
 14-1 The Ideal Gas Law
Let’s say you have a certain number of moles of ideal gas that fills a 

container that has a known volume. Such a system is shown in Figure 14.1. 

If you know the absolute temperature of the gas, what is the 
pressure? The answer can be found from the ideal gas law, which you may 
well have encountered before.

The ideal gas law connects the pressure P, the volume V, and the absolute temperature T, 
for an ideal gas of n moles:

,    (Equation 14.1: The ideal gas law)

where is the universal gas constant.

First of all, what is a mole? It is a not a cute, furry creature that you might find digging 
holes in your backyard. In this context, a mole represents an amount, and we use the term mole in 
the same way we use the word dozen. A dozen represents a particular number, 12. A mole also 
represents a particular number, , which we also refer to as Avogadro’s number, NA. 
Thus, a mole of something is Avogadro’s number of those things. In this chapter, we generally 
want to know about the number of moles of a particular ideal gas. A toy balloon, for instance, has 
about 0.1 moles of air molecules inside it. Strangely enough, the number of stars in the 
observable universe can also be estimated at about 0.1 moles of stars.

In physics, we often find it convenient to state the ideal gas law not in terms of the 
number of moles but in terms of N, the number of atoms or molecules, where . Taking 
the ideal gas law and multiplying the right-hand side by NA / NA gives:

.

The constant R / NA  has the value and is known as Boltzmann’s 
constant. Using this in the equation above gives:

.            (Eq. 14.2: Ideal gas law in terms of the number of molecules)

Under what conditions is the ideal gas law valid? What is an ideal gas, anyway? For a 
system to represent an ideal gas it must satisfy the following conditions:

1. The system has a large number of atoms or molecules.
2. The total volume of the atoms or molecules should represent a very small 

fraction of the volume of the container.
3. The atoms or molecules obey Newton’s Laws of motion; and they move about 

in random motion.
4. All collisions are elastic. The atoms or molecules experience forces only when 

they collide, and the collisions take a negligible amount of time.
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Figure 14.1: A 
container of ideal gas.



The ideal gas law has a number of interesting implications, including –

Boyle’s Law: at constant temperature, pressure and volume are inversely related;

Charles’ Law: at constant pressure, volume and temperature are directly related;

Gay-Lussac’s Law: at constant volume, pressure and temperature are directly related. 

EXAMPLE 14.1 – Two containers of gas
The two sealed containers in Figure 14.2 contain the same type of ideal 

gas. Container 2 has twice the volume of container 1. Aside from that difference, 
the containers differ in only one of the following three parameters, pressure, 
number of moles, and temperature. (a) Could the containers differ only in 
pressure and volume? If so, explain how.  (b) Could the containers differ only 
in the number of moles and volume? If so, explain how. 

SOLUTION
(a) Yes, if the number of moles of gas and the temperature are the same 

in each container, we must have the product of PV equal in the two containers, 
according to the ideal gas law. Thus, if container 2 has twice the volume as container 1, it must 
have half the pressure as container 1. 

 (b) Yes, if the pressure and the temperature are the same in each container, the number of 
moles of gas must be twice that in container 2 as it is in container 1. If we double the value of the 
volume, on the left side of Equation 14.1, we must double the value of n, the number of moles, on 
the right side of the equation, if everything else remains constant. 

Prove to yourself that the containers could also differ only in volume and temperature.

An aside – Thinking about the rms average.
In Section 14.2, we will use the rms (root-mean square) average speed of a set of gas 

molecules. To gain some insight into the root-mean-square averaging process, let’s work out the 
rms average of the set of numbers –1, 1, 3, and 5. The average of these numbers is 2. To work out 
the rms average, square the numbers to give 1, 1, 9, and 25. Then, find the average of these 
squared values, which is 9. Finally, take the square root of that average to find the rms average, 3.

Clearly, this is a funny way to do an average, because the average is 2 while the rms 
average is 3. There are two reasons why the rms average is larger than the average in this case. 
The first reason is that squaring the numbers makes everything positive – without this negative 
values cancel positive values when we add the numbers up. The second reason is that squaring 
the values weights the larger numbers more heavily (the 5 counts five times more than the 1 when 
doing the average, but 52 counts 25 times more than 12 when doing the rms average.)  Note that 
we will discuss rms average values again later in the book when we talk about alternating current.

Related End-of-Chapter Exercises: 1, 2, 13, 17, 18.

Essential Question 14.1: A container of ideal gas is sealed so that it contains a particular number 
of moles of gas at a constant volume and an initial pressure of . If the temperature of the 

system is then raised from 10°C to 30°C, by what factor does the pressure increase?
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Figure 14.2: Two containers 
of ideal gas, one with twice 
the volume as the other. 



Answer to Essential Question 14.1: It is tempting to say that the pressure increases by a factor of 
3, but that is incorrect. Because the ideal gas law involves T, not , we must use temperatures 
in Kelvin rather than Celsius. In Kelvin, the temperature rises from 283K to 303K. Finding the 
ratio of the final pressure to the initial pressure shows that pressure increases by a factor of 1.07:

.

14-2 Kinetic Theory
We will now apply some principles of physics we learned earlier in the book to help us to 

come to a fundamental understanding of temperature. Consider a cubical box, measuring L on 
each side. The box contains N identical atoms of a monatomic ideal gas, each of mass m.

We will assume that all collisions are elastic. This applies to collisions of atoms with one 
another, and to collisions involving the atoms and the walls of the box. The collisions between 
the atoms and the walls of the box give rise to the pressure the walls of the box experience 
because the gas is enclosed within the box, so let’s focus on those collisions.

Let’s find the pressure associated with one atom because of its collisions with one wall 
of the box. As shown in Figure 14.3 we will focus on the right-hand wall of the box. Because the 
atom collides elastically, it has the same speed after hitting the wall that it had before hitting the 
wall. The direction of its velocity is different, however. The plane of the wall we’re interested in 
is perpendicular to the x-axis, so collisions with that wall reverse the ball’s x-component of 
velocity, while having no effect on the ball’s y or z components of velocity. This is like the 
situation of the hockey puck bouncing off the boards that we looked at in Chapter 6.

The collision with the wall changes the x-component of the ball’s 
velocity from to , so the ball’s change in velocity is  and its change 

in momentum is , where the negative sign tells us that the change in 
the atom’s momentum is in the negative x-direction.

In Chapter 6, we learned that the change in momentum is equal to the impulse (the 
product of the force and the time interval  over which the force is applied). Thus: 

.  (Equation 14.3: The force the wall exerts on an atom)

The atom feels an equal-magnitude force in the opposite direction (Newton’s third law): 

.  (Equation 14.4: The force the atom exerts on the wall)

What is this time interval, ? The atom exerts a force on the wall only during the small 
intervals it is in contact with the wall while it is changing direction. It spends most of the time not 
in contact with the wall, not exerting any force on it. We can find the time-averaged force the 
atom exerts on the wall by setting  equal to the time between collisions of the atom with that 
wall. Because the atom travels a distance L across the box in the x-direction at a speed of , it 

takes a time of  to travel from the right wall of the box to the left wall, and the same amount 
of time to come back again. Thus:
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Figure 14.3: An atom inside 
the box bouncing off the 
right-hand wall of the box.



.  (Equation 14.5: Time between collisions with the right wall)

Substituting this into the force equation, Equation 14.4, tells us that the magnitude of the 
average force this one atom exerts on the right-hand wall of the box is:

. (Eq. 14.6: Average force exerted by one atom)

To find the total force exerted on the wall we sum the contributions from all the atoms:

.  (Equation 14.7: Average force from all atoms)

The Greek letter (sigma) indicates a sum. Here the sum is over all the atoms in the box.

