxhoeveden
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statistically valid measures of microcolumnarity in standard
histological preparations of post-mortem brains from humans
and laboratory animals are required. To achieve this, we have
adapted our density map method (Buldyrev et al., 2000) to
characterize the degree of microcolumnarity by quantifying
microcolumnar strength (i.e. neuronal density along the mi-
crocolumn), microcolumnar width, length and periodicity,
and distance between microcolumns. This allows the degree
of microcolumnarity to be compared between different cy-
toarchitectonic regions within a brain, between the same cy-
toarchitectonic regions across different experimental condi-
tions (e.g. development, aging, neurodegenerative diseases),
and to be correlated directly with physiological studies in the
same subjects. In this paper, we have applied this method to
characterize three different cortical areas in the rhesus mon-
key brain and have validated the method against direct tis-
sue measurements. The strength of our method lies in the
ability to characterize microcolumnar parameters that will
allow straightforward statistical comparisons between areas
or species, between normal and diseased brains, or across the
lifespan.

2. Methods
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nd Casanova, 2002a,b; Mountcastle, 2003). These micro
olumns vary in spacing across the cortex and spe
ut are about 30�m apart in human visual cortex (Calvin,
995).

The microcolumn has recently been shown to be disru
n a number of different conditions including Alzheime
isease (AD) and Lewy Body dementia (LBD) (Buldyrev
t al., 2000), autism (Casanova et al., 2002a), dyslexia
Casanova et al., 2002b), and schizophrenia (Buxhoevede
t al., 2000b). Interestingly, in normal aging monkeys wh
ortical neurons are largely preserved (e.g.Peters et al., 1998)
here is evidence of age-related functional disruption of
ntation selectivity in the visual cortex of aged monk
Schmolesky et al., 2000; Leventhal et al., 2003). In these
tudies, Leventhal and colleagues reported a loss of two
ional properties of microcolumns—orientation and direc
electivity. Moreover, they demonstrated that administra
f GABA agonists restored these functions. Since the s
ABAergic interneurons are important components of
icrocolumn, this suggests that there may well be a dis

ion of at least this or a related component of the microcol
n normal aging.

While structural and functional disruption of micr
olumns in neuropathological conditions and in normal a
s extremely interesting, because of the lack of highly effic
nalytical methods, these observations have been confi
few selected regions in each condition and have not
ell-studied across wide areas of the brain, in develop
nd normal aging, or across many species.

To facilitate investigations of microcolumns, quantita
ethods that can be applied efficiently and reliably to ob
.1. Subjects

Brain tissue was obtained from three young adult fem
hesus monkeys (ranging in age from 6.4 to 6.7 years)
ere part of an ongoing study of the effects of aging
ognitive function. Animals were housed in the Labora
nimal Science Center of Boston University Medical C

er that is fully accredited by the Association for the
essment and Accreditation of Laboratory Animal Care
rocedures were approved by the Institutional Animal C
nd Use Committee of Boston University Medical Ce
nd conformed to the NIHGuide for the Care and Use
aboratory Animalsand the U.S.Public Health Service Po
cy on Humane Care and Use of Laboratory Animals. After

RI scanning to ensure there was no occult pathology i
rain and behavioral testing to assess cognitive function
erndon et al., 1997), monkeys were tranquilized with k

amine hydrochloride (10 mg/kg), deeply anesthetized
odium pentobarbital (up to 20 mg/kg to effect), and ki
y exsanguination during transcardial perfusion of the b
ith 4 liters of warm (37◦C) fixative containing either 4%
araformaldehyde alone or a mixture of 1% paraforma
yde and 1.25% glutaraldehyde in 0.1 M phosphate b
pH 7.4). Immediately after perfusion fixation of the bra
he cranium was opened and the brain was blocked, in s
he coronal stereotactic plane. One hemisphere was the
protected in graded solutions culminating with 20% g
rol and 2% DMSO in phosphate buffer (0.1 M, pH 7.4) a
hich the blocks were flash frozen by immersion in−75◦C

sopentane (Rosene et al., 1986). All blocks were stored i
n ultralow freezer at−80◦C until cut.
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2.2. Tissue processing

Frozen blocks were oriented on the freezing stage of a
sledge microtome and sections were cut in the coronal stereo-
tactic plane into eight interrupted series of 30�m thick sec-
tions and one series of 60�m thick sections so that sections in
each series were spaced 300�m apart. A 30�m thick series
was mounted on microscope slides allowed to dry overnight
and then stained with thionin, dehydrated, cleared, and cov-
erslipped.

Since the sections adhere rapidly to the subbed surface of
the slide before they dry, this method preserves theXY rela-
tionships within the section. However, as the section dries, it
shrinks in theZdimension (thickness) from the originally cut
thickness of 30�m to an average mounted section thickness
of about 8–10�m, as determined using the Bioquant Image
Analysis system equipped with a Heidenhain stage micro-
crometer that measures theZ axis position to 0.1�m.

