
25-1 Interference from Two Sources
In this chapter, our focus will be on the wave behavior of light, and on how two or more 

light waves interfere. However, the same concepts apply to sound waves, and other mechanical 
waves. We will begin by considering two sources, separated by some distance, which are 
broadcasting identical single-frequency waves in phase with one another. The sources could be 
two speakers of sound, or could be two sources of light waves. We briefly discussed this situation 
at the end of section 21-7, and we will now investigate this quantitatively and in detail.

To begin with, we can represent the 
waves emitted by each source by a set of 
concentric circles, with a dark region 
corresponding to a trough in the wave, and a 
white region corresponding to a peak in the 
wave. If we then overlap the circles, as shown in 
Figure 25.1, we get an interesting pattern that is 
the result of interference between the two sets of 
the waves. The dark lines radiating out from the 
center of the pattern correspond to destructive 
interference, while the bright areas correspond to 
constructive interference. If you set up two 
speakers broadcasting identical single-frequency 
sounds, you can create an interference pattern 
like this, and you can walk through it to hear 
areas of constructive and destructive 
interference.

The interference pattern in Figure 25.1
(b) looks complicated, but we can understand it 
using interference ideas. First, let’s define the 
path-length difference as the difference between 
the distance a point is from one source and the distance the 
point is from the second source. For point A in Figure 25.1
(b), which is on the perpendicular bisector of the line 
connecting the sources, the path-length difference is zero 
because point A is equidistant from both sources. Because 
the sources are in phase with one another, at the instant a 
peak in the wave is emitted by the left source, a peak is also 
emitted by the right source. These peaks travel the same 
distance to point A at equal speeds, and thus they arrive at A 
simultaneously. Two peaks arriving at the same time 
produce constructive interference. This argument holds for 
any point on the perpendicular bisector to the line 
connecting the speakers, because all those points have a 
path-length difference of zero.

Point B in Figure 25.1(b) is closer to the right source than it is to the left source, and thus 
the path-length difference is not zero. Point B happens to be exactly half a wavelength farther 
from the left source than it is from the right source. When a peak emitted by the right source 
reaches point B, the peak that was emitted at the same time from the left source is still half a 
wavelength from point B. Half a wavelength from a peak is a trough, so a trough arrives at point 
B from the left source at the same time a peak arrives from the right source (and vice versa), 
leading to destructive interference. All such points that are half a wavelength farther from one 
source experience destructive interference.
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Figure 25.1: (a) The waves emitted by 
two sources can be represented by a 
pattern of concentric circles (in three 
dimensions they are a set of spherical 
shells) that expand out from the source at 
the wave speed. (b) The pattern of 
constructive and destructive interference 
that results when both sources emit waves 
simultaneously can be seen when the two 
sets of concentric circles are overlapped.



Point C in Figure 25.1(b) is one wavelength closer to source 2 than it is to source 1, so 
when a peak emitted by source 2 reaches point C, the peak that was emitted at the same time from 
source 1 is still a wavelength from point C. A full wavelength from a peak is another peak, so 
peaks arrive at C simultaneously from the two sources, leading to constructive interference. All 
such points that are a full wavelength farther from one source than the other experience 
constructive interference. 

The trend continues. The bottom line is that all locations that are an integer number of 
wavelengths farther from one source than the other experience constructive interference, and all 
locations that are an integer number of wavelengths plus half a wavelength farther from one 
source than the other experience destructive interference. These general conditions for 
interference are summarized in the box below.

For two sources, which are in phase with one another, that broadcast identical waves in all 
directions, the interference can be understood in terms of the path-length difference.

               ,           (Equation 25.1: condition for constructive interference)
where m is an integer.

           ,     (Equation 25.2: condition for destructive interference)
where m is an integer.

For locations that are far from the sources, in comparison to d, the distance between the 
sources, the waves from the two sources are essentially parallel to one another. As illustrated in 
Figure 25.2, the path-length difference in this case is given by , where the angle ! is 
shown in Figure 25.2. Thus, in this situation the angles at which constructive or destructive 
interference occur are:

    ,                  (Equation 25.3: constructive interference, for two sources in phase)
where m is an integer, and 

    ,       (Equation 25.4: destructive interference, for two sources in phase)
where m is an integer.

Related End-of-Chapter Exercises: 4, 13 – 15.

Essential Question 25.1 (a) A particular point experiences constructive interference no matter 
what the wavelength is of the waves sent out by the sources. Where is the point?
(b) What happens to the angles at which destructive interference occurs when (i) the wavelength 
of the waves is decreased, and (ii) d, the distance between the sources, is decreased?
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Figure 25.2: When a point is a long way from 
both sources, the geometry of the situation 
allows us to approximate the path-length 
difference in terms of d, the distance between 
the sources, and !, the angle between the 
perpendicular bisector of the line joining the 
sources and the straight line going from the 
midpoint between the sources and the point.



Answer to Essential Question 25.1 (a) The only points for which 
changing the wavelength has no impact on the interference of the waves 
are points for which the path-length difference is zero. Thus, the point in 
question must lie on the perpendicular bisector of the line joining the 
sources. (b) If we re-arrange Equation 25.3 to solve for the sine of the 
angle, we get

 .

Thus, decreasing the wavelength decreases sin θ, so the pattern gets 
tighter. Decreasing d, the distance between the sources, has the opposite 
effect, with the pattern spreading out. We can understand the wavelength 
effect conceptually in that, when the wavelength decreases, we don’t 
have to go as far from the perpendicular bisector to locate points that are 
half a wavelength (or a full wavelength) farther from one source than the 
other. Figure 25.3 shows the effect of decreasing the wavelength, or of 
decreasing the distance between the sources.

25-2 The Diffraction Grating
Now that we understand what happens when we have two sources emitting waves that interfere, 
let’s see if we can understand what happens when we add additional sources. The distance d 
between neighboring sources is the same as the distance between the original two sources, and the 
sources are arranged in a line. All the sources emit identical waves that are in phase.

EXPLORATION 25.2A – Adding sources
Step 1 – Consider a point a long way from two 
sources. The sources are a distance d apart. The 
point is one wavelength farther from one source 
than the other, so constructive interference 
occurs at the point. When we add a third source, 
so that we have three sources equally spaced in a 
line, separated by d, do we still get constructive 
interference taking place at the point?
Yes. As the diagram in Figure 25.4 shows, the 
path-length difference for the third source and the 
source it was placed closest to will also be one 
wavelength. Now we get constructive interference 
for three waves at once, not just two, so the amplitude of the 
resultant wave is larger than it was with only two sources.

Step 2 – If we consider a different point that is half a 
wavelength farther from one of two sources than the 
other, destructive interference occurs at the point. When we add a third source, so that we have 
three sources equally spaced in a line, separated by d, do we still get destructive interference 
taking place at the point?

Chapter 25 – Interference and Diffraction  Page 25 - 4

Figure 25.3: The top diagram shows the interference pattern produced 
by two sources. The middle diagram shows the effect of decreasing the 
wavelength of the waves produced by the sources, while the bottom 
diagram shows the effect of decreasing the distance between the sources.

Figure 25.4: For a point that is one 
wavelength farther from one source 
than another, adding a third source 
results in even larger amplitude 
because of constructive interference.



No. The destructive interference at the point was caused by the cancellation between the waves 
from the first two sources. Adding a third source does not change the fact that the first two waves 
cancel one another, so there is nothing to cancel the third wave.

Step 3 – For three sources, what path-length difference (between zero and one wavelength) 
between neighboring sources results in completely destructive interference? With three sources, 
it turns out that there are two path-length differences between 0 and one wavelength that result in 
completely destructive interference, these being one-third and two-thirds of a wavelength.

Step 4 – What if we have N sources, where N is any integer greater than 1. Is there a general 
rule for predicting the angles at which constructive interference occurs? What about 
destructive interference? Constructive interference occurs at the same points for N sources that it 
does for 2 sources, so the equation  still applies for situations with N > 1 sources. 
There are N – 1 places where destructive interference happens in between each interference 
maximum, so we generally dispense with an equation for destructive interference when N > 2.

Key idea: The equation  applies to any number of sources > 1, as long as the 
sources are equally spaced. With multiple sources, it is much easier to produce destructive 
interference than it is to produce completely constructive interference, so there is no simple 
equation for destructive interference.              
Related End-of-Chapter Exercises: 7, 16 – 18, 38, 39, 48.

The Diffraction Grating
A diffraction grating is essentially a large number of equally 
spaced sources, and thus the  equation applies. 
One application of diffraction gratings is in spectroscopy, 
which involves separating light into its different wavelengths, 
a process that astronomers, or chemists, can use to determine 
the chemical makeup of the source producing the light. In 
actuality, a diffraction grating is typically a glass or plastic 
slide with a large number of slits (long thin openings between 
long thin lines). A diffraction grating (which should probably 
have been named an interference grating) offers two main 
advantages over a double slit. First, the more openings the 
light passes through, the brighter the interference maxima 
are. Second, the more openings there are, the narrower the 
bright lines are in the interference pattern, which is important 
when trying to resolve two similar wavelengths. Figure 25.5 
shows the increased sharpness that results from adding slits.