If we have N atoms in the box then we can write this as:

.   (Equation 14.8: Average force from all atoms)

The term in brackets represents the average of the square of the magnitude of the x-
component of the velocity of each atom. For a given atom if we apply the Pythagorean theorem in 
three dimensions we have . Doing this for all the atoms gives:

,

and there is no reason why the sum over the x-components would be any different from 
the sum over the y or z-components – there is no preferred direction in the box. We can thus say 

that  or, equivalently, .

Substituting this into the force equation, Equation 14.8, above gives:

.   (Equation 14.9: Average force on a wall)

The term in brackets represents the square of the rms average speed. Thus:

.   (Equation 14.10: Average force on a wall)

By multiplying by 2 and dividing by 2, we can transform Equation 14.10 to:

, (Eq. 14.11: Force connected to kinetic energy)

The term in brackets is a measure of the average kinetic energy, , of the atoms.

Related End-of-Chapter Exercise: 36.

Essential Question 14.2: Why is the rms average speed, and not the average velocity, involved in 
the equations above? What is the average velocity of the atoms of ideal gas in the box?
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Answer to Essential Question 14.2: The average velocity of the atoms is zero. This is because the 
motion of the atoms is random, and with a large number of atoms in the box there are as many, on 
average, going one way as the opposite way. Because velocity is a vector the individual vectors 
tend to cancel one another out. The average speed, however, is non-zero, and it makes sense that, 
the faster the atoms move, the more force they exert on the wall.

14-3 Temperature
Let’s pick up where we left off at the end of the previous section. Because pressure is 

force divided by area, we can find the average pressure the atoms exert on the wall by dividing 
the average force by the wall area, L2. This gives:

.   (Equation 14.12: Pressure in the gas)

Now we have a factor of L3, which is V, the volume of the cube. We can thus write 
Equation 14.12 as:

   (Equation 14.13: The product PV)

Compare Equation 14.13 to Equation 14.2, the ideal gas law in the form . 
These equations must agree with one another, so we must conclude that:

 

,

or, equivalently,

. (Equation 14.14: Average kinetic energy is directly related to temperature)

This is an amazing result – it tells us what temperature is all about. Temperature is a 
direct measure of the average kinetic energy of the atoms in a material. It is further amazing that 
we obtained such a fundamental result by applying basic principles of physics (such as impulse, 
kinetic energy, and pressure) to an ideal gas. Consider now the following example.

EXAMPLE 14.3 – Two containers of ideal gas
Container A holds N atoms of ideal gas, while container B holds 5N atoms of the same 

ideal gas. The two containers are at the same temperature, T.
(a) In which container is the pressure highest?
(b) In which container do the atoms have the largest average kinetic energy? What is that  

average kinetic energy in terms of the variables specified above?
(c) In which container do the atoms have the largest total kinetic energy? What is that 

total kinetic energy in terms of the variables specified above?

SOLUTION
(a) We don’t know anything about the volumes of the two containers, so there is not 

enough information to say how the pressures compare. All we can say is that the product of the 
pressure multiplied by the volume is fives times larger in container B than in container A, because 
PV is proportional to the product of the number of atoms multiplied by the absolute temperature.
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(b) The fact that the temperatures are equal tells us that the average kinetic energy of the 
atoms is the same in the two containers. Applying Equation 14.14, we get in each case:

.

(c) The total kinetic energy is the average energy multiplied by the number of atoms, so 
container B has the larger total kinetic energy. Container B has a total kinetic energy of:

.

Related End-of-Chapter Exercises: 8, 10, 37.

Absolute zero
Another interesting concept contained in the ideal 

gas law is the idea of absolute zero. Let’s say we seal a 
sample of ideal gas in a container that has a constant 
volume. The container has a pressure gauge connected to 
it that allows us to read the pressure inside. We then 
measure the pressure as a function of temperature, 
placing the container into boiling water (100 °C), ice 
water (0 °C), and liquid nitrogen (–196 °C). The 
pressures at these temperatures are 129 kPa, 93.9 kPa, 
and 26.6 kPa, respectively. Plotting pressure as a function 
of temperature results in the graph shown in Figure 14.4. 
We find that our three points, and other points we care to 
measure, fall on a straight line. Extrapolating this line to 
zero pressure tells us that the pressure equals zero at a 
temperature of –273 °C (also known as 0 K).

Based on the previous section, we would 
conclude that the pressure drops to zero at absolute zero 
because the atoms or molecules have no kinetic energy. This 
is not quite true, although applying ideas of quantum 
mechanics is necessary to understand why not. If the atoms 
and molecules stopped completely, we would be able to 
determine precisely where they are. Heisenberg’s 
uncertainty principle, an idea from quantum mechanics, tells us that this is not possible, that the 
more accurately we know an object’s position the more uncertainty there is in its momentum. The 
bottom line is that even at absolute zero there is motion, known as zero-point motion. Absolute 
zero can thus be defined as the temperature that results in the smallest possible average kinetic 
energy.

Essential Question 14.3: At a particular instant compare the kinetic energy of one particular atom 
in container A to that of one particular atom in container B. Which atom has the larger kinetic 
energy? The two containers are at the same temperature, and there are five times more atoms in 
container B than in container A.
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Figure 14.4: A graph of pressure as a 
function of temperature for a constant-
volume situation. Extrapolating the graph to 
zero pressure shows that absolute zero 
corresponds to a temperature of –273 °C.



Answer to Essential Question 14.3: There is no way we can answer this question. The ideal gas 
law, and kinetic theory, tells us about what the atoms are doing on average, but they tell us 
nothing about what a particular atom is doing at a particular instant in time. Atoms are continually 
colliding with one another and these collisions generally change both the magnitude and direction 
of the atom’s velocity, and thus change the atom’s kinetic energy. We can find the probability that 
an atom has a speed larger or smaller than some value, but that’s about it.

14-4 Example Problems

EXPLORATION 14.4 – Finding pressure in a cylinder that has a movable piston

A cylinder filled with ideal gas is sealed by means of a piston. The piston is a disk, 
with a weight of 20.0 N, that can slide up or down in the cylinder without friction but which 
is currently at its equilibrium position. The inner radius of the cylinder, and the radius of the 
piston, is 10.0 cm. The top of the piston is exposed to the atmosphere, and the 
atmospheric pressure is 101.3 kPa. Our goals for this problem are to 
determine the pressure inside the cylinder, and then to determine what 
changes if the temperature is raised from 20°C to 80°C.

Step 1: Picture the scene. A diagram of the situation is shown in Figure 14.5.

Step 2: Organize the data. The best way to organize what we know in this case is to draw 
a free-body diagram of the piston, as in Figure 14.6. Three forces act on the piston: the 
force of gravity; a downward force associated with the top of the piston being exposed to 
atmospheric pressure; and an upward force from the bottom of the piston being exposed to 
the pressure in the cylinder.

Step 3: Solve the problem. The piston is in equilibrium, so let’s apply Newton’s second 
law, , to the piston. Choosing up to be positive gives:

, where A is the cross-sectional area of the piston.

Solving for P, the pressure inside the cylinder, gives:

.

The pressure inside the cylinder is not much larger than atmospheric pressure.

Step 4: The temperature of the gas inside the piston is gradually raised from 20°C to 80°C, 
bringing the piston to a new equilibrium position. What happens to the pressure of the gas, and 
what happens to the volume occupied by the gas? Be as quantitative as possible.

To answer the question about pressure we can once again draw a free-body diagram of 
the piston. However, the fact that the piston has changed position to a new equilibrium position in 
the cylinder changes nothing on the free-body diagram. Thus, the pressure in the cylinder is the 
same as it was before. The fact that the temperature increases, however, means the volume 
increases by the same factor. Because the pressure is constant, we can re-arrange the ideal gas law 
to:
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Figure 14.5: A diagram of the 
ideal gas sealed inside a cylinder 
by a piston that is free to move 
up and down without friction.

