12-1 Hooke’s Law

We probably all have some experience with springs. One observation we can make is that
it doesn’t take much force to stretch or compress a spring a small amount, but the more we try to
compress or stretch it, the more force we need. We’ll use a model of an ideal spring, in which the
magnitude of the force associated with stretching or compressing the spring is proportional to the
distance the spring is stretched or compressed.

The equation describing the proportionality of the spring force with the displacement of
the end of the spring from its natural length is known as Hooke’s law.

—kX. (Equation 12.1: Hooke’s Law)

F, Spring =

The negative sign is associated with the restoring nature F(N)
of the force. When you displace the end of the spring in one
direction from its equilibrium position, the spring applies a force
in the opposite direction, essentially in an attempt to return the
system toward the equilibrium position (the position where the
spring is at its natural length, neither stretched nor compressed).
The force applied by the spring is proportional to the distance the
spring is stretched or compressed relative to its natural length.

Spring force as a function
of displacement

The k in the Hooke’s law equation is known as the spring ~
constant. This is a measure of the stiffness of the spring. If you have | Figure 12.1: A graph of the force

two different springs and you stretch them the same amount from applied by a particular spring as a
equilibrium. The one that requires more force to maintain that stretch | function of the displacement of the
has the larger spring constant. Figure 12.1 shows the Hooke’s law end of the spring from its
relationship as a graph of force as a function of the amount of equilibrium position.

compression or stretch of a particular spring from its natural length.

The Hooke’s law relationship is illustrated in
Figure 12.2, where x = 0 means the spring is neither
stretched nor compressed from its natural length. A block
attached to spring has been released and is oscillating on -;a _(" (') 49y
a frictionless surface. Free-body diagrams are shown in - -
Figure 12.2, illustrating how the force exerted by the

spring on the block depends on the displacement of the
end of the spring from its equilibrium position. |—_/\/\/\/\/_.
T T T T > X
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Figure 12.2: A block attached to an ideal spring ‘ ]
oscillates on a frictionless surface. By looking at the | Fx
free-body diagrams of the block when the block is at | M ka
various positions, we can see that the force applied | T | — X P
by the spring on the block is proportional to the f -2a -a 0 +a +2a G
displacement of the end of the spring from its f
equilibrium position, and opposite in direction to that Pka
displacement. : f\/\/\/\f.
3 T T T T X
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EXAMPLE 12.1 — Initial acceleration of a block

A block of mass 300 g is attached to a horizontal spring that has a spring constant of
6.0 N/m. The block is on a horizontal frictionless surface. You release the block from rest when
the spring is stretched by 20 cm.

(a) Sketch a diagram of the situation, and a free-body diagram of the block immediately
after you release the block.

(b) Determine the block’s initial acceleration.

(c) What happens to the block’s free-body diagram as the block moves to the left?

SOLUTION
(a) The diagram and free-body

diagram are shown in Figure 12.3. After kxi
you release the block, only three forces A
act on the block. The downward force of I X (cm)

I I |
gravity is balanced by the upward normal -20 -10 0 +10 +20
force applied by the surface. The third
force is the force applied by the spring. The Figure 12.3: A diagram of the block and spring, and
spring force is directed to the left because the | the free-body diagram of the block, immediately
end of the spring has been displaced to the after the block is released from rest.
right from its equilibrium position.

(b) Here we can apply Newton’s Second Law horizontally, ¥ F = ma , taking right to be

the positive x-direction. This gives: —F;

Spring =ma.

Now we can bring in Equation 12.1, F“Sp,,mg

=—kx,toget: —kx,=ma,.

Note that we use only one minus sign in the equation because we’re substituting for the
magnitude of the spring force only. The one minus sign represents the direction of the spring
force, which is to the left. Solving for the block’s initial acceleration gives:

. (60N/m)(0.20
g = K2 _(CON/m)O20m) e
m 0.30kg

The initial acceleration is 4.0 N/kg to the left.

(c) As the block moves to the left, nothing changes about the vertical forces, but the
spring force steadily decreases in magnitude because the stretch of the spring steadily decreases.
Once the block goes past the equilibrium position, the spring force points to the right, and
increases in magnitude as the compression increases. The dependence of the spring force on the
block’s position is shown, for five different positions, in Figure 12.2.

Related End-of-Chapter Exercises: 16, 55.
Essential Question 12.1: Let’s say we estimated the time it takes the block in Example 12.1 to
reach equilibrium, by assuming the block’s acceleration is constant at 4.0 N/kg to the left. Is our

estimated time smaller than or larger than the time it actually takes the block to reach the
equilibrium point?
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Answer to Essential Question 12.1: This estimated time is less than the actual time. The closer
the block gets to the equilibrium position, the smaller the force that is exerted on it by the spring,
and the smaller the magnitude of the block’s acceleration. Because the block generally has a
smaller acceleration than the acceleration we used in the constant-acceleration analysis, it will
take longer to reach equilibrium than the time we calculated with the constant-acceleration
analysis. Thus, remember not to use constant-acceleration equations in harmonic motion
situations! We’ll learn how to calculate exact times in sections 12-4 to 12-6.

12-2 Springs and Energy Conservation

Now that we have seen how to incorporate springs into a force perspective, let’s go on to
consider how to fit springs into what we know about energy.

EXPLORATION 12.2 — Another kind of potential energy

Step 1 — Attach a block to a spring, and position the block so that the spring is stretched. Let’s
neglect friction, so when you release the block from rest it oscillates back and forth about the
equilibrium position. What is going on with the energy of the system as the block oscillates?
As the block oscillates, its speed increases from zero to some maximum value, then decreases to
zero again, and keeps doing this over and over. The kinetic energy of the system does exactly the
same thing, since it is proportional to the square of this speed. Where does the energy go when
the kinetic energy decreases, and where does it comes from when the kinetic energy increases?

The energy is stored as potential energy in the spring. This is similar to what happens
when we throw a ball up into the air. As the ball rises, the ball’s loss of kinetic energy is offset by
the gain in the gravitational potential energy of the Earth-ball system, and then that potential
energy is transformed back into kinetic energy. Compressed or stretched springs also store
potential energy. Such energy is known as elastic potential energy.

Step 2 - Consider the graph of force, as a function of the

displacement of the end of the spring, shown in Figure 12.4. As F Spring force as a function
we did in Chapter 6, defining the change in gravitational of displacement
potential energy to be the negative of the work done by gravity tkx BT S e e R
on an object, find an expression for the change in elastic
potential energy as the end of the spring is displaced from its 0 : ' o ' Lo
equilibrium position (x = 0) to some arbitrary final position x. P 0 S
Make use of the fact that work is the area under the force- + """""""" P . %
versus-position graph in Figure 12.4. “kx Leeoteeetee- e

The area in question is that of the right-angled Figure 12.4: The work done by a spring when
triangle shown in Figure 12.4. The area is negative because its end is displaced from the equilibrium
the force is negative the entire time. The area under the position to a point x away from equilibrium is
curve is given by: represented by the shaded area in the graph.

area = —lbasexheight = —lx(kx) = —lkx2 .
2 2 2

This area represents the work done by the spring. This work is negative because the
spring force is opposite in direction to the displacement. Because AU, , the change in the elastic

potential energy, is the negative of the work, we have AU, = % Jx? in this case.
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Step 3 — How much elastic potential energy is stored in the spring when the spring is at its
natural length? None. If we attach a block to such a spring and release the block from rest, no
motion occurs because the system is at equilibrium. There is no transformation of elastic potential
energy into kinetic energy because the system has no elastic potential energy when the spring is at
its natural length — the equilibrium position is the zero for elastic potential energy.

Step 4 — Combine the results from parts 2 and 3 to determine the expression for the elastic
potential energy stored in a spring when the end of the spring is displaced a distance x from its
equilibrium position. In step 3 we found the change in elastic potential energy in displacing the
end of the spring from its equilibrium position to a point x away from equilibrium to be

AU, = %kxz . This change in elastic potential energy is equal to the final elastic potential energy

minus the initial elastic potential energy. However, we found the initial elastic potential energy to
be zero in step 3, which means the expression for elastic potential energy is simply:

U, =—hx*. (Equation 12.2: Elastic potential energy)

Key ideas: Compressed or stretched springs store energy — this is known as elastic potential

energy. For an ideal spring, the elastic potential energy is U, = %kxz.