EXPLORATION 25.2B – Double-slit geometry
When light of a single wavelength (say, from a laser) is incident on a double slit (or a diffraction 
grating, which gives a sharper pattern), we get a pattern of bright and dark fringes on a screen 
beyond the double slit. Such a pattern is shown in Figure 25.6. The bright fringes come from 
constructive interference, and the dark fringes come from destructive interference.
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Figure 25.5: Adding sources (or slits that 
light goes through) results in sharper 
interference maxima. Each case shows the 
relative intensity at various points. The 
amplitude of the peaks also grows as 
sources are added.



Step 1 – If we wanted to increase the distance 
between the bright spots on the screen, what would 
we change about d or λ? 

This should be something of a review. If we re-
arrange the equation for constructive interference, we 
get:

sinθ =
mλ
d

.

Increasing the value of sinθ will increase the value of 
θ, which means that the lines of constructive 
interference will be further apart, in terms of the 
angles between them. This will spread out the pattern 
on the screen. To increase sinθ, we can either replace 
the first laser with a laser that emits light of a longer 
wavelength (switch from blue to red, for instance), or 
we can switch to a double slit that has a smaller value 
of d. These two options are illustrated in Figure 25.7.
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Figure 25.6: The geometry of the double-slit pattern, for blue light. The top shows an overview 
of the interference pattern. The bottom has the pattern of bright and dark fringes on the screen. In 
between is a graph of the intensity of the fringes in the pattern, as a function of position.

Figure 25.7: The pattern on the left shows how the situation of Figure 25.6 changes if we 
change to a larger wavelength, while the one on the left shows the change of switching to a 
smaller d.



Step 2 – What if we only have one laser and one 
double slit, so we can’t change the wavelength or d. Is 
there a different way to increase the distance between 
the bright spots on the screen?
Yes. If we move the screen farther from the double slit, 
the screen will intercept the light from the grating after 
the bright lines in the pattern have been able to spread 
out farther, increasing the distance between the bright 
spots on the screen. This is illustrated in Figure 25.8.

Step 3 – As shown in Figure 25.9, let’s use L to denote 
the distance from the double slit to the screen, and ym 
to denote the distance from the central bright spot on 
the screen to the mth bright spot. For instance, y4  is 
the distance from the center of the pattern to one of 
the m = 4 bright spots on the screen. If the angle is 
small (say, 10˚ or less), we can use the approximation 
sinθ ≈ tanθ. Using that assumption, derive an 
expression for ym in terms of d, m, λ, and L .
We have two equations to work with here, one for sinθ, 
from above, and then one for tanθ, from the geometry 
of right-angled triangles.

sinθ =
mλ
d

     and tanθ =
y
L

.

The small-angle approximation enables us to set these 
two equations equal to one another. Doing that and 
solving for y gives:

ym =
mλL
d

.  

(Eq. 25.5: The distance from the center of the 
pattern to the m’th bright spot)

Step 4 – What would you do if you wanted to predict 
the position of a particular bright spot on the screen, 
but you could not use the small-angle approximation? 
If we could not use the small-angle approximation, we 
could first use the sinθ equation to find θ, and then 
take the tangent of that angle when we were using 
the tanθ equation to find y.

Essential Question 25.2: A beam of light made up 
of three wavelengths, 660 nm (red light), 530 nm 
(green light), and 400 nm (violet light) is incident 
on a diffraction grating that has a spacing of 
d = 1300 nm. The first order spectrum, consisting of 
a violet line, a green line, and a red line, produced 
by the grating is shown in Figure 25.10. What are 
the colors of the other three beams (1 – 3) that 
come from the grating?
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Figure 25.9: The geometry of the pattern, 
based on a right-angled triangle.

Figure 25.8: Spreading the dots out by 
moving the screen farther away, starting 
from the left-hand picture in Figure 25.7.

Figure 25.10: The first-order (m = 1) spectrum for 
the situation of Essential Question 25.2.



Answer to Essential Question 25.2: You might think that 
beams 1, 2, and 3 would also be violet, green, and red, 
respectively. However, in the equation , the 
right-hand side cannot exceed 1, because that is the limit on 
sin θ. If we use the three wavelengths with m = 2 or m = 3, 
we get the values shown in Table 25.1. It is possible to see 
the second-order violet and green lines, and the third-order 
violet lines, but none of the others because they correspond 
to values of sin θ that are greater than 1, and are thus not 
possible. The beams are violet, green, and violet.

Table 25.1: Values of sinθ for m > 1 for the situation of Essential 
Question 25.2.

25-3 Diffraction from a Single Slit
In Section 25-1, we considered what happens when two 
sources broadcasting identical waves interfere. With light, 
we typically shine a laser beam through two closely-spaced 
slits (a double slit, in other words). Each slit acts as a 
source of waves, but it turns out that each slit does not send 
out light uniformly in all directions. Instead, a wave 
passing through a slit (or striking an object) experiences 
diffraction. Each point on the opening, or on the object, 
acts as a source of waves, and the resulting diffraction 
pattern is the result of the interference between all these 
waves. As Figure 25.12 shows, the waves interfere 
constructively in the forward direction, with more 
destructive 
interference 
in most 
other 
directions.

The graph in Figure 25.13, and the corresponding 
picture underneath the graph that shows the diffraction pattern 
from a laser shining through a single slit, show how much of the 
wave’s energy is concentrated in the forward direction. The 
secondary peaks have 
much less intensity than 
the central maximum. 
The central maximum is 
also twice as wide as 
are the secondary peaks, 
at least at small angles.
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Order Violet (400 nm) Green (530 nm) Red (660 nm)
m = 2
m = 3

Figure 25.11: The entire 
spectrum for the situation of 
Essential Question 25.2, 
showing how the light splits 
because of passing through 
the diffraction grating.

Figure 25.12: The diffraction pattern that  
results from a plane wave striking an 
opening that is four wavelengths wide. In 
color, the picture has alternating red 
(representing peaks), and blue (represents 
troughs) regions, separated by black 
regions denotes zero, or small, amplitude.

Figure 25.13: A graph of the 
intensity as a function of angle that  
corresponds to the diffraction 
pattern below the graph. The 
diffraction pattern comes from a 
laser shining on a single slit. 



EXPLORATION 25.3 – An equation for the single slit
Step 1 – Return to Figure 25.2, which illustrates how waves 
from two sources can interfere constructively at a particular 
point if the path length difference is, for instance, one 
wavelength. Now turn this two-source situation into a single-
slit situation by filling in the space between the original two 
sources with more sources. Figure 25.14 models a 
single-slit as being made up of a number of sources of 
waves laid out across the width of the opening. Note that 
while we use d to represent the distance between the two 
sources, we generally use a to represent the width of the 
single opening. 

Step 2 – The two sources in red that are at either end of the line of sources constructively 
interfere, in the situation shown, because their path-length difference is a full wavelength. 
What is the path-length difference for the source colored red that is in the middle of the set of 
sources, and the source at the left end of the line? What kind of interference is associated with 
these two sources? The path length for the left source is half a wavelength longer than the path 
length for the middle source, which corresponds to destructive interference.

Step 3 – What kind of interference results for the two blue sources, or the two orange sources, 
or the two green sources? The path-length difference for all these pairs of sources is half a 
wavelength, corresponding to destructive interference. For the point in question, the waves from 
the left half of the opening cancel the waves arriving from the right half of the opening. 

Step 4 – If the equation d sinθ = mλ gives the angles at which constructive interference occurs 
for two sources, what does the equation a sinθ = mλ correspond to for the single slit? The 
equation a sinθ = mλ gives the angles at which destructive interference occurs for the single slit. 

    ,                  (Equation 25.6: destructive interference for a single slit)
where m is an integer, and a is the width of the slit. 

Diffraction for sound waves
Diffraction takes place for other waves, such as water waves and 
sound waves, just as it does for light waves, with Equation 25.6 
even applying for these other kinds of waves. Horn speakers, such 
as those shown in Figure 25.15, are often shaped to exploit 
diffraction, causing the waves to spread out in a particular 
dimension when they emerge from the end of the speaker.

Essential Question 25.3: As you are walking toward the 
open door to a room, you can hear the conversation 
between two people inside, even though you can’t see the 
people. Explain why the sound waves are diffracted by 
the doorway, while the light is not.
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Figure 25.14: A modification of Figure 25.2, 
turning the double-source situation into a 
single-slit situation by filling the space between 
the original sources with additional sources.

Figure 25.15: These speakers are shaped to 
take advantage of diffraction for sound 
waves. The narrower the opening, the wider 
the diffraction pattern. The speakers are 
designed to diffract sound waves horizontally, 
where they can be heard by people on a train 
platform. Photo credit: A. Duffy.

Key idea: The diffraction of waves passing through a single opening can be understood in terms of 
interference between waves leaving all points on the opening. The narrower the opening, the more 
the waves spread out.                 Related End-of-Chapter Exercises: 19 – 21.



