
21-1 Waves
What is a wave? Put simply, a wave is a disturbance 

that carries energy from one place to another. Examples 
include waves on the surface of the ocean, sound waves that 
carry the sound of chirping birds to your ears on a spring 
morning, or the waves shown in Figure 21.1.

There are a number of ways to classify waves. One way is the following:

1. Mechanical waves. These include water waves, sound waves, and waves on strings, 
the kind of waves we will investigate in this chapter. Mechanical waves require a 
medium (such as water, air, or string) through which to travel. There is no net flow of 
mass through the medium, only energy.

2. Electromagnetic waves. Such waves include light, x-rays, microwaves, and radio 
waves. Electromagnetic waves do not need a medium through which to travel, and 
thus can travel through a vacuum. We will investigate electromagnetic waves in detail 
in Chapter 22.

3. Matter waves. These waves are associated with objects we often think of as particles, 
such as electrons and protons. Quantum physics, which we investigate in Chapter 27, 
tells us that everything, including ourselves, exhibits wave-particle duality, 
sometimes acting as a wave and sometimes as a particle.

For this chapter, we will confine ourselves to mechanical waves. Another way to classify 
waves is the following:

1. Transverse waves. In these waves, the particles of the medium oscillate in a direction 
transverse (perpendicular) to the direction the wave travels through the medium. A 
good example of this is a wave on a string, as shown in Figure 21.2. The various 
pieces of the string oscillate up and down, while the wave is traveling to the right.

2. Longitudinal waves. In these waves, the particles of the medium oscillate along the 
same direction in which the wave is traveling. A sound wave is a good example, in 
which air molecules oscillate back and forth along the direction the wave is traveling, 
as is shown in Figure 21.2. The regions of high density (corresponding to higher then 
average pressure) and low density (lower pressure) propagate to the right, while the 
air molecules themselves, on average, oscillate back and forth.

Wavelength and Period
To find the wavelength of a wave, we take a snapshot of the entire wave at one particular 

instant, as is shown in any of the five images of the string in Figure 21.2. The wavelength is the 
distance from, for instance, one peak to the next peak on the displacement versus position graph. 
Our symbol for wavelength is !, the Greek letter lambda. The period, T, of the wave is the 
oscillation period for any particular part of the medium. If we focus on one piece of string, such 
as the piece colored red in Figure 21.2, and plot its displacement from equilibrium as a function 
of time, the period is the time between neighboring peaks on the displacement versus time graph.
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Figure 21.1: Waves caused by a drop of water hitting 
the water surface. Photo credit: PhotoDisc, Inc.



Note that we are focusing on a simple kind of wave, a 
pure sine wave. More complex waves can be built up from sine 
waves of different wavelength, so our analysis can be generalized 
to more complicated waveforms.

The wave travels a distance of one wavelength in a time 
equal to one period. The wave speed is thus the distance over the 
time, . Instead of writing the equation in this form, 
however, we generally use the fact that the frequency, f, of the 
oscillation is the inverse of the period, . This leads to the 
equation in the box below.

Equation 21.1, in the form it is presented above, gives the impression that the wave speed 
is determined by the frequency and wavelength. A better way to write the equation is as:

,                                    (alternate form of Equation 21.1)

because the wave speed is set by the properties of the medium (such as the mass and 
tension of a string), and the frequency of the wave is the frequency of whatever is causing a 
particular part of the medium to oscillate. The wavelength is then determined by the combination 
of speed and frequency, as is given above in the alternate form of Equation 21.1.

Related End-of-Chapter Exercise: 42.

Essential Question 21.1: Which representation above, the graph of displacement versus position 
or the graph of displacement versus time, would you use to find the wave speed?
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In general, the connection between wave speed, frequency, and wavelength is:
 

.                (Equation 21.1: Connecting speed, frequency, and wavelength)

Figure 21.2: The figure shows fives pictures of a string, 
separated by equal time intervals. The string has a transverse 
traveling wave on it. Underneath each picture of the string is a 
representation of a longitudinal wave, such as a sound wave. 
The black lines represent the position of molecules of the 
medium as the wave passes, while the gray lines underneath 
represent the equilibrium position of these molecules. If time 
increases down the page, the waves are traveling to the right. 
If time increases up the page, the motion is to the left.

Figure 21.3: A plot of the displacement vs. time for the point 
on the string that is marked with a dot in Figure 21.2. The 
shaded region represents the time period covered by the five 
pictures in Figure 21.2.



Answer to Essential Question 21.1: Both representations are needed. The wavelength is found 
from the graph of displacement versus position, while the period is found from the graph of 
displacement versus time. Both the wavelength and the period are needed to find the wave speed.

21-2 The Connection with Simple Harmonic Motion

Consider a single frequency transverse 
wave, like the one shown in Figure 21.4. There 
is clearly a connection between this wave and 
simple harmonic motion, because each part of 
the string experiences simple harmonic motion. 
Thus, for each part of the string we can use an 
equation like we used to describe simple 
harmonic motion, y = A cos("t) or y = A sin("t). 
These equations are good starting points, but 
they are not sufficient to describe what every 
point on the string is doing. For instance, at t = 
0, the equation y = A cos("t) gives y = +A, and 
only three pieces of the string, marked with dots, 
have y = +A.

Every point on the string does reach 
y = +A, but not at t = 0. For a given point, 
therefore, we can introduce something called a 
phase angle, #, so the equation reflects the 
position (and the direction of the velocity) of the 
point at t = 0. Thus, each point has an equation 
of the form y = A cos("t+ #), with every point 
having a unique #. Having a different equation 
to describe every point works, but it is 
cumbersome. Let’s see if we can be more 
efficient in describing the wave mathematically.

First, consider a point on the string just 
to the right of the left-most point. A point just to 
the right of the left-most point does exactly what 
the left-most point does, just at a slightly later 
time. Thus, # for that point is a small negative 
number, reflecting the small delay in the motion 
compared to the left-most point. Figure 21.5 
shows graphs of the displacement versus time 
for two different sets of points, one set that is at 
y = +A in the top picture, and the other set which 
is at y = 0, but moving in the positive y-
direction, in the top picture. Note that the motion 
for the second set of points is delayed compared to the 
first, with a delay proportional to the distance between 
the points.
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Figure 21.4: This figure, like Figure 21.2, shows 
fives pictures of a string, separated by equal time 
intervals. Time increases down the page, so the 
wave is traveling to the right.



As x increases, the delay increases, and we find that the phase angle is, in fact, 
proportional to x, the distance of a point from the left- most point. Thus, we can say that, in the 
case of a wave traveling in the positive x-direction,  # = -kx, where k is some constant. 

If we can identify what the constant k is, we will be finished with our mathematical 
description. Let’s focus now on the point exactly one wavelength to the right of the left-most 
point. These two points are in phase with one another, which means that whatever one of them 
does, the other does at the same time. Thus, the equation y = A cos("t), for the left-most point (at 
x = 0), must agree with the equation for the second point, y = A cos("t - k!), at x = !. Changing 
the value inside a cosine by a multiple of 2! produces the same result, and because this point is 
the first point to the right of x = 0 that is in phase with the point at x = 0, we must have k! = 2!.

The constant k is known as the wave number, and is given by:

.    (Equation 21.2: the wave number)

 The wave number is, in some sense, the spatial equivalent of the angular frequency. The 
angular frequency is given by:

.    (Equation 21.3: the angular frequency)

Note that we now have a single equation that describes the wave. The equation tells us 
the displacement from equilibrium of each point in the medium at any value of t we might be 
interested in. 

 ,  (Equation 21.4: Equation of motion for a transverse wave)

where the plus sign is used when the wave is traveling in the negative x-direction, and 
the minus sign is used when the wave is traveling in the positive x-direction.

  
Related End-of-Chapter Exercises: 13, 17, 18, 41.

Essential Question 21.2: In a particular case, the equation of motion of a transverse wave is:
.

Determine the displacement of a point at x = 2.0 m at (a) t = 0, and (b) t = 2.5 s.
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Figure 21.5: Graphs of the 
displacement versus time for two 
sets of points, one set initially at y = 
+A, and the other set initially at y = 0 
and moving in the +y direction.



Answer to Essential Question 21.2: (a) When t = 0, the equation gives, at x = 2.0 m, 
, because the cosine of an even multiple of pi is +1.0. 

Note that if you work this out on a calculator, your calculator needs to be in radians mode. 
(b) If t = 2.5 s, the equation gives: 

, because the cosine of 

(n + 0.5)! is always 0. Again, keep your calculator in radians mode to get this answer from your 
calculator.

21-3 Frequency, Speed, and Wavelength
 The speed of a wave depends on the medium the wave is traveling through. If the 

medium does not change as a wave travels, the wave speed is constant.

As we discussed in section 21-1, in one period, the wave travels one wavelength. Speed is 
distance over time, so v = ! / T. The frequency, f, is 1/T, so the equation relating wave speed, 
frequency, and wavelength is v = f ! .   

This equation (Equation 21.1), in this form, makes it look like speed is determined by 
frequency and wavelength, but this is not the case – the speed is determined by the medium. A 
good example is the speed of a wave on a stretched string. For a string with a tension FT, a mass 
m, and a length L, the speed is given by:

 ,      (Eq. 21.5: The speed of a wave on a string)

where µ = m / L is the string’s mass per unit length.

In general, then, the speed is determined by the medium, the frequency is determined by 
whatever is producing the wave (such as you, shaking the end of a string back and forth), and the 
wavelength is determined by Equation 21.1, through the combination of the speed and frequency.