Related End-of-Chapter Exercises: 9, 48.

Now that we know the form of the elastic potential energy equation, we can incorporate
springs into the conservation of energy equation we first used in chapter 7:

K, +U +W, =K, +U,. (Equation 7.1) Energy (1)

Graphs of the energies as a function of position are interesting. ...... ,,,,,, 130-- ________

Consider a block attached to a spring. The block is oscillating back and
forth on a frictionless surface, so the total mechanical energy stays
constant. An easy way to graph the kinetic energy is to exploit energy
conservation, E = K +U . Solving for the kinetic energy as a function of

position gives:

K=E-U =E—%kx2.
Figure 12.5: Graphs of the system’s

Graphs of the energies as a function of position are
shown in Figure 12.5, for a situation in which the total
mechanical energy is 4.0 J. After tracing out the complete
energy curves over half an oscillation, the system re-traces
these energy-versus-position plots as the block oscillates.

Essential Question 12.2: Consider a system consisting of a block attached to an ideal spring. The
block is oscillating on a horizontal frictionless surface. When the block is 20 cm away from the
equilibrium position, the elastic potential energy stored in the spring is 24 J. What is the elastic
potential energy when the block is 10 cm away from equilibrium?
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potential energy (zero at x = 0), and total
mechanical energy (constant), as a function
of position. The system traces over each of
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Answer to Essential Question 12.2: To answer this question, we can use the fact that the elastic
potential energy is proportional to x*. Doubling x, the distance from equilibrium, increases the
elastic potential energy by a factor of 4. Thus, the elastic potential energy is 6 J when x = 10 cm.

12-3 An Example Involving Springs and Energy

EXAMPLE 12.3 — A fast-moving block
(a) A block of mass m, which rests on a horizontal frictionless surface, is attached to an
ideal horizontal spring. The block is released from rest when the spring is stretched by a distance
A from its natural length. What is the block’s maximum speed during the ensuing oscillations?
(b) If the block is released from rest when the spring is stretched by 24 instead, how does
the block’s maximum speed change?

SOLUTION =
(a) Let’s begin, as usual, with a diagram of _/\A/\/\/—. o — :
the situation (see Figure 12.6). When will the block . ! | ke U. K L

achieve its maximum speed? Maximum speed
corresponds to maximum kinetic energy, which

corresponds to minimum potential energy. The M - . E
gravitational potential energy is constant, since J ' ' T =X Ky Ly

there is no up or down motion, so we can focus on
the elastic potential energy. The elastic potential

energy is a minimum (zero, in fact) when the block Figure 12.6: Diagrams of the block at the
passes through equilibrium, where the spring is at its release point and at the equilibrium position,
natural length. Energy bar graphs for the two points and the corresponding energy bar graphs.

are shown in Figure 12.6.

Let’s continue with the energy analysis by writing out the conservation of energy
equation: K;+U,;+W, =K, +U,. The initial point is the point from which the block is

released, while the final point is the equilibrium position.
K; =0, because the block is released from rest from the initial point.

W .=0, because there is no work being done by non-conservative forces.

nc
We can neglect gravitational potential energy, because there is no vertical motion. This
gives U, =0, because the elastic potential energy is also zero at the final point.

We have thus reduced the energy equation to: U, =K Iz This gives:

% kA* = %mvz . Solving for the maximum speed gives: v_ =4 \/z .
m

max

Is this answer reasonable? The maximum speed is larger if we start the block farther from
equilibrium (where the spring exerts a larger force); if we increase the spring constant (also
increasing the force); or if we decrease the mass (increasing acceleration). This all makes sense.

(b) If we start the block from 24 away from equilibrium, we simply replace 4 in our
equation above by 24, showing us that the maximum speed is twice as large:

v:nax =2A\/z
m
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We can make an interesting generalization based 24 -4 0 +4 +24 Fg¥
on further analysis of the situation in Example 12.3.

Fr
Take two blocks, one red and one blue but otherwise D
identical, and two identical springs. Attach each block to W. kA
one of the springs, and place these two block-spring ) J J J =X

! |
24 -4 0 +4 24 Fgv

systems on frictionless horizontal surfaces. As shown
in Figure 12.7, we will release one block from rest : . _ _
from a distance 4 from equilibrium and the other from | Figure 12.7: Identical blocks attached to identical

a distance 24 from equilibrium. If the blocks are springs. The blocks are released from rest
released simultaneously, which block reaches the simultaneously. Block 2, at the top, is released from
equilibrium point first? a distance 24 from equilibrium. Block 1 is released
from a distance 4 from equilibrium. The initial free-
Block 2 has an initial acceleration twice as body diagrams are also shown.

large as that of block 1, because block 2 experiences a

net force that is twice as large as that experienced by block 1. The accelerations steadily decrease,
because the spring force decreases as the blocks get closer to equilibrium, but we can neglect this
change if we choose a time interval that is sufficiently small.

At the end of this time interval, Az, what is the speed of each block? We’re choosing a

small time interval so that we can apply a constant-acceleration analysis. Remembering that the
blocks are released from rest, so v, =0, we have:

for block 1, V=V, +aAt=aAt;

forblock 2, ¥, =V, +a,Ar =a,At =2a,At =2V,

What about the distance each block travels? Here we can apply another constant
acceleration equation:

forblock I A%, =,Ar +%ﬁl (A1) = %al e

forblock 2 A%, =¥,At + %az (Ar) = %az (Ar) = %(zal) (A1)’ =2A%,.
At the end of the time interval, block 1 is 4 —Ax, from equilibrium and block 2 is exactly

twice as far from equilibrium as block 1, at 24 —2Ax, =2(4 - Ax, ) from equilibrium. Thus, after

this small time interval has passed, block 2 is still twice as far from equilibrium as block 1, its
velocity is twice as large, and its acceleration is twice as large. We could keep the process going,
following the two blocks as time goes by, and we would find this always to be true, that block 2’s
velocity, acceleration, and displacement from equilibrium, is always double that of block 1. This
is true at all times, even after the blocks pass through their equilibrium positions to the far side of
equilibrium.

This leads to an amazing conclusion — that the two blocks take exactly the same time to
reach equilibrium (and to complete one full cycle of an oscillation). This is because block 2
experiences twice the displacement of block 1, but its average velocity is also twice as large.
Because the time is the distance divided by the average velocity, these factors of two cancel out.

Essential Question 12.3: Above we analyzed the situation of two identical (aside from color)
blocks, oscillating on identical springs, and found the time to reach equilibrium (or to complete
one full oscillation) to be the same. Was that just a coincidence that happened to work out
because the starting displacements from equilibrium were in a 2:1 ratio, or can we generalize and
say that the time is the same no matter where the block is released?
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Answer to Essential Question 12.3: In fact, this result is generally true. As long as the spring is
ideal, then the time it takes a block to move through one complete oscillation is independent of
the amplitude of the oscillation. The amplitude is defined as the maximum distance an object

gets from its equilibrium position during its oscillatory motion.

12-4 The Connection with Circular Motion

So far we have looked at how to apply force and energy ideas to springs. Let’s now
explore an interesting connection between what is called simple harmonic motion (oscillatory
motion without any loss of mechanical energy), and uniform circular motion.

EXPLORATION 12.4 — Connecting circular motion to
simple harmonic motion

Take the two spring-block systems we investigated at
the end of the previous section and place them beside a large
turntable that is rotating about a vertical axis. Set the constant
angular speed of the turntable so that the turntable undergoes
one complete revolution in the time it takes the blocks on the
springs to move through one complete oscillation. As shown in
Figure 12.8, there are two disks on the turntable, one a distance
A from the center and the other a distance 24 from the center.
The blocks are simultaneously released from rest at the instant
the disks pass through the position shown in the figure.