Answer to Essential Question 25.3: A big difference between the sound waves and the light 
waves is the wavelength. The sound waves have wavelengths that are on the order of a meter, 
while the wavelengths of the light waves are about six orders of magnitude smaller. The width of 
the doorway is comparable to the wavelength of the sound waves, and so the sound waves 
experience significant diffraction. The doorway is so large compared to the wavelength of light, 
however, that the light goes in a straight line out the door, with negligible diffraction.

25-4 Diffraction: Double Slits and Circular Openings
The bottom graph in Figure 25.16 shows the 
relative intensity, as a function of position, of the 
light striking a screen after passing through a 
double slit. If each slit acted as a source of light, 
emitting waves uniformly in all directions, we 
would expect the peaks on the screen to be equally 
bright, as shown in the “Double Source” picture. 
Instead, each opening emits a diffraction pattern, as 
shown in the “Single Slit” picture. The interference 
between the two diffraction patterns results in the 
“Double Slit” pattern at the bottom, with the 
amplitude of the peaks predicted by the double-
source equation being reduced by a factor given by 
the single-slit equation.

 The “Double Slit” pattern exhibits a 
phenomenon known as missing orders. Peaks that 
are predicted in the pattern by the double-source 
equation, d sinθ = md λ, coincide with zeros from 
the single-slit equation, a sinθ = ms λ, and are thus 
missing from the pattern.

A bit of history
Prior to 1800, there was a big debate in physics about the nature of light. The Dutch scientist 
Christiaan Huygens (1629 – 1695) came up with a way to explain many optical phenomena (such 
as refraction) in terms of light acting as a wave. The main proponent of the particle theory, 
however, was Sir Isaac Newton (1643 – 1727), who called it the corpuscular theory. With the 
weight of Newton behind it, the particle model of light won out until Thomas Young’s double-slit 
experiment in 1801, followed by the work of the Frenchman, Augustin Fresnel, who studied 
diffraction in the early 1800’s.

In 1818, Siméon Poisson realized that if light acted as a wave, the shadow of a round 
object should have a bright spot at its center. The light would leave all points on the edge of the 
object, and constructively interfere to produce a bright spot at the center of the shadow, because 
that point has a path-length difference of zero. Poisson actually put forward the idea of the bright 
spot as a way to disprove the wave theory, so he was somewhat taken aback when Dominique 
Arago did an experiment to show that there really is such a bright spot. These days, it is easy to 
create the bright spot at the center of a shadow by diverging a laser beam with a lens and then 
shining the beam onto a smooth metal ball. The shadow produced by such an arrangement is 
shown in Figure 25.17.
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Figure 25.16: When light passes through a 
double slit, the interference maxima are not 
equally bright, but drop off quite dramatically 
in brightness as you move away from the center 
of the pattern, as shown at the bottom. The 
double-slit pattern is a combination of the 
single-slit pattern (at the top) and the double-
source pattern (in the middle).



Diffraction by a circular opening
A related and common phenomenon is diffraction by a circular 
opening (commonly called a circular aperture), such as the one we 
all look through, the pupil in each of our own eyes. For a circular 
opening, the angle at which the first zero occurs in a diffraction 
pattern is given by:

   (Eq. 25.7: The first zero in a diffraction pattern from a circular aperture)

where D is the diameter of the opening. Note that the larger the diameter of the opening, 
the narrower the width of the central peak in the diffraction pattern. This dependence on the 
diameter of the opening has implications for how close two objects can be before you cannot 
resolve them. For instance, when you look up at the sky at night, two stars that are very close 
together may appear to you to be a single star. If you look at the same patch of sky through 
binoculars, or through a telescope, however, you can easily tell that you’re looking at two 
separate stars. The light enters binoculars or telescopes through an aperture that is much larger 
than your pupil, and thus experiences much less diffraction.

It turns out that you can just 
resolve two objects when the first zero in 
the diffraction pattern associated with the 
first object coincides with the maximum in 
the diffraction pattern associated with the 
second object. Hence, Equation 25.7 gives 
the minimum angular separation between 
two objects such that you can just resolve 
them. Figure 25.18 illustrates the issue, 
where two objects are too close to be 
resolved by a human eye in bright 
sunlight, when the pupil is small, but can 
be resolved by the same eye when it is 
dark out, and the pupil has become larger 
to let in more light.

Related End-of-Chapter Exercises:
 9, 22, 23, and 46.

Essential Question 25.4: Consider the double-slit pattern in Figure 25.16. Noting the location of 
the missing orders in the pattern, what is the ratio of d to a for this double slit? That is the ratio of 
the center-to-center distance between the two openings (d) to the width of each opening (a).
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Figure 25.17: The bright spot at the center of 
the shadow of a ball bearing, demonstrating that 
light acts as a wave. Photo credit: A. Duffy.

Figure 25.18: On the left, we see that the angular 
separation between two objects is too small for them to be 
resolved, with the patterns overlapping too much on the 
retina. The images on the left correspond to a human eye 
in bright sunlight, when the pupil is small. The images on 
the right correspond to the same situation, but viewed in 
the dark. In the dark, the pupil expands to let in more 
light, reducing the spreading associated with diffraction.



Answer to Essential Question 25.4: One way to answer this question is to set up a ratio of the 
double-source equation to the single-slit equation:

 

The position corresponding to ms = 1 is where we find 
the first zero on one side of the central maximum in the 
single-slit pattern. Looking at the double-slit pattern in 
Figure 25.19, and counting the peak in the center of that 
pattern as md = 0, we see that the peak at md = 5 lines up 
with the first zero in the single-slit pattern, and is thus a 
missing order. With md / ms = 5/1, we have d/a = 5 here.

25-5 Reflection
As we have discussed in Chapter 21 for waves on a string, when a wave reflects from the fixed 
end of a string, the reflected wave is inverted. When a wave reflects from the free end of a string, 
the reflected wave is upright.

What happens when the end of 
the string is neither perfectly free nor 
perfectly fixed, such as when a light string 
is tied to a heavy string? As shown in 
Figure 25.20 (a) and (b), when a wave is 
traveling along the light string, the point 
where the strings meet acts more like a 
fixed end than a free end. Part of the wave 
is transmitted onto the heavy string, and 
the part that reflects back along the light 
string is inverted. Conversely, as in 
Figure 25.20 (c) and (d), when a wave is 
traveling along the heavy string, the point  
where the strings meet acts more like a 
free end. Part of the wave is again 
transmitted into the second medium, 
while the part that reflects is upright.

An analogous process happens 
for light, or for any other electromagnetic 
wave. When a light wave traveling in one 
medium (medium 1) encounters an 
interface between that medium and a second medium (medium 2) with a different index of 
refraction, part of the light wave is transmitted into the second medium, and part is reflected back 
into the first medium. Whether the reflected wave is inverted or not depends on how the indices 
of refraction compare, as summarized in the box below, and as shown pictorially in Figure 25.21.
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Figure 25.19: In this case, the first zero in the 
single-slit pattern corresponds to the same position, 
and therefore the same angle, as the md = 5 peak in 
the double-source pattern, leading to a missing 
order in the double-slit pattern.

Figure 25.20: (a) When a wave traveling on a light string 
encounters the boundary between the light string and a 
heavy string, part of the wave is transmitted onto the heavy 
string, and part reflects back onto the light string, as in (b). 
The boundary acts like a fixed end, so the reflected wave is 
inverted. (c) If the wave is traveling along the heavy string 
before striking the boundary, the part of the wave that 
reflects is reflected upright, as in (d). In this situation, the 
speed of the wave on the light string is three times the 
speed of the wave on the heavy string.

ms = 1

 md = 0  1  2  3  4  5  6  7  8



A light wave reflecting from a medium with a higher index of refraction than the medium 
the wave is traveling in (n2 > n1) is inverted upon reflection. If the second medium has a smaller 
index of refraction than the first (n2 < n1), the wave is reflected upright. For a sine wave, 
inverting the wave has the same effect as shifting the wave by half a wavelength, so we will treat 
an inversion upon reflection as a half wavelength shift.

EXPLORATION 25.5 – Double-source interference with a single source
Figure 25.22 shows a situation in which a single source 
of sound waves is located above the floor. At any point, 
such as at point A in the figure, waves are received 
directly from the source, but waves are also received 
after being reflected from the floor.

Step 1 – We can treat this situation as if there are two 
sources of waves. Where, effectively, is the second 
source located? The second source is where the image 
of the first source is located. Treating the floor like a 
plane mirror, reflecting the first source in the mirror 
gives the second source at the position shown in Figure 
25.23.

Step 2 – To analyze the interference between the waves 
from the two sources, we consider the mirror-image 
source to be 180° out of phase with the first source. 
Explain why we do this. The 180° phase shift comes 
from the fact that the wave does not actually originate at  
the second source. Instead, it originates at the first 
source, and reflects from the floor, producing an 
inversion of the wave upon reflection. Inverting the 
wave is equivalent to shifting the wave half a 
wavelength, which is equivalent to a 180° phase shift.

Key idea: Even reflecting sound waves experience an inversion upon reflection.  
Related End-of-Chapter Exercises: 8, 50 – 52.