2.3. Cytoarchitectonic regions to be studied

For this study, three cortical regions that are all implicated
in distinct cognitive functions and which visually differ in
the degree of microcolumnarity were selected for analysis.
These are: (i) area 46 of the prefrontal cortex (PFC) in the
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layer III is easily defined in each of the chosen regions facil-
itating reliable sampling of a comparable area. Third, layer
III has approximately similar neuronal densities across the
three regions (as confirmed in the results) facilitating the in-
terpretation that differences in columnarity reflect different
spatial organization and not just different packing densities.
Future efforts will examine microcolumns in layer IV which
has vastly different densities across the regions and layer V
which has much lower densities in all three areas.

2.5. Manual Identification of XY coordinates for
neurons and glia

Using the digital images, two neurons at diagonally op-
posed ends of the image were identified at the 10× objective
magnification with the Bioquant Image Analysis System and
marked as fiducials for alignment with the semi-automated
identification map. Then, using the 60× objective, every neu-
ron and every glia cell was separately marked throughout the
image. This yielded files containing theXY coordinates of
every neuron and every glia cell visually identified for later
comparison with theXY coordinates derived by our semi-
automated detection method.

2.6. Semi-automated detection of XY coordinates for
n
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ower bank of sulcus principalis, (ii) area TE of the infer
emporal region immediately below the superior temp
ulcus, and (iii) area TL of the parahippocampal gyrus a
illimeters medial to the occipitotemporal sulcus. Area

s a neocortical region with striking “columnarity” that is
olved in visual object recognition (Tsao et al., 2003; Tanak
003). Area 46 is a neocortical region implicated in wo

ng memory and executive functions (Goldman and Rosvol
970; Goldman et al., 1971; Goldman-Rakic, 1988; Petr
000a,b; Moore et al., 2002, 2003) that has an intermed
te degree of columnarity. Area TL is a proisocortical reg

nvolved in recognition memory (e.g.Damasio et al., 1982
uzuki, 1996; Blatt and Rosene, 1998; Blatt et al., 2003) that
as little visual evidence of microcolumns.

.4. Digital photography

Sections were selected from two levels matched ac
ll cases: (i) the prefrontal cortex in the middle of the b

hird of the sulcus principalis containing area 46 (Petrides an
andya, 1994), and (ii) the temporal lobe at the level of t

ateral geniculate nucleus containing area TE on the la
urface and area TL (e.g.Blatt et al., 2003) on the ventral sur
ace. Photomicrographs spanning layers II–IV were take
0× objective magnifications on a Nikon E600 microsc
quipped with a high resolution digital camera and use

nput to the semi-automated neuron recognition program
cribed below. We restricted our analysis to neurons in
II for several reasons. First, the moderate density and
ive size of neurons in layer III facilitates the semi-automa
istinction of neurons from glia, as described below. Sec
eurons

To generate the large pool ofXY coordinate data ne
ssary for our density maps, we developed a metho
emi-automatically locate neurons within the digitized
ges. This method uses the relative darkness of the cell
dense quasi-circular shape) and its size to distinguish
ons from glia, blood vessels, and endothelial cells.
ethod consists of: (i) applying a wavelet transform

er (pre-processing), (ii) marking all regions that are
ally darker (preliminary candidates), and (iii) choosing th
arkings that are surrounded by enough dark area over a

onal radius (final selection). Step (i), the wavelet filter,
he effect of de-emphasizing features smaller and larger t
iven input length parameter, and to enhance all structur
omparable dimension as this length parameter. This le
arameter is manually adjusted so that the filter enha
eurons while discarding smaller objects such as glial
nd bigger structures such as blood vessels. The ran
alues used is between 8 and 16�m, which is of the sam
rder as a typical neuronal diameter. Next, in step (ii)
nd the positions of the local “darkest” points (local m
ma). These are the most likely positions for neurons,

ay contain false positives. The false positives are filt
ut in step (iii) by using an algorithm that examines the ne
orhood enclosed by a circle of a radius of value chose
e the average neuronal radius, and that calculates the
ge darkness level inside this circle in order to compare
elect only those neighborhoods that “look” like typical n
onal bodies. It is this last step (iii) that imposes the size
euronal “body” (darkness) criteria for the final selectio
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Fig. 1. Illustration of the density map calculation. (A) Starting from a dig-
itized image (upper), neuronal coordinates are identified (lower). (B) For
each neuroni, an identical copy of the coordinate image is made. All images
are then translated and superimposed so that the circled neurons (. . .i −1,
i, i +1. . .) line up with the origin atO. Because each coordinate image con-
tributes to the density map with equal weight (bottom of (B)), the density
map effectively represents the average neighborhood of a neuron.

neuronal locations (Fig. 1A). Supplementary informationas
well as detailed pictures illustrating this method are available
athttp://polymer.bu.edu/cruz/export/060404.