Another amazing thing happens. As the disks spin at
constant angular velocity and the blocks oscillate back and
forth, the motion of block 1 matches the motion of disk 1,
while the motion of block 2 matches the motion of disk 2. The
position of the left-hand side of each block is at all times equal
to the x-coordinate of the position of the center of its
corresponding disk, taking the origin to be at the center of the
turntable and using the x-y coordinate system shown in Figure
12.8.

Step 1 — Sketch two separate motion diagrams, one showing the successive
positions of disk 1 and the other showing the successive positions of disk 2,
as the turntable undergoes one complete revolution. Plot the positions at
regular time intervals which, because the disk rotates at a constant rate,
correspond to regular angular displacements. Motion diagrams for the disks

are shown in Figure 12.9, showing positions at 30° intervals.

W
24 -A y

Figure 12.8: Comparing systems — two
disks on a rotating turntable and two
oscillating block-and-spring systems.

Step 2 — Now add motion diagrams for the two blocks, sketching

their positions so they agree with the statement above, that the
left-hand side of each block is at all times equal to the x-

Figure 12.9: Motion diagrams for the
two disks, showing their positions at 30°

coordinate of the position of the center of its corresponding disk. | intervals. Because the turntable (and each

These motion diagrams are shown in Figure 12.10.

Chapter 12 — Simple Harmonic Motion

disk) rotates at a constant rate, these
equal angular displacements correspond
to the equal time intervals we’re used to
seeing on motion diagrams.
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Figure 12.10: Motion diagrams for the two blocks, showing l
that the motion of a block experiencing simple harmonic
motion exactly matches the motion of a well-chosen object
experiencing uniform circular motion. The springs have
been removed from the picture for clarity, and the motion I
diagrams for the blocks show the successive positions of the
left-hand side of each block during its motion. The motion

of a block matches the x-component of the motion of the
corresponding disk on the turntable.

Step 3 — Measuring angles counterclockwise from the positive
X-axis, write an equation giving the x-coordinate of disk 1 as a
function of time. Hint: first write out the x-coordinate in terms
of an arbitrary angle the turntable has rotated through, and
then express that angle in terms of time and the turntable’s
constant angular speed ®. Figure 12.11 shows the position of

the disk 1 when the turntable has rotated through some arbitrary
angle 6 from its initial position. Its x-position at this angle can ’

be found from the adjacent side of the right-angled triangle:

>X
X = Acos (9 ) . Since the angular velocity is constant, however, and the _é A - J4 (I) +‘,4 +§ A
initial angle 8, = 0 we can express the angle as: y
0 =0, + 07 = 0+ = ¢ . Substituting this into our expression for the
disk’s x-position gives: ¥ = Acos ().

X
Step 4 — Based on the results above, what is the equation giving the
x-position of block 1 (actually, the position of the left edge of block 1)
as a function of time? What is the equation giving the position of
block 2 as a function of time? Because the motion of block 1 . -
matches exactly the x-component of the motion of disk 1, the F gure 12.11: The position of block 1
equation that gives the disk’s x-position must also gives the block’s | and disk 1 after the turntable has
x-position. Thus, for block 1 we have: rotated through an arbitrary angle 6 .

x=Acos(wr) . (Eq. 12.3: Position-versus-time for simple harmonic motion)

Using the convention introduced earlier in this book, in which a + or — sign is used to
represent the direction of a vector in one dimension, the right-hand side of equation 12.3 can be
viewed as a vector quantity, with the sign hidden in the cosine. We get a positive sign for some
values of time and a negative sign for others. The equation for block 2 is virtually identical to that

of block 1, with the only change being the extra factor of 2. For block 2: ¥ =2 Acos ((Dt)-

Key ideas: There is an interesting connection between simple harmonic motion and uniform
circular motion. One-dimensional simple harmonic motion matches one component of a carefully
chosen two-dimensional uniform circular motion. This allows us to write an equation of motion

for an object experiencing simple harmonic motion: X = Acos(w¢). In this context, ® is known

as the angular frequency. Related End-of-Chapter Exercises: 42, 43.

Essential Question 12.4: We showed above how the position of a block oscillating on a spring
matches one component of the position of an object experiencing uniform circular motion. Can
we make similar conclusions about the velocity and acceleration of the block on the spring?
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Answer to Essential Question 12.4: Absolutely. All aspects of the motion of the oscillating block
match one component of the motion of the object experiencing uniform circular motion. If the

position of the block is given by ¥ = Acos (u)t), then its velocity and acceleration are given by:

2
Ve disk1 = Vplock1 = —VSINl (0t)=~Awsin(wr) and Ay giskr = Apiock1 = _VECOS (0r)= — A’ cos (o02)-

Here, v represents the constant speed of disk 1 as it moves in uniform circular motion.

12-5 Hallmarks of Simple Harmonic Motion

Simple harmonic motion (often referred to as SHM) is a special case of oscillatory
motion. An object oscillating in one dimension on an ideal spring is a prime example of SHM.
The characteristics of simple harmonic motion include:

e A force (and therefore an acceleration) that is opposite in direction, and
proportional to, the displacement of the system from equilibrium. Such a force,
that acts to restore the system to equilibrium, is known as a restoring force.

e No loss of mechanical energy.

e Anangular frequency ® that depends on properties of the system.

e Position, velocity, and acceleration given by Equations 12.3 — 12.5:
x=Acos(ot) . (Equation 12.3: Pesition in simple harmonic motion)

V ==V, sin (o7 ) = —Awsin (o7 ) .- (Equation 12.4: Velocity in SHM)

2
a=—a,, cos(0t)= _vg cos(mt)=—Aw"cos(wr).  (Eq. 12.5: Acceleration in SHM)

The above equations apply if the object is released from rest from ¥ =+ 4 at = 0.
Starting the block with different initial conditions requires a modification of the equations.

Combining Equations 12.3 and 12.5, in any simple harmonic motion system we see that
the acceleration is opposite in direction, and proportional to, the displacement:

i=-0’x. (Equation 12.6: Connecting acceleration and displacement in SHM)
Fy
N

In general, the angular frequency (), frequency (f), and period (7) are connected by:

0w=2xnf= 2775 . (Eq. 12.7: Relating angular frequency, frequency, and period)

FgY

What determines the angular frequency ® in a particular situation? Let’s Figure 12.12: The free-body

return to the free-body diagram of a block on a spring, shown in Figure 12.12. diagram of a block connected
to a spring of spring constant
Applying Newton’s Second Law horizontally, ¥ F, = ma , we get: k. The block is displaced to

the right of the equilibrium

—kx=ma . point by a distance x.

Re-arranging gives g = —(k/m)x . Comparing this result to the general

SHM Equation 12.6 tells us that, for a mass on an ideal spring, w? =k/m, or:

= k . (Equation 12.8: Angular frequency for a mass on a spring).

m

This is a typical result, that the angular frequency is given by the square root of a
parameter related to the restoring force (or torque, in rotational motion) divided by the inertia.
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EXAMPLE 12.5 — Plotting graphs of position, velocity, and acceleration versus time
Once again, let’s attach a block to a spring and release the block from rest from a position
X =+A4 (relative to X =0, which is the equilibrium position). The block oscillates back and forth

with a period of 7=4.00 s.

(a) Plot graphs of the block’s position, velocity, and acceleration as a function of time
over two complete oscillations.

(b) Compare the position graph to the velocity graph.

(c) How does the acceleration graph compare to the position graph?

SOLUTION Position

(a) We can make use of Equations 12.3 — A
12.5 to plot the graphs. Before doing so, we can
solve for the angular velocity ®, using:

_2n _2nrad 1.57rad/s .
T 4.00s
Also, it makes it easier to plot the graphs if F\\"‘Cl‘)c”—"’
AW T

we remember that, if the block is released from rest, 1
it returns to its starting point after one period; after Aw/2-
half a period it comes instantaneously to rest on the T

far side of equilibrium; and at times of T/4 and 3T/4 o7 5t
it is passing through equilibrium at its maximum -Aw/24 |
speed. Determining when each graph passes through Aot

zero, when it reaches its largest positive and negative

values, and then connecting these points with Acc

sinusoidally oscillating graphs, gives the results Aw?

shown in Figure 12.13.
Am?/24

(b) Comparing the position and velocity 1
graphs in Figure 12.13, we can see that the block’s 0
speed is maximum when the block’s displacement
from equilibrium is zero. Conversely, the block’s
speed is zero when the magnitude of the block’s
displacement from equilibrium is maximized. These
observations are consistent with what is taking place
with the energy. The kinetic energy is proportional to
the speed squared and the elastic potential energy is
proportional to the square of the magnitude of the
displacement from equilibrium. Kinetic energy is maximum
when the elastic potential energy is zero, and vice versa.

t(s)

-Am?/2 1

5
-A®-

Figure 12.13: Graphs of the position,
velocity, and acceleration, as a function of
time, of the block in Example 12.5 for two
complete oscillations of the block.