Essential Question 25.5: Return to the situation described in Exploration 25.5, and assume the 
speed of sound is 340 m/s. Using the geometry of right-angled triangles, we can determine that 
point A is a distance of  from the source, and a distance of 

 from the apparent second source. What is the lowest frequency 

sound wave from the source that will produce completely constructive interference at point A?
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(a) (b)

Figure 25.21: (a) When light traveling in one 
medium reflects from a medium with a larger index 
of refraction, the part of the wave that is reflected is 
inverted upon reflection. (b) If the second medium 
has a smaller index of refraction than the first, the 
reflected part of the wave reflects upright. In both 
cases, the reflected wave has been shifted to the 
right to distinguish it from the incident wave.

Figure 25.22: A source of sound waves, 
in air, located above a flat floor.

Figure 25.23: The floor acts like a plane 
mirror for sound waves. Effectively, there is 
a second source of waves where the image 
of the first source is created by the mirror.

inverted
  upright



Answer to Essential Question 25.5: In this situation, the condition for constructive interference is 
that the path-length difference is half a wavelength. Using an integer number of wavelengths plus 
a half-wavelength would also produce constructive interference, but it would also decrease the 
wavelength. To get the lowest frequency, we need the longest wavelength.  The wave that reflects 
from the floor is inverted upon reflection, and an inversion is equivalent to traveling an additional 
half wavelength, so the net shift is a full wavelength. This gives a path-length difference of 
3.76 m – 3.42 m = 0.34 m. The path-length difference is half a wavelength, so a full wavelength 
is 0.68 m, corresponding to a frequency of v/λ = 340 m/s / 0.68 m = 500 Hz.

25-6 Thin-Film Interference: The Five-Step Method
The photograph in Figure 25.24 shows some colorful soap bubbles. The 
beautiful colors of the bubbles are caused by thin-film interference, 
interference between light reflecting from the outer surface of a soap 
bubble and light reflecting from the inner surface of the bubble. The colors 
we see are directly related to the thickness of the bubble wall. The basic 
process of thin-film interference is illustrated in Figure 25.25.

 Note that, in Figure 25.25, the wave that reflects off the bottom surface of the film travels 
a total extra distance of 2 wavelengths, compared to the wave that reflects off the film’s top 
surface. What kind of interference occurs between the two reflected waves? As we can see from 
Figure 25.25(d), the waves interfere destructively. The extra path length is an integer number of 
wavelengths, but the inversion upon reflection at the top surface introduces a half wavelength 
shift that causes peaks in one reflected wave to align with troughs in the other, and vice versa.
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Figure 25.24: The colors in these soap bubbles are produced by thin-film 
interference - interference between light reflecting from the outer and inner 
surfaces of a bubble. Photo credit: George Horan, from publicdomainpictures.net

Figure 25.25: These successive images are separated in time by one period of the wave. The 
thin film, shown in pink, is characterized by an index of refraction n2. (a) A wave traveling in 
medium 1 is incident on the interface separating media 1 and 2 along the normal to the interface. 
(b) Part of the wave is transmitted into medium 2, while part reflects back into medium 1. The 
reflected wave is shifted to the right for clarity. The thin film happens to be exactly one 
wavelength thick. In general, the wave reflecting from the top surface of the film can be inverted 
upon reflection, or reflect without being inverted. In this case, the reflected wave is inverted 
because n2 > n1. (c) At the interface separating media 2 and 3, the wave is also partly reflected 
and partly transmitted. This reflected wave is shown on the far right of the diagram. In this case, 
the reflected wave is not inverted upon reflection because n3 < n2. (d) The two reflected waves 
interfere with one another in medium 1. By adjusting the thickness of the thin film, this 
interference can be completely constructive, completely destructive, or something in between.

(a) (b) (c) (d)



 Let’s take a systematic approach to analyzing a thin-film situation. The basic idea is to 
determine the effective path-length between the wave reflecting from the top surface of the film 
and the wave reflecting from the bottom surface. For a film of thickness t, and with a wave 
incident along the normal, the effective path-length difference accounts for the extra distance of 
2t traveled by the wave that reflects from the bottom surface of the film, as well as for any 
inversions that occur when a wave reflects from a higher-n medium.

For a wave that does get inverted by reflecting from a higher-n medium, we will treat the 
inversion as an extra half-wavelength contribution to the wave’s path-length. We do this because 
for a sine wave, inverting the wave is equivalent to shifting the wave by half a wavelength. 
However, a general thin-film situation involves three different media, and hence three different 
wavelengths! Which wavelength is it that matters? The wave that reflects from the bottom surface 
of the film is the one that travels the extra distance. Because the extra distance traveled is in the 
thin film, the wavelength that matters is the wavelength in the thin film. It is helpful to remember 
the relationship between the wavelength in the film and the wavelength in vacuum:

. (Eq. 25.8: An expression for the wavelength of light in the thin film)

The Five-Step Method for analyzing thin films
Our approach will assume that the wave starts in medium 1, and is normally incident on a thin 
film (medium 2) of thickness t that is on a third medium (medium 3), as shown in Figure 25.25.

Step 1 – Determine Δt, the shift for the wave reflecting from the top surface of the film. This 
contribution to the path length is non-zero only if the wave is inverted upon reflection. If n2 > n1, 
Δt = λfilm / 2. If n2 < n1, Δt = 0.

Step 2 – Determine Δb, the shift for the wave reflecting from the bottom surface of the film. 
This contribution to the path length is at least 2t, because that wave travels an extra distance t 
down through the film, and t back up through the film. There is an extra half-wavelength 
contribution if the wave is inverted upon reflection. If n3 > n2, Δb = 2t + λfilm / 2. If n3 < n2, Δb = 2t.

Step 3 – Determine Δ, the effective path-length difference. Simply subtract the results from the 
previous steps to find the relative shift between the two waves. Δ = Δb – Δt .

Step 4 – Bring in the interference condition appropriate to the situation. If the interference is 
constructive, such as when we see a particular color reflecting from the thin film, we set the 
effective path-length difference equal to an integer number of wavelengths (Δ = mλfilm, where m is 
an integer). If the interference is destructive, Δ = (m+0.5) λfilm.

Step 5 – Solve the resulting equation. In general, the equation relates the thickness of the thin 
film to the wavelength of the light.

Related End-of-Chapter Exercises: 24 – 28.

Essential Question 25.6: Fill in Table 25.2, 
which summarizes the various possibilities for 
what Δt and Δb can be.
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n2 > n1 n2 < n1

n3 > n2

Δt =
Δb = 

Δt =
Δb =

n3 < n2

Δt =
Δb =

Δt =
Δb =

Table 25.2: A table for summarizing 
the various results for Δt and Δb.



Answer to Essential Question 25.6: The shift for 
the wave reflecting from the top surface, Δt, 
depends on how n2 compares to n1. The shift for 
the wave reflecting from the bottom surface, Δb, 
depends on how n3 compares to n2.

25-7 Applying the Five-Step Method

EXPLORATION 25.7 – Designing a non-reflecting coating
High-quality lenses, such as those for binoculars or cameras, are often 
coated with a thin non-reflecting coating to maximize the amount of 
light getting through the lens. We can apply thin-film ideas to 
understand how such a lens works. Explaining why such lenses 
generally look purple will also be part of our analysis. In this 
example, we will assume light is traveling through air before it 
encounters the non-reflective coating (n = 1.32) that is on top of 
the glass (n = 1.52). Figure 25.26 shows the arrangement. The 
coating is completely non-reflective for just one wavelength, so 
we will design it to be non-reflective for light with a 
wavelength in vacuum of 528 nm, which is close to the middle 
of the visible spectrum.

Step 1 – Determine Δt , the shift for the wave reflecting from the air-coating interface. Because 
the coating has a higher index of refraction than the air, this wave is inverted upon reflection, 
giving Δt = λfilm/2.

Step 2 – Determine Δb , the shift for the wave reflecting from the coating-glass interface. The 
glass has a higher index of refraction than the coating, so this wave is also inverted upon 
reflection. For a coating of thickness t, Δb = 2t + (λfilm/2).

Step 3 – Determine Δ, the effective path-length difference.  Δ = Δb – Δt = 2t.

Step 4 – Bring in the appropriate interference condition.  In this situation, we do not want light 
to reflect from the coating. We can accomplish this by having the reflected waves interfere 
destructively. Setting the effective path-length difference equal to (m + 1/2) wavelengths gives:

   .

Step 5 – Solve for the minimum possible coating thickness. To solve for the smallest possible 
coating thickness, we choose the smallest value of m that makes sense, remembering that m is an 
integer. In this case, m = 0 gives the smallest coating thickness.

 .
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n2 > n1 n2 < n1

n3 > n2

Δt = λfilm/2

Δb = 2t + (λfilm/2)

Δt = 0

Δb = 2t + (λfilm/2)

n3 < n2

Δt = λfilm/2

Δb = 2t

Δt = 0

Δb = 2t
Table 25.3: Summarizing the various 
results for Δt and Δb.

Figure 25.26: The arrangement 
of air (top), coating (middle), 
and glass (bottom) for a typical 
situation of a non-reflective 
coating on a glass lens.



