
 8-1 Newton’s Law of Universal Gravitation
One of the most famous stories of all time is the story of Isaac Newton sitting under an apple tree 
and being hit on the head by a falling apple. It was this event, so the story goes, that led Newton 
to realize that the same force that brought the apple down on his head was also responsible for 
keeping the Moon in its orbit around the Earth, and for keeping all the planets of the solar system, 
including our own planet Earth, in orbit around the Sun. This force is the force of gravity.

It is hard to over-state the impact of Newton’s work on gravity. Prior to Newton, it was 
widely thought that there was one set of physical laws that explained how things worked on Earth 
(explaining why apples fall down, for instance), and a completely different set of physical laws 
that explained the motion of the stars in the heavens. Armed with the insight that events on Earth, 
as well as the behavior of stars, can be explained by a relatively simple equation (see the box 
below), humankind awoke to the understanding that our fates are not determined by the whims of 
gods, but depend, in fact, on the way we interact with the Earth, and in the way the Earth interacts 
with the Moon and the Sun. This simple, yet powerful idea, that we have some control over our 
own lives, helped trigger a real enlightenment in many areas of arts and sciences.

The force of gravity does not require the interacting objects to be in contact with one 
another. The force of gravity is an attractive force that is proportional to the product of the masses 
of the interacting objects, and inversely proportional to the square of the distance between them.

A gravitational interaction involves the attractive force that any object with mass exerts 
on any other object with mass. The general equation to determine the gravitational force an 
object of mass M exerts on an object of mass m when the distance between their centers-of-mass 
is r is:

                        (Equation 8.1: Newton’s Law of Universal Gravitation)

where is known as the universal gravitational constant. The 

magnitude of the force is equal to while the direction is given by , which means 
that the force is attractive, directed back toward the object exerting the force.

At the surface of the Earth, should we use or Newton’s Law of Universal 
Gravitation instead? Why is g equal to 9.8 N/kg at the surface of the Earth, anyway? The two 
equations must be equivalent to one another, at least at the surface of the Earth, because they 
represent the same gravitational interaction. If we set the expressions equal to one another we get:

 .

At the surface of the Earth M is the mass of the Earth, , and r is the 

radius of the Earth, . So, the magnitude of g at the Earth’s surface is:

 

For any object at the surface of the Earth, when we use Newton’s Law of Universal 
Gravitation, the factors G, ME, and RE  are all constants, so, until this point in the book, we have 
simply been replacing the constant value of  by g = 9.8 N/kg.
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EXAMPLE 8.1 – A two-dimensional situation
Three balls, of mass m, 2m, and 3m, are placed at the corners of a square 

measuring L on each side, as shown in Figure 8.1. Assume this set of three balls is 
not interacting with anything else in the universe. What is the magnitude and 
direction of the net gravitational force on the ball of mass m? 

 
SOLUTION

Let’s begin by attaching force vectors to the ball of mass m. In Figure 
8.2, each vector points toward the object exerting the force. The length of each 
vector is proportional to the magnitude of the force it represents.

We can find the two individual forces acting on the ball of mass m 
using Newton’s Law of Universal Gravitation. Let’s define +x to the right and +y 
up.

From the ball of mass 2m: 

From the ball of mass 3m: 

Finding the net force is a vector-addition problem.

In the x-direction, we get: 

.

 

 In the y-direction, we get: .

The Pythagorean theorem gives the magnitude of the net force on 
the ball of mass m:

.

The angle is given by: 

So, the angle is 19.1˚ below the x-axis.

Related End-of-Chapter Exercises: 16, 56 – 58.

Essential Question 8.1: The Sun has a much larger mass than the Earth. Which object exerts a 
larger gravitational force on the other, the Sun or the Earth?
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Figure 8.1: Three balls placed 
at the corners of a square.

Figure 8.2: Attaching force 
vectors to the ball of mass m.

Figure 8.3: The triangle representing 
the vector addition problem being 
solved in Example 8.1.



Answer to Essential Question 8.1: Newton’s third law tells us that the gravitational force the Sun 
exerts on the Earth is equal in magnitude (and opposite in direction) to the gravitational force the 
Earth exerts on the Sun. This follows from Equation 8.1, because, whether we look at the force 
exerted by the Sun or the Earth, the factors going into the equation are the same.

8-2 The Principle of Superposition
EXPLORATION 8.2 – Three objects in a line
Three balls, of mass m, 2m, and 3m, are equally spaced along a line. The spacing between 

the balls is r.  We can arrange the balls in three different ways, as shown in Figure 8.4. In each 
case the balls are in an isolated region of space very far from anything else.

Step 1 – How many forces does each ball experience in each case? Each ball experiences two 
gravitational forces, one from each of the other balls. We can neglect any other interactions. 

Step 2 – Consider Case 1. Is the force that the ball of mass m exerts on the ball of mass 3m 
affected by the fact that the ball of mass 2m lies between the other two balls? 

Interestingly, no. To find the net force on any object, we simply add the individual forces 
acting on an object as vectors. This is known as the principle of superposition, and it applies to 
many different physical situations. In case 1, for instance, we find the force the ball of mass m 
applies to the ball of mass 3m as if the ball of mass 2m is not present. The net force on the ball of 
mass 3m is the vector addition of that force and the force on the 3m ball from the ball of mass 2m.

Step 3 – In which case does the ball of mass 2m experience the largest-magnitude net force? 
Argue qualitatively. Let’s attach arrows to the ball of mass 2m, as in Figure 8.5, to represent the 
two forces the ball experiences in each case. The length of each arrow is proportional to the force.
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Figure 8.4: Three different arrangements of three balls of mass m, 2m, and 3m placed 
on a line with a distance r between neighboring balls.