(c) Comparing the position and acceleration graphs, we see that one is the opposite of the
other, in the sense that when the position is positive the acceleration is negative, and vice versa.

This is expected because one of the hallmarks of simple harmonic motion is that G =—-@? % .
Related End-of-Chapter Exercises: 32, 41, 46.

Essential Question 12.5: Return to the situation described in Example 12.5, but now increase the
angular frequency by a factor of 2. We can accomplish this by either changing only the spring
constant or by changing only the mass. Can we tell which one was changed by looking at the
resulting graphs of position, velocity, and/or acceleration as a function of time? Assume that the
block is released from rest from the same point it was in Example 12.5, and that the equilibrium
position remains the same.
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Answer to Essential Question 12.5: We cannot tell. Any one of the three graphs can be used to
determine that the angular frequency has changed, because they all involve ®, but none of the

graphs can tell us whether we adjusted the spring constant or the mass.

12-6 Examples Involving Simple Harmonic Motion

EXAMPLE 12.6A — Energy graphs

Take a 0.500-kg block and attach it to a spring. We would like the block to undergo
oscillations that have a period (the time for one complete oscillation) of 4.00 seconds.

(a) What should the spring constant be?

(b) We’ll release the block from rest from a distance 4 from the equilibrium point so that
the block has a speed of 4.00 m/s when it passes through equilibrium. Over two complete
oscillations, plot the system’s elastic potential energy, kinetic energy, and total mechanical energy
as a function of time.

SOLUTION
(a) Let’s first apply Equation 12.7, @ =2r /T, to find the angular frequency. This gives:
=2nrad= T ad/s.
4.00s 2.00
vi=0 Fx
Using Equation 12.7, @ = \/z , we get: s
m T T T T X
2 0.500) -A 0 +4 Fg¥
7 (0.
k=w’m=—"""rad’kg/s* =1.23N/m, e
4.00 ve=4m/s Fy
—
where we treated the factor of radians as
being dimensionless. , e ——
-A 0 +4 Fg
(b) A diagram of the situation is shown in
Figure 12.14. Let’s solve for the maximum kinetic Figure 12.14: A diagram of the block and spring,
energy, which equals the mechanical energy: showing the initial situation and the situation as
the block passes through equilibrium.
Ky = %mvﬁm = %(O.SOOkg)(4.OOm/s)2 =4.00] . P s

The maximum potential energy is also 4.00 J, because the energy oscillates between
potential and kinetic, and the total mechanical energy is conserved.

Using Equation 12.4, v =—y,_ sin (ot ), we can write the kinetic energy as a function of

time as K =—mv? = lmviax sin® (@t )= (4.007 )sin’ [ T t] :
2 2 2.00s

Because the block takes 4.00 s to complete one oscillation, at = 0 and ¢ = 4.00 s it is
instantaneously at rest at the starting point. At z=2.00 s (halfway through the cycle) the block is
instantaneously at rest on the far side of equilibrium. At each of these times the kinetic energy is 0
and the elastic potential energy is 4.00 J. Conversely, at = 1.00 s and 3.00 s it passes through
equilibrium, where the elastic potential energy is zero and the kinetic energy is its maximum
value of 4.00 J. Graphs of the various energies as a function of time are shown in Figure 12.15.
Note that, at all times, the sum of the kinetic and potential energies is 4.00 J.

Related End-of-Chapter Exercises: 27, 40.
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Figure 12.15: Graphs of the block’s kinetic energy (zero
at £ =0 s), elastic potential energy (zero at = 1.0 s), and
total mechanical energy (constant), as a function of time
over 8.00 s, the time for two complete oscillations. The
kinetic and potential energies go through two cycles for
every one complete oscillation of the block. Compare
this graph to Figure 12.5, which shows the energies as a
function of position.
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EXAMPLE 12.6B — An eighth of the motion

Attach an object to an ideal spring and set it oscillating. The object is released from rest
from a distance 4 from equilibrium. The object travels a distance 4 to the equilibrium position, %4
of the entire distance for one complete oscillation, in % of the period. How long does it take the
object to travel from 4 away from equilibrium to 4/2 from equilibrium, 1/8 of the entire distance
covered in one complete oscillation? -
position 1
SOLUTION

A diagram of the situation is shown in Figure 12.16. A A O A/ 44
Position 1 is where the block is released from rest. Position 2 is

halfway between the release point and the equilibrium position, position 2
which is position 3. ‘/\/\/\/\/_- «
T T T D

I
-A -A72 0 +4/2 +4

Because the block’s speed increases as the block
approaches equilibrium, the block’s average speed as it moves from

" " . . . position 3
position 1 to position 2 is less than its average speed as it moves -/\/\/\/\/—- .
T T T o

from position 2 to position 3. Thus, because of this low average A AP O 2472 N p
speed, the time it takes to move from position 1 to position 2 is B B
larger than 778, 1/8 of the total time. Figure 12.16: A diagram of the position of
the block as it moves from its release point
(b) Using Equation 12.3, X = Acos(t), let’s find the (position 1) to the equilibrium position

(position 3). Position 2 is exactly halfway

time it takes. At position 2, the block’s position is +4/2. Using between the release point and equilibrium

this in Equation 12.3 gives:
A e . 1
.;.E = Acos(or)- Dividing by A gives: +E =cos(wt)-

We can use the relation @ =21 /7T to re-write the equation: +% = cos[z?nt ]

The logical next step is to take the inverse cosine of both sides. Here it is critical to
remember that ®¢ has units of radians. Any time we use the three equations involving time

(Equations 12.3 — 12.5), we need to work in radians. Thus, when we determine cos™ (+1/2) we

will write the result as 7/3 radians instead of 60°.

Taking the inverse cosine of both sides, then, gives: % = %t .

This gives us a time of t = 7/6. As we concluded above, the time is larger than 778.
Related End-of-Chapter Exercises: 34, 50.

Essential Question 12.6: Return to the situation described in Example 12.6A, but now increase
the angular frequency by a factor of 2. Let’s say we achieve the change in angular frequency by
changing either the spring constant or the mass, but not both. Can we tell which one was changed,
if the graphs of energy as a function of time still reach a maximum of 4.0 J when the block is
released from rest from a distance 4 from equilibrium?
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Answer to Essential Question 12.6: Consider Equation 12.8, ¢ =+/k/m . We can double the

angular frequency by increasing the spring constant by a factor of 4, or by decreasing the mass by
a factor of 4. Because the object is released from rest, the initial energy is all elastic potential

energy, givenby U, =0.5k A%. We have not changed 4, so if the total energy stayed the same we

must not have changed the spring constant k. Thus we must have changed the mass.

12-7 The Simple Pendulum

Another classic simple harmonic motion system is the simple pendulum, which is an
object with mass that swings back and forth on a string of negligible mass.

EXAMPLE 12.7 — Pendulum speed limit a }
A ball of mass m is fastened to a string with a length L. Initially the [ ()f

ball hangs vertically down from the string in its equilibrium position. The ’ 'L cosO

ball is then displaced so the string makes an angle of 8 with the vertical, / :

(a) What is the height of the ball above the equilibrium position

and then released from rest. O

when it is released? O v
(b) What is the speed of the ball when it passes through
equilibrium? i ]
Figure 12.17: A diagram showing the
SOLUTION point from which the ball is released

(a) Consider the geometry of the situation, shown in Figure and the equilibrium position.
12.17. The key to finding the height of the ball is to consider the
right-angled triangle in Figure 12.17. The vertical side of the triangle measures I cos® . Because

the string measures L, the height of the ball above equilibrium is 4 =L —Lcos® = L(1-cos8 ).