2.7. Density map method

The density map method has been described elsewhere
(Buldyrev et al., 2000). Briefly, by using as inputXY neu-
ronal coordinates obtained from either direct manual detec-
tion or any available semi-automated detection method, the
density map method calculates the density correlation func-
tion, g(x,y), that describes the average neighborhood (neu-
ronal density) surrounding a neuron in the cortex. We first
assign indices (i = 1,2,3. . .N) to all the neurons in the sample
that have been detected (Fig. 1A). Next, we createNcopies of
the image and superimpose all of these images, one on top of
each other (Fig. 1B), with each image shifted (without rota-
tion) on the superposition plane so that one identified neuron
i (one per plane) sits on top of a reference originO (Fig. 1B,
bottom). We then flatten all of the layers in the superposition
to create a single two-dimensional image over which we place
a grid, with grid spacingD, and count the number of neurons
m(x,y) in each grid cell. We defineg(x,y) =m(x,y)/ND2, in
which g(x,y) has units of an average density of objects at
position (x,y). Plotting the value ofg(x,y) for each position
r the
v ark-
n sult-
i neu-
r any

regular spatial arrangements between them. Individual den-
sity maps derived from adjacent fields (photomicrographs)
are averaged together in order to obtain one density map per
cytoarcitectonic region. However, since from one field to an-
other the angular orientation of the microcolumns varies (less
than 20◦), the individual maps are rotated so that the vertical
axis of each density map is aligned before they are averaged.

2.8. Quantification of density maps

Once we calculateg(x,y) for a particular region of interest
(ROI), we quantify any microcolumnar structure by extract-
ing the following measures:

• W, microcolumnar width,
• P, distance between microcolumns,
• L, length of microcolumns,
• S, strength of microcolumns, defined as the ratio of the neu-

ronal density within a microcolumn to the average neuronal
density,

• T, degree of microcolumnar periodicity, defined as the ratio
of the neuronal density of neighboring microcolumns to the
average neuronal density.

The widthW of the central column and the distance be-
t lumn
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esults in a two-dimensional topographical map in which
alue ofg(x,y) is represented by shades of gray, where d
ess is proportional to neuronal density. Visually, the re

ng density map is homogenous if locations of objects (
ons) are uncorrelated, but will show patterns if there are
ween the central column and the nearest neighboring co
are obtained by first plotting the intensity of the density m
ithin the horizontal white lines shown inFig. 2A. These

ines are perpendicular to the microcolumn and interse
ot at the center (x= 0,y= 0), but at a location below (or sym
etrically above) the center (x= 0,y=±2R; whereR is of the
rder of a neuronal radius), as shown. From this intensity
Fig. 2B) W is defined as the width of its central peak at
alue of the average density (horizontal thin line inFig. 2B)
ndP is defined as the average distance between the c
eak and the nearest peaks. The lengthL of microcolumns is
btained by similarly plotting the intensity along the vert
nd fitting this plot with an exponential curve of the fo
+B exp(−y/L), wherey has a rangey> 2R (i.e. discarding

he center), andA, B, andL are the fitting parameters to t
lot. The strengthSand degree of microcolumnar period

ty T are defined as a ratio of two local neuronal densi
, at locations 1 and 5 (marked inFig. 2C), and the ave
ge neuronal densityρave. Thus, the strength is defined
=ρ(1)/ρaveand the degree of periodicity asT=ρ(5)/ρave. A
igh (low)Swill reflect an increased (decreased) probab
f finding a neuron along the vertical extent of the micro
mn. Also, a high (low)Twill indicate that there is a stron
weak) degree of periodicity. At location 3 inFig. 2C, the
alue of� corresponds to the average number of neuro
he origin, which by definition isρ =g(0,0) = 1/D2. The den
ities at locations 2 and 4 are small in comparison withρave
ecause neurons are not likely to occupy this adjacent
ue to their mutual mass exclusion (i.e. two objects ca
ccupy the same position in space), and are therefor
eported here.

http://polymer.bu.edu/cruz/export/060404
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Fig. 2. Quantification of density maps. (A) Density maps calculated from samples with microcolumnar organization exhibit a vertical columnar structure
characterized by widthW, separated from neighboring microcolumns by a distanceP, and of lengthL. (B)WandP are obtained by plotting the intensity of the
density map within the horizontal strips shown in (A), in whichP is the distance between peaks andW is the width of the central peak measured at the average
neuronal density (ρave, thin horizontal line in (B)). (C) Density maps of microcolumns have an anisotropic distribution of neuronal density in the locality of the
neuron at the origin. We measure the neuronal densityρ at the: (1) vertical intra-column region, (2) intra-inter-columnar depleted regions (4) inter-columnar
depleted regions, (3) origin, and (5) neighbor column region. The microcolumnar strengthSis defined asρ(1)/ρaveand the degree of microcolumnar periodicity
T asρ(5)/ρave.