Step 6 – If a 100-nm-thick film produces completely destructive interference for 528 nm green 
light, what kind of interference will it produce for the violet end of the spectrum (400 nm) and 
the red end of the spectrum (700 nm)? Why does this make the lens look purple in reflected 
light? In the coating, 400 nm violet light has a wavelength of 400 nm / 1.32 = 303 nm. Thus, an 
effective path-length difference of 2t = 200 nm shifts one reflected violet wave relative to another 
by 200 nm / 303 nm, a shift of about 2/3 of a wavelength. The interference is partly destructive, 
so some violet light reflects from the coating. For red light of 700 nm, with a wavelength in the 
film of 700 nm / 1.32 = 530 nm, the relative shift is 200 nm / 530 nm = 0.38 wavelengths. Again, 
this produces partly destructive interference, so some red light reflects. When white light shines 
on the film, therefore, almost no green light is reflected, small amounts of yellow and blue are 
reflected, a little more orange and indigo are reflected, and even more red and violet are reflected. 
Thus, the reflected light is dominated by red and violet, which makes the film look purple.

Key ideas: The five-step method can be applied in all thin-film situations, to help us relate the 
film thickness to the wavelength of light.        Related End-of-Chapter Exercises: 31, 32, 54.

EXAMPLE 25.7 – A soap film
A ring is dipped into a soap solution, 
creating a round soap film. (a) When 
the ring is held vertically, explain why 
horizontal bands of color are observed, 
as seen in Figure 25.27(a). (b) As time 
goes by, the film gets progressively 
thinner. Where the film is very thin, no 
light reflects from the film, so it looks 
like the film is not there anymore, as in 
the top right of Figure 25.27(b). Apply 
the first three steps of the five-step 
method to explain why, in the limit that 
the film thickness approaches zero, the 
two reflected waves interfere 
destructively.

SOLUTION
(a) The film thickness is approximately constant at a given height, with that thickness 

corresponding to constructive interference for a particular wavelength (color). Gravity pulls the 
fluid down toward the bottom of the film, so the film thickness decreases as the vertical position 
increases, changing the wavelength (color) associated with a particular height.

(b) The index of refraction of the soap film is essentially that of water (n = 1.33), with the 
film being surrounded by air (n = 1.00). The wave reflecting from the front surface of the film is 
in air, reflecting from the higher-n film, so it experiences a half-wavelength shift: Δt = λfilm/2. The 
wave reflecting from the back surface of the film reflects from a lower-n medium, so the effective 
path-length is simply Δb = 2t, where t is the film thickness. The effective path-length difference is 
therefore Δ = Δb – Δt = 2t - λfilm/2. In the limit that the film thickness t approaches zero, the 
effective path-length difference has a magnitude of half a wavelength. Shifting one wave with 
respect to the other by half a wavelength produces destructive interference, and the interference is 
destructive for all wavelengths, so no light is reflected when the film is very thin.

Related End-of-Chapter Exercises: 10, 12.

Essential Question 25.7: For the situation shown in Exploration 25.7, the non-reflective coating 
on glass, what kind of interference results as the thickness of the coating approaches zero?
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Figure 25.27: (a) A vertical soap film generally has 
horizontal bands. (b) When the film gets very thin, it does 
not reflect any light whatsoever, as is happening at the top 
right of the film in this case. Photo credit: A. Duffy.

(a) (b)



Answer to Essential Question 25.7: Returning to the result of Step 3 in Exploration 25.7, the 
effective path-length difference between the two waves is " = 2t. Thus, in the limit that the 
thickness, t, approaches zero, the effective path-length difference approaches zero and the 
interference is constructive.

Chapter Summary

Essential Idea: Interference and Diffraction.
In many situations, light acts as a wave. In general, waves diffract through narrow openings, and 
waves interfere with one another. Examples of this behavior with light occur when a laser beam is 
incident on one or more narrow openings, when light passes through the pupil of your eye, and 
when light interacts with thin films such as those in soap bubbles.
 
Constructive Interference – from Double Slits to Diffraction Gratings

For a wave of wavelength " that is incident on a number of equally spaced narrow 
openings, where the number of openings is at least two, the angles at which constructive 
interference occurs are given by 

    ,                  (Equation 25.3: constructive interference, for N > 1 sources)
where m is an integer, and d is the distance between neighboring openings.

Destructive Interference – Single and Double Slits
For a wave of wavelength ! that is incident on a single slit of width a, the angles at which 

destructive interference occurs are given by 

    ,                  (Equation 25.5: diffraction minima for a single slit)
where m is an integer, and a is the distance between neighboring openings.

 For a double slit, the interference minima occur at angles given by

    ,       (Equation 25.4: destructive interference, for two sources in phase)
where m is an integer.

Limits imposed by diffraction 
For a circular opening, the angle at which the first zero occurs in a diffraction pattern is given by

,   (Eq. 25.6: The minimum angle between two sources to be resolvable)

where D is the diameter of the opening. This equation can be applied to our own eyes.

Thin-film interference
The colorful patterns exhibited by thin films, such as soap bubbles, can be understood by 
following the five-step method outlined in Section 25.6. Such patterns result from the wave 
reflecting from one surface of the film interfering with the wave reflecting from the other surface 
of the film. A key part of the analysis is accounting for the fact that when waves in one medium 
reflect from a second medium that has a lower index of refraction, the reflected wave is upright, 
while if the second medium has a higher index of refraction, the reflected wave is inverted. This 
inversion upon reflection is like an extra half-wavelength distance traveled by the wave.
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End-of-Chapter Exercises

Exercises 1 – 12 are conceptual questions designed to see whether you understand the main 
concepts in the chapter.

1. Red laser light shines on a double slit, creating a pattern of bright and dark spots on a 
screen some distance away. State whether the following changes, carried out separately, 
would increase, decrease, or produce no change in the distance between the bright spots 
on the screen, and justify each answer. (a) Replace the red laser with a green laser. (b) 
Decrease the spacing between the slits. (c) Decrease the distance between the slits and the 
screen. (d) Immerse the entire apparatus in water.

2. Light of a single wavelength shines onto a double slit. A particular point on the opposite 
side of the double slit from the light source happens to be 1800 nm farther from one slit 
than the other. Assume that the point receives some light from each slit, and that the 
beams arriving at the point from each slit are of equal intensity. For the following 
wavelengths, determine whether the interference at the point is constructive, destructive, 
or something in between. (a) 400 nm violet light, (b) 500 nm green light, (c) 600 nm 
orange light, (d) 700 nm red light. Explain each of your answers.

3. The graph in Figure 25.24 shows 
sin! as a function of wavelength for 
different orders of light. The red 
line corresponds to the first-order 
(m = 1) spectrum. (a) What does the 
blue line correspond to? (b) Copy 
the graph and draw the line 
corresponding to the third-order 
spectrum. (c) What is the largest 
wavelength for which there is a 
third-order spectrum for this 
grating?

4. The pattern in Figure 25.25 
represents the interference pattern set 
up in a room by two speakers (the red 
circles) broadcasting identical single-
frequency sound waves in phase with 
one another. (a) If you walk slowly 
along the line shown in yellow, from 
one end to the other, what will you 
hear? Explain your answer. (b) If the 
wavelength of the sound waves is 
1.5 m, how far apart are the speakers?

5. A red laser shining on something creates the 
pattern shown in Figure 25.26. Is the laser 
shining on a single slit, double slit, or a 
diffraction grating? Explain your answer.
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Figure 25.24: The 
graph shows sin! as a 
function of 
wavelength for 
different orders of 
light shining on a 
diffraction grating. 
For Exercise 3.

Figure 25.25: An 
interference pattern 
set up in a room by 
two speakers 
broadcasting 
identical single-
frequency waves. 
For Exercise 4.

Figure 25.26: The pattern at the center of a screen, 
produced by a red laser beam shining on a single slit, 
a double slit, or a diffraction grating. The distance 
between neighboring tick marks, shown on the screen 
below the pattern, is 8.00 mm. For Exercise 5.

red

blue



6. A beam of white light strikes a glass prism, as 
shown in Figure 25.27(a). The white light is 
made up of only three colors. These are, in 
alphabetical order, green, red, and violet. The 
graph of the index of refraction vs. wavelength 
for the glass is shown below to the right of the 
prism. For each of the three rays labeled (a) – (c) 
on the diagram, label the ray with its color. Use W for 
white, G for green, R for red, and V for violet. (b) 
The prism is now replaced by a diffraction grating 
with a grating spacing of d = 1300 nm. The three 
colors in the beam of white light have, in order of 
increasing wavelength, wavelengths of 400 nm, 500 
nm, and 700 nm. For the seven rays labeled (d) – (j) 
in Figure 25.27(b), label the ray with its color. Use W 
for white, G for green, R for red, and V for violet.

7.  Figure 25.28 shows the m = 0 through m = 2 lines 
that result when green light is incident on a 
diffraction grating. The squares 
on the grid in the figure 
measure 10 cm # 10 cm. The 
horizontal blue line at the top of 
the figure represents a screen, 
which is 1.0 m long and 90 cm 
from the grating. Approximately 
how far from the grating should 
the screen be located so that the 
two second-order green lines 
are just visible at the left and 
right edges of the screen?