Figure 14.6: The free-body 
diagram of the piston, showing 
the forces acting on it.



.

This tells us that    .

Re-arranging to find the ratio of the volumes, and using absolute temperatures, gives:

.

The volume expands by 20%, increasing by the same factor as the absolute temperature.

Key Idea for a cylinder sealed by a movable piston: When ideal gas is sealed inside a cylinder 
by a piston that is free to move without friction, the pressure of the gas is generally determined 
by balancing the forces on the piston’s free-body diagram rather than from the volume or 
temperature of the gas.                            Related End-of-Chapter Exercises: 5, 26, 27, 30, 35.

EXAMPLE 14.4 – Comparing two pistons
The two cylinders in Figure 14.7 contain an identical number of moles of 

the same type of ideal gas, and they are sealed at the top by identical pistons that 
are free to slide up and down without friction. The top of each piston is exposed to 
the atmosphere. One piston is higher than the other. (a) In which cylinder is the 
volume of the gas larger? (b) In which piston is the pressure higher? (c) 
In which piston is the temperature higher?

SOLUTION

(a) Cylinder 2 has a larger volume. Note that the volume in 
question is not the volume of the molecules themselves, but the volume 
of the space the molecules are confined to. In other words, it is the 
volume inside the cylinder itself, below the piston.

 (b) Despite the fact that the piston in cylinder 2 is at a higher 
level than the piston in cylinder 1, the pressure is the same in both cylinders is the same. 
This is because the free-body diagrams in Figure 14.8 applies to both pistons. The pressure 
in both cylinders exceeds atmospheric pressure by an amount that is just enough to balance 
the pressure associated with the downward force of gravity acting on the piston. The 
pressure is equal in both cases because the pistons are identical. 

(c) Applying the ideal gas law tells us that the temperature is larger in cylinder 2, 
because T = PV/nR and the only factor that is different on the right-hand side of that 
equation is the volume. In this case the absolute temperature is proportional to the volume.

Related End-of-Chapter Exercises: 6, 7, 20 – 25, 28, 29.

Essential Question 14.4: Piston 2, in Figure 14.7, could be the same piston as 
piston 1, but just at a later time. What could you do to move the system from the 
piston 1 state to the piston 2 state?
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Figure 14.7: The cylinders contain the 
same number of moles of ideal gas, 
but the piston in cylinder 2 is at a 
higher level. The pistons are identical, 
are free to slide up and down without 
friction, and the top of each piston is 
exposed to the atmosphere.

Figure 14.8: The free-body 
diagram applies equally 
well to both pistons.



Answer to Essential Question 14.4: All we need to do is to increase the temperature of the piston. 
Based on our analysis in Exploration 14.4, raising the absolute temperature by 20% moves the 
piston from the state labeled Piston 1 to that labeled Piston 2.

14-5 The Maxwell-Boltzmann Distribution; Equipartition
We come now to James Clerk Maxwell, the Scottish physicist who determined that the 

probability a molecule in a container of ideal gas has a particular speed v is given by:

, (Equation 14.15: Maxwell-Boltzmann distribution)

where M is the molar mass (mass of 1 mole) of the gas.

This distribution of speeds is known as the Maxwell-Boltzmann distribution, and it is 
characterized by three speeds. These are, in decreasing order:

;   (Equation 14.16: the rms speed)

;   (Equation 14.17: the average speed)

.  (Equation 14.18: the most probable speed)

Plots of the Maxwell-Boltzmann distribution are shown in Figure 14.9 for two different 
temperatures and two different monatomic gases, argon and helium. Table 14.1 shows the speeds 
characterizing the distributions. At low temperatures the molecules do not have much energy, on 
average, so the distribution clusters around the most probable speed. As temperature increases the 
distribution stretches out toward higher speeds. The area under the curve stays the same (it is the 
probability an atom has some velocity, which is 1) so the probability at the peak decreases. 
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Figure 14.9: Maxwell-Boltzmann distributions at two different temperatures, 120 K and 300 K, for 
monatomic argon gas (the darker and taller curves, for argon with a molar mass of 40 g) and 
monatomic helium gas (lighter and shorter curves, with a molar mass of 4 g). 



Table 14.1: The various speeds characterizing 
the Maxwell-Boltzmann distribution of speeds 
for monatomic argon gas, and for monatomic 
helium gas, at temperatures of 120 K and 300 K. 

The Equipartition Theorem
Earlier, we applied basic principles of mechanics to find that . If we 

multiply by a factor of N, the number of atoms in the ideal gas, the equation becomes:

.         (Eq. 14.19: Internal energy of a monatomic ideal gas)

Equation 14.19 gives the total energy associated with the motion of the atoms in the ideal 
gas. This is known as the internal energy. The equipartition theorem states that all contributions 
to the internal energy contribute equally. For a monatomic ideal gas there are three contributions, 
coming from motion in the x, y, and z directions. Each direction thus contributes  to the 
internal energy. Each motion contributing to internal energy is called a degree of freedom. Thus:

.   (Eq. 14.20)

Consider a diatomic ideal gas, in which each molecule consists of 
two atoms. At low temperatures, only translational kinetic energy is 
important, but at intermediate temperatures (the range we 
will generally be interested in) rotation becomes important. 
As shown in Figure 14.10, rotational kinetic energy is 
important for rotation about two axes but can be neglected 
for the third axis because the rotational inertia is negligible 
for rotation about that axis. With five degrees of freedom, 
each counting for , the internal energy of a 
diatomic ideal gas is:

. (Eq. 14.21: Internal energy of a diatomic ideal gas)

At high temperatures, energy associated with the vibration of the atoms becomes 
important and there are two additional degrees of freedom (one associated with kinetic energy, 
one with elastic potential energy) to bring the coefficient in front of the NkT to 7/2.

Polyatomic molecules, at intermediate temperatures, have six degrees of freedom, 
translational kinetic energy in three dimensions, and rotational kinetic energy about three axes.

.         (Eq. 14.22: Internal energy of a polyatomic ideal gas)

Related End-of-Chapter Exercises: 38, 47, 48, 53.

Essential Question 14.5: Two containers have identical volumes, temperatures, and the same 
number of moles of gas. One contains monatomic ideal gas while the other has diatomic ideal 
gas. Which container has a higher pressure? In which does the gas have more internal energy?
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(m/s) (m/s) (m/s)

Argon, T = 120 K 273 252 223
Argon, T = 300 K 432 398 353
Helium, T = 120 K 865 797 706
Helium, T = 300 K 1367 1260 1116

Figure 14.10: A diatomic molecule is modeled 
as two balls connected by a light rod. In 
addition to translating in three dimensions the 
molecule can rotate about axes 1 or 2, for a total 
of five degrees of freedom. There is no 
contribution to the internal energy from rotation 
about axis 3 because the molecule has 
negligible rotational inertia about that axis.



Answer to Essential Question 14.5: To find the pressure we can apply the ideal gas law, in the 
form P = nRT/V. Because all the factors on the right-hand side are the same for the two 
containers the pressures must be equal. When applying the ideal gas law we do not have to worry 
about what the molecules consist of. We do have to account for this in determining which 
container has the larger internal energy, however. The internal energy for the monatomic gas is 

, while for the diatomic gas at room temperature it is . The 
monatomic ideal gas has 3/5 of the internal energy of the diatomic ideal gas.

14-6 The P-V Diagram
In Chapter 15, one of the tools we will use to analyze thermodynamic systems (systems 

involving energy in the form of heat and work) is the P-V diagram, which is a graph showing 
pressure on the y-axis and volume on the x-axis.