2.9. Validation of semi-automated neuronal detection

To validate the semi-automated detection of neurons, we
compared neuronal identifications from both manual and
semi-automated detection performed on identical digital im-
ages of tissue and obtained four quantities: the total number
of manually marked neuronsST, the number of neurons cor-
rectly identified in the semi-automated methodSi , the num-
ber of non-neuronal objects incorrectly identified as neurons
in the semi-automated methodSo, and the total number of
objects identified semi-automatically as neuronsSd =Si +So.
We define the accuracy (sensitivity) of the semi-automated
detection bySi /ST and the relative error bySo/Sd. We note
that the sum of the accuracy plus the error can be greater than
1.0 since the semi-automated detection can yield more ob-
jects than the number of manually marked neurons. Results
of these quantities are reported in Section3.3.

3. Results

3.1. Neuronal selection and counts

We analyzed two 30�m thick Nissl-stained sections
spaced 300–600�m apart at each of the matched levels across
a adja-
c h
a of
3 the
t mns
e al-
y
e neu-
r ted in
T nsity
(

3.2. Density map quantifications

The resulting density maps for the cases described above
are shown inFig. 3. These maps retain the same scale as the
original photomicrographs and the “darkness” is proportional
to the density of neurons at that position. The most striking
feature in these three density maps is the very distinct column
at the origin of the map, which represents the average struc-
ture of microcolumns. The measuresL, W, andP are readily
calculated directly from these maps (followingFig. 2A and
B and Section2.8). ForSandTwe first need to calculate the
corresponding local neuronal densities at locations 1 and 5,
respectively (Fig. 2C). ConsideringS, in Fig. 4we show the
density of neurons as a function of the vertical distance along
the microcolumns in which the shaded area is proportional
to ρ(1). The graphs inFig. 4 are obtained by first measur-
ing the neuronal density within a thin vertical strip running
in the vertical direction from top to bottom, wide enough to
contain the microcolumn (about 8�m). Secondly, we set our
origin atx= 0,y= 0 of the density map, split the neuronal den-
sity within the vertical strip in an “up” and “down” direction
(relative to the center), and average both directions to plot
them inFig. 4for each area. The thin horizontal lines in each
graph correspond to the average neuronal density for each
area (Table 1). Using Fig. 4, we calculateS by integrating
e rtical
l e
s

T
N

T
4
T

ll three cases. For each section, we acquired four
ent (non-overlapping) 10× images of layer III, each wit
n area of 342�m× 342�m. Thus, we analyzed a total
× 2× 4 = 24 images per architectonic area in each of

hree cases for a total of 72 images. While the microcolu
xtend from layer V up into layer II, we restricted our an
sis to neurons in layer III as described in the Section2. For
ach area, the total count of semi-automatically detected
ons as well as total area of tissue analyzed are repor
able 1and demonstrates that the average neuronal de
last column ofTable 1) is nearly the same for all areas.
ach curve between the positions marked by dashed ve
ines (between 15 and 40�m from the origin) obtaining th
haded area, and then dividing byρave× 25�m. ForT, we

able 1
euronal selection and count

Images Neurons
(detected objects)

Area (mm2) Average density
(neurons/�m2)

L 24 3652 2.740 0.0013± 0.0003
6 24 3638 2.695 0.0013± 0.0003
E 24 3763 2.741 0.0014± 0.0003
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Fig. 3. Averaged density maps for each of the areas analyzed. The central dot is the neuron at the origin. The central vertical columnar region indicates a higher
probability of finding neurons up and down the neurons at the origin, and the white surrounding area is the low probability of finding neurons due to mass
exclusion, i.e. neurons cannot overlap. Microcolumnar structure decays rapidly with distance from the origin, particularly in the lateral direction.

Fig. 4. Neuronal density along the microcolumn for each of the areas analyzed. The curves are calculated by measuring the intensity of the density map inside
an 8�m thick strip along the microcolumn. All of the curves are centered at the reference neuron of the density map. The dashed lines indicate the boundaries
of region 1, as defined inFig. 2C and the integral of the curve between them (shaded) is proportional to the local neuronal densityρ(1). The ubiquitous first
peak located at about 20�m from the origin indicates a characteristic distance between nearest neighbor neurons along the vertical axis in the microcolumn.

perform the same neuronal density analysis as forS, but now
in the horizontal direction perpendicular to the microcolumns
(Fig. 2A), obtaining the cross sectional neuronal density de-
fined inFig. 2B (results not shown). Similarly to above, the
integral of the curve within the first peak isρ(5), which di-
vided byρave, corresponds to the degree of microcolumnar
periodicityT.