8. Two speakers send out identical 
single-frequency sound waves, 
in phase, that have a wavelength 
of 0.80 m. As shown in Figure 
25.29, the speakers are separated by 
3.6 m. Three lines, labeled A through 
C, are also shown in the figure. Line 
A is part of the perpendicular 
bisector of the line connecting the 
two sources. If you were to walk 
along these lines, would you observe 
completely constructive interference, 
completely destructive interference, 
or something else? Answer this 
question for (a) line A, (b) line B, 
and (c) line C. Briefly justify each of 
your answers.
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(a)

(b)

Figure 25.29: 
Three lines 
located near two 
speakers (each 
labeled “source”) 
that are 
broadcasting 
identical single-
frequency sounds, 
for Exercise 8.

Figure 25.28: The m = 0 
through m = 2 lines that 
result when green light 
with a wavelength of 540 
nm is incident on a 
diffraction grating. The 
horizontal line at the top 
represents a screen, which 
is 1.0 m long. The squares 
on the grid measure 10 cm 
# 10 cm. For Exercise 7.

Figure 25.27: (a) A beam of violet, green, and red 
light is incident on a prism. (b) The same beam is 
incident on a diffraction grating. For Exercise 6.



9. Figure 25.30 shows, at the 
top, the pattern resulting 
from light with a wavelength 
of 480 nm passing through 
only one slit of a double slit. 
In the middle of the figure is 
the pattern that would result 
if both slits were illuminated 
and the slits sent out light 
uniformly in all directions. 
At the bottom of the figure 
is the actual pattern 
observed when the light 
illuminates both slits. What 
is the ratio of the distance 
between the slits to the 
width of one of the slits? 

10. Figure 25.31 shows four situations in 
which light is incident perpendicularly 
on a thin film (the middle layer in 
each case). The indices of refraction 
are n1 = 1.50 and n2 = 2.00. In the 
limit that the thickness of the thin film 
approaches zero, determine whether 
the light that reflects from the top and 
bottom surfaces of the film interferes 
constructively or destructively in (a) 
case A, (b) case B, (c) case C, and (d) 
case D.

11. A soap film, surrounded by air, is held vertically so that, 
from top to bottom, its thickness varies from a few nm to a 
few hundred nm. The film is illuminated by white light. 
Which is closer to the top of the film, the location of the 
first band of red light, produced by completely 
constructive thin-film interference, or the first band of 
blue light? Explain.

12.  Figure 25.32 illustrates a phenomenon known 
as Newton’s rings, in which a bull’s–eye pattern 
is created by thin-film interference. The film in 
this case is a thin film of air that is between a 
piece of glass with a spherical surface (such as a 
watch glass) that is placed on top of a flat piece 
of glass. Two possible patterns, one with a dark 
center and one with a bright center, 
are shown in the figure. (a) Which 
pattern would you see when you 
look down on the rings from above, 
and which would you see when you 
look up at them from below? 
Explain. 
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(a)

(b) (c)

Figure 25.30: 
The pattern on a 
screen that results 
from 480 nm 
light illuminating 
a double slit is 
shown at the 
bottom. This 
pattern is a 
combination of 
the single slit 
pattern (top) and 
double source 
pattern (middle). 
For Exercise 9. 

Figure 25.31: Four thin-film situations involving 
different arrangements of the same three media, for 
Exercise 10.

Figure 25.32: The phenomenon of Newton’s rings comes from 
light shining through an object with a spherical surface that 
rests on a flat surface (a). Interference between light reflecting 
from the top surface of the film (between the spherical surface 
and the flat surface) and light reflecting from the bottom surface 
produces a bull’s-eye pattern. Two possible patterns are shown 
in (b) and (c). For Exercise 12.



Exercises 13 – 15 deal with the interference from two sources.

13. Two speakers broadcasting identical single-frequency sound waves, in phase with one 
another, are placed 4.8 m apart. The speed of sound is 340 m/s. You are located at a point 
that is 10.0 m from one speaker, and 8.4 m from the other speaker. What is the lowest 
frequency for which you observe (a) completely constructive interference? (b) completely 
destructive interference?

14. Two speakers broadcasting identical single-frequency 
sound waves, in phase with one another, are placed 6.5 m 
apart. The wavelength of the sound waves is 3.0 m. You 
stand directly in front of the speaker on the left (along the 
dashed line in Figure 25.33), at a distance of 4.5 m from it. 
Your friend than changes the wavelength of the identical 
waves being emitted by the speakers. What are the two 
largest wavelengths that, at your location, result in (a) 
completely constructive interference, and (b) completely 
destructive interference?

15. Two speakers broadcasting identical single-frequency 
sound waves, in phase with one another, are placed 6.5 m 
apart. The wavelength of the sound waves is 3.0 m. You 
stand directly in front of the speaker on the left (along the 
dashed line in Figure 25.33), but some distance from it. 
How far are you from that speaker if the interference at 
your location is (a) completely constructive? (b) completely 
destructive? Find all the possible answers in each case.

Exercises 16 – 18 involve double slits and diffraction gratings.

16. When the beam of a red laser is incident on a particular diffraction grating, the m = 1 
bright fringe is observed at an angle of 28.0°. At what angle is 
the (b) m = 2 bright fringe, and (c) the m = 3 bright fringe?

17. Light with a wavelength of 540 nm shines on two narrow slits 
that are 4.40 µm apart. At what angle does the fifth dark spot 
occur on a screen on the far side of the slits from the light 
source?

18. Laser light shines onto a diffraction grating, creating the 
pattern of bright lines shown in Figure 25.34. The lines strike 
a screen (in blue in the figure) that is a distance L away from 
the grating, creating some bright spots on the screen. The 
distance between the central spot and the mth bright spot to 
either side is denoted ym. (a) What is the relationship between 
!m (the angle between the mth bright line and the m = 0 line) 
and ym? (b) Show that, in the limit that !m is small, ym is given 

by .
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Figure 25.33: Two speakers 
broadcasting identical single-
frequency waves, for 
Exercises 14 and 15.

Figure 25.34: Single-
frequency light shining on a 
double slit, for Exercise 18.



Exercises 19 – 23 involve single slits and diffraction by circular openings.

19. Light of a particular wavelength is incident on a single slit that has a width of 2.00 µm. If 
the second zero in the diffraction pattern occurs at an angle of 30°, what is the 
wavelength of the light?

20. The label on a green laser pointer states that the wavelength of the laser is 532 nm. You 
shine the laser into an aquarium filled with water, with an index of refraction of 1.33, and 
onto a single slit (in the water) that has a width of 1.60 µm. At what angle is the first zero 
in the diffraction pattern?

21. Light with a wavelength of 600 nm shines onto a single slit, and the diffraction pattern is 
observed on a screen 2.5 m away from the slit. The distance, on the screen, between the 
dark spots to either side of the central maximum in the pattern is 25 mm. (a) What is the 
distance between the same dark spots when the screen is moved so it is only 1.5 m from 
the slit? (b) What is the width of the slit?

22. On a dark night, you watch a car drive away from you on a long straight road. If the car’s 
red tail lights are LED’s emitting a wavelength of 640 nm, the distance between the lights 
is 1.50 m, and your pupils are 6 mm in diameter, what is the maximum distance the car 
can get away from you before the two individual lights look like one light to you?

23. A spy satellite takes in light through a circular opening 2.0 m in diameter. (a) If the 
wavelength of the light is 540 nm, and the satellite is 250 km above the ground, how 
close together can two small objects be on the ground for the satellite to be able to 
resolve them? (b) If the pupils in your eyes are 4.0 mm in diameter, how far above the 
ground would you be to achieve the same resolution as the satellite?

Exercises 24 – 28 are designed to give you practice with applying the five-step method for 
thin-film interference. For each of these problems, carry out the following steps. (a) Determine 
"t, the shift for the wave reflecting from the top surface of the film. (b) Determine "b, the shift for 
the wave reflecting from the bottom surface of the film. (c) Determine ", the effective path-length 
difference. (d) Bring in the interference condition appropriate to the situation. (e) Solve the 
resulting equation to solve the problem.

24. When you shine red light, with a wavelength of 640 nm, straight down through air onto a 
thin film of oil that coats a water surface, the film looks dark because of destructive 
interference. The index of refraction of the oil is 1.60, while that of water is 1.33. The 
goal of the problem is to determine the smallest non-zero film thickness. Carry out the 
five-step method as outlined above.

25. A ring is dipped into a soap solution, resulting in a circular soap film in the ring. When 
the plane of the ring is horizontal, the film looks green to you when you look straight 
down onto the film from above. The soap film is surrounded on both sides by air, and the 
index of refraction of the film is that of water, 1.33. If the film thickness is such that it 
produces completely constructive interference for green light with a wavelength, in 
vacuum, of 532 nm, what is the minimum non-zero thickness of the film? Carry out the 
five-step method, as outlined above, to solve the problem.
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26. A thin film of glass, with an index of refraction of 1.5, 
is used to coat diamond, which has an index of 
refraction of 2.4. The thickness of the thin film is 200 
nm. Light, traveling through air, shines down along the 
normal to the film, as shown in Figure 25.35. If we 
define the visible spectrum as extending from 400 nm 
to 700 nm (measured in air), for which wavelength in 
the visible spectrum (measured in air) does the film 
produce completely constructive interference? Carry 
out the five-step method, as outlined above, to solve 
the problem.