EXPLORATION 14.6 – Working with the P-V diagram
A cylinder of ideal gas is sealed by means of a cylindrical piston that can slide up and 

down in the cylinder without friction. The piston is above the gas. The entire cylinder is placed in 
a vacuum chamber, and air is removed from the vacuum chamber very slowly, slowly enough that 
the gas in the cylinder, and the air in the vacuum chamber, maintains a constant temperature (the 
temperature of the surroundings). 

Step 1: If you multiply pressure in units of kPa by volume in units of liters, what units do you 
get?

1 kPa ×1 liter = 1×103  Pa( ) × 1×10−3  m3( ) = 1 Pa m3 = 1 N m = 1 J.

Thus, the unit is the MKS unit the joule. This will 
be particularly relevant in the next chapter, when we deal 
with the area under the curve of the P-V diagram.

Step 2: Complete Table 14.2, giving the pressure and 
volume of the ideal gas in the cylinder at various 
instants as the air is gradually removed from the 
vacuum chamber in which the cylinder is placed.

Using the ideal gas law, we can say that 
PV = nRT = constant. In state 1, Table 14.2 tells us 
that the product of pressure and volume is 120 J. 
Thus the missing values in the table can be found 
from the equation PV = 120 J. In states 2 and 5, 
therefore, the gas occupies a volume of 1.5 liters and 4.0 liters, 
respectively. In states 3, 4, and 6, the pressure is 60 kPa, 40 kPa, 
and 20 kPa, respectively.

Step 3: Plot these points on a P-V diagram similar to that in 
Figure 14.11, and connect the points with a smooth line. Note 
that such a line on a P-V diagram is known as an isotherm, 
which is a line of constant temperature.

Chapter 14 – Thermal Physics: A Microscopic View Page 14 - 12

State Pressure (kPa) Volume (liters)
1 120 1.0
2 80
3 2.0
4 3.0
5 30
6 6.0

Table 14.2: A table giving the pressure and volume 
for a system of ideal gas with a constant 
temperature and a constant number of moles of gas.

Figure 14.11: A blank P-V diagram.



The P-V diagram with the points plotted, and the 
smooth line drawn through the points representing the isotherm, 
is shown in Figure 14.12.

Step 4: Repeat the process, but this time the absolute 
temperature of the gas is maintained at a value twice as large 
as that in the original process. Sketch that isotherm on the 
same P-V diagram.

If the absolute temperature is doubled, the constant 
must also double, from 120 J to 240 J. Starting with 

the original points we plotted, we can find points on the 
new isotherm by either doubling the pressure or doubling 
the volume. Several such points are shown on the modified 
P-V diagram in Figure 14.13, and we can see that this 
isotherm, at the higher temperature, is farther from the 
origin than the original isotherm. This is generally true, that  
the higher the temperature, the farther from the origin is the 
isotherm corresponding to that temperature.

Essential Question 14.6: An isotherm on the P-V diagram 
has the shape it does because, from the ideal gas law, we 
are plotting pressure versus volume and the pressure is 
given by:

.

For a particular isotherm, the value of nRT is constant, so an isotherm is a line with a 
shape similar to the plot of 1/V as a function of V. Let’s say we now have two cylinders of ideal 
gas, sealed by pistons as in the previous Exploration. Cylinder A, however, has twice the number 
of moles of gas as cylinder B. We plot a P-V diagram for cylinder A, and plot the isotherm 
corresponding to a temperature of 300 K. We also draw a separate P-V diagram for cylinder B, 
and we find that the same points we connected to draw the 300 K isotherm on cylinder A’s P-V 
diagram are connected to form an isotherm on cylinder B’s P-V diagram. What is the temperature 
of that isotherm on cylinder B’s P-V diagram?
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Figure 14.12:  The P-V diagram 
corresponding to the points from Table 14.2. 
The smooth curve through the points is an 
isotherm, a line of constant temperature.

Key Ideas about P-V diagrams: The P-V diagram (the 
graph of pressure as a function of volume) for a system can 
convey significant information about the state of the system, 
including the pressure, volume, and temperature of the 
system when it is in a particular state. It can be helpful to 
sketch isotherms on the P-V diagram to convey temperature 
information – an isotherm is a line of constant temperature.

Related End-of-Chapter Exercises: 11, 12, 49 – 52.

Figure 14.13: A P-V diagram showing two 
different isotherms. The isotherm that is farther 
from the origin has twice the absolute 
temperature as the isotherm closer to the origin.



Answer to Essential Question 14.6: 600 K. An isotherm is a line connecting all the points 
satisfying the equation a particular constant that depends on n and T. Because we’re 
talking about the same line on both P-V diagrams, we have . Solving for 
the temperature in cylinder B gives:

.

In this sense, then, the P-V diagrams for different ideal gas systems are unique, because 
the temperature of a particular isotherm depends on the number of moles of gas in the system. 

14-7 Diffusion and Osmosis
In Chapter 9, we learned a little bit about how surface tension is important in the alveoli 

of the lungs. Another key process involved is diffusion. Each time we breathe in, oxygen-rich air 
fills the alveoli of the lungs. Some of this oxygen will then diffuse through the membrane 
between the alveoli and blood inside the capillaries, infusing the blood with oxygen. Carbon 
dioxide diffuses in the other direction, from the blood into the lungs, and we then breathe the 
carbon dioxide out. This can be a highly efficient process in the human body, because the total 
surface area inside the alveoli can approach 100 m2, and the membrane thickness is extremely 
thin, generally several hundred nanometers.

Diffusion is a flow of molecules without requiring a net flow of a medium. For instance, 
in the case of the lungs described above, oxygen molecules diffuse from a region of high 
concentration of oxygen (in the lungs) to a region of lower concentration (in the blood). The 
carbon dioxide goes the other way because the high concentration of carbon dioxide is in the 
blood, and the lower concentration is in the lungs. From a physics perspective, diffusion simply 
comes from the random motion of molecules, as in an ideal gas. 

The process of a molecule randomly moving is known as a random walk. This was 
studied by Robert Brown in 1827, hence the term Brownian motion for the motion of a small 
particle immersed in a fluid. Albert Einstein was also a key figure in our understanding of 
diffusion, as it was he who developed the theory of Brownian motion.

Another example of diffusion is a mylar balloon that is filled with helium. As time 
passes, helium atoms diffuse through the wall of the balloon, and the balloon gradually deflates.

Osmosis
The process of osmosis involves the diffusion of molecules of a solute through a 

membrane that is selectively permeable. Take a container that is divided by a semi-permeable 
membrane. The membrane allows molecules of the solvent (which might be water, for example) 
to pass through because these molecules are small. On the other hand, the solute molecules may 
not pass through because they are too large. If two different concentrations of the solution are 
placed in the two parts of the container, the solvent molecules will diffuse through the membrane 
from the low-concentration side to the high-concentration side (thereby diluting the high-
concentration side, and increasing the concentration on the low-concentration side). We can refer 
to an osmotic pressure across the membrane that drives this flow - as shown in Figure 14.14, this 
osmotic pressure can balance a hydrostatic pressure difference between the two sides, coming 
from the difference in the height of the fluid columns.

Note that osmotic pressures can be rather large, up to many atmospheres of pressure, 
even. Because of this, osmosis is a key part of many biological systems.
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A related phenomenon, which is important in many desalination plants (removing salt 
from water so that humans can drink it), is reverse osmosis, described below. 

Reverse osmosis and desalination
Let’s calculate the osmotic pressure of seawater. This is done by multiplying the molarity 

(M) of the solution, (the concentration in moles / liter), by the universal gas constant (R), in units 
of liter atm / (K moles), and multiplying that by the temperature (T ) in Kelvin. A typical molarity 
of seawater is 1.1 moles / L. If we use a temperature of 300 K, the osmotic pressure works out to:

P = M R T = (1.1 moles / L) [0.082 L atm / (K moles) ] (300 K) = 27 atm.