An exception to this rule of thumb is a wave produced by a typical musical instrument. 
As we will discuss in more detail at the end of the chapter, when you play an instrument you 
excite a number of frequencies. The size of the instrument (such as the length of a guitar string) 
then determines the wavelengths of the particular frequencies that are favored. Thus, on a musical 
instrument, the length of the instrument determines the wavelength, the wave speed is again 
determined by the properties of the medium, and the combination of the wavelength and speed 
determines the frequency of the wave.

EXAMPLE 21.3 – Using the equation of motion for a transverse wave
 The general equation for a wave traveling on a string is . In a 

particular case, the equation is . Determine:

(a) the wave’s amplitude, wavelength, and frequency.
(b) the speed of the wave.
(c) the tension in the string, if the string has a mass per unit length of 0.048 kg/m.
(d) the direction of propagation of the wave.
(e) the maximum transverse speed of a point on the string.
(f) What is the displacement of a point at x = 2.0 m when t = 1.0 s?

Chapter 21 – Waves and Sound  Page 21 - 6



SOLUTION
(a) The amplitude of the wave is the A in the equation, which is whatever is multiplying 

the cosine. In this particular case, the amplitude is 8.0 cm.

The value of k is whatever is multiplying the x, which is 0.50 rad/m. k is proportional to 
the inverse of the wavelength, with the wavelength given by ! = 2! /(0.50 m-1) = 4! m. Note that 
we can put in or take out the unit of radians whenever we find it to be convenient. 

The value of " is whatever is multiplying the t, which is 60 rad/s. The frequency, f, is 
related to the angular frequency, ", by a factor of 2!:

 .

(b) The speed of the wave can be found from the frequency and wavelength:

.

(c) The tension in the string can be found by applying equation 21.5. Solving for tension 
gives: 

.

(d) In the equation describing the wave, the sign of the x-term is positive. This means that 
the more positive the x value, the sooner the wave reaches that point, so the wave is traveling in 
the negative x-direction.

(e) What does “maximum transverse speed” mean? It means the maximum y-direction 
speed of a point on the string. Any point can be used, because every point experiences the same 
motion, just at different times. To answer the question, remember that every point on the string is 
experiencing simple harmonic motion. Thus, this is really a harmonic motion question, not a 
wave question. Returning to what we learned in chapter 12, the maximum speed of a particle 
experiencing simple harmonic motion is:

.

 (f) We can enter the values of x and t right into the equation, giving:

Don’t forget to put your calculator into radians mode when you do this calculation.

Related End-of-Chapter Exercises: 14, 15, 40.

Essential Question 21.3: Return to Example 21.3. If the wave’s equation of motion was 
unchanged except for a doubling of the angular frequency, which of the answers in Example 21.3 
would change, and how would they change?
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Answer to Essential Question 21.3: Doubling the angular frequency, ", causes the frequency to 
double in part (a). This, in turn, means that that wave speed must double, in part (b). In part (c), 
the tension is proportional to the square of the speed, so the tension is increased by a factor of 4. 
In part (e), the maximum transverse speed is proportional to ", so the maximum transverse speed 
doubles. Finally, in part (f) we get a completely different value, y = – 0.39 cm.

21-4 Sound and Sound Intensity
 One way to produce a sound wave in air is to use a speaker. The surface of the speaker 

vibrates back and forth, creating areas of high and low density (corresponding to pressure a little 
higher than, and a little lower than, standard atmospheric pressure, respectively) in the region of 
air next to the speaker. These regions of high and low pressure (the sound wave) travel away from 
the speaker at the speed of sound. The air molecules, on average, 
just vibrate back and forth as the pressure wave travels through 
them. In fact, it is through the collisions of air molecules that the 
sound wave is propagated. Because air molecules are not coupled 
together, the sound wave travels through gas at a relatively low 
speed (for sound!) of around 340 m/s. As Table 21.1 shows, the 
speed of sound in air increases with temperature.

For other material, such as liquids or solids, in which there 
is more coupling between neighboring molecules, vibrations of the 
atoms and molecules (that is, sound waves) generally travel more 
quickly than they do in gases. This also is shown in Table 21.1.

Our ears can typically hear sounds with frequencies that lie between 20 Hz and 20 kHz, 
although the maximum frequency we are sensitive to tends to decrease with age (not to mention 
with prolonged exposure to high-intensity sound, such as loud music). We are typically most 
sensitive to sound waves that have frequencies near 2000 Hz, and considerably less sensitive to 
sounds at the extremes of our frequency range.

Other animals are sensitive to sounds outside of the human range. Elephants, for instance, 
communicate using sounds below 20 Hz. Because these sounds are not audible to humans, it took 
scientists quite a while to realize that elephants communicate with one another more than was 
first thought. Beyond the upper end of the human range, above 20 kHz, we classify sound as 
ultrasound. Dogs, bats, dolphins, and other animals can hear sounds in this range. Ultrasound 
also has important medical applications, such as in the imaging of a developing fetus in the 
womb. High-frequency sound waves traveling through the mother’s body reflect differently from 
bone versus tissue, with the pattern of the reflected waves allowing an image to be formed.

Sound intensity

The intensity of a wave is defined to be its power per unit area: I = P/A. 

For a source broadcasting uniformly in all directions, the wave spreads out like an 
inflating sphere, so the area in question is the surface area of a sphere.

.   (Eq. 21.6: Intensity for a source broadcasting uniformly in all directions)
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Medium Speed of sound
Air (0°C) 331 m/s

Air (20°C) 343 m/s
Helium 965 m/s
Water 1400 m/s
Steel 5940 m/s

Aluminum 6420 m/s
Table 21.1: Values of the speed of 
sound through various media.



The sound intensity is proportional to the inverse square of the distance from the source. 
If the distance is doubled, for instance, the sound intensity decreases by a factor of four. 
Interestingly, a decrease in sound intensity by a factor of 4 is not perceived as such by the ear-
brain system. The ear, in fact, responds logarithmically to sound intensity, and so we use a 
logarithmic scale for sound that is much like the Richter scale for earthquakes. Just as an 
earthquake measuring 7.0 on the Richter scale is 10 times more powerful than a quake measuring 
6.0, and 100 times more powerful than an earthquake measuring 5.0, a 70 decibel (dB) sound has 
10 times the power of a 60 dB sound, and 100 times the power of a 50 dB sound. Every 10 dB 
represents a change of one order of magnitude in intensity, no matter what the initial intensity is.

For the human ear, the smallest sound intensity that is audible has been determined to 
correspond to a sound intensity of about I0 = 1 " 10-12 W/m2. This value is known as the 
threshold of hearing. On the decibel scale, sounds are viewed in terms of how their intensity 
compares to the threshold of hearing.

, (Equation 21.7: Absolute sound intensity level, in decibels)

where the equation involves the log in base 10. An interesting reference point on the 
decibel scale is the threshold of pain, the most intense sound an average person can tolerate, 
which is 120 dB. Substituting 120 dB into equation 21.6, we find that, for the threshold of pain,

, so .

To solve the equation for I, the sound intensity corresponding to the threshold of pain, we 
do 10 to the power of each side of the equation. 10x is the inverse function of log(x), so:

.

Thus, the intensity of the threshold of pain is 12 orders of magnitude larger than the 
threshold of hearing, or 1 W/m2. The most amazing thing about this, however, is what this result 
tells us about the human ear. The human ear is an incredible instrument, allowing us to hear 
sounds covering 12 orders of magnitude – that’s a factor of 1 trillion.

One convenient feature of the logarithmic scale is that an increase of X decibels 
corresponds to an increase by a particular factor in intensity, no matter where you start from. This 
is reflected in the following equation:

. (Equation 21.8: Relative sound intensity level, in decibels)

Related End-of-Chapter Exercises: 18 – 22, 39.

Essential Question 21.4: If a sound intensity level increases by 5 dB, by what factor does the 
intensity increase?
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Answer to Essential Question 21.4: If a sound’s intensity level increases by 5 dB, equation 21.7 

tells us that: , which gives a ratio of final to initial intensity of 100.5 = 3.2. In other 

words, every 5 dB increase corresponds to increasing the sound intensity by a factor of 3.2.

21-5 The Doppler Effect for Sound
 We have probably all had the experience of listening to the siren on an emergency 

vehicle as it approaches us, and hearing a shift in the frequency of the sound when the vehicle 
passes us. This shift in frequency is known as the Doppler effect, and it occurs whenever the 
wave source or the detector of the wave (your ear, for instance) is moving relative to the medium 
the wave is traveling in. Applications of the Doppler effect for sound include Doppler ultrasound, 
a diagnostic tool used to study blood flow in the heart. There is a related but slightly different 
Doppler effect for electromagnetic waves, which we will investigate in the next chapter, that has 
applications in astronomy as well as in police radar systems to measure the speed of a car.

 
EXPLORATION 21.5 – Understanding the Doppler effect

Let’s explore the principles behind the Doppler effect. We will begin by looking at the 
situation of a stationary source of sound, and a moving observer.

Step 1 – Construct a diagram showing waves expanding spherically from a stationary source 
that is broadcasting sound waves of a single frequency. If you, the observer, remain stationary, 
you hear sound of the same frequency as that emitted by the source. Use your diagram to help 
you explain whether the frequency you hear when you move toward the source, or away from 
the source, is higher or lower than the frequency emitted by the source.  