The results for the measures from these density maps are
summarized inTable 2and plotted inFig. 5. Results forW,P,
andT do not show any appreciable difference when compar-
ing the different areas as opposed toSandL which do show
differences. However, whileL shows a significant difference
between TL and TE, differences inSare only marginally sig-
nificant. In addition,SandT show contrasting behavior, in
which strongS in all areas implies strong microcolumnarity,
while smallT (T∼ 1) means that there is a marginal degree
of microcolumnar periodicity (ρ(5)≈ ρave). If neighboring
columns were placed at strictly regular intervals from each
other, thenT would have values much greater than 1. Re-

Fig. 5. Results for the measures of columnarityL, S, W, andP. The results
were calculated from density maps usingXY neuronal positions acquired
from regions TL, 46, and TE. The error bars represent the respective standard
deviations.

Table 2
Density map quantifications

W (�m) P (�m) L (�m) S T

TL 11.1 ± 1.3 22.1± 3.0 7.5± 3.6 1.17± 0.08 1.04± 0.02
46 12.8± 2.9 26.1± 2.8 16.9± 9.9 1.25± 0.06 1.04± 0.03
TE 11.1± 3.1 26.8± 5.8 48.0± 25.5 1.33± 0.11 0.96± 0.06
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garding error bars, we expect that analyzing a larger number
of cases (more than the three analyzed here) will make sig-
nificant the differences inS. Other features may also show
significant differences, for example, the decrease inP from
area TE to TL.

3.3. Validation of the approach

We validated the semi-automated neuronal detection by
manually marking and recording positions of neurons in a
small but sufficient number of images (four from area 46
and two from area TE), and compared these markings with
neuronal detections using our semi-automated method. Aver-
aging the results from each of the side-by-side comparisons,
we obtained for the total number of manually marked neurons
per image,ST = 122± 24, the number of correctly identified
neurons per image,Si = 106± 21, with the total number of
detected objects per image,Sd = 136± 32. This gives an ac-
curacy ofSi /ST ≈ 0.87 (i.e. more than 87% success in detect-
ing neurons) with a relative error ofSo/Sd ≈ 0.22 (i.e. of all
the detected objects, about 22% are non-neuronal). Regard-
ing the extent to which glial cell are miscounted among our
detected objects, we offer the following argument. Consider-
ing that the non-neuronal objects counted inSo may be, to a
large extent, glial cells, we can writeSg ≈So +qSg, whereSg
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are evident. By comparing the quantitative measures of mi-
crocolumnarity, we confirmed that both density maps agree
within error forL, W, P, S, andT.

3.4. Relative stability of microcolumns

As an exploration of the sensitivity of the measures of mi-
crocolumnarity presented above to changes in microcolumns
across development, aging, or various neuropathological con-
ditions as a result of subtle disruptions in the spatial posi-
tion of neurons, we conducted a test to assess the degree
of spatial disruption sufficient to alter our measures of mi-
crocolumnarity. Using a computer simulation and our own
data, we allowed the positions of neurons to change in a con-
trolled fashion. First, we selected one of the digitized images
used for density map analysis from area TE, in which there
were visually detectable microcolumns (shown on the left
in Fig. 7). Second, we detected neurons in the field (top of
Fig. 7A [ t= 0]) and then generated a density map in the usual
way (Fig. 7B). Third, we subjected all of the neuronal coor-
dinates to change under the rules of Brownian motion, that
is, the neurons were moved in random directions fort steps
(Fig. 7C [t= 300]) using an average step size of 0.3�m. A
total of 300 steps were chosen so that the mean displacement
of neurons would not exceed one neuronal diameter (in the
n n-
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s the number of glial cells,So is approximately the number
iscounted glial cells, andqSg is the fraction of glial cells dis

arded by the method. In addition, because in a given im
f these cortical areas there are approximately as many
ells as neuronal bodies, thenSg ≈ST. Combining these tw
elations we getq≈ 1− (Sd−Si )/ST, which givesq≈ 0.75
hen using the numbers above. This means that at leas
f glial cells are discarded by our semi-automated recogn
ethod.
To validate measures obtained from density maps u

emi-automatically detected neurons as input, we com
hese measures with those calculated using manually m
eurons from the same set of all available images from
E. We show the resulting density maps side by sid
ig. 6, in which the qualitative similarities between the t

ig. 6. Density maps calculated usingXYneuronal positions from manu
arkings (A) and from applying the semi-automatic method to detect

ons (B). Both sets ofXY neuronal positions were derived from the sa
igitized tissue images.
eighborhood of 10�m). After this procedure, a new de
ity map was generated from the resultingXYcoordinates o
he neurons (Fig. 7D). The density map att= 0 shows micro
olumnarity (i.e. before the random displacement) whi
= 300 the measures of microcolumnarity are greatly red
are indistinguishable from a random system). We repe
hese calculations for two other images (not shown) with
lar results indicating that microcolumnar structure is q
ensitive to even minor perturbations in neuronal locatio