 Thus, the osmotic pressure of seawater is about 27 atmospheres! This means that if you 
have a semi-permeable membrane (impermeable to the sodium and chlorine ions) separating fresh 
water from seawater, there is a very large pressure that drives the pure water through the 
membrane to the seawater side. 

 In the reverse-osmosis desalination process, however, we want the flow to go in the other 
direction, driving pure water from the seawater to the freshwater side. This can be done if the 
seawater is placed under hydrostatic pressure larger than the 27 atmospheres of osmotic pressure - 
thus, typical pressures for the seawater in a reverse-osmosis desalination facility are in the range 
of 40 - 80 atmospheres. A very recent development, in 2013, was the announcement of a new type 
of membrane, just one atom thick - this is made from graphene (a single sheet of carbon), with 
holes in it just the right size to pass water molecules but not the salt molecules. Such a very thin 
sheet offers a lot of promise, as it should be much easier for the water molecules to diffuse 
through than through the membranes that are currently used, which are many atomic layers thick.

 Reverse osmosis is also used in the maple syrup industry, to remove most of the water 
from the sap before boiling down the rest to make maple syrup and maple sugar.

 A related process, active transport, is at work in the cells of living things. For instance, 
the concentration of potassium ions (K+) inside a cell may be 20 times larger than the 
concentration outside the cell. Just the opposite happens for sodium ions (Na+), for which the 
outside concentration may be 15 times higher than the concentration inside the cell. Normally, we 
would expect these ions to diffuse from the high-concentration region to the low-concentration 
region, but active transport, through the action of a sodium-potassium pump, works to maintain 
the significant imbalance in concentrations. This takes energy, which comes from hydrolyzing 
ATP. The net result of the sodium-potassium pump is that for every three sodium ions that are 
pumped out of the cell, two potassium ions are pumped in. This is a key part of why there is 
generally a potential difference across the cell membrane (positive outside, negative inside). 

Essential Question 14.7: As fresh water is being removed from seawater in a desalination plant, 
what happens to the molarity of the seawater? Does this make it harder or easier to remove the 
pure water? How do you think this issue is addressed in a desalination facility?
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Figure 14.14: In the top diagram, the fluid levels 
are equal on both sides of a semi-permeable 
membrane, but the concentration is higher on the 
left. As shown in the bottom diagram, solvent 
molecules (small open circles) will then diffuse 
from right to left until the osmotic pressure 
balances the hydrostatic pressure. The membrane 
allows solvent molecules to pass through, but 
does not allow the larger (dark circles) solute 
molecules through. 



Answer to Essential Question 14.6: 600 K. An isotherm is a line connecting all the points 
satisfying the equation a particular constant that depends on n and T. Because we’re 
talking about the same line on both P-V diagrams, we have . Solving for 
the temperature in cylinder B gives:

.

In this sense, then, the P-V diagrams for different ideal gas systems are unique, because 
the temperature of a particular isotherm depends on the number of moles of gas in the system. 

Chapter Summary

 Essential Idea regarding looking at thermodynamic systems on a microscopic level
We can apply basic principles of physics to a system of gas molecules, at the microscopic 

level, and get important insights into macroscopic properties such as temperature. Temperature is 
a measure of the average kinetic energy of the atoms or molecules of the gas.

 The Ideal Gas Law
The ideal gas law can be written in two equivalent forms.

In terms of n, the number of moles of gas , ,  (Equation 14.1)   
where is the universal gas constant.

In terms of N, the number of molecules, ,   (Equation 14.2) where

is Boltzmann’s constant.

 What Temperature Means

. (Equation 14.14: Average kinetic energy is directly related to temperature)

As Equation 14.14 shows, temperature is a direct measure of the average kinetic energy 
of the atoms or molecules in the ideal gas.

 The Maxwell-Boltzmann Distribution
The Maxwell-Boltzmann distribution is the distribution of molecular speeds in a 

container of ideal gas, which depends on the molar mass M of the molecules and on the absolute 
temperature, T. The distribution is characterized by three speeds. In decreasing order, these are 
the root-mean-square speed; the average speed; and the most-probable speed. These are given by 
equations 14.16 – 14.18:

;   ;   . 
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 A Cylinder Sealed by a Piston that can Move Without Friction
 A common example of an ideal gas system is ideal gas sealed inside a cylinder by 
means of a piston that is free to move without friction. When the piston is at its 
equilibrium position the pressure of the gas is generally determined by balancing the 
forces on the piston’s free-body diagram, rather than from the volume or temperature of 
the gas. The diagram at right illustrates this idea for a cylinder sealed at the top by a piston 
of area A. The combined forces directed down, the force and gravity and the force 
associated with atmospheric pressure acting on the top of the piston, must be balanced by 
the upward force associated with the gas pressure acting on the bottom of the piston.

 The Equipartition Theorem
 The equipartition theorem is the idea that each contribution to the internal energy 
(energy associated with the motion of the molecules) of an ideal gas contributes equally. 
Each contribution is known as a degree of freedom.

. (Equation 14.20)

A monatomic ideal gas can experience translational motion in three dimensions. With 
three degrees of freedom the internal energy is given by:

.         (Eq. 14.19: Internal energy of a monatomic ideal gas)

At intermediate temperatures molecules in a diatomic ideal gas have two additional 
degrees of freedom, associated with rotation about two axes.

. (Eq. 14.21: Internal energy of a diatomic ideal gas)

Molecules in a polyatomic ideal gas can rotate about three axes.

.         (Eq. 14.22: Internal energy of a polyatomic ideal gas)

 The P-V Diagram
A graph of pressure versus volume (a P-V 

diagram) can be very helpful in understanding an ideal 
gas system. We will exploit these even more in the next 
chapter. The ideal gas law tells us that the product of 
pressure and volume (which has units of energy) is 
proportional to the temperature of a system. Lines of 
constant temperature are known as isotherms. The 
diagram at right shows two isotherms. The isotherm that 
is farther from the origin has twice the absolute 
temperature as the isotherm closer to the origin.
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End of Chapter Exercises

Exercises 1 – 12 are conceptual questions that are designed to see if you have understood the  
main concepts of the chapter.

1. While on an airplane, you take a drink from your water bottle, and then screw the cap 
tightly back on the bottle. After landing, you notice that the bottle is a funny shape, as if 
someone is deforming it by squeezing it. Explain what has happened.

2. A common lecture demonstration involves placing a gob of shaving cream in a bell jar, 
which is a device that can be sealed off from the atmosphere. Much of the air is then 
pumped out of the bell jar. What do you expect to happen when this is done? Why?

3. As shown in Figure 14.14, a sealed cylinder of ideal gas is divided 
into two parts by a piston that can move left and right without 
friction. There is ideal gas in both parts, but the parts are 
isolated from one another by the piston. The piston is in 
its equilibrium position. The volume occupied by the 
gas on the left side is larger than that occupied by the 
gas on the right side. On which side is the gas pressure 
higher? Explain your answer.

4. Return to the situation described in Exercise 3 and shown in Figure 14.14. Initially, the 
temperature of the gas on the right side is larger that that of the gas on the left side. As 
time goes by, the two sides approach the same equilibrium temperature, as the 
temperature gradually decreases on the right side and gradually increases on the left side. 
Describe what happens to the piston as the system progresses toward equilibrium.

5. As shown in Figure 14.15, a sealed cylinder of ideal gas is divided into two parts 
by a piston that can move up and down without friction. There is ideal gas in both 
parts, but the gas from one part is isolated from that in the other part by the piston. 
The piston, which has a weight of 50.0 N, is shown in its equilibrium position. The 
volume occupied by the gas in the lower part is larger than 
that occupied by the gas in the upper part. On which side is the 
gas pressure higher? Explain your answer.