 We can represent the expanding waves as a set of 
concentric circles centered on the stationary source, as in Figure 
21.6. This picture shows a snapshot of the waves at one instant in 
time, but remember that the waves are expanding outward from 
the source at the speed of sound. If you are stationary at position 
A, the waves wash over you at the same frequency as they were 
emitted. If you are at position A but moving toward the source, 
however, the frequency you observe increases, because you 
are moving toward the oncoming waves. Conversely, if you 
move away from the source (and you are traveling at a speed 
less than the speed of sound), you observe a lower frequency 
as you try to out-run the waves. 

Step 2 – Starting with the usual relationship connecting frequency, speed, and wavelength, 
f = v / !, think about whether the observer moving toward or away from a stationary source 
effectively changes the wave speed or the wavelength. If the speed of sound is v and the 
observer’s speed is vo, write an equation for the frequency heard by the observer.  As we can see 
from the pattern in Figure 21.6 above, the wavelength has not changed. What changes, when you 
move through the pattern of waves, is the speed of the waves with respect to you. When you 
move toward the source, the effective speed of the waves (the relative speed of the waves with 
respect to you) is v + vo, while when you move away from the source the wave speed is 
effectively v – vo. The frequency you observe, f$, is thus the effective speed over the wavelength:
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Figure 21.6: Waves emitted by a stationary 
source expand out away from the source, 
giving a pattern of concentric circles centered 
on the source. You, the observer, are at point 
A. If you are moving, the frequency of the 
waves you receive depends on both your 
speed and the direction of your motion.



, (Eq. 21.9: Frequency for a moving observer)

where f is the frequency emitted by the source, and where we use the + sign when the 
observer moves toward the source, and the – sign when the observer moves away from the 
source.

 
Step 3 – Construct a diagram showing waves expanding from a source that is moving to the 
right at half the speed of sound while broadcasting sound waves of a single frequency. Use 
your diagram to help you explain whether the frequency you hear when you are stationary is 
higher or lower than that emitted by the source, when the source is moving toward you and 
when the source is moving away from you. 

 In this situation, the result is quite different 
from that in Figure 21.6, because each wave is centered 
on the position of the source at the instant the wave was 
emitted. Because the waves are emitted at different 
times, and the source is moving, we get the picture 
shown in Figure 21.7. To the left of the source, such as 
at point B, the waves are more spread out. Thus, 
when the source is moving away from the observer, 
the observed frequency is less than the emitted 
frequency. The reverse is true for a point to the right  
of the source: the waves are closer together than 
usual, so an observer in this region (such as at point 
A) observes a greater frequency than the emitted 
frequency.

Step 4 – Starting with the usual relationship connecting frequency, speed, and wavelength, 
f = v / !, think about whether the source moving toward or away from a stationary observer 
effectively changes the wave speed or the wavelength. If the speed of sound is v and the 
source’s speed is vs, write an equation for the frequency heard by the observer.  As we can see 
from the pattern in Figure 21.7, the movement of the source changes the wavelength. The waves 
still travel at the speed of sound, however. What changes, when you move through the pattern of 
waves, is the speed of the waves with respect to you. When the source moves toward the 
observer, the effective wavelength is (v – vs)/f, while when the source moves away the wavelength 
is effectively (v +vs)/f. The frequency you observe, f$, is thus the speed over the effective 
wavelength:

,  (Eq. 21.10: Frequency for a moving source)

where f is the frequency emitted by the source. Use the – sign when the source moves 
toward the observer, and the + sign when the source moves away from the observer.

Key idea for the Doppler effect: Motion of a source of sound, or motion of an observer, can 
cause a shift in the observed frequency of a wave.  Related End-of-Chapter Exercises: 23, 24.

Essential Question 21.5: Is the Doppler effect simply a relative velocity phenomenon? For 
instance, is the situation of an observer moving at speed v1 toward a stationary source the same as 
a source moving at speed v1 toward a stationary observer? 
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Figure 21.7: When a source of waves is moving 
relative to the medium, the wave pattern is 
asymmetric. An observer for which the source moves 
away observes a lower-frequency wave, while, when 
the source is moving toward the observer, a higher-
frequency wave is observed. In the case shown, the 
source is moving to the right at half the wave speed.



Answer to Essential Question 21.5: The Doppler effect for sound (and for all mechanical waves) 
is not a relative velocity phenomenon. The relative velocity of the source and observer is the 
same in these two situations, but the observed frequency is different in the two situations. One 
interesting example is when  v1 = v, the wave speed. When the observer moves at speed v toward 
a stationary source, the observed frequency is twice the emitted frequency. When the source 
moves at a speed v toward a stationary observer, however, the observed frequency is infinite. We 
will investigate that situation further in the next section.

21-6 Sonic Booms, and the Doppler Effect in General
Essential Question 21.5 raises the question of what 

happens when a source of waves travels at the wave speed. We 
should also consider what happens when the source travels faster 
than the wave speed.

Let’s begin by drawing a diagram like that in Figure 
21.7, but with the source traveling to the right at the wave speed. 
In this special case, in Figure 21.8, because the source keeps up 
with the waves, the waves pile up at the source, leading to 
a large amplitude wave that moves with the source. This is 
known as a sonic boom, because a large amplitude 
corresponds to a loud sound. The observer at position A 
would hear the sonic boom when the source passed by.

Let’s go further, and see what the picture looks like when 
the source travels faster than the waves. Figure 21.9 shows what 
happens when the source travels to the right at twice the wave 
speed. In this case, the waves pile up along lines that make an 
angle with the line of travel of the source. This pattern should 
look familiar to you, given that it looks like the waves left behind 
by a boat as it travels through water, as in the photograph in 
Figure 21.10. This tells us that the boat’s speed is faster than the 
speed of the water waves.

In section 21-5, we considered 
what happens when either the 
source moves or the observer 
moves, but not both. Let’s now 
consider what happens in general, 
when both the source of a wave and 
the observer are moving with 
respect to the medium the waves 
are moving through. The general 
equation is simply a combination of 
the equations we derived in section 
21-5 for the situations of a moving 
observer and a moving source.
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Figure 21.8: When the source moves at the 
wave speed, the waves pile up on one 
another at the source, creating a sonic boom.

Figure 21.9: When the source 
moves faster than the waves, the 
waves create a wake pattern. 

Figure 21.10: A common example of the situation of a source of waves traveling faster through 
the medium than the waves themselves is in the wake created when a boat passes through water 
(here, the Avon Gorge in England). Photo credit: public-domain photo taken by Adrian Pingstone.



EXAMPLE 21.6 – Catching a moth
A particular bat emits ultrasonic waves with a frequency of 56.0 kHz. The bat is flying at 

16.00 m/s toward a moth, which is moving at 2.00 m/s away from the bat. The speed of sound is 
340.00 m/s. (a) Assuming the moth could detect the waves, what frequency waves would it 
observe? (b) The waves reflect off the moth and are detected by the bat. What frequency are the 
waves detected by the bat?

SOLUTION
(a) Here, we use the general Doppler equation, where f = 56.0 kHz and v = 340 m/s. The 

observer is the moth, so vo is 2.00 m/s, and we use the bottom sign (the minus sign) in the 
numerator because the moth is traveling away from the bat. The bat is the source, so vs = 16.00 m/
s, and we use the top sign (the minus sign) in the denominator because the bat is traveling toward 
the moth. This gives:

(b) Again, we use the general Doppler equation. This time, the moth acts as the source 
(because the moth reflects the waves back to the bat) and the bat is the observer. The frequency 
emitted by the moth is the frequency we found in part (a). Let’s use f ′′ to denote the frequency of 
the waves detected by the bat, so f ′ = 58.42 kHz and v = 340 m/s. The observer is the bat, so vo′ is 
16.00 m/s, and we use the top sign (the plus sign) in the numerator because the bat is traveling 
toward the moth. The moth is the source, so vs′ = 2.00 m/s, and we use the bottom sign (the plus 
sign) in the denominator because the moth is traveling away from the bat. This gives:

 The bat can use the frequency of the detected wave to determine how fast, and in what 
direction, the moth is flying.

Related End-of-Chapter Exercises: 25 – 27, 46 – 48.

Essential Question 21.6: What happens when a source and observer have identical velocities? Is 
the observed frequency larger, smaller, or the same as the frequency emitted by the source?
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The Doppler effect: The Doppler effect describes the shift in frequency of a wave that occurs when 
the source of the waves, and/or the observer of the waves, moves with respect to the medium the 
waves are traveling through. The general equation for the observed frequency is:

,              (Equation 21.11: The general Doppler equation)       

where f ′ is the frequency observed by the observer, f is the frequency of the waves emitted 
by the source, v is the speed of the wave through the medium, vo is the speed of the observer, and vs 
is the speed of the source. In the numerator, use the top (+) sign if the observer moves toward the 
source, and the bottom (–)  sign if the observer moves away from the source.  In the denominator, 
use the top (–) sign if the source moves toward the observer, and the bottom (+)  sign if the source 
moves away from the observer.



Answer to Essential Question 21.6: When a source and an observer move in the same direction 
with the same speed, the observed frequency is the same as the frequency emitted by the source.

21-7 Superposition and Interference
What happens when two waves traveling through the same medium encounter one 

another? In general, we apply the principle of superposition to determine the net displacement of 
each point in the medium.