.5. Validity of the distance between microcolumns, P

An important question with respect to measures of
istance between microcolumnsP in our calculation is th
alidity of such a measure in light of both the random
ntation of the cut sections relative to microcolumns and
hrinkage of the cut section when fixed to a slide that e
ively converts the three-dimensionalXYZpositions into an
Yset (i.e.Z is collapsed by shrinkage). As a result, one m
onsider the extent to which measurements ofPmay not be
nbiased estimates of the true value of distances betwee
rocolumns. To address this, we created a three-dimens
imulation that demonstrates that the true distance bet
icrocolumns can be adequately approximated by the c

atedP. For this simulation we place ideal microcolumns
box rising from the vertices of a triangular lattice (Fig. 8A)
hose lattice spacings is the control variable. As shown
ig. 8B, for each value ofswe “cut” a 30�m thick slab by
electing microcolumns in a way that mimics the way tis
ections are really cut. By changing the orientation ang
he cut “section” relative to the lattice, we are able to ave
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Fig. 7. Computer simulation in which positions of neurons are altered following the rules of random walk motion around the neuronal origins. (A) The
simulation uses as the starting point (t= 0) the coordinates of the neurons from a digitized tissue image (left). The corresponding initial density map shows
microcolumnar structure (B). (C) The neuronal positions aftert= 300 random walk steps, with an average step size of 0.3�m, have been displaced on average
by a distance of the order of one neuronal diameter. The corresponding density map for the final configuration lacks microcolumnar structure (D).

over many samples. For each “section” we collapse the mi-
crocolumns (Zshrinkage) into a two-dimensional “slide” and
calculate the density maps in the usual way (e.g.Fig. 8C). We
generated a total of eight sections of 30�m thickness (each
at random orientational angles) for five different lattice spac-
ingss. The results forP are shown inFig. 8D as a function
of lattice spacings, in which a linear behavior is observed
for small s, but ass increases toward the thickness of our
sections, estimates ofP flatten. Becauses is the true distance
between microcolumns,Fig. 8D allows the “translation” of a
measure ofP into an estimate of the true three-dimensional
distance between microcolumns. For the values ofP found
in the areas studied in this paper (Pave≈ 26�m), Fig. 8D

translates this distance to about 28�m as the real distance
between microcolumns in the tissue. Although this simula-
tion was carried out using a triangular lattice, similar behavior
to Fig. 8D would be obtained for different lattice geometries,
as averaging over many slabs decreases the dependence of
the results on the specific geometry.

3.6. Validity of L as a comparative measure of
microcolumnar length

Since microcolumns are oriented perpendicularly to the
curvilinear cortical surface, it would be ideal to cut sections
exactly perpendicular to the surface, i.e. “vertically”. While

F calcula ic
t g verti ac
o ndom We
t icking a slab
c (stars dinates
o obtain n
c the tex n
o infinites
ig. 8. Computer simulation of the effects of tissue shrinkage on the
hree-dimensional columnar neuronal structure inside a box by puttin
btain smoother vertical columns in the density maps, we assign a ra

hen select columns by “cutting” vertical slabs of 30�m in thickness, mim
ut at 154◦ with 17 columns (filled circles) and one at 46◦ with 19 columns
f the simulated neurons into the two-dimensional plane of the slabs,
alculate density maps (one per slab) in the same way as described in
f s. The dashed line indicates the ideal dependence ofP in sobtained for
ted values of the distance between microcolumnsP. (A) We construct a period
cal columns rising up from the vertices of a triangular lattice with sping s. To
value in the range of 10–25�m to the vertical distance between neurons. (B)
the way tissue is cut in real brain. In the example shown (B) there is

). (C) After we “cut” each slab, we project the three-dimensional coor
ing images that mimic real tissue slices after shrinkage in theZ direction. We the
t. (D) For all density maps, we measureP for differentsand plot them as a functio
imally thin slabs.
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this can be done on tiny blocks, it is impossible to do if one
wishes to analyze complete serial sections through the entire
hemisphere or any significant part of it. Still, it is clear that
across all slices in a whole brain series (typically around 200),
many sections will cut tangentially through microcolumns.
Thus, the length of microcolumnsL reported above is only
an effective (as opposed to true) measure of the microcolum-
nar lengths, as microcolumns will seldom be contained in
their entirety within one slice. Instead they will be truncated
at differing lengths according to their relative orientation to
the tissue section. But considering that microcolumns in all
coronal sections across all cases are subject to similar trun-
cation due to their orientation variability (i.e. similar prob-
ability of truncation), the effective value forL is still a use-
ful quantity for comparing regions across similarly sectioned
cases.

4. Discussion

4.1. Summary

The proposed density map method allows quantification
of microcolumns in cortical areas that differ dramatically in
visually apparent microcolumns. The obtained measures of
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In contrast, the weak values forT, which assesses thepe-
riodicity of the microcolumns, likely indicates that micro-
columns are not specifically positioned with respect to other
individual microcolumns as are atoms in a crystal, but in-
stead resemble the organization of atoms found in liquids
or gases with weaker positional correlations. These loose
correlations in microcolumnar positions are also reflected
in values forP, which assess thedistance between micro-
columns, reflecting the fact that, on average, there is no
appreciable distinction of microcolumnar positions for the
three radically different areas examined here (46, TL and
TE). The relatively similar values ofW, which assess the
width of the microcolumns, may indicate that lateral posi-
tional correlations between neurons in the microcolumn are
a property that may be shared in different areas in the cor-
tex. The contrasting trends betweenSand bothPandWmay
be due to the fact that whileS depends on neuronal den-
sity,P andWonly depend on the spatial arrangement of the
microcolumns.