(b) Let’s apply energy conservation, starting as usual with: K, +U, +W,. =K +U,.

The initial point is the release point, while the final point is the equilibrium position.
K; =0, because the ball is released from rest from the initial point.

W,. =0, because there is no work being done by non-conservative forces.

We can define the ball’s gravitational potential energy to be zero at the equilibrium point,
giving U, =0.

The equation thus reduces to U, = K o which gives: mgh = %m\é

The mass cancels out, so the speed does not depend on the mass. Solving for the speed:

v, =42gh=42gL(1-cos0) .

Note that we have seen this v F=A [2gh result before, such as in cases in which an object
falls straight down from rest, or when water leaks out a hole in a container.

Related End-of-Chapter Exercises: 11, 29.

EXPLORATION 12.7 — Torques on the pendulum
A simple pendulum consists of a ball of mass m that hangs down vertically from a string.
The ball is displaced by an angle 8 from equilibrium and released from rest.
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Step 1 — Draw a free-body diagram for the ball C/
immediately after it is released. The free-body

diagram is drawn in Figure 12.18). There is a mg
downward force of gravity, and a force of tension v
directed away from the ball along the string. Using
a coordinate system aligned with the string, we
can split the force of gravity into components, one
component opposite to the tension and the other
component giving an acceleration toward the
equilibrium position (see Figure 12.18(b)).

<y /
X C/n:g sinf
-

¥
mg cos

(a) (b)

Figure 12.18: Figure (a) shows the free-body
diagram, with a force of tension and a force of
gravity acting on the ball. Figure (b) shows the
force of gravity in components, using a coordinate
system in which one axis is parallel to the string.

Step 2 — Apply Newton’s Second Law for

Rotation to find a relationship between the angular acceleration of the ball and the ball’s
angular displacement (measured from the vertical). Take torques about the axis perpendicular to
the page passing through the upper end of the string. There is no torque about this axis from the
tension or from the component of the force of gravity parallel to the string. The only torque
comes from the component of the force of gravity that acts perpendicular to the string. Applying
T=rFsin¢ ,where r=L, F =mgsin0 , and ¢ =90°, the torque has a magnitude of

T = Lmgsin® . Taking counterclockwise to be positive, the torque is negative. Applying Newton’s

Second Law for Rotation, YT = I, we get: —Lmgsin® = I .

The rotational inertia of the ball is 7 =mI?, giving: —Lmgsin® = mL* @ .
Canceling the mass (thus, the mass does not matter) and a factor of L gives:

o= —%me . (Equation 12.9: Angular acceleration of a simple pendulum)

Step 3 — Use the small-angle approximation, sin® =0, to find an expression for the angular
frequency of the pendulum. We can say that sin@ =0 if 0 is given in radians, and the angle is
less than about 10°(about 1/6 radians). Using the small-angle approximation in Equation 12.9:

Y = _%e‘ . (Equation 12.10: For a simple pendulum at small angles)

The general simple harmonic relationship, g =—@? X , can be transformed to an

analogous general equation for rotational motion, ¢ =—®?6 . Equation 12.10 fits this form, so:

W= \/% . (Eq. 12.11: Angular frequency for a simple pendulum at small angles)

For a pendulum, gravity provides the restoring force, so it makes sense that the angular
frequency is larger if g is larger. Conversely, increasing L means the pendulum has farther to
travel to reach equilibrium, reducing the angular frequency.

Key ideas: For small-angle oscillations, the motion of a simple pendulum is simple harmonic.
Large-angle oscillations are not simple harmonic because the restoring torque is not proportional
to the angular displacement. Related End-of-Chapter Exercises: 57, 58.

Essential Question 12.7: Compare the free-body diagram of a ball of mass m, hanging at rest
from a string of length L, to that of the same system oscillating as a pendulum, when the ball
passes through equilibrium. Make note of any differences between the two free-body diagrams.

Chapter 12 — Simple Harmonic Motion Page 12 - 15



Answer to Essential Question 12.7: The two free-body diagrams are shown in Figure 12.19.
When the ball is at rest its acceleration is zero. Applying Newton’s Second Law tells us that, in
this case, the force of tension exactly balances the force of gravity, so F, = mg . When the ball is

oscillating it is moving along a circular arc as it
passes through the equilibrium position. In this case
there is a non-zero acceleration, the centripetal
acceleration directed toward the center of the L L F-r
circular arc. To produce the upward acceleration the Fr !
upward force of tension must be larger than the
downward force of gravity. Applying Newton’s
Second Law shows that the force of tension
increases to: (a)atrest | M& (b) moving mg
2 Y Y
Fr.=mg+m vf .
Figure 12.19: Free-body diagrams for the ball on the

string when it is (a) at rest, and (b) passing through
equilibrium with a speed v.

Chapter Summary

Essential Idea
Harmonic oscillations are important in many applications, from musical instruments to clocks
and, in the human body, from walking to the creation of sounds with our vocal cords. Even
though we have focused on two basic models in this chapter, the block on the spring and the
simple pendulum, the same principles apply in many real-life situations.

Springs
An ideal spring obeys Hooke’s Law, F,

Spring =

—kXx. (Equation 12.1: Hooke’s Law)

k is the spring constant, a measure of the stiffness of the spring.

Springs that are stretched or compressed store energy. This energy is known as elastic
potential energy.

(Equation 12.2: Elastic potential energy for an ideal spring)

When an object oscillates on a spring, the angular frequency of the oscillations depends on
the mass of the object and the spring constant of the spring.

o= k . (Equation 12.8: The angular frequency of a mass on a spring)

m
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Simple Harmonic Motion and Energy Conservation
Energy conservation is a useful tool for analyzing oscillating systems. When springs are
involved we use elastic potential energy, an idea introduced in this chapter. To analyze a
pendulum in terms of energy conservation nothing new whatsoever is needed.

Hallmarks of Simple Harmonic Motion
The main features of a system that undergoes simple harmonic motion include:
e No loss of mechanical energy.
e Arestoring force or torque that is proportional to, and opposite in direction to, the
displacement of the system from equilibrium.

In this situation the acceleration of the system is related to its position by:

i=—0"% , (Eq. 12.6: The connection between acceleration and displacement)

where the angular frequency ® is generally given by the square root of some elastic property
of the system (such as the spring constant) divided by an inertial property (such as the mass).

Time and Simple Harmonic Motion
When we are interested in how a simple harmonic oscillator evolves over time the following
equations are extremely useful. These were derived by looking at the connection between simple
harmonic motion and one component of the motion of an object experiencing uniform circular
motion.

X =Acos ((nt) . (Equation 12.3: Position in simple harmonic motion)
v =—Awsin (g)z). (Equation 12.4: Velocity in simple harmonic motion)
a=—-Aw’ cos (wt). (Eq. 12.5: Acceleration in simple harmonic motion)

Equations 12.3 — 12.5 apply when the object is released from rest at £ = 0 from a distance
A from equilibrium.

In general, the angular frequency (), frequency (f), and period (7) are connected by:

w=2xnf= 2775 . (Eq. 12.7: Relating angular frequency, frequency, and period)

The Simple Pendulum
A simple pendulum, consisting of an object on the end of a string, is another good example of
an oscillating system. As long as the amplitude of the oscillations is small (less than about 10°)
and mechanical energy is conserved then the motion is simple harmonic. For larger angles the
motion diverges from simple harmonic because the restoring torque is not directly proportional to
the angular displacement.

o= % . (Equation 12.11: Angular frequency of a simple pendulum)
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End-of-Chapter Exercises

Exercises 1 — 12 are conceptual questions that are designed to see if you have understood the
main concepts of the chapter.

1. When a spring is compressed 10 cm, compared to its natural length, the spring exerts a
force of 5 N. What is the spring force when the spring is stretched by 10 cm compared to
its natural length, instead?