 Figure 21.11 shows what happens when two pulses moving in opposite directions along 
a stretched string meet one another. Both pulses displace the string upward as they travel, so when 
the peaks of the pulses coincide, the net displacement of the string at that point is equal to the sum 
of the amplitudes of the pulses. This is known as constructive interference - the displacements 
of the individual waves are in the same direction, and thus add together. An interesting 
implication of the principle of superposition is that the waves do not change one another’s shape 
as they pass through one another. After passing through, they move away unchanged.

In Figure 21.12, we see what happens when two pulses that 
have opposite displacements meet one another while traveling along a 
stretched string. In this situation, because one pulse is a mirror image of 
the other, when the pulses coincide the net displacement of the string is 
zero everywhere, just for an instant. This is known as destructive 
interference, where the displacements of the individual waves are in 
opposite directions, and thus fully or partly cancel. Once again, after 
passing through one another, they move away as if they had never met.

EXPLORATION 21.7 – A process for adding two pulses 
Figure 21.13 shows two pulses traveling along a string. The 

string is shown at two separate times, t = 0, and t = 1.0 s. We want to 
know what the string looks like at t = 4.0 s, t = 5.0 s, and t = 6.0 s.
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Figure 21.11: The successive images show two pulses 
moving in opposite directions along a string. At points 
where the pulses overlap, the net displacement of the 
string is the sum of the displacements due to the 
individual waves. In this case, (b) shows constructive 
interference, because the displacements of both 
pulses are in the same direction.

Figure 21.12: The successive images show 
two pulses, which are mirror images of one 
another, moving in opposite directions along 
a string. In this case, (b) shows completely 
destructive interference, with the pulses 
exactly canceling one another at the instant 
they overlap completely.

Figure 21.13: Two pulses, one 
traveling left and one traveling right, 
on a stretched string. The profile of 
the string is shown at (a) t = 0 and 
(b) t = 1.0 s.

The principle of superposition: The net displacement of any point in a medium is the sum of the 
displacements at that point due to each of the individual waves.     



Step 1 – Based on the two pictures in Figure 21.13, determine where 
each of the two pulses will be at t = 4.0 s. Sketch three diagrams, one 
above the other. First, sketch a diagram showing the position of the 
rightward-moving pulse. Second, sketch a diagram of the leftward-
moving pulse. Use those two diagrams to determine where the two 
pulses overlap, and use superposition to draw the string as it looks 
with both pulses on it.  From Figure 21.13, we can see that the 
pulses travel along the string with a speed of 1 grid unit per second. 
After three more seconds have passed, the right-going pulse will be 
three units to the right, and the left-going pulse will be three units to 
the left, as shown in Figure 21.14. The pulses destructively interfere 
in the region of overlap, which is shaded in Figure 21.14.

Step 2 – Repeat the process outlined in 
step 1 above, but at t = 5.0 s. Because 
another second has passed, we slide each 
pulse over by one unit. At t = 5.0 s, the 
pulses completely overlap. Because they 
have identical profiles, the pulses 
constructively interfere, doubling the 
displacement at each point in the region 
of overlap, as shown in Figure 21.15. 

Step 3 – Repeat the process outlined in 
step 1 above, but at t = 6.0 s. An 
additional second has passed, so we again 
slide each pulse over by one unit. At t =6.0 
s, the net result is the same as at t = 4.0 s, 
with the two pulses simply swapping 
positions on the string, as shown in Figure 
21.16. 

Interference in Two Dimensions
When two sources emit identical waves, an interesting pattern is created near the sources 

because of the interference that takes place. The type of interference that takes place at a point 
depends on the path-length difference: the difference between the distance from one source to 
the point and the distance from the second source to the point. When the sources emit identical 
waves, any point that is equidistant from the two sources (that is, having a path-length difference 
of zero), experiences constructive interference. These are not the only places where constructive 
interference occurs – any point at which the path-length difference is an integral number of 
wavelengths also experiences constructive interference. Destructive interference, on the other 
hand, occurs at points that are an integral number of wavelengths, plus half a wavelength, farther 
from one source than the other. We will discuss these ideas in more detail in chapter 24. 

Essential Question 21.7: In the picture of the string in Figure 21.12(b), the string is completely 
flat. In Figure 21.12(c), the two pulses re-emerge from the flat string. How is this possible? 
For instance, where is the energy, in (b), necessary to re-form the two pulses?
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Key idea: When two waves meet, apply the principle of superposition. A useful method is to 
sketch each of the waves separately, and then add the displacements to find the net displacement in 
the region where the waves overlap.            Related End-of-Chapter Exercises: 1 – 4.

Figure 21.14: The two separate pulses, 
in (a) and (b), and the profile of the 
string (c), at t = 4.0 s. The region 
where the pulses overlap is shaded.

Figure 21.15: The two 
separate pulses, in (a) and 
(b), and the profile of the 
string (c), at t = 5.0 s. The 
region where the pulses 
overlap is shaded.

Figure 21.16: The two 
separate pulses, in (a) and 
(b), and the profile of the 
string (c), at t = 6.0 s. The 
region where the pulses 
overlap is shaded.



 Answer to Essential Question 21.7: How does the flat string pictured in Figure 21.12(b) differ 
from a regular flat string, from which no pulses would emerge? What is not obvious from the 
static image shown in Figure 21.12(b) is that the string, where the pulses overlap, is moving. 
Some sections of the string are moving down, while others are moving up, with the various parts 
of the string moving with velocities that are just right to re-create the two pulses properly. Thus, 
the energy needed to re-form the pulses is in the kinetic energy of various parts of the string.

21-8 Beats; and Reflections
When you listen to two sound waves of 

similar, but different, frequency, you generally hear the 
sound rising and falling in intensity, typically at the 
rate of a few cycles per second. This phenomenon is 
known as beats, and it is caused by interference 
between the two waves. Let’s say the waves are 
initially in phase, with their peaks coinciding. The 
waves interfere constructively, producing a large-
amplitude sound. Because the waves have different 
frequencies, however, they gradually drift out of phase. 
Eventually, the peak from one wave lines up with the 
trough (negative-displacement peak) in the other wave, 
leading to destructive interference and, when the 
interference is completely destructive, no sound. The 
larger the difference between the two frequencies, the 
faster the waves drift out of phase with one another. The 
phase difference continues to grow, but this eventually 
leads to peaks in the two waves lining up again. This 
cycle is demonstrated in Figure 21.17.

The beat frequency, which is the frequency at 
which the intensity oscillates, is simply the difference 
between the frequencies of the two waves.

 
.  (Equation 21.12: the beat frequency)

 String musicians can even tune their instrument using beats, by playing two strings at 
once and adjusting the tension in one string (which adjusts the frequency of the string). When the 
beats disappear, the frequencies of the two strings are equal.

Reflections
When a wave traveling along a string encounters the end of the string, the wave reflects. 

Exactly how the wave reflects depends on whether the end of the string is tied down or loose (or 
even something in between, such as tied to a spring, but we will consider only the two extremes).

On stringed instruments, for instance, the strings are fixed at the ends. The leading (right-
most) edge of an upward going pulse, like that shown in Figure 21.18(a), propagates to the right 
along the string by each part of the string successively pulling up on the next part of the string. 
This propagation method works until the pulse reaches the end of the string, which is tied down. 
The part of the string next to the right end pulls up on the end, but the end does not move. Instead, 
by Newton’s Third Law, the end exerts a downward force on the piece of the string next to it, 
leading to an inverted pulse traveling back along the string, as shown in part (e) of Figure 21.18.
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Figure 21.17: The phenomenon of beats is 
caused by interference between two waves 
that have different frequencies. The two 
individual waves are shown at the top and 
middle, while the superposition of the two 
waves is shown at the bottom. The rise and 
fall in the amplitude of the resultant wave is 
what we hear as beats.



Note that the string is completely flat in Figure 21.18 (c), halfway through the reflection 
of the pulse. This is caused by completely destructive interference taking place between the first 
half of the pulse, which has been inverted and is moving left, and the second half of the pulse, 
which is still upright and moving right. Figure 21.19 shows a way to visualize the reflection, as if 
a pulse directed right on the string is interfering with a mirror-image pulse, which is inverted, 
directed left on the string. Superposition can only work on the string itself, so we don’t have to 
worry about any areas of overlap of the two pulses that are to the right of the end of the string.

If the end of a string is not tied down, but is free to move, it is known as a free end. 
When a wave reflects from a free end, the end responds to the wave by moving, and the wave 
reflects without being inverted. Figure 21.20 shows the process for a pulse, which we can 
visualize as if a pulse directed right on the string is interfering with a mirror-image pulse directed 
left. Note that, in Figure 21.20(c), the end of the string is displaced by twice the amplitude of the 
pulse, because of constructive interference between the half of the pulse that has been reflected 
and is moving to the left, and the other half which is still moving to the right.

Essential Question 21.8: You hear a beat frequency of 6 Hz when you play two guitar strings 
simultaneously. If one string has a frequency of 330 Hz, what is the frequency of the other string? 
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Reflection of waves: If a wave reflects from a fixed boundary of a medium, the reflected wave is 
inverted. If, instead, a wave reflects from a free boundary, such as the free end of a string, the 
reflected wave reflects without being inverted (that is, the reflected wave is upright).
Related End-of-Chapter Exercises: 9, 10, 53 – 55.

Figure 21.18: When a wave reflects from a fixed end, it reflects upside down.

Figure 21.19: Reflection from a fixed end can be visualized as interference between a right-
moving pulse, and an inverted copy of the pulse that is moving left. We are imagining the pulses 
existing to the right of the end of the string (in the shaded region), even though they cannot do so.