We have shown that our calculations of the distance be-
tween microcolumnsP yield a sufficient estimate of the true
distance despite the random orientation of tissue sections rel-
ative to that of the microcolumn and the shrinkage of the
tissue that causes a two-dimensional collapse in theZ di-
rection. Thus, the density map method can assess the three-
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icrocolumnarity demonstrate both similarities and dif
nces in microcolumnarity of these different regions. T
rea TE contains the strongest microcolumns as indicat
, while Area 46 and TL are similar to each other. Also,
ength of microcolumnsL has decreasing values for TE,
nd TL, respectively. In contrast, the width of microcolum

and distance between microcolumnsP are similar acros
ll areas. In addition, the degree of microcolumnar period
is unchanged and is not significantly above the backgr

or all areas indicating a loose positional organization of
rocolumns.

.2. Validation and consequences

The use of a semi-automated neuronal detection me
o generate the requiredXYpositional data is validated by d
ectly comparing this method with manual marking and t
y comparing the resulting density maps. Although the

icular choice of neuronal detection method is not essent
ther methods may be used (such as theNIH Imagepackage
r various commercial products), we show that at least
ccuracy in the neuronal detection is sufficient to qua
nd obtain relevant information about microcolumnarit

he brain.
The values forS, which assesses thestrength of themicro

olumns, indicate that this parameter increases as we m
rom the “limbic” cortex of the parahippocampal gyrus (T
o the association cortices of the frontal (46) and temp
TE) lobes. Since higher values ofS indicate that there a
ore neurons within a given microcolumn this likely refle

undamental functional capacities of the microcolumn.
imensional character of microcolumnar arrangement u
nly two-dimensional data. From our calculations we c
lude that corrections to the calculatedPare accurate as lon
s the thickness of the samples are of the same order
eal microcolumnar distances. We have also demonst
hat even small random perturbations of neuronal pos
on the order of one neuronal diameter) disrupt microco
arity and that the density map method is sufficient to de
uch subtle alterations. To validate this point further, we
lans to address the three-dimensional character of m
olumns with respect to the measures of microcolumn
y preparing thick plastic sections and manually acqu
omplete three-dimensional data.

.3. Other methods of analyzing microcolumns

A variant of the present density map method has b
uccessfully applied to study alterations in microcolum
rganization in AD and LBD (Buldyrev et al., 2000) and has
een generalized into a cross-correlation density map m

o study the neurotoxic effect of fibrillar amyloid plaques
ocal neuronal density in AD (Urbanc et al., 2002). Indepen
ently, Buxhoeveden and colleagues have proposed a m

o quantify microcolumnar organization of neurons in
ortex and used this to characterize microcolumnar dis
ion in schizophrenia (Buxhoeveden et al., 2000b), dyslexia
Casanova et al., 2002b), autism (Casanova et al., 2002),
nd Down’s syndrome (Buxhoeveden et al., 2002b) and to

dentify significant differences in microcolumnar organi
ion across species (Buxhoeveden et al., 2001; Buxhoeved
t al., 2002a).
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In their method, neuron positions are obtained using the
NIH Image software package. Then, they orient their images
such that any apparent microcolumns align with the vertical
axis. Next, they replace each neuron by a Gaussian density
distribution and then project the sum of all distributions (one
per neuron) onto the horizontal axis. This projected sum of
distributions displays minima that are taken as the space be-
tween microcolumns and maxima that are taken as the centers
of microcolumns. Then, they discard microcolumns that are
by visual inspection truncated (Buxhoeveden et al., 2000a).
From the surviving microcolumns they obtain the follow-
ing measures: (i) a mean absolute deflection, (ii) an interval
width, (iii) a column distance (horizontal distance between
the centers of microcolumns), (iv) a vertical dispersion ratio,
(v) a relative dispersion ratio, (vi) a neuropil space, (vii) a
cell spacing, and (viii) a total path-length ratio.

Some of their quantities (mean absolute deflection, inter-
val width, column distance, vertical dispersion ratio, relative
dispersion ratio, and neuropil space) are closely related to
our measures. Their mean absolute deflection is equivalent
to W. Both, the interval width and the column distance are
equivalent toP (our method does not distinguish between
the two). Their vertical dispersion ratio measures the verti-
cal dimension of the microcolumn relative to its horizontal
dimension and is thus equivalent to the ratio ofL toW. Their
n
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densities. This is important in light of the results above, in
whichSmay uniquely differentiate different cortical regions.