2. Ablock on a horizontal surface is attached to an
ideal horizontal spring, as shown in Figure
12.20. When the block compresses the spring by | ' ] 1 | >y (cm)
10 cm, the spring exerts a force of 10 N on the 20 <10 0 +10 420
block. The block is then moved either left or
right to a new position, where the force the ] )
spring exerts on the block has a magnitude of Figure 12.20: A block connected to an ideal

20 N. How far has the block been moved? horizontal spring. The block initially compresses
State all possible answers. the spring by 10 cm. For Exercises 2 and 3.

3. Ablock on a frictionless horizontal surface is attached to an ideal horizontal spring, as
shown in Figure 12.20. When the block compresses the spring by 10 cm, the elastic
potential energy stored in the spring is 10 J. The block is then moved either left or right to
a new position, where the elastic potential energy stored in the spring is 40 J. How far has
the block been moved? State all possible answers.

4. A small ball is loaded into a spring gun, compressing the spring by a distance 4. When
the trigger is pressed, the ball emerges from the gun with a speed v. The ball is loaded
into the gun again, this time compressing the spring by a distance 24. With what speed
will the ball emerge from the gun this time? Justify your answer.

5. Ablock is attached to a spring and the system is placed on a horizontal frictionless
surface with the other end of the spring anchored firmly to a wall. The block is then
displaced from equilibrium until 8.0 J of elastic potential energy has been stored in the
spring. The block is then released from rest and the block oscillates back and forth about
the equilibrium position. Sketch energy bar graphs for this system, showing the elastic
potential energy, kinetic energy, and total mechanical energy when the system is (a) at the
point where it is released from rest; (b) halfway between that point and the equilibrium
position; (c) at the equilibrium position.

6. Ablock on a spring experiences simple harmonic motion with amplitude 4 and period 7.
For one complete oscillation, determine (a) the block’s displacement; (b) the total
distance traveled by the block; (c) the block’s average velocity; (d) the block’s average
speed; (e) the block’s average acceleration.

7. Consider the following four cases. In each case, the block experiences simple harmonic
motion of amplitude 4.
Case 1: a block of mass m connected to a spring of spring constant k.
Case 2: a block of mass m connected to a spring of spring constant 2k.
Case 3: a block of mass 2m connected to a spring of spring constant .
Case 4: a block of mass 2m connected to a spring of spring constant 2k.
Rank these cases, from largest to smallest, based on (a) their angular frequency; (b) their
total mechanical energy; (c) the maximum speed reached by the block during its motion.
Your answers should have a form similar to 3>1>2=4.
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8.

10.

11.

12.

You have three blocks, of mass m, 2m, and 3m, and three springs of spring constant k, 2k,
and 3. You can attach any one of the blocks to any one of the springs, displace the block
from equilibrium by a distance of 4, 24, or 34, and release the block from rest so it
experiences simple harmonic motion. Which combination of these three parameters
(mass, spring constant, and amplitude) results in oscillations with the largest (a) angular
frequency? (b) period? (c) total mechanical energy? (d) speed when the block passes
through equilibrium?

A block of mass m is connected to a spring with a spring constant £, displaced a distance
A from equilibrium. Upon being released from rest, the block experiences simple
harmonic motion. Let’s say you wanted to double the mechanical energy of the system.
(a) Could you accomplish this by changing the mass, but keeping everything else the
same? If so, what would the new mass be? (b) Could you accomplish this by changing
the spring constant, but keeping everything else the same? If so, what would the new
spring constant be? (c) Could you accomplish this by changing the amplitude of the
oscillation, but keeping everything else the same? If so, what would the new amplitude
be?

Repeat Exercise 9, except this time you want to double the angular frequency instead of
the energy.

Consider the following four simple pendula. In each case, the pendulum experiences
simple harmonic motion with a maximum angular displacement 0,,, , where 0, is small

max ?

enough that the small-angle approximation can be used.

Case 1: a pendulum consisting of a ball of mass m on a string of length L.

Case 2: a pendulum consisting of a ball of mass m on a string of length 2L.

Case 3: a pendulum consisting of a ball of mass 2m on a string of length L.

Case 4: a pendulum consisting of a ball of mass 2m on a string of length 2L.

Rank these cases, from largest to smallest, based on (a) their angular frequency; (b) their
total mechanical energy; (c) the maximum speed reached by the block during its motion.
Your answers should have the form 3>1>2=4.

Return to Exercise 11. Now rank the cases, from largest to smallest, based on the tension
in the string when the ball passes through the equilibrium position.

Exercises 13 — 17 deal with various situations involving ideal springs.

13.

14.

A spring hangs vertically down from a support, with a ball with a weight of 6.00 N
hanging from the spring’s lower end. (a) If the ball remains at rest and the spring is
stretched by 20.0 cm with respect to its natural length, what is the spring constant of the
spring?

Consider again the situation described in Exercise 13. You now take the spring, cut it in
half, and hang the same ball from one half of the spring (the other half you don’t use at
all) so the ball again remains at rest as it hangs vertically from the spring. (a) How much
is the spring stretched from its natural length? Briefly justify your answer. (b) How does
the spring constant of this new spring compare to the spring constant of the original
spring?
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15. A small ball with a mass of 50 g is loaded into a spring gun, compressing the spring by 12
cm. When the trigger is pressed, the ball emerges horizontally from the barrel at a height
of 1.4 m above the floor. It then strikes the floor after traveling a horizontal distance of
2.5 m. Use g = 9.8 m/s%. Assuming all the energy stored in the spring is transferred to the
ball, determine the spring constant of the spring.

16. A block of mass M is connected to a spring of spring constant k. The system is placed on
a frictionless horizontal surface and the other end of the spring is firmly fixed to a wall so
the block, when displaced from equilibrium a distance 4 and then released from rest, will
experience simple harmonic motion. A second block of mass m is then placed on top of
the first block. The coefficient of static friction associated with the interaction between

the two blocks is [l . What is the maximum value 4 can be so the blocks oscillate

together without the top block slipping on the bottom block?

17. Ablock of mass M =0.800kg is connected to a spring of spring constant £ =2.00N/m.

The system is placed on a frictionless horizontal surface and the other end of the spring is
firmly fixed to a wall so the block, when displaced from equilibrium a distance 4 and
then released from rest, will experience simple harmonic motion. A second block of mass
m =0.600kg is then placed on top of the first block. The coefficient of static friction

associated with the interaction between the two blocks is pg =0.500. Use g =9.80 m/s2.

(a) What is the maximum value 4 can be so the blocks oscillate together without the top
block slipping on the bottom block? (b) What is the angular frequency in this situation?

Exercises 18 — 23 deal with various aspects of the situation shown in Figure 12.21.

18. A block with a mass of 0.500 kg is released from rest from the top of
a ramp that has the form of a 3-4-5 triangle, measuring 3.00 m high
and having a base of 4.00 m, as shown in Figure 12.21. The block
then slides down the incline, encountering a spring with a spring
constant of 5.00 N/m after sliding for 2.50 m. Neglect friction and
use g = 9.80 m/s?. Where does the block reach its maximum speed,
at the point it first makes contact with the spring, or at a point higher
up the ramp or lower down the ramp than where it first makes 4.00 m
contact with the spring? Briefly justify your answer. T

3.00 m

Figure 12.21: A block released from
rest from the top of a ramp slides for a
distance of 2.50 m before it encounters
a spring. For Exercises 18 — 23.

19. Return to the situation described in Exercise 18.
Determine (a) how far the block has slid down the ramp
when the block reaches its highest speed; (b) the value of
this maximum speed.

20. Return to the situation described in Exercise 18. Find the maximum compression of the
spring in this situation.

21. Return to the situation described in Exercise 18, but now we’ll add friction between the
block and the ramp. The coefficient of kinetic friction between the block and the ramp is
0.400. Where does the block reach its maximum speed now, at exactly the same point on
the ramp it did in Exercise 18, or at some place higher up or lower down than this point?
Briefly justify your answer.

Chapter 12 — Simple Harmonic Motion Page 12 - 20



22. Return to the situation described in Exercise 18, but now we’ll add friction between the
block and the ramp. The coefficient of kinetic friction between the block and the ramp is
0.400. Determine (a) how far the block has slid down the ramp when the block reaches its
highest speed; (b) the value of this maximum speed.