Figure 21.20: Reflection from a free end can be visualized as interference between a right-
moving pulse, and an exact copy of the pulse that is moving left.



Answer to Essential Question 21.8: Because the beat frequency is 6 Hz, we know that the two 
frequencies differ by 6 Hz. If one string is 330 Hz, the other string is either 336 Hz (6 Hz higher) 
or 324 Hz (6 Hz lower).

21-9 Standing Waves on Strings
In sections 21-9 and 21-10, we will discuss physics related to musical instruments, 

focusing on stringed instruments in this section and wind instruments in section 21-10. 

Some stringed instruments (such as the harp) have strings of different lengths, while 
others (such as the guitar) use strings of the same length. We can apply the same principles to 
understand either kind of instrument. Consider a single string of a particular length that is fixed at  
both ends. The string is under some tension, so that when you pluck the string it vibrates and you 
hear a nice sound from the string, dominated by one particular frequency. How does that work?

When you pluck the string, you send 
waves of many different frequencies along the 
string, in both directions. Each time a wave 
reaches an end, the wave reflects so that is 
inverted. All of these reflected waves interfere 
with one another. For most waves, after 
multiple reflections the superposition leads to 
destructive interference. For certain special 
frequencies, for which an integral number of 
half-wavelengths fit exactly into the length of 
the string, the reflected waves interfere 
constructively, producing large-amplitude 
oscillations on the string at those frequencies.

These special frequencies produce 
standing waves on the string. Identical waves 
travel left and right on the string, and the 
superposition of such identical waves leads to 
a situation where the positions of zero 
displacement (the nodes) remain fixed, as do 
the positions of maximum displacement (the 
anti-nodes), so the wave appears to stand still. 
Figure 21.21 shows the left and right-moving 
waves on the string, and their superposition, 
which is the actual string profile, for the lowest-
frequency standing wave on the string at 
various times.
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Figure 21.21: The string profile for the lowest-frequency 
standing wave (the fundamental) on the string at t = 0, 
and at regular time intervals after that, showing how the 
identical left and right-moving waves combine to form a 
standing wave. Go clockwise around the diagram to see 
what the string looks like as time goes by.

For a string fixed at both ends: The standing waves have a node (a point of zero 
displacement) at each end of the string.  The various wavelengths that correspond to the special 
standing-wave frequencies are related to L, the length of the string, by:

,  so ,  where n is an integer.

Using Equation 21.1,  , the particular frequencies that tend to be excited on a 
stretched string are: 

, (Eq. 21.13: Standing-wave frequencies for a string fixed at both ends)



The lowest-frequency standing wave 
on the string, corresponding to n = 1, is known 
as the fundamental. The other frequencies, or 
harmonics, are simply integer multiples of the 
fundamental. In general, when you pluck a 
string, the dominant sound is the fundamental, 
but the harmonics make the sound more 
pleasing than what a single-frequency note 
sounds like. Figure 21.22 shows the standing 
wave patterns for the fundamental and the two 
lowest harmonics.

EXAMPLE 21.9 – Waves on a guitar string
A particular guitar string has a length of 72 cm and a mass of 6.0 grams.
(a) What is the wavelength of the fundamental on this string?
(b) If you want to tune that string so its fundamental frequency is 440 Hz (an A note), 

what should the speed of the wave be?
(c) When the string is tuned to 440 Hz, what 

is the string’s tension?
(d) Somehow, you excite only the third 

harmonic, which has a frequency three times that of the 
fundamental. At t = 0, the profile of the string is shown 
in Figure 21.23, with the middle of the string at its 
maximum displacement from equilibrium. What is the 
oscillation period, T?

SOLUTION
(a) For the fundamental, exactly half a wavelength fits in the length of the string. Thus, 

the wavelength is twice the length of the string: ! = 144 cm = 1.44 m.

(b) Knowing the frequency and the wavelength, we can determine the wave speed:
= (440 Hz) (1.44 m) = 634 m/s.

(c) Knowing the speed, we can use Equation 21.5, to find the tension in the string. 

, so .

In this case, we get: .

(d) The fundamental frequency is 440 Hz, so the third harmonic has a frequency of 
1320 Hz, three times that of the fundamental. The period is the inverse of the frequency, so:

 .

Related End-of-Chapter Exercises: 28, 29, 36, 59.

Essential Question 21.9: Return to the situation discussed in Example 21-9. Figure 21.23 shows 
the string profile at t = 0. Show the string profile at times of t = T/4, T/2, 3T/4, and T. 
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Figure 21.22: The 
standing wave patterns 
for the fundamental and 
the second and third 
harmonics, for a string 
fixed at both ends.

Figure 21.23: The string profile at t = 0 
when the third harmonic has been 
excited on the string, with the middle of 
the string at its maximum displacement 
from equilibrium.



Answer to Essential Question 21.9: 
Every half-period, the string profile is 
inverted, so at t = T/2 the string 
profile is inverted compared to what 
it is at t = 0, and after a full period 
(t = T), the profile is the same as that 
as t = 0. Halfway between these 
positions, the string profile is flat, as 
shown in Figure 21.24.

21-10 Standing Waves in Pipes
Many musical instruments are made from pipes. Such instruments are known as wind 

instruments. A flute, for instance, is a single pipe in which the effective length can be changed by 
opening one of several holes in the pipe. In a trombone, the effective length is changed by sliding 
a tube in or out. In a pipe organ, in contrast, many different pipes, of fixed length, are used, with 
each pipe having a different fundamental frequency. The connection between all of these 
instruments is that the effective length of the tube determines the sound the pipe makes.

In contrast with a string instrument, in which a vibrating string sets up a sound wave in 
the air, the wave in a wind instrument is already a sound wave in a column of air, some of which 
escapes to make an audible sound. As with strings, however, standing waves produced by 
reflected waves determine the fundamental frequency of the sound wave produced by a particular 
pipe. Note that pipes can have both ends open, or have one end open and one end closed. For a 
sound wave, the open end of a pipe is like a free end, while the closed end of a pipe is like a fixed 
end. Thus, a pipe with only one end open sounds quite different from a pipe with both ends open, 
even if the tubes have the same length, because of the different standing waves that are produced 
by the different reflections in these pipes.

Because an open end acts like a free end for reflection, the standing waves for a pipe that 
is open at both ends have anti-nodes at each end of the pipe. We can satisfy this condition with 
standing waves in which an integral number of half-wavelengths fit in the pipe, as shown in parts 
(a) – (c) of Figure 21.25. This leads to the same equation for standing waves that we had in 
section 21-9, for the string fixed at both ends. 

Because an open end acts like a free end, while a closed end acts like a fixed end, the 
standing waves for a pipe that is open at only one end have anti-nodes at the open end and nodes 
at the closed end. We can satisfy this condition with standing waves in which an odd integer 
number of quarter-wavelengths fit in the pipe, as shown in parts (d) – (f) of Figure 21.25. This 
leads to new equation for the standing-wave frequencies. 
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Figure 21.24: The string profile at (a) t = T/4, (b) t = T/2, 
(c) t = 3T/4, and (d) t = T, for the third harmonic.

For a pipe open at both ends: The standing waves produced always have an anti-node at each end 
of the pipe.  The frequencies that produce standing waves in such a pipe are: 

,    (Eq. 21.14: Standing-wave frequencies for a pipe open at both ends)

where n is an integer, and L is the effective length of the pipe.



EXAMPLE 21.10 – Waves in a pipe
A particular organ pipe has a length of 72 cm, and it is open 

at both ends. Assume that the speed of sound in air is 340 m/s.
(a) What is the wavelength of the fundamental in this pipe?
(b) What is the corresponding frequency of the 

fundamental?
(c) If one end of the pipe is now covered, what are the 

wavelength and frequency of the fundamental?

SOLUTION
(a) For the fundamental, exactly half a wavelength fits 

in the length of the pipe. Thus, the wavelength is twice the 
length of the pipe: ! = 2 " 72 cm = 144 cm = 1.44 m.

(b) Knowing the speed of sound and the wavelength, 
we can determine the frequency:

.

(c) Covering one end of the pipe means the pipe is open 
at one end only, so now, for the fundamental, only one-quarter 
of a wavelength fits in the pipe rather than half a wavelength. 
This doubles the wavelength of the fundamental to 2.88 m. 
Doubling the wavelength reduces the frequency by a factor of 
two, so the new fundamental frequency is 118 Hz.

Related End-of-Chapter Exercises: 31, 33, 37, 38.

Essential Question 21.10: Musical instruments made from pipes have a variety of pipes or one 
variable–length pipe. What happens to the fundamental frequency as the pipe length increases?

Chapter 21 – Waves and Sound  Page 21 - 21

For a pipe open at one end only: The standing waves produced have an anti-node at the open end 
and a node at the closed end.  The frequencies that produce standing waves in such a pipe are: 

,    (Eq. 21.15: Standing-wave frequencies for a pipe open at one end)

where n is an odd integer, and L is the effective length of the pipe.

Figure 21.25: (a) – (c) A representation of the standing 
waves in a pipe that is open at both ends, showing the 
fundamental (a), and the second (b) and third (c) harmonics. 
(d) – (f) A similar representation for a pipe that is closed at 
one end only, showing the fundamental (d), and the two 
lowest harmonics (e) and (f). For a pipe closed at one end 
only, the harmonics can only be odd integer multiples of the 
fundamental. Note that the waves in the pipe are sound 
waves, which are longitudinal waves. This representation 
shows the maximum displacement from equilibrium for the 
air molecules as a function of position along each of the 
pipes. The standing waves oscillate between the profile 
shown in red and the profile shown in blue.