But this raises several other questions. First, is micro-
columnarity relatively constant within a cortical region of
a given subject or are there heterogeneities? Second, how
does microcolumnarity change at the cytoarchitectonic tran-
sition zones? For example,Schleicher et al. (1999)used a
densitometric method to quantify neuronal densities perpen-
dicular to the cortical surface across these borders. It would
be interesting to see how our method compares. Such studies
require more exhaustive sampling of cortical spatial organi-
zation and to accomplish this we are developing a “moving
window” analysis program to obtain continuous measures of
microcolumnarity across large expanses of cortex. Once fully
automated our method will be capable of quantifying mea-
sures of microcolumnarity in different cortical areas across
a variety of experimental or pathological conditions (e.g. de-
velopment, aging, neurodegenerative disease, developmental
disorders, etc.) where the alternative method would be time-
consuming, difficult, or impossible to apply.

4.4. Caveats and limitations

In order to minimize the effect that the curvature of tissue
may have on the angular orientation of its inherent micro-
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europil space can be calculated by subtractingW from P.
heir relative dispersion ratio, a measure of the ratio o
ertical length of the cell cluster over its width to the heigh
he ROI over its width, can be calculated from our quant
sLP/(WH), whereH is the length of the ROI. Their oth
uantities, the cell spacing and the total path-length r
ive additional information about the placement of an i
idual neuron inside each microcolumn. While our den
ap method contains information about the average sp
etween the cells in the microcolumn, it cannot measur

otal path-length ratio due to its statistical nature (the de
ap is an average over many neuronalXYsets).
On the other hand, the statistical nature of our density

pproach has several advantages over the alternative m
Buxhoeveden et al., 2000a). Our density map method on
eeds theXY and/or theXYZ positions of the cells und
tudy as input data without any assumptions regarding th
ernal structural organization of cortex, angular orientati
r radial distribution of cells. As such, our method can
pplied to any region, even the ones without any app
icrocolumnar organization, which reduces the subject
f the analysis. The alternative method precludes analy
egions of weak microcolumnar order in which a high no
o-signal ratio may not allow for a clear distinction betw
axima and minima of the sum of the Gaussian distribut
ecessary to separate neighboring microcolumns. Also,
ethod, slight imperfections (such as an occasional dis

inuity of a microcolumn) are averaged out and do not
ificantly influence the final quantities. Our method prov

wo new quantities,SandT, that cannot be easily obtained
he alternative method that does not consider local neu
olumns, within the areas analyzed we have chosen re
hat are relatively flat and away from the extreme curvat
f the lip or fundus of any sulci. This, of course, exclu

rom our calculations those regions that exhibit large vari
ty in microcolumnar angular distributions as microcolum
fan” out or in at tissue turns. We are currently working
xpanding our algorithms to automatically convert neur
ositions in curved tissue from a polar coordinate system
ral to curved space) to a rectangular coordinate system

he density map requires. Once this is achieved, we will
e able to apply our density map calculations as desc
ere to highly curved regions. In addition, our estimat
olumnar width (W) is statistically determined using the ce
er point of the neurons. Hence, this will be an underesti
f microcolumnar width determined visually by at least
euronal diameter (i.e. half on each side). In principle, it
e possible to derive correction factors based on average
onal diameters but this would require careful validation

.5. Conclusions

We have demonstrated that using onlyXYcoordinates ob
ained manually or with semi-automated neuron dete
ethods, we can obtain a statistical characterization o

average” microcolumnarity of any relatively flat region
he cortex using only 30�m thick frozen sections stain
ith thionin. We have also shown that even without los
eurons, very small alterations in neuronal positions (a
ging one neuronal diameter) could lead to detectable
f measures of microcolumnarity even in the highly mic
olumnar area TE. Thus, it is plausible that microcolum
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structure may provide a window into cortical organization
and plasticity even in the adult brain that is quite dynamic in
many ways. For example, synapses can expand and retract
on a time scale of minutes to hours in response to LTP (e.g.
Leuner et al., 2003; Lynch, 2004; Lambrecht and LeDoux,
2004), as well as days to weeks in response to hormonal ma-
nipulations (Weeks, 2003). It is also clear that dendrites can
sprout or regress (e.g.Weeks, 2003; Grill and Riddle, 2002),
and there is growing evidence that even in the adult brain new
neurons are generated and while controversial, may actually
migrate within the brain and integrate into circuits over the
course of weeks to months (e.g.Shors et al., 2001). Since
our density map method is able to detect subtle differences
in neuronal positional arrangements, it is sensitive enough to
detect and quantify subtle changes in microcolumns that may
result from such dynamic changes in the context of develop-
ment, aging, and neuropathology as well as between areas
and across species. As such, assessments of microcolumns
may provide an important window through which to view, on
a global and regional basis, subtle changes in neuronal spatial
relationships in health and disease.
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