23. Return to the situation described in Exercise 18, but now we’ll add friction between the
block and the ramp. The coefficient of kinetic friction between the block and the ramp is
0.400. Find the maximum compression of the spring in this situation.

Exercises 24 — 30 deal with energy and energy conservation in oscillating systems.

24. A block with a mass of 0.500 kg that is attached to a spring is oscillating back and forth
on a frictionless horizontal surface. The period of the oscillations is 2.00 s. When the
block is 30.0 cm from its equilibrium position, its speed is 1.20 m/s. What is the
amplitude of the oscillations?

25. Consider again the system described in Exercise 24. At a time of 7/4 after being released
from rest, the block is passing through the equilibrium position. At a time of 7/8 after
being released, determine the system’s (a) elastic potential energy; (b) kinetic energy.

26. Consider again the system described in Exercise 24, but now we’ll make it more realistic.
There is a small coefficient of friction associated with the interaction between the block
and the surface. This means that, over time, the amplitude of the oscillations decrease
until eventually the block comes to rest and remains at rest. Approximately how much
work is done by friction on the block during this process?

27. Ablock is attached to a spring, displaced from equilibrium a
distance of 0.800 m, and released from rest. It then oscillates on
a frictionless horizontal surface with a period of 4.00 s. At the
instant the block is released from rest, the energy in the system
is all elastic potential energy, as shown in the set of energy bar
graphs in Figure 12.22(a). (a) At how many locations in the
subsequent oscillations do we get the set of energy bar graphs
shown in Figure 12.22(b)? (b) Determine the distance of each
of these locations from the equilibrium position.

28. Return to the situation described in Exercise 27. (a) During one
complete oscillation, at how many different times does the
energy correspond to the set of energy bar graphs shown in
Figure 12.22(b)? (b) Assuming the block is released from rest
at t = 0, determine all the times during the first complete
oscillation when the system’s energy corresponds to the
energy bar graphs shown in Figure 12.22(b).

Figure 12.22: Energy bar graphs
for a block on a spring at (a) its
release point, and (b) some other
point. For Exercises 27 and 28.

29. A ball is tied to a string to form a simple pendulum with a length of 1.20 m. The ball is
displaced from equilibrium by some angle 0, and released from rest. In the subsequent

oscillations, the ball’s maximum speed is 2.50 m/s. (a) From what height above
equilibrium was the ball released? (b) What is, ? Use g = 9.80 m/s?.
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30. As shown in Figure 12.23 a simple pendulum with a length of 1.00 m
is released from rest from an angle of 20° measured from the vertical.
When the ball passes through its equilibrium position the string hits a
peg, effectively shortening the length of the pendulum to 50.0 cm. (a)
How does the maximum height reached by the pendulum on the right
compare to the height of the ball at its release point on the left?
Justify your answer. (b) What is the maximum angle, measured from
the vertical, of the string when the ball is on the right?

Figure 12.23: A simple pendulum swings down through its
equilibrium position, and then hits a peg that effectively
shortens its length to 50 cm. For Exercises 30 and 31.

Exercises 31 — 35 deal with time and simple harmonic motion.

31. Return to the situation described in Exercise 30 and shown in Figure 12.23. What is the
period of one complete oscillation for this pendulum? Use g = 9.80 m/s?.

32. Ablock with a mass of 0.600 kg is connected to a spring, displaced in the positive
direction a distance of 50.0 cm from equilibrium, and released from rest at £ = 0. The
block then oscillates without friction on a horizontal surface. The first time the block is a
distance of 15.0 cm from equilibrium is at # = 0.200 s. Determine (a) the period of
oscillation; (b) the value of the spring constant; (c) the block’s velocity at ¢ = 0.200 s; and
(d) the block’s acceleration at £ = 0.200 s.

33. Repeat Exercise 32, but now ¢ = 0.200 s represents the second time the block is a distance
of 15.0 cm from equilibrium.

34. Ablock on a spring is released from rest from a distance 4 from equilibrium at = 0. The
block then experiences simple harmonic motion with a period 7. Determine all the times
during the first complete oscillation when the block is a distance 4/4 from equilibrium.

35. A block with a mass of 0.800 kg is connected to a spring, displaced in the positive
direction a distance of 40.0 cm from equilibrium, and released from rest at # = 0. The
block then oscillates without friction on a horizontal surface. At a time of = 0.500 s, the
block is 30.0 cm from equilibrium. If the block’s period of oscillation is longer than 0.500
s, determine the spring constant of the spring. Find all possible answers.

Exercises 36 — 39 combine collisions with simple harmonic motion situations.

36. A wheeled cart with a mass of 0.50 kg is rolling along a horizontal track at a constant
velocity of 2.0 m/s when it experiences an elastic collision with a second identical cart
that is initially at rest, and attached to a spring with a spring constant of 4.0 N/m. This
situation is illustrated in Figure 12.24. After the
collision, the second cart moves to the right. ) )
(a) What is the first cart doing after the Cart | Cart 2
collision? Briefly justify your answer. (b) What g" (_:_)‘/V\/V“l
is the maximum compression of the spring?

(c) There is a second collision between the . . .
carts. What is each cart doing after the Figure 12.24: A cart collides with a second cart

that is initially at rest and attached to a spring.
For Exercises 36 and 37.

second collision?
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37.

38.

39.

A wheeled cart with a mass of 0.50 kg is rolling along a horizontal track at a constant
velocity of 2.0 m/s when it experiences a collision with a second identical cart that is
initially at rest, and attached to a spring with a spring constant of 4.0 N/m. This situation
is illustrated in Figure 12.24. After the collision, the carts stick together and move as one
unit. What is the maximum compression of the spring?

In a spring version of the ballistic pendulum

situation we looked at in Chapter 7, a wooden
block with a mass of 0.500 kg is attached to a
spring with a spring constant of £ = 600 N/m. As

||| II

T > X
shown in Figure 12.25, the system is placed on a -1 5 cm *l Scm
frictionless horizontal surface with the block at
rest at the equilibrium position. A bullet with a
mass of 30.0 g is fired at the block. The bullet
gets embedded in the block and, after the C
collision, the block experiences simple harmonic ! aie

motion with an amplitude of 15.0 cm. Assuming -15cem +15 cm

the bullet’s velocity is horizontal at the instant . ] . .
the collision takes place, what is the speed of Figure 12.25: A bullet embeds itself in a block.

the bullet just before it hits the block? The subsequent oscillations take place with an
amplitude of 15.0 cm. For Exercise 38.

As shown in Figure 12.26, a ball of mass m is tied to a
string to form a simple pendulum. The ball is displaced
from equilibrium so the angle between the string and the
vertical is 60°, and is then released from rest. It swings
down, and at its lowest point it collides with a second
ball of mass 4m that is initially at rest on the edge of a
table. If the collision is elastic and the second ball strikes i
the floor at a point 1.50 m vertically lower and 1.20 m _L

horizontally from where it started, find the length of the

string the first ball is attached to.

600

Figure 12.26: A ball of mass m, tied to a string to
form a simple pendulum, swings down and collides
elastically with a ball of mass 4m. For Exercise 39.

General Problems and Conceptual Questions

40.

41.

A block of mass m is connected to a spring of spring constant k, displaced a distance 4
from equilibrium and released from rest. An identical block is connected to a spring of
spring constant 4k and released from rest so its total mechanical energy is equal to that of
the first block-spring system. (a) Assuming the blocks are simultaneously released from
rest and that they each experience simple harmonic motion horizontally, sketch graphs of
the total mechanical energy, elastic potential energy, and kinetic energy as a function of
displacement from equilibrium. (b) Repeat part (a), but this time sketch graphs of the
three types of energy as a function of time instead.