Figure 21.26: The photograph shows a 
pipe organ in Katharinenkirche, Frankfurt  
am Main, Germany. Each pipe has a 
unique frequency. 
Photo credit: Wikimedia Commons.



Answer to Essential Question 21.10: The longer the pipe, the longer the wavelength of the 
fundamental. Wavelength is inversely proportional to frequency, so the longer the pipe, the 
smaller the frequency. 

Chapter Summary

Essential Idea: Waves.
A wave is a way to transfer energy from one place to another without needing a net flow 

of material. Waves are in integral part of the way we communicate, whether it be the signals that 
are picked up by our cell phones, and turned into recognizable speech by the phone’s circuitry 
and speaker, or the light that brings the world to our eyes.
 

Types of Waves
In this chapter, we dealt with mechanical waves, which need a medium through which to 

travel. Such waves can be transverse, in which the particles of the medium oscillate in a 
direction perpendicular to the direction the wave travels, or longitudinal, in which the particles of 
the medium oscillate along the same direction as the direction the wave travels. A wave on a 
string is generally transverse, while sound waves are longitudinal.

The wave equation
In general, the relationship between wave speed, v, frequency, f, and wavelength, !, is:

.                (Equation 21.1: Connecting speed, frequency, and wavelength)

Equation of motion for a single-frequency transverse wave
In general, the displacement of any point in the medium, at any instant in time, when a 

single-frequency transverse wave is propagating through the medium in the x-direction, is given 
by an equation of the form:

 ,  (Equation 21.4: Equation of motion for a transverse wave)

where the plus sign is used when the wave is traveling in the negative x-direction, and 
the minus sign is used when the wave is traveling in the positive x-direction.

The wave number, k, is related to the wavelength, !, in the same way that the angular 
frequency, ", is related to the period, T:

.    (Equation 21.2: the wave number)

.    (Equation 21.3: the angular frequency)

Wave speed
In general, the wave speed is determined not by the frequency and wavelength, but by 

properties of the medium itself. For example, the speed of a wave on a string is determined by the 
tension in the string, FT, and the mass per unit length, µ: 

 ,      (Eq. 21.5: The speed of a wave on a string)
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Sound Intensity
Intensity is the power per unit area: I = P/A. Because of the way the human ear responds 

to sound, we generally use a logarithmic scale to measure the intensity level of a sound:

, (Equation 21.7: Absolute sound intensity level, in decibels)

where the reference intensity I0 = 1 " 10-12 W/m2 is known as the threshold of hearing, 
and the log is in base 10. 

 The Doppler Effect
The Doppler effect describes the shift in frequency of a wave that occurs when the source 

of the waves, and/or the observer of the waves, moves with respect to the medium the waves are 
traveling through. If the source emits a frequency f, the frequency f # received by the observer is:

,              (Equation 21.11: The general Doppler equation)

where v is the speed of the wave through the medium, vo is the speed of the observer, and 
vs is the speed of the source. In the numerator, use the top (+) sign if the observer moves toward 
the source, and the bottom (–)  sign if it moves away.  In the denominator, use the top (–) sign if 
the source moves toward the observer, and the bottom (+) sign if it moves away.

Superposition and interference
When two or more waves overlap, we find the net effect by applying the principle of 

superposition: the net displacement of any point in a medium is the sum of the displacements at 
that point due to each of the individual waves. If the displacements of the individual waves are in 
the same direction at a point, we say that the waves experience constructive interference, 
leading to a large net displacement at that point. If the individual displacements are in opposite 
directions, destructive interference occurs, which means that the net displacement is small.

Beats
One example of superposition is when two waves of different frequencies interfere, 

leading to oscillations in the amplitude of the resultant wave. This is known as beats. The 
frequency at which the amplitude oscillates is the difference between the two frequencies.

 .  (Equation 21.12: the beat frequency)

Standing waves
Standing waves are waves in which the nodes (points of zero displacement) and the anti-

nodes (points of maximum displacement) remain at rest. Standing waves are generally produced 
by two identical waves traveling in opposite directions through a medium, and they describe the 
waves produced by string and wind instruments. 

, (Standing-wave frequencies for strings and for pipes open at both ends)

where L is the length of the string or pipe, v is the wave speed, and n is any integer. The 
lowest-frequency standing wave (for n = 1) is known as the fundamental, while the others are 
known as harmonics. Thus, harmonics are integer multiples of the fundamental.

,       (Eq. 21.15: Standing-wave frequencies for a pipe open at one end only)

where n is any odd integer.
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End-of-Chapter Exercises

Exercises 1 – 12 are primarily conceptual questions designed to see whether you understand 
the main concepts of the chapter. For Exercises 1 – 4, the corresponding figure shows 
the profile of a string at t = 0 and at t = 1.0 s, as two pulses approach one another.

1. Two pulses travel toward one 
another, as shown in Figure 21.27. 
Sketch the profile of the string at      
(a) t = 4.0 s, (b) t = 5.0 s, and 
(c) t = 6.0 s.

2. Two pulses travel toward one 
another, as shown in Figure 21.28. 
Sketch the profile of the string at 
(a) t = 4.0 s, (b) t = 5.0 s, and 
(c) t = 6.0 s.

3. Two pulses travel toward one 
another, as shown in Figure 21.29. 
Sketch the profile of the string at      
(a) t = 4.0 s, (b) t = 5.0 s, and 
(c) t = 6.0 s.

4. Two pulses travel toward one 
another, as shown in Figure 21.30. 
Sketch the profile of the string at 
(a) t = 4.0 s, (b) t = 5.0 s, and 
(c) t = 6.0 s.

5. Two identical speakers, which are separated by a distance of 7.2 m, are pointed at one 
another. The speakers, which are in phase with one another, broadcast identical, single-
frequency sound waves. There is one point on the line joining the speakers which always 
experiences constructive interference no matter what the frequency of the identical waves 
emitted by the speakers is. Where is this point? Explain why the interference is always 
constructive there.

6. Return to the situation discussed in Exercise 5. If the speed of sound is 340 m/s and the 
frequency of the waves emitted by each speaker is 170 Hz, find the location of all points 
along the line between the speakers at which the interference is (a) completely 
constructive, and (b) completely destructive.
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Figure 21.27: 
Two pulses 
approach each 
other along a 
string, for 
Exercise 1.

Figure 21.28: 
Two pulses 
approach each 
other along a 
string, for 
Exercise 2.

Figure 21.29: 
Two pulses 
approach each 
other along a 
string, for 
Exercise 3.

Figure 21.30: 
Two pulses 
approach each 
other along a 
string, for 
Exercise 4.



7. Two pulses are traveling along a 
string, as shown in Figure 21.31. A 
particular point on the string is 
marked with a black dot. Plot the 
displacement of that point as a 
function of time, over the time 
interval t = 0 to t = 8.0 s.

8. Two pulses are traveling along a 
string, as shown in Figure 21.32. A 
particular point on the string is 
marked with a black dot. Plot the 
displacement of that point as a 
function of time, over the time 
interval t = 0 to t = 8.0 s.

9. You have four tuning forks, with frequencies of 440 Hz, 445 Hz, 448 Hz, and 452 Hz. By 
using two tuning forks at a time, how many different beat frequencies can you produce, 
and what are the numerical values of these frequencies?

10. When you strike two tuning forks and listen to them both at the same time, you hear beats 
with a beat frequency of 6 Hz. If one tuning fork has a frequency of 512 Hz, what is the 
frequency of the other?

11. The profile of a string that supports a particular standing 
wave is shown at t = 0 in Figure 21.33. The string is fixed at 
both ends. At t = 0, the standing wave is at its maximum 
displacement from equilibrium. The standing wave is 
created by two identical traveling waves on the string, one 
moving to the right and the other to the left. (a) What is the 
amplitude of each of these traveling waves? (b) Sketch the 
profile of the string one-quarter of a period after t = 0. (c) 
Sketch the right-going and left-going waves one-quarter of 
a period after t = 0. Hint: the superposition of these two 
waves should give the profile in part (b).

12. As you are walking along the street, a car blaring loud 
music passes you. As the car drives away from you, you 
recognize the music but you realize that it sounds funny. 
What is the problem? 

Exercises 13 – 17 involve applying the equation of motion for a transverse wave.

13. The equation of motion for a particular transverse wave is
. Determine the wave’s (a) amplitude, (b) 

angular frequency, (c) frequency, (d) wavelength, and (e) velocity.
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Figure 21.31: Two 
pulses travel along 
a string. A 
particular point on 
the string is marked 
with a black dot. 
For Exercise 7.

Figure 21.32: Two 
pulses travel along 
a string. A 
particular point on 
the string is marked 
with a black dot. 
For Exercise 8.

Figure 21.33: The profile of a 
string, at t = 0, that is fixed at 
both ends. The wave on the 
string is a standing wave, and the 
situation shown in the diagram 
shows the standing wave at its 
maximum displacement from 
equilibrium. For Exercise 11.



14. For a particular transverse wave that travels along a string that lies on the x-axis, the 
equation of motion is . Determine (a) the 

wave’s amplitude, wavelength, and frequency, (b) the speed of the wave, (c) the tension 
in the string, if the string has a mass per unit length of 0.040 kg/m, (d) the direction of 
propagation of the wave, (e) the maximum transverse speed of a point on the string, (f) 
the displacement of a point at x = 1.0 m when t = 2.0 s.