  
27. Return to the situation shown in Figure 25.35 and described in Exercise 26. Now 

determine for which wavelength in the visible spectrum (measured in air) the film 
produces completely destructive interference. Carry out the five-step method, as outlined 
above, to solve the problem.

28. A thin film with an index of refraction of 1.70 is used as a non-reflective coating on a 
glass lens that has an index of refraction of 1.50. What are the three smallest non-zero 
thicknesses of the film that will produce completely destructive interference for light that 
has a wavelength of 510 nm in vacuum? Assume the light is traveling in air before 
encountering the film, and that it strikes the film at normal incidence. Carry out the five-
step method, as outlined above, to solve the problem.

Exercises 29 – 33 involve practical applications of the interference of light. 

29. Understanding a particular spectrum is important in many areas of science, including 
physics and chemistry, where it can be used to identify a gas, for instance. To create a 
spectrum, light is generally sent through a diffraction grating, splitting the light into the 
various wavelengths that make it up. (a) The first step in the process is to calibrate the 
grating, so we know the grating spacing. Sodium has two yellow lines that are very close 
together in wavelength at 590 nm. When light from a sodium source is passed through a 
particular diffraction grating, the two yellow lines overlap, looking like one line at an 
angle of 33.7° in the first-order spectrum. What is the grating spacing? (b) The hydrogen 
atom is the simplest atom there is, consisting of one electron and one proton, and it has 
thus been well studied. When hydrogen gas is excited by means of a high voltage, three 
of the prominent lines in the spectrum are found at wavelengths of 658 nm, 487 nm, and 
435 nm. When the light is passed through the diffraction grating we calibrated with 
sodium, at what angles will these three lines appear in the first-order spectrum? Scientists 
observing these lines can be confident that the source of the light contains hydrogen.

30. Return to the situation described in Exercise 29. Another application of spectra produced 
by a diffraction grating is in astrophysics, where the Doppler shift of a particular galaxy 
can be measured to determine the velocity of the galaxy with respect to us. (a) If the red 
hydrogen line in the galaxy’s spectrum is observed at 690 nm instead of 658 nm, is the 
galaxy moving toward us or away from us? (b) Recalling that the Doppler equation for 
electromagnetic waves states that the magnitude of the shift in frequency associated with 
relative motion between a source and observer is , determine v, the 
relative speed of the galaxy with respect to us. 
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Figure 25.35: A 200-nm-thick 
film of glass is placed on top of 
diamond. For Exercises 26 and 27.



31. Thin coatings are often applied to materials to protect them. In a particular manufacturing 
process, a company wants to deposit a 200–nm–thick coating onto glass mirrors to 
protect the mirrors during shipping. The coating material has an index of refraction of 
1.30, while that of the glass is 1.53. White light in air is incident on the film along the 
normal to the surface, and the film looks the color of the wavelength that is experiencing 
completely constructive interference. If the technician observing the coating as it is being 
deposited, and gradually increasing in thickness, views the light reflecting from the 
coating, at which of the following points should the technician stop the deposition 
process? When the reflected light is violet (400 nm), green (520 nm), orange-red 
(612 nm), or none of these?  Explain.

32. As shown in Figure 25.36(a), two flat pieces of glass are 
touching at their left edges, and are separated at their right 
edges by a cylindrical wire. This apparatus can be used to 
determine the diameter of the wire. When the apparatus is 
illuminated from above with yellow light with a wavelength 
of 590 nm, you see the thin-film interference pattern shown 
in Figure 25.36(b) when you look down on the apparatus 
from above. Note that the third dark fringe from the left is 
exactly halfway between the left and right edges of the pieces 
of glass. At the point where the third dark film from the left 
appears, (a) how many wavelengths thick is the 
film, and (b) how thick is the film? (c) How is 
the diameter of the wire related to the answer 
to part (b)? (d) What is the diameter of the 
wire?

33. In a compact disk (CD) player, to read the information on a CD an infrared laser, with a 
wavelength of 780 nm in air, reflects from flat-topped bumps and the flat surroundings 
(known as the land) on the CD. When the laser beam reflects solely from the top of a 
bump, or solely from the land, a significant signal is reflected back. However, when the 
beam is moving from a bump to the land, or vice versa, destructive interference between 
the two parts of the beam, one part which travels a shorter distance than the other, results 
in a low signal. Thus, music can be encoded as a binary (two-state) signal. What is the 
height of the bumps on a CD, if the transparent polycarbonate coating on the CD has an 
index of refraction of 1.55? The bump height is designed to be the smallest needed to 
produce completely destructive interference between waves reflecting from the bumps 
and waves reflecting from the land.

General problems and conceptual questions

34. Christiaan Huygens made a number of important contributions to our understanding of 
the wave nature of light. Do some research about him and his contributions, and write a 
couple of paragraphs about what you find.
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Figure 25.36: (a) A thin film of air is trapped 
between two flat pieces of glass. The pieces 
of glass are in contact at their left edges, and 
are separated at their right edges by a thin 
wire. (b) The interference pattern you observe 
when you look down on the film from above, 
when the film is illuminated from above with 
590-nm light, for Exercise 32.



35. The graph in Figure 25.37 shows sin! 
as a function of wavelength for different  
orders of light. Let’s say that the red 
line corresponds to the first-order (m = 
1) spectrum. At what angle is (a) the 
third-order spot for 500 nm light? (b) 
the fourth-order spot for 400 nm light?

36. The graph in Figure 25.37 shows sin! 
as a function of wavelength for different  
orders of light. What is the grating 
spacing if the red line corresponds to (a) 
the first-order (m = 1) spectrum? (b) the 
fifth-order (m = 5) spectrum?

37. A laser with a wavelength of 600 nm is incident on a pair of narrow slits that are 
separated by a distance of d = 3.00 # 10–5 m. The resulting interference pattern is 
projected onto a screen 2.00 m from the slits. (a) How far is one of the first-order bright 
spots from the central bright spot on the screen (measuring from the center of each spot)? 
Note that for small angles sin$ % tan$. (b) Does the answer change if the entire apparatus 
is immersed in water, which has an index of refraction of 4/3? If so, how does it change?

38. Figure 25.38 shows the m = 0 
through m = 2 lines that result 
when green light with a 
wavelength of 540 nm is 
incident on a diffraction grating. 
Also shown, as dashed lines, are 
the two m = 1 lines for a second 
wavelength. The squares on the 
grid in the figure measure 10 
cm # 10 cm. (a) What is the 
second wavelength? (b) What is 
the grating spacing? (c) Will 
there be m = 3 lines for either 
the green light or the second 
wavelength in this situation? 
Explain.

39. Light with a wavelength of 400 nm shines onto a double slit. A particular point on the far 
side of the double slit from the light source happens to be exactly 6 wavelengths farther 
from one slit than the other. (a) At this particular point, do we expect to see constructive 
interference or destructive interference? (b) For which wavelengths in the visible 
spectrum (400 – 700 nm) will the interference be completely constructive at the point? (c) 
For which wavelengths in the visible spectrum will the interference be completely 
destructive at the point?
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Figure 25.37: The 
graph shows sin! as 
a function of 
wavelength for 
different orders of 
light shining on a 
diffraction grating. 
For Exercises 35 
and 36.

Figure 25.38: The m = 0 
through m = 2 lines that 
result when green light 
with a wavelength of 
540 nm is incident on a 
diffraction grating. The 
two m = 1 lines (dashed 
lines) are for a second 
wavelength. The 
horizontal line at the top 
represents a screen, 
which is 1.0 m long. The 
squares on the grid 
measure 10 cm # 10 cm. 
For Exercise 38.

red

blue



40. Figure 25.39 shows the m = 0 and m = 
1 lines coming from a red laser beam, 
with a wavelength of 632 nm, that 
shines on a diffraction grating. The 
squares in the grid measure 10 cm # 
10 cm. Duplicate the figure, and show 
all the lines resulting from 450 nm 
blue light shining on the same grating.

41. Return to the situation described in 
Exercise 40, and shown in Figure 
25.39. (a) Determine the grating 
spacing. (b) For what range of grating 
spacings would there be three, and 
only three, orders to either side of the 
central maximum with 632 nm red 
light?

42. A red laser, shining on a double slit, creates the pattern 
shown in Figure 25.40 at the center of a screen placed 
2.00 m on the opposite side of the double slit from the 
laser. If the laser wavelength is 632 nm, what is the 
distance between the two slits in the double slit?

 
43. Return to the situation described in Exercise 42, and 

shown in Figure 25.40. When the red laser is replaced by 
a second laser, exactly 5 dots are observed within a 
distance of 24.0 mm at the center of the screen, instead of 
having exactly 7 dots in that distance, as in Figure 25.33. 
What is the wavelength of the second laser?