Return to the situation described in Exercise 40. Now plot graphs, as a function of time,
of the (a) position; (b) velocity; and (c) acceleration for both of the blocks.
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42. You are trying to demonstrate to your friend the connection between uniform circular
motion and simple harmonic motion. You have a motorized turntable that spins at a rate
of exactly 1 revolution per second, and you glue a ball to the turntable at a distance of 50
cm from the center. You then take a small bucket with a mass of 100 g and connect it to a
spring that has a spring constant of 4.00 N/m. The bucket will then oscillate back and
forth on a frictionless surface. (a) What mass of sand should you place in the bucket so
the period of oscillation of the bucket matches the period of revolution of the ball on the
turntable? (b) Assuming you have lined up the equilibrium position of the bucket on the
spring with the center of the turntable, what amplitude should you give the bucket so its
motion exactly matches one component of the motion of the ball on the turntable?

43. You match the motion of two objects, a ball glued to a turntable that is rotating at a
constant angular velocity and a block oscillating on a frictionless surface because it is
connected to a spring. (a) If the period of the block’s oscillations is 2.5 s, what is the
angular frequency of the turntable? (b) If you replace the spring by a spring with double
the original spring constant, what should the angular frequency of the turntable be?

44. Consider the two graphs shown in Figure 12.27 for a block that oscillates back and forth
on a frictionless surface because it is connected to a spring. The graph on the left shows
the block’s displacement from equilibrium, as a function of time, for one complete
oscillation of the block. The graph on the right shows the elastic potential energy stored
in the spring, as a function of time, over the same time period. (a) What is the spring
constant of the spring? (b) What is the mass of the block? (c) What is the maximum speed
reached by the block as it oscillates?

Position (¢cm) Energy (J)
.

Figure 12.27: Graphs of position as a function of time and elastic potential energy as a
function of time for a block oscillating horizontally on a spring. For Exercises 44 and 45.

45. Using only the information available to you in the position vs. time graph shown in
Figure 12.27, determine (a) the maximum speed of the oscillating block; (b) the
magnitude of the maximum acceleration of the oscillating block.

46. A block with a mass of 500 g is connected to a spring with a spring constant of 2.00 N/m.
You start the motion by hitting the block with a stick so that, at # = 0, the block is at the
equilibrium position but has an initial velocity of 2.00 m/s in the positive direction. The
block then oscillates back and forth without friction. Over two complete cycles of the
resulting oscillation, plot, as a function of time, the block’s (a) position; (b) velocity; and
(c) acceleration.

47. Equations 12.3 — 12.5 are ideal for describing the motion of an object experiencing
simple harmonic motion after having been displaced from equilibrium and released from
rest at z = 0. Modify the three equations so they match the motion described in Exercise
46.
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48. As shown in Figure 12.28, two springs are separated by a distance of 1.60 m when the
springs are at their equilibrium lengths. The spring on the left has a spring constant of
15.0 N/m, while the spring on the right has a spring constant of 7.50 N/m. A block, with a
mass of 400 g, is then placed against the spring on the right, compressing it by a distance
0f 20.0 cm, which also happens to be the width of the block. The block is then released
from rest. (a) Assuming all the energy initially stored in the spring is transferred to the
block, and that the horizontal surface is frictionless, how long will it take until the block
returns to its release point? (b) Repeat the question, but now assume that the block is held
against the spring on the left, and released from rest after compressing that spring by
20 cm.

fe———160m ——|
Figure 12.28: Two springs
| | | | | I I I I I I

are separated by a distance of
1.60 m. A block is then held
against one spring and 20.0 cm

released from rest. For
Exercise 48. l../\/\/\/\,. -—’\/\/\/\r’
) I I I I I I I B

49. A ballistic cart is a cart containing a ball on a compressed spring. In a popular
demonstration, the cart is rolled with a constant horizontal velocity past a trigger, which
causes the spring to be released, firing the ball vertically (with respect to the cart) into the
air. The ball then lands in the cart again 0.60 s later. If the ball has a mass of 22 grams
and the spring is initially compressed by 7.5 cm, determine the spring constant of the
spring. Assume all the energy stored in the spring is transferred to the ball, and use
£=9.8 m/s2.

50. A block with a mass of 0.600 kg is connected to a spring with a spring constant of
4.50 N/m. The block is displaced a distance 4 from equilibrium and released from rest.
How long after being released is the block first (a) at the equilibrium position? (b) at a
point A/4 from equilibrium?

51. A block on a spring of spring constant £ = 12.0 N/m experiences simple harmonic motion
with a period of 1.50 s. What is the block’s mass?

52. Consider again the situation described in Exercise 51. Such a system is used by
astronauts in orbit to measure their own masses. Do a web search for “body mass
measurement device” (the name of this system) and write a paragraph or two describing
how it works.

53. Among the many things that Galileo Galilei is known for are his observations about
pendula. Do some research about Galileo and write a paragraph or two describing his
contributions to our understanding of the simple pendulum.

54. A particular wooden block floats in water with 30% of its volume submerged. You then
push the block farther under the water so that 40% of its volume is submerged. When you
let go the block bobs up and down. (a) For simple harmonic motion, there must be a
restoring force proportional, and opposite in direction, to the displacement from
equilibrium. Considering the net force on the block from combining the buoyant force
and the force of gravity, does that net force fit the requirement necessary for simple
harmonic motion? (b) Write an expression for the angular frequency of the block’s
oscillations.
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55.

56.

57.

58.

59.

60.

61.

62.

Return again to the situation described in Exercise 54. The block has a mass of 0.30 kg.
(a) Draw a free-body diagram showing the forces acting on the block immediately after it
is released from rest. (b) Using g = 10 m/s?, determine the block’s initial acceleration. (c)
Describe what happens to the block’s free-body diagram as the block moves.

You are at the playground with a young boy who has a mass of 20 kg. When the boy is on
a swing, you observe that you push him exactly once every 2.0 s. How long are the ropes
attaching the swing to its support? Use g = 9.8 m/s2.

A simple pendulum consists of a ball with a mass of 0.500 kg attached to a string of
length L. The ball is displaced from equilibrium so that, when the ball is released from
rest, it is at a level 1.00 m above its equilibrium position, and the string makes a 60° angle
with the vertical. Use g = 9.80 m/s%. (a) What is the length of the string? (b) Apply energy
conservation to find the speed of the ball as it passes through the equilibrium position. (c)
Using the small-angle approximation, it can be shown that the maximum speed of the

pendulum ball is given by v, =10, 0. Making sure that your units are correct, use

this equation to check your answer to part (b). (d) Your results in parts (b) and (c¢) should
be close but should not agree exactly. Comment on which answer is better and why there
is any disagreement at all.

Return to the situation described in Exercise 57. What is the tension in the string when
the ball passes through the equilibrium position?

Return to the situation described in Exercise 57. After many oscillations, air resistance
and friction eventually bring the pendulum to a stop. What is the total work done by
resistive forces in this situation?

As shown in Figure 12.29, two simple pendula are identical
except that the mass of the ball on one pendulum is 3 times the
mass of the ball on the other. Each pendulum has a length of
1.5 m. The pendula are displaced by angles of 20°, but in
opposite directions, and simultaneously released from rest. The
balls then experience an elastic collision with one another. (a)
What is the velocity of each ball immediately after the first
collision? (b) The balls experience a second elastic collision.
What is the maximum angular displacement reached by each
ball as a direct result of this second collision? (c)

Describe, in general, how the motion proceeds after . i .
that. Figure 12.29: Two simple pendula, one with a

ball of mass m and the other with a ball of mass
3m, are displaced by 20° and released from rest.
They swing down and collide with one another.
What happens next? For Exercises 60 and 61.

1.5m

Consider again the situation described in Exercise
60. Determine the time taken by each phase of the
motion.

A grandfather clock uses a pendulum to keep time. For this exercise, treat the pendulum
as a simple pendulum and use g = 9.80 m/s2. (a) How long should the pendulum be if its
period needs to be exactly 4 seconds for the clock to keep accurate time? (b) You now
have two identical grandfather clocks, both set to keep accurate time on Earth. You take
one to the Moon, where the magnitude of the gravitational field is 1/6 what it is on Earth.
The clocks are started simultaneously when they both read 12 o’clock. One hour later, the
clock on the Earth reads 1 o’clock. What is the time shown on the clock on the Moon at
that instant?
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