15. The equation of motion for a particular wave traveling along a string along the x-axis is 
. The tension in the string is 34 N, and the string has a mass 

per unit length of 0.050 kg/m. The maximum transverse speed of a point on the string is 
25 cm/s. Determine (a) the angular frequency, ", and (b) the amplitude, A, of the wave.

16. At a time of t = 0, the profile of part of a string is shown in Figure 21.34. The wave on 
the string is traveling in the +x direction (to the right) at a speed of 20 cm/s. Write out the 
equation of motion for the wave.

17. A graph of the motion of one point on a string (specifically, the point at x = 0), as a 
function of time is shown in Figure 21.35. The wave is traveling in the negative x-
direction on a string that has a tension of 32 N, and with a mass per unit length of 60 
grams per meter. Determine (a) the frequency of the wave, (b) the speed of the wave, (c) 
the wavelength, and (d) the expression for the wave’s equation of motion.

Exercises 18 – 22 involve sound, sound intensity, and the decibel scale.

18. You are listening to the radio when one of your favorite songs comes on, so you turn up 
the volume. If you managed to increase the sound intensity by 15 dB, by what factor did 
the intensity of the sound, in W/m2, increase?

19. You are working in a room in which the sound intensity is 75 dB. What is the 
corresponding intensity, in W/m2?

20. When you apply the brakes on your car, they happen to squeak, emitting a 70 dB sound 
as observed by you sitting in the driver’s seat of the car. When you sound the car’s horn, 
however, you observe an 80 dB sound. As you are driving, a dog runs into the road in 
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Figure 21.34: The profile of part  
of a string at t = 0. The wave on 
the string is traveling to the right 
at 20 cm/s. For Exercise 16.

Figure 21.35: A graph of the 
motion of one point on a string, at  
x = 0. The wave on the string is 
traveling in the negative x-
direction. For Exercise 17.



front of your car, so you apply the brakes and sound the horn simultaneously. 
(Fortunately, the dog escapes unharmed.) Do you observe a 150 dB sound while you are 
stopping, with the brakes squeaking and the horn sounding together? Explain your 
answer, being as quantitative as possible.

21. When you stand 2.0 m away from a speaker that is emitting sound uniformly in all 
directions, the sound intensity you observe is 90 dB. What is the sound intensity at a 
distance of (a) 1.0 m from the speaker, and (b) 4.0 m from the speaker?

22. You are observing fishermen illegally catching fish by using a small explosive device to 
stun the fish. The explosion takes place near the surface of the water, so the sound of the 
explosion travels through both the air and the water. You record the sound of the 
explosion using two separate microphones, one in the air above the water and one below 
the water surface. (a) Which microphone picks up the sound first? (b) If the time delay 
between the sounds reaching the two microphones is 0.50 seconds, about how far are you 
from the fishermen?

Exercises 23 – 27 involve the Doppler effect. Assume the speed  of sound is 340 m/s.

23. In a common classroom demonstration, a buzzer is turned on inside a soft football. The 
buzzer emits a tone of 256 Hz. (a) If the football is thrown directly at you at a speed of 
12.0 m/s, what frequency do you hear? (b) Fortunately, you duck in time to have the ball 
pass over your head. What frequency do you observe as the ball moves away from you?

24. In another common classroom demonstration of the Doppler effect, the instructor whirls a 
buzzer, on the end of a string or electric cable, in a horizontal circle around their head. If 
the buzzer has a frequency of 500 Hz, the circle has a radius of 1.0 m, and the period of 
the buzzer’s motion is 0.50 s, what are the maximum and minimum frequencies observed 
by the students in the classroom as they sit in their seats listening to the buzzer?

25. As you are riding your bicycle at 10.0 m/s north along a road, an ambulance traveling 
south approaches you. You observe the ambulance’s siren to have a frequency of 352 Hz. 
However, the siren’s frequency is actually 325 Hz, when the ambulance is at rest. (a) 
How fast is the ambulance traveling? (b) After the ambulance has passed you, what 
frequency do you observe for the siren?

26. Your car horn happens to have the unusual property of emitting a pure tone at a frequency 
of 440 Hz. You drive at 20 m/s toward a high wall, and sound the horn briefly. After a 
short time, you hear the echo of the sound, after it was reflected by the wall. What is the 
frequency of the echo?

27. A particular bat emits ultrasonic waves with a frequency of 68.0 kHz. The bat is flying at 
12.00 m/s toward a moth, which is traveling at 3.00 m/s toward from the bat. The speed 
of sound is 340.00 m/s. (a) Assuming the moth could detect the waves, what frequency 
waves would it observe? (b) What frequency are the waves that reflect off the moth and 
are detected by the bat?

Exercises 28 – 32 involve standing waves. 

28. A particular guitar string has a length of 75 cm, and a mass per unit length of 80 grams/
meter. You hear a pure tone of 1320 Hz when a particular standing wave, represented by 
the sequence of images shown in Figure 21.24, is excited on the string. (a) What is the 
wavelength of this standing wave? (b) What is the speed of waves on this string? (c) 
What is the tension in the string? (d) What is the fundamental frequency of this string? 
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29. An Aeolian harp (named after Aeolus, the Greek god of the wind) consists of several 
strings fixed to a frame or a sounding box. The device is simply placed outside, and the 
strings are played randomly by the wind. You decide to make such a harp out of strings 
that all have a mass per unit length of 80 grams per meter, and 
that all have a tension of 50 N. (a) If you want one of the 
strings to have a fundamental frequency of 330 Hz, how long 
should you make it? (b) If you want another of the strings to 
have a fundamental frequency of 660 Hz (double that of the 
first string, and therefore exactly one octave higher up the 
scale), how long should it be?

30. The profile of a particular standing wave on a string is shown 
in Figure 21.36, showing the string at its maximum 
displacement from equilibrium at t = 0. The string has a 
length of 1.0 m, extending from x = 0 to x = +1.0 m. Over one 
period of oscillation for the standing wave, plot a graph of 
displacement as a function of time for the point at (a) x = 0.25 
m, (b) x = 0.50 m, (c) x = 0.65 m.

31. As shown in Figure 21. 37, the height of 
an air column in a particular pipe is 
adjusted by changing the water level in 
the pipe. In a traditional experiment, a 
tuning fork is placed over the pipe, and 
the height of the air column is adjusted, 
by moving a reservoir of water up and 
down, until the pipe makes a loud sound, 
which is when the pipe’s fundamental 
frequency matches the frequency of the 
tuning fork. If the speed of sound is 340 
m/s, and an air column of 22.4 cm 
produces the loudest sound, what is the 
frequency of the tuning fork? 

32. A bloogle is a corrugated plastic tube, which is open at both ends, that 
emits a tone when you whirl it around your head. Generally, if you whirl it faster, the tube 
will emit a higher-frequency harmonic. You measure the various frequencies of a 
particular bloogle to be 420 Hz, 560 Hz, 700 Hz, and 840 Hz. (a) What is the 
fundamental frequency of this bloogle? (b) Estimate the length of the bloogle. 

Exercises 33 – 38 involve applications of sound and waves. 

33. Some cameras have automatic focusing systems that rely on ultrasonic emitters and 
detectors. You are trying to take a picture of your friends, who are 4.5 m from your 
camera. To focus correctly, the camera sends out a short ultrasonic pulse that reflects off 
your friends. If the speed of sound is 340 m/s, how much time passes between the 
emission of the pulse and the detection of the pulse by the camera?

34. One useful application of sound waves is a pair of noise canceling headphones. Such 
headphones have a microphone that picks up ambient noise (such as the noise of the 
engines inside a jet airplane). The wave representing the sound is then inverted and 
played through the speakers of the headphones into your ears. Explain, using principles 
of physics addressed in this chapter, how this works so that you hear a low-amplitude 
sound in the headphones.
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Figure 21.36: The profile of a 
particular standing wave on a 
string at t = 0, when the string is in 
one of its maximum displacement 
states, for Exercise 30.

Figure 21.37: The height 
of the air column in this 
pipe can be adjusted by 
changing the water level 
in the pipe. When a tuning 
fork, which is emitting 
sound, is placed over the 
pipe, the pipe will emit a 
loud sound when the 
frequency of the tuning 
fork matches the 
fundamental frequency of 
the pipe. For Exercise 31.



35. One medical application of sound waves 
is in the use of ultrasound to see inside 
the womb to create an image of a fetus, as 
in the photograph shown in Figure 21.38. 
Do some research about this particular 
application of sound waves, and write two 
or three paragraphs describing how it 
works, and how it exploits the principles 
of physics discussed in this chapter.

36. The frequencies of neighboring notes on a musical scale differ by a factor of 21/12. A 
particular guitar string is tuned to sound an A note, of 440 Hz. The next highest note is A# 
(A sharp). (a) What is the frequency of this particular note? (b) By changing the effective 
length of the string, by pressing the string down onto one of the frets on the guitar, you 
can get the string to sound A# instead of A. If the string has a length L when it sounds A, 
what is the effective length of the string when it is sounding A#? (c) Explain why the 
spacing between frets on the guitar decreases as the effective length decreases.

37. You want to make a simple set of wind chimes out of metal pipes that are open at both 
ends. You would like to create a set of three pipes that sound a C-major chord, playing the 
notes C (264 Hz), E (330 Hz), and G (396 Hz). (a) What is the ratio of the lengths of the 
three pipes you should use to make your wind chimes? (b) Which pipe is the shortest, and 
what is its length? Assume the speed of sound is 340 m/s.