6. Three identical cylinders are sealed with identical pistons 
that are free to slide up and down the cylinder without 
friction. Each cylinder contains ideal gas, and the 
temperature is the same in each case, but the volumes 
occupied by the gases differ. In each cylinder the piston is 
above the gas, and the top of each piston is exposed to the 
atmosphere. As shown in Figure 14.16, the volume 
occupied by the gas is largest in case 1 and smallest in 
case 3. Rank the cylinders in terms of (a) the pressure of 
the gas, and  (b) the number of moles of gas inside the 
cylinder.
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Figure 14.14: A sealed cylinder that is 
divided into two parts by a piston that 
is free to move left or right without 
friction. For Exercises 3 and 4.

Figure 14.15: A sealed cylinder 
divided into two parts by a piston 
that is free to slide up and down 
without friction, for Exercise 5.

Figure 14.16: Three cylinders 
containing different volumes of gas at  
the same temperature, for Exercise 6.



7. Three identical cylinders are sealed with identical 
pistons that are free to slide up and down the cylinder 
without friction, as shown in Figure 14.17. Each 
cylinder contains ideal gas, and the gas occupies the 
same volume in each case, but the temperatures differ. 
In each cylinder the piston is above the gas, and the 
top of each piston is exposed to the atmosphere. In 
cylinders 1, 2, and 3 the temperatures are 0°C, 50°C, 
and 100°C, respectively. Rank the cylinders in terms of 
(a) the pressure of the gas, and  (b) the number of 
moles of gas inside the cylinder.

8. Is it possible for the total kinetic energy of the atoms in one container of ideal gas to be 
the same as the total kinetic energy of the atoms in a second container of ideal gas, but for 
their temperatures to be different? If so, describe how you could achieve this.

9. Consider a sealed box of ideal gas that is separated into two parts of equal volume by a 
partition. All the gas molecules are in one half of the box and there is nothing at all in the 
other half of the box. The partition consists of two sliding doors, which can be opened 
quickly and automatically like the doors of an elevator. When the sliding doors open, 
allowing the molecules to expand into the other half of the box, do you expect either the 
pressure or the temperature to remain constant? Basing your argument on kinetic theory, 
state which of these parameters (pressure or temperature) you expect to stay constant, 
explain why, and explain what happens to the other parameter.

10. Two containers of ideal gas have the same volume, the same 
pressure, and have the same number of moles of gas, but the 
type of molecule in each container is different. To be specific, 
one container contains argon atoms while the other contains 
xenon atoms, which are both monatomic ideal gases. Which 
of the following are the same for the two containers and 
which are different? In cases where there is a difference, state 
how they differ. (a) Temperature, (b) average kinetic energy of 
the atoms, (c) total kinetic energy of the atoms, (d) rms speed 
of the atoms, (e) most probable speed of the atoms.

11. Four states, labeled 1 through 4, of a particular 
thermodynamic system, are shown on the P-V diagram 
in Figure 14.18. The number of moles of gas in the 
system is constant. Rank the states based on their 
temperature, from largest to smallest.

12. Consider the P-V diagram in Figure 14.19. Find three 
other points on the diagram in which the system would 
have the same temperature as it has in state 1.
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Figure 14.17: Three cylinders 
containing equal volumes of gas at 
different temperatures, for Exercise 7.

Figure 14.18: Four states are shown on 
the P-V diagram for a particular 
thermodynamic system. For Exercise 11.

Figure 14.19: A P-V diagram for a 
particular thermodynamic system. 
For Exercise 12.



Exercises 13 – 16 deal with the ideal gas law.

13. A sample of monatomic ideal gas is kept in a container that keeps a constant volume 
while the temperature of the gas is raised from 10°C to 20°C. If the pressure of the gas is 
P at 10°C, what is the pressure at 20°C?

14. A particular cylindrical bucket has a height of 50 cm, while the radius of its circular 
cross-section is 15 cm. The bucket is empty, aside from containing air. The bucket is then 
inverted and, being careful not to lose any of the air trapped inside, lowered 20 m below 
the surface of a fresh-water lake. (a) If the temperature is the same at both points, what 
fraction of the bucket’s volume is occupied by the air when the bucket is 20 m down? (b) 
Would the fraction be larger, smaller, or the same if the temperature drops from 25°C at 
the surface to 5.0°C 20 m below the surface? Why? (c) Calculate the fraction of the 
bucket’s volume that is occupied by air when the bucket is 20 m down and the 
temperature changes as described in (b).

15. An empty metal can is initially open to the atmosphere at 20°C. The can is then sealed 
tightly, and heated to 100°C. While at 100°C, the lid of the can is loosened, opening the 
can to the atmosphere, and then the can is sealed tightly again. When the can cools to 
20°C again, what is the pressure inside?

16. In 1992, a Danish study concluded that a standard toy balloon, made from latex and filled 
with helium, could rise to 10000 m (where the pressure is about 1/3 of that at sea level) in 
the atmosphere before bursting. In the study, a number of balloons were filled with 
helium, and then placed in a chamber maintained at –20°C. The pressure was gradually 
reduced until the balloons exploded, and then the researchers determined the height 
above sea level corresponding to that pressure. Assuming the balloons were filled with 
helium at +20°C and about atmospheric pressure, determine the ratio of the balloon's 
volume when it exploded to its volume when it was filled.

Questions 17 – 19 deal with calculating the rms average.

17. Consider the set of numbers –3, –2, –1, 1, 3, 5. (a) What is the average of this set of 
numbers? (b) What is the rms average of this set of numbers?

18. Is it possible for a set of four numbers to have an average of zero but an rms average that 
is non-zero? If so, come up with a set of four numbers for which this is true.

19. (a) Is it possible for the average of a set of four numbers to be equal to the rms average of 
those numbers? If so, find a set of four numbers for which this is true. (b) Is it possible 
for the average of a set of four numbers to be larger than the rms average of those 
numbers? If so, find a set of four numbers for which this is true.

Questions 20 – 25 are a sequence of ranking tasks that relate to cylinders that are sealed by 
pistons that are free to slide without friction. In all cases, the piston is at its equilibrium 
position.
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20. Three identical cylinders are sealed with pistons that are 
free to slide up and down the cylinder without friction, 
but the masses of the pistons differ. As shown in Figure 
14.20, Piston 1 has the largest mass, while piston 2 has 
the smallest mass. Each cylinder contains ideal gas at 
the same temperature and occupying the same volume. 
In each cylinder, the piston is above the gas, and the 
top of each piston is exposed to the atmosphere. Rank 
the cylinders in terms of (a) the pressure of the gas, and  
(b) the number of moles of gas inside the cylinder.

21. As in Exercise 20, three identical cylinders are sealed 
with pistons that are free to slide up and down the 
cylinder without friction, but the masses of the pistons 
differ. As shown in Figure 14.21, piston 1 has the 
largest mass, while piston 2 has the smallest mass. The 
gas in each cylinder occupies the same volume, but in 
cylinders 1, 2, and 3 the temperatures are 0°C, 50°C, 
and 100°C, respectively. In each cylinder the piston is 
above the gas, and the top of each piston is exposed to 
the atmosphere. Is it possible to rank the cylinders, 
from largest to smallest, in terms of the pressure of the 
gas based on the information given here? If so state the 
ranking, and compare the ranking to that in the previous 
exercise, explaining either why you expect the rankings 
to be the same or why you expect the rankings to differ. 
If it is not possible to rank the cylinders based on their 
pressures, clearly explain why not.