44. Laser light with a wavelength of 632 nm is incident on a pair of identical slits that are 
5.60 µm apart. (a) If the slits are very narrow, how many bright fringes would you expect 
to see on one side of the central maximum? (b) In the pattern on a screen, you notice that, 
instead of a bright fringe where you expect the fourth bright fringe to be, there is a dark 
spot. The first three bright fringes are where you expect them to be, however. What is the 
width of each slit? (c) Are there any other fringes missing, in addition to the fourth one on 
each side?

45. Repeat Exercise 44, but, this time, use a wavelength of 440 nm.

46. Red light, with a wavelength of 650 nm, is 
incident on a double slit. The resulting 
pattern on the screen 1.2 m behind the 
double slit is shown in Figure 25.41. If the 
slits are 2.40 µm apart, what is the width of 
each of the slits?

47. Light with a wavelength of 440 nm illuminates a double slit. When you shine a second 
beam of light on the double slit, you notice that the 4th-order bright spot for that light 
occurs at the same angle as the 5th-order bright spot for the 440 nm light. (a) What is the 
wavelength of the second beam? (b) If the angle of these beams is 40.0°, what is the 
distance between the two slits in the double slit?
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Figure 25.39: The 
m = 0 and m = 1 
lines that result 
when red light with 
a wavelength of 
632 nm is incident 
on a diffraction 
grating. The 
squares on the grid 
measure 10 cm # 
10 cm. For 
Exercises 40 and 
41. 

Figure 25.40: The pattern of dots 
created on a screen a distance 
2.00 m from a double slit, when a 
red laser shines on the slits. For 
Exercises 42 and 43.

Figure 25.41: The pattern on a screen 
resulting from red light illuminating a double 
slit. For Exercise 46.



48. When light from a red laser, with a wavelength of 632 nm, is incident on a diffraction 
grating, the second-order maximum occurs at an angle of 15.4°. (a) What is d, the grating 
spacing for the diffraction grating? (b) At what angle is the second-order maximum if the 
red laser is replaced by a green laser with a wavelength of 532 nm?

49. Figure 25.42 shows the pattern at the center of a screen, produced 
by a red laser beam shining on either a single slit, a double slit, or 
a diffraction grating. If the laser has a wavelength of 632 nm, and 
the screen is 1.4 m away, determine the width of the single slit (if 
the laser shines on a single slit) or 
the distance between the slits in 
the double slit (if the laser shines 
on a double slit) or the grating 
spacing (if the laser shines on a 
diffraction grating).

50. Figure 25.43 shows a source of sound that is 
located 0.800 m from a wall. The source is emitting 
waves of a single frequency. Point A is located 
some distance from the source, as shown. If the 
speed of sound in air is 340 m/s, find the three 
lowest frequencies that produce, at A, (a) 
completely constructive interference, and (b) 
completely destructive interference.

51. Return to the situation described in Exercise 50, 
and shown in Figure 25.43. If the source is emitting 
the lowest frequency sound wave to produce 
completely destructive interference at point A, what 
is the minimum distance the source can be moved, 
directly toward the wall, so the interference 
becomes completely constructive at A? It is 
acceptable to answer this by approximating that A is a long way from the source.

52. Two speakers send out identical single-
frequency sound waves, in phase, that have a 
wavelength of 0.80 m. As shown in Figure 
25.44, the speakers are separated by 3.6 m. 
Three lines, labeled A through C, are also 
shown in the figure. Line A is part of the 
perpendicular bisector of the line connecting 
the two sources. (a) How many points are there 
along line C at which the interference between 
the waves from the two speakers is completely 
destructive? (b) Relative to the midpoint of line 
C, approximately where are the points of 
destructive interference?
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Figure 25.42: The pattern at the center of a screen, produced 
by a red laser beam shining on a single slit, a double slit, or a 
diffraction grating. The distance between neighboring tick 
marks, shown on the screen below the pattern, is 8.00 mm. 
For Exercise 49.

Figure 25.43: A source of single-
frequency waves is located 0.800 m 
from a wall, for Exercises 50 and 51.

Figure 25.44: Three lines located near two speakers 
(each labeled “source”) that are broadcasting identical 
single-frequency sounds, for Exercise 52.



53.  Figure 25.45 shows four situations in 
which light is incident perpendicularly 
on a thin film (the middle layer in 
each case). The indices of refraction 
are n1 = 1.50 and n2 = 2.00. (a) 
Determine the minimum non-zero 
thickness of the film that results in 
constructive interference for 450 nm 
light (measured in vacuum) that 
reflects from the top and bottom 
surfaces of the film in case C. (b) Does this 
film thickness also produce constructive 
interference for 450 nm light in any of the 
other cases? Explain why or why not.

54. A thin piece of glass with an index of refraction of n2 = 1.50 
is placed on top of a medium that has an index of refraction 
n3 = 2.00, as shown in Figure 25.40. A beam of light 
traveling in air (n1 = 1.00) shines perpendicularly down on 
the glass. The beam contains light of only two colors, blue 
light with a wavelength in air of 450 nm and orange light 
with a wavelength in air of 600 nm. What is the 
minimum non-zero thickness of the glass that gives 
completely constructive interference for (a) the 
blue light reflecting from the film? (b) BOTH the 
blue and orange light simultaneously?

55. Light traveling in air is incident along the normal to a thin film of unknown material that 
sits on a thick piece of glass (n = 1.50). The index of refraction of a typical medium is in 
the range 1.0 – 2.4. Confining ourselves to this range, what is the index of refraction of 
the unknown material if the film is 120 nm thick, and it produces completely destructive 
interference for light, in air, with a wavelength of 540 nm? Find all the possible answers.

56. Sound waves traveling in air encounter a mesh screen. Some of the waves reflect from 
the screen, while the rest pass through and reflect from a wall that is 30.0 cm behind the 
mesh screen. You observe completely destructive interference between the two reflected 
waves when the frequency of the sound waves is 275 Hz. (a) Do the sound waves 
experience an inversion when they reflect from the mesh screen and from the wall? 
Explain. (b) What is the speed of sound in this situation?

57. Return to the situation described in Exercise 56. What are the next two frequencies, 
above 275 Hz, that will also produce completely destructive interference? 

58. It is somewhat ironic that the phenomenon of Newton’s rings (see Exercises 12 and 59), 
which provide evidence for the wave behavior of light, are named after Newton, because 
Sir Isaac Newton was a firm believer in the particle model of light. Do some research on 
Newton’s contributions to optics, and write a couple of paragraphs about it.

59. Figure 25.47 illustrates a phenomenon known as Newton’s rings, in which a bull’s–eye 
pattern is created by thin-film interference. The film in this case is a thin film of air that is 
between a piece of glass with a spherical surface (such as a watch glass) that is placed on 
top of a flat piece of glass. The spherical surface of the top piece of glass has a radius of 
curvature of 500 cm. (a) How many wavelengths of 500 nm light (measured in air) fit in 
the film of air at a point 1.00 cm from the point where the top piece of glass makes 
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Figure 25.45: Four thin-film situations 
involving different arrangements of the 
same three media, for Exercise 53.

Figure 25.46: A thin film of glass on top 
of a medium that has an index of 
refraction of n3 = 2.00. For Exercise 54.



contact with the bottom piece? (b) Would you expect constructive or destructive 
interference to occur at this point? (c) Would your answers change if the air was replaced 
with a fluid with an index of refraction of 1.25? If so, how? Assume that the two pieces of 
glass have indices of refraction of about 1.5.

 
60. A particular metal ruler has thin lines on it every half 

millimeter. As shown in Figure 25.48, laser light is 
incident on the ruler at an angle of # = 4.00° with 
respect to the ruler. (a) For the situation shown in the 
figure, find the relationship between the wavelength of 
the incident light and the angles ($ values) at 
which constructive interference occurs. Use d to 
represent the spacing between the lines on the 
ruler. (b) If the first-order maximum occurs at an 
angle of $ = 4.93°, what is the wavelength of the 
laser light?

61. Three students are working together on a problem 
involving thin-film interference. Comment on the 
part of their conversation that is reported below.

Evan: Do you know the equation for constructive 
interference in a thin-film situation?

Alison: There isn’t one equation that works all the time – it depends on how the 
different indices of refraction compare.

Christian: Here’s one, though, 2t equals m plus a half wavelengths. That’s what we worked 
out in class when we did the soap film.

Evan: Isn’t m plus a half for destructive interference?

Christian: Usually, it is, but with thin films you always get one of the waves flipping upside 
down when it reflects, which is like shifting it half a wavelength.
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(a)

Figure 25.47: The phenomenon of Newton’s rings comes from light shining through an object with 
a spherical surface that rests on a flat surface. Interference between light reflecting from the top 
surface of the film (between the spherical surface and the flat surface) and light reflecting from the 
bottom surface produces a bull’s-eye shaped pattern. For Exercise 59.

Figure 25.48: Laser light is incident on a metal 
ruler. The light is incident at an angle of 4.00°, 
measured from the ruler. After interacting with 
the ruler, the rays of light leaving the ruler 
interfere constructively with one another when 
the rays make an angle $ with the ruler surface. 
The dashed lines on the left and right are 
perpendicular to the incoming and outgoing 
rays, respectively. For Exercise 60.
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