38. The human ear can be modeled, to a first approximation, as a pipe that is open at one end 
only. If the length of the ear canal is 25 mm in a typical person, and the speed of sound in 
air is 340 m/s, what is the ear’s resonance frequency? (This is the frequency of the 
fundamental frequency of the pipe and, in theory, should correspond to the frequency of 
sound that a typical person is most sensitive to.)

General problems and conceptual questions

39. A track designed for running 100-meter races is 8 m wide. If the starter fires her starting 
pistol from one side of the track, near the runners, the runner next to her has an advantage 
over the runner in the lane on the other side of the track. (a) Approximately how much 
time passes between when the closest runner hears the sound of the starting gun and 
when the farthest runner hears the sound of the gun? (b) If the runners run at an average 
speed of 10 m/s, what distance does this time difference translate to? Note that in serious 
competitions, the starting gun is electronically connected to speakers attached to the 
starting blocks for each runner, so that the start is fair. 

40. A single-frequency wave, with a wavelength of 25 cm, is traveling in the positive x-
direction along a string, causing each particle in the string to oscillate in simple harmonic 
motion with a period of 0.20 s. If the maximum transverse speed of each particle is 
20 cm/s, and the particle at x = 0 is at its maximum positive displacement from 
equilibrium at t = 0, determine: (a) the speed of the wave, (b) the amplitude of the wave, 
and (c) the equation of motion for the wave.
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Figure 21.38: An image of a fetus in the 
womb, at 24 weeks, obtained by 
ultrasonic imaging. Photo credit: Maciej 
Korzekwa, via iStockPhoto.com.



41. Figure 21.39 (a) shows a snapshot of a 
traveling wave at t = 0, while Figure 
21.39 (b) is a graph of the 
displacement versus time for the point 
at x = 0. (a) Is the wave traveling in 
the positive or negative x-direction? 
Explain. (b) Write out the equation of 
motion for the wave. (c) Does the 
equation of motion change if the graph 
in Figure 21.39 (b) applies to the point  
at x = 20 cm, instead? If so, what is the 
equation of motion in that case?

42. Figure 21.39 shows two representations of a 
traveling wave on a string. Figure 21.39 (a) shows a 
snapshot of a traveling wave at t = 0, while Figure 
21.39 (b) is a graph of the displacement versus time 
for the point at x = 0. In each part below, state 
which representation you can use to find the 
answer, as well as giving the numerical value of the answer. (a) What is the wavelength? 
(b) What is the period? (c) What is the amplitude? (d) What is the speed of the wave? 

43. Two trains are traveling along parallel tracks. Each train has a whistle that emits a tone of 
333 Hz when the train is at rest. One train is traveling east at 5.00 m/s. The engineer in 
that train hears a beat frequency of 4.00 Hz when both train whistles are sounding. What 
is the velocity of the second train? Assume the speed of sound is 340 m/s. Summarize all 
the possible solutions to this exercise.

44. As shown in Figure 21.40, a child is swinging 
back and forth on a swing. The child is near a 
speaker that is broadcasting a pure (single-
frequency) tone. The child is shown in five 
different positions during a swing. In which 
position will the child hear (a) the highest-
frequency sound, and (b) the lowest-frequency 
sound? Briefly justify your answers.

45. The flow of blood through the heart can be studied with Doppler ultrasound. Ultrasonic 
waves are sent toward the heart, and by looking at the frequency of the waves that reflect 
from a particular spot in the heart, you can determine how fast blood is traveling in that 
region, and whether the blood is flowing toward or away from the ultrasound probe. An 
image is usually created from this data, with the colors of the various regions in the 
image reflecting the velocity of blood in those regions. If the probe sends out ultrasound 
with a frequency of 3.00 MHz, what is the frequency of waves that reflect back to the 
probe from an area of the heart (a) that is at rest? (b) where blood is traveling away from 
the probe with a speed that is 0.5% of the speed of sound in the medium? (c) where blood 
is traveling toward the probe at a speed of 0.7% of the speed of sound in the medium? 
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Figure 21.39: (a) A photograph of a 
wave on a string at t = 0. (b) A graph of 
the displacement versus time for the 
point at x = 0. For Exercises 41 and 42. 

Figure 21.40: A child swinging back and forth on 
a string near a speaker that is broadcasting a pure 
tone, for Exercise 44. 



46. An ultrasonic sonar system emits ultrasonic waves that have a frequency of 600 kHz. The 
waves reflect from a plane that is moving at 50% of the speed of sound, directly toward 
the sonar system. (a) Find the frequency at which the waves reach the plane. (b) Find the 
frequency of the waves that are detected by the sonar system, after reflecting from the 
plane.

47. Repeat Exercise 46, but now have the plane moving directly away from the sonar system.

48. The pattern of sound waves 
emitted by a source traveling 
at constant velocity is shown 
in Figure 21.41. (a) In what 
direction is the source 
moving? (b) At what fraction 
of the speed of sound is the 
source traveling? If you are 
at rest, and the source is 
emitting waves that have a 
frequency of 480 Hz, what frequency do you observe if you are (c) at 
point A? (d) at point B?

49. Repeat parts (a) – (c) of 
Exercise 48, but now base 
your answers on the pattern 
shown in Figure 21.42.

50. Do some research about 
what causes the loud sound 
when someone cracks a 
whip, and write a couple of 
paragraphs explaining the 
physics of whip-cracking.

51. Two speakers, which are separated by a distance of 2.4 m, broadcast identical single-
frequency sound waves. The speakers are in phase with one another. If you stand at a 
location that is 1.7 m farther from one speaker than the other, what are the lowest three 
frequencies at which (a) completely constructive interference occurs at your location, and 
(b) completely destructive interference occurs at your location?

52. Return to the situation described in Exercise 51. The speed of sound is 340 m/s, and the 
frequency of the waves emitted by the speakers is 340 Hz. You are initially right next to 
one of the speakers, and you then walk steadily away from it in a direction that is 
perpendicular to the line joining the two speakers. (a) At how many locations will you 
pass through a point at which completely constructive interference occurs? (b) How far 
are these locations from the speaker that marks your starting point?
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Figure 21.41: The 
pattern of circular waves 
emitted by a source that 
is traveling at a constant 
velocity. Each of the dots 
shows the position of the 
source when it emitted 
one of the wave peaks. 
For Exercise 48.

Figure 21.42: The 
pattern of circular waves 
emitted by a source that 
is traveling at a constant 
velocity. Each of the dots 
shows the position of the 
source when it emitted 
one of the wave peaks. 
For Exercise 49.



53. In Figure 21.43, a pulse is traveling 
along a string toward the string’s right 
end, which is a fixed end (shown as a 
dot on the right). Sketch the profile of 
the string at (a) t = 4.0 s, (b) t = 6.0 s, 
and (c) t = 7.0 s.

54. Repeat Exercise 53, but now the right end of the string is a free end instead of a fixed 
end.

55. In Figure 21.44, a pulse is traveling 
along a string toward the string’s right 
end, which is a fixed end (shown as a 
dot on the right). A particular point on 
the string is shown as a black dot. 
Plot the displacement as a function of 
time for this point, over the time 
interval t = 0 to t = 15.0 s. 

56. Repeat Exercise 55, if the right end of the string is a free end instead of a fixed end.

57. Repeat Exercise 56, except now plot the displacement as a function of time for the right 
end of the string, with the end being a free end.

58. Two stretched strings are placed next to one another, one with a length of 50 cm and the 
other with a length of 60 cm. The two strings have the same mass per unit length. You 
pluck the shorter one so that it vibrates at its fundamental frequency. You then adjust the 
tension in the longer string until it resonates with the first one. To resonate, the two 
strings must have the same frequency, so that vibrations on one string can cause the 
second string to vibrate. (a) What is the ratio of the speed of waves on the shorter string 
to the speed of waves on the longer string? (b) What is the ratio of the tension in the 
shorter string to the tension in the longer string?

59. A particular guitar string is under a tension of 38.5 N, and has a fundamental frequency of 
320 Hz. If you want to tune the string so that it has a fundamental frequency of 330 Hz, 
to what value should you adjust the tension in the string?

60. A particular pipe that is open at both ends has a fundamental frequency of 442 Hz. When 
it, and a second pipe, have their fundamental frequencies excited simultaneously, a beat 
frequency of 8 Hz is observed. What is the ratio of the length of the first pipe to that of 
the second pipe if the second pipe is (a) also open at both ends, and (b) closed at one end.

61. As shown in Figure 21.45, a string passing over a pulley 
supports the weight of a 25 N block that hangs from the string. 
The other end of the string is fixed to a wall. The string has a 
mass per unit length of 75 grams per meter. The part of the string 
between the wall and the pulley is observed to oscillate with a 
fundamental frequency of 44 Hz. (a) What is the speed of waves 
on the string? (b) What is the distance, L, from the wall to the 
pulley? (c) If the weight hanging from the string is doubled, 
what will be the fundamental frequency of the part of the 
string between the wall and the pulley?
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Figure 21.43: A pulse 
travels along a string 
toward the right end, 
which is either a fixed 
end (Exercise 53) or a 
free end (Exercise 54).

Figure 21.44: A pulse 
travels along a string 
toward the right end, 
which is either a fixed end 
(Exercise 55) or a free end 
(Exercises 56 and 57).

Figure 21.45: One end of a string is 
tied to a wall. The other end passes 
over a pulley, and supports a weight 
tied to the other end of the string. 
For Exercises 61 and 62.
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