22. Three identical cylinders are sealed with identical 
pistons that are free to slide up and down the 
cylinder without friction. Each cylinder contains 
ideal gas, and the gas occupies the same volume in 
each case, but the temperatures differ. As shown in 
Figure 14.22, each cylinder is inverted so the piston 
is below the gas, and the bottom of each piston is 
exposed to the atmosphere. In cylinders 1, 2, and 3 
the temperatures are 0°C, 50°C, and 100°C, 
respectively. Rank the cylinders, from largest to 
smallest, in terms of (a) the pressure of the gas (b) 
the number of moles of gas inside the cylinder.

23. Three identical cylinders are sealed with pistons that 
are free to slide up and down the cylinder without 
friction, but the masses of the pistons differ. Piston 1 
has the largest mass, while piston 2 has the smallest 
mass. Each cylinder contains ideal gas at the same 
temperature and occupying the same volume. As 
shown in Figure 14.23, each cylinder is inverted so 
the piston is below the gas, and the bottom of each 
piston is exposed to the atmosphere. Rank the 
cylinders, from largest to smallest, in terms of (a) 
the pressure of the gas, and (b) the number of 
moles of gas inside the cylinder.
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Figure 14.20: Three cylinders 
containing the same volume of gas at 
the same temperature, but the pistons 
have different mass. For Exercise 20.

Figure 14.21: Three cylinders 
containing the same volume of gas at 
different temperatures, and with pistons 
of different mass. For Exercise 21.

Figure 14.22: Three inverted cylinders 
containing the same volume of gas at 
different temperatures. For Exercise 22.

Figure 14.23: Three inverted cylinders 
containing the same volume of gas at 
equal temperatures, but having pistons of 
different mass. For Exercise 23.



24. Three identical cylinders are sealed with pistons that are 
free to slide up and down the cylinder without friction. 
Each cylinder contains ideal gas, and the gas occupies 
the same volume in each case and is at the same 
temperature. As shown in Figure 14.24, the pistons in 
cylinders 1 and 3 are identical but the piston in cylinder 
1 is above the gas while cylinder 3 is inverted so the 
piston is below the gas. The piston in cylinder 2, 
which is above the gas, has more mass than the other 
two pistons. The top surfaces of the pistons in 
cylinders 1 and 2, and the bottom surface of the piston 
in cylinder 3, are exposed to the atmosphere. Rank the 
cylinders, from largest to smallest, in terms of (a) the 
pressure of the gas, and (b) the number of moles of gas 
inside the cylinder.

25. Three identical cylinders are sealed with pistons that 
are free to slide up and down the cylinder without 
friction. Each cylinder contains ideal gas. As shown 
in Figure 14.25, the volume occupied by the gas is 
different in each case, and the temperatures are also 
different. The pistons also have different masses. The 
piston in cylinder 1 has the smallest mass while the 
piston in cylinder 2 has the largest mass. In each 
cylinder the piston is above the gas, and the top of 
each piston is exposed to the atmosphere. Is it possible 
to rank the cylinders, from largest to smallest, in terms 
of the pressure of the gas? If so, provide the ranking. If 
not, explain why not.

Exercises 26 – 35 relate to cylinders that are sealed by pistons that are free to slide without 
friction. 

26. In Exploration 14.4, we analyzed a cylinder filled with ideal gas that is sealed by a piston 
that is above the gas. The piston is a cylindrical object, with a weight of 20.0 N, that can 
slide up or down in the cylinder without friction. The inner radius of the cylinder, and the 
radius of the piston, is 10.0 cm. With the top of the piston exposed to the atmosphere, at a 
pressure of 101.3 kPa, we determined the pressure inside the cylinder. Now, very slowly, 
so that the gas inside the cylinder stays constant at the temperature of its surroundings, 
sand is poured onto the top of the piston. When 30.0 N of sand has been added to the 
piston, determine: (a) the pressure inside the cylinder, and (b) the ratio of the final 
volume occupied by the gas after the sand is added to the volume occupied by the gas 
before the sand is added.

27. A cylinder filled with ideal gas is sealed by a piston that is above the gas. The piston is a 
cylindrical object, with a weight of 10.0 N, that can slide up or down in the cylinder 
without friction. The inner radius of the cylinder, and the radius of the piston, is 10.0 cm. 
(a) If the top of the piston is exposed to the atmosphere, and the atmospheric pressure is 
101.3 kPa, what is the pressure inside the cylinder? (b) What happens to the gas pressure, 
and the volume occupied by the gas, if the cylinder’s temperature is gradually increased 
from 20°C to 60°C? Be as quantitative as possible.
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Figure 14.24: Three cylinders 
containing the same volume of gas at 
equal temperatures, but cylinder 3 is 
inverted while the piston in cylinder 2 
has a larger mass than the other two 
pistons. For Exercise 24.

Figure 14.25: Three cylinders 
containing different volumes of gas at 
different temperatures, and with pistons 
of different mass. For Exercise 25.



28. Consider the cylinder in Exercise 27. If the cylinder is inverted, so the piston lies below 
the gas, what will happen to the piston? Will it remain in the cylinder, or will it fall out? 
Explain qualitatively what will happen, and explain why. Assume the piston is initially 
located about halfway down the cylinder.

29. Return to Exercise 28, but now analyze it quantitatively. (a) Assuming the piston is in 
equilibrium below the gas, determine (a) the gas pressure, and  (b) the ratio of the volume 
occupied by the gas when the piston is below the gas to the volume occupied by the gas 
when the piston is above the gas.

30. A cylinder filled with ideal gas is sealed by a piston that is above the gas. The piston is a 
cylindrical object, with a weight of 50.0 N, that can slide up or down in the cylinder 
without friction. The inner radius of the cylinder, and the radius of the piston, is 5.00 cm. 
The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 
kPa. The cylinder has a height of 30.0 cm, and, when the temperature of the gas is 20°C, 
the bottom of the piston is 15.0 cm above the bottom of the cylinder. Find the number of 
moles of ideal gas in the cylinder.

31. Return to the cylinder described in Exercise 30. When the temperature of the gas is raised 
from 20°C to 200°C, find the distance between the bottom of the cylinder and the bottom 
of the piston when the piston comes to its new equilibrium position.

32. Consider again the cylinder described in Exercise 30. What is the maximum temperature 
the ideal gas can have for the cylinder to remain sealed?

33. Consider again the cylinder described in Exercise 30. Now, the entire cylinder is sealed in 
a vacuum chamber and air is gradually pumped out of the chamber. Assume the 
temperature of the gas remains the same. (a) Describe qualitatively what, if anything, 
happens to the cylinder as the air is removed from the chamber. (b) What is the lowest 
pressure the chamber can have for the cylinder to remain sealed?

34. Consider again the cylinder described in Exercise 30. As the 
temperature of the gas is gradually raised from 20°C to 220°C you, 
wearing insulating gloves to prevent a nasty burn, push down on the 
top of the piston so that the piston remains in the same position at all 
times. How much downward force do you have to exert on the piston 
when the gas temperature is (a) 120°C?  (b) 220°C?

35. Consider again the cylinder described in Exercise 30, except this time 
the piston is tied to a string that passes over a pulley system and is 
tied to a block that has a weight of 90.0 N, as shown in 
Figure 14.26. Both the block and the piston are in 
equilibrium.  What is the pressure in the cylinder?

General exercises and conceptual questions

36. Kids love to bounce around inside a moonwalk, which 
consists of a floor inflated with air and four walls made of elastic mesh. In a particular 
moonwalk, there are 8 children, each with a mass of 15 kg. Each wall of the moonwalk 
measures 3.0 m by 3.0 m and, on average, each child bounces off a wall once every 5.0 s. 
Assume that each child has a speed of 2.0 m/s when he or she hits a wall; that the child’s 
velocity is directed perpendicular to the plane of the wall; and that the collision with the 
wall simply reverses the direction of the child’s velocity. What is the average pressure 
experienced by a wall because of the children in the moonwalk?
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Figure 14.26: The 50.0 N piston is tied 
to a 90.0 N block by a string passing 
over a pulley system. The system is in 
static equilibrium. For Exercise 35.



37. A box of ideal gas contains two kinds of atoms, which have different masses. The atoms 
are in thermal equilibrium. You observe that the average speed of one of the kinds of 
atoms is 50% larger than the average speed of the other. What is the ratio of the masses of 
the atoms?

38. Equation 14.16 gives an expression for the root-mean-square speed of the Maxwell-
Boltzmann distribution. Derive this equation by starting from Equation 14.14, 

.

39. You have two identical cylinders that are sealed with identical pistons that are free to 
slide up and down the cylinder without friction. Each cylinder contains ideal gas, and the 
gas occupies the same volume and is at the same temperature in each case. In each 
cylinder the piston is above the gas. Cylinder A contains argon gas (atomic mass = 40 g), 
while cylinder B contains xenon (atomic mass = 131 g). (a) In which cylinder is the 
pressure larger? Explain your answer. (b) In which cylinder is the number of moles of gas 
larger? Explain your answer.

40. You have two identical cylinders that are sealed with identical pistons that are free to 
slide up and down the cylinder without friction. Each cylinder contains the same number 
of moles of a diatomic ideal gas, and the gas is at the same temperature in each case. In 
each cylinder the piston is above the gas. Cylinder A contains oxygen gas (molecular 
mass = 32 g), while cylinder B contains nitrogen (molecular mass = 28 g). (a) In which 
cylinder is the pressure larger? Explain your answer. (b) In which cylinder is the volume 
occupied by the gas larger? Explain your answer.

41. As shown in Figure 14.27, a sealed cylinder of ideal gas is divided into two 
parts by a piston that can move up and down without friction. There is ideal 
gas in both parts, but the gas from one part is isolated from that in the other 
part by the piston. The volume occupied by the gas in the lower part is twice 
that occupied by the gas in the upper part, while the 
temperature is the same in both parts. The pressure in the lower 
part is 2000 Pa, and the weight of the piston is 50.0 N. The 
piston is in its equilibrium position. The cross-sectional area of 
the cylinder is 100 cm2. Determine (a) the pressure in the upper 
part, and (b) the ratio of the number of moles of gas in the 
lower part to the number of moles in the upper part.

42. A cylinder sealed by a movable piston contains a certain number of molecules of air, 
which we can treat as an ideal gas. The pressure is initially 1 x 105 Pa in the cylinder, and 
the temperature is 20°C. Very slowly, so the temperature of the gas remains constant, you 
push on the piston so that the volume occupied by the gas changes from V, its original 
value, to V/4. Plot a graph of the pressure in the cylinder as a function of the volume 
occupied by the gas.

43. Return to the situation described in Exercise 42. If you carry out the compression very 
quickly, instead of slowly, the temperature of the gas can change significantly. (a) Would 
you expect the temperature in the cylinder to increase or decrease? (b) Thinking about the 
interaction between the piston and the individual gas molecules, come up with an 
explanation regarding why and how the average kinetic energy of the gas molecules 
changes.
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Figure 14.27: A sealed cylinder 
divided into two parts by a piston 
that is free to slide up and down 
without friction, for Exercise 41.



44. On a hot summer day, you are sitting at a café drinking a carbonated beverage from a tall 
glass. As you watch bubbles rise from the bottom to the top of the glass you start thinking 
that they should be changing in volume as they rise. (a) Why, and in what way, would 
you expect the bubbles to change in volume as they rise? (b) Assuming the beverage has 
the same density as water, 1000 kg/m3, estimate the ratio of the volume of a bubble at the 
surface to its volume at the bottom of the glass, 30 cm below the surface.

45. A spherical copper container with a radius of 8.0 cm is sealed when the air inside is at 
atmospheric pressure, 101.3 kPa, and the temperature is 20°C. (a) How many moles of 
gas does the sphere contain? (b) Neglecting any change in volume in the copper sphere 
itself, plot a graph of the pressure in the container as a function of temperature over the 
range of –150°C to +150°C. (c) What is the slope of the graph equal to? State your 
answer in terms of variables as well as giving a numerical value.

46. Consider the set of pressures, volumes, and 
temperatures for a sealed container of ideal 
gas shown in Table 14.3. Complete the 
table, and then rank the four states, from 
largest to smallest, based on their (a) 
pressure,  (b) volume, and  (c) temperature.

47. You have a cubical box measuring 30 cm on each side. Sealed in this box is monatomic 
argon gas at a temperature of 20°C and at a pressure of 100 kPa. (a) Determine the 
number of moles of argon in the box. (b) Determine the number of atoms of argon in the 
box. For these argon atoms, determine the (c) most probable speed (d) average speed (e) 
rms speed.

48. Return to the box of argon gas described in Exercise 47. Let’s make some simple 
calculations to work out approximately how many collisions each side of the box 
experiences every second, and to determine the average force exerted on one side of the 
box by a single colliding atom. (a) Using the given pressure and the area of one side of 
the box, determine the average force applied by the atoms to one side of the box. (b) Use 
the value of vrms and the relationship to find the value of vx. (c) Use Equation 
14.5 to determine the time interval between successive collisions of one atom with one 
side of the box. (d) Determine how many collisions one atom makes with one side of the 
box every second. (e) Multiply by the number of atoms to determine the total number of 
collisions that one side of the box experiences every second. (f) Divide your answer from 
part (a) by your answer from part (e) to determine the average force associated with one 
collision.
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State Pressure Volume Temperature
A

B

C

D

Table 14.3: A table showing the pressure, 
volume, and temperature of a sealed ideal gas in 
four different states, for Exercise 46.



49. A particular ideal gas system contains a 
fixed number of moles of ideal gas. The 
number of moles of gas is such that the 
product nR = 0.300 J/K. Values of the 
volume and temperature for particular states 
of the system are shown in Table 14.4. (a) 
Find the pressure for each of the states 
shown in the table. (b) Plot these points on a 
P-V diagram. (c) Describe a system that 
these states could correspond to, and explain 
how you could move the system from state 1 
through the other states listed to state 5.

50. A particular ideal gas system contains a fixed 
number of moles of ideal gas. The number of moles 
of gas is such that the product nR = 0.100 J/K. 
Values of the pressure and temperature for 
particular states of the system are shown in Table 
14.5. (a) Find the volume for each of the states 
shown in the table. (b) Plot these points on a P-V 
diagram. (c) Describe a system that these states 
could correspond to, and explain how you could 
move the system from state 1 through the other 
states listed to state 5.

51. Four states, labeled 1 through 4, of a particular 
thermodynamic system, are shown on the P-V diagram in 
Figure 14.28. The number of moles of gas in the system 
is constant. (a) Rank the states based on their 
temperature, from largest to smallest. (b) If the number 
of moles of gas is chosen such that the product 

, find the absolute temperature of the 
system in the various states.
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State P (kPa) V (liters) T (K)

1 40 80

2 80 160

3 120 240

4 160 320

5 200 400

State P (kPa) V (liters) T (K)

1 1.0 150

2 2.0 300

3 3.0 450

4 4.0 600

5 5.0 750

Table 14.4: Volume and temperature 
readings in five states of an ideal gas 
system, for Exercise 49.

Table 14.5: Pressure and temperature 
readings in five states of an ideal gas 
system, for Exercise 50.

Figure 14.28: Four states are shown on the 
P-V diagram for a particular thermodynamic 
system. For Exercise 51.
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