Figure 8.5: Attaching force vectors to the ball of mass 2m. The vectors point toward 
the object exerting the force. The length of each vector is drawn in units of .



In case 1, the two forces partly cancel, and, in case 2, the forces add but give a smaller 
net force than that in case 3. Thus, the ball of mass 2m experiences the largest-magnitude net 
force in Case 3.

Step 4 – Calculate the force experienced by the ball of mass 2m in each case. 
To do this, we will make extensive use of Newton’s Universal Law of Gravitation. Let’s 

define right to be the positive direction, and use the notation for the force that the ball of mass 

2m experiences from the ball of mass m. In each case, .

Case 1:  

Case 2:  

Case 3:  

This approach confirms that the ball of mass 2m experiences the largest-magnitude net 
force in case 3. 

Step 5 - Rank the three cases, from largest to smallest, based on the magnitude of the net force 
exerted on the ball in the middle of the set of three balls. Let’s extend our pictorial method by 
attaching force vectors to each ball in each case, as in Figure 8.6.

Again, when considering the net force on the middle ball, we need to add the individual 
forces as vectors. Referring to Figure 8.6, ranking the cases based on the magnitude of the net 
force exerted on the middle ball gives Case 1 > Case 3 > Case 2.

 
Essential Question 8.2: In the Exploration above, which ball experiences the largest-magnitude 
net force in (i) Case 1 (ii) Case 2 (iii) Case 3?  
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Key idea about the principle of superposition: The net force acting on an object can be found 
using the principle of superposition, adding all the individual forces together as vectors and 
remembering that each individual force is unaffected by the presence of other forces.
Related End of Chapter Exercises: 15 and 27.

Figure 8.6: Attaching force vectors to the balls in each case. The force vectors point toward 
the ball applying the force. The length of each vector is drawn in units of .



Answer to Essential Question 8.2: We could determine the net force on each object 
quantitatively, but Figure 8.6 shows that the object experiencing the largest-magnitude net force is 
the object of mass 3m in cases 1 and 2, and the object of mass 2m in case 3.
 

In general, in the case of three objects of different mass arranged in a line the object 
experiencing the largest net force will be one of the objects at the end of the line, the one with the 
larger mass. The object in the middle will not have the largest net force because the two forces it 
experiences are in opposite directions.

8-3 Gravitational Field
Let’s discuss the concept of a gravitational field, which is represented by . So far, we 

have referred to as “the acceleration due to gravity”, but a more appropriate name is “the 
strength of the local gravitational field.” 

A field is something that has a magnitude and direction at all points in space. One way 
to define the gravitational field at a particular point is in terms of the gravitational force that an 
object of mass m would experience if it were placed at that point:

.  (Equation 8.2: Gravitational field)

The units for gravitational field are N/kg, or m/s2.

A special case is the gravitational field outside an object of mass M, such as the Earth, 
that is produced by that object:

 ,  (Equation 8.3: Gravitational field from a point mass)

where r is the distance from the center of the object to the point. The magnitude of the 
field is , while the direction is given by , which means that the field is directed back 
toward the object producing the field.

One way to think about a gravitational field is the following: it is a measure of how an 
object, or a set of objects, with mass influences the space around it.

Visualizing the gravitational field
 It can be useful to draw a picture that represents the gravitational field near an object, or 

a set of objects, so we can see at a glance what the field in the region is like. In general there are 
two ways to do this, by using either field lines or field vectors. The field-line representation is 
shown in Figure 8.7. If Figure 8.7 (a) represents the field at the surface of the Earth, Figure 8.7 
(b) could represent the field at the surface of another planet where g is twice as large as it is at the 
surface of the Earth. In both these cases we have a uniform field, because the field lines are 
equally spaced and parallel. In Figure 8.7 (c) we have zoomed out far from a planet to get a wider 
perspective on how the planet affects the space around it, while in Figure 8.7 (d) we have done 
the same thing for a different planet with half the mass, but the same radius, as the planet in (c).
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Question: How is the direction of the gravitational field at a particular point shown on a 
field-line diagram? What indicates the relative strength of the gravitational field at a particular 
point on the field-line diagram?

Answer: Each field line has a direction marked on it with an arrow that shows the 
direction of the gravitational field at all points along the field line. The relative strength of the 
gravitational field is indicated by the density of the field lines (i.e., by how close the lines are). 
The more lines there are in a given area the larger the field.

A second method of representing a field is to use field vectors. A field vector diagram has 
the nice feature of reinforcing the idea that every point in space has a gravitational field 
associated with it, because a grid made up of equally spaced dots is superimposed on the picture 
and a vector is attached to each of these grid points. All the vectors are the same length. The 
situations represented by the field-line patterns in Figure 8.7 are now re-drawn in Figure 8.8 using 
the field-vector representation.

Related End of Chapter Exercises: 18, 36.

Essential Question 8.3: How is the direction of the gravitational field at a particular point shown 
on a field-vector diagram? What indicates the relative strength of the gravitational field at a 
particular point on the field-vector diagram?
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Figure 8.7: Field-line diagrams for various situations. Diagrams a and b represent uniform 
gravitational fields, with the field in b two times larger than that in a. Diagrams c and d 
represent non-uniform fields, such as the fields near a planet. The field at the surface of the 
planet in c is two times larger than that at the surface of the planet in d.

Figure 8.8: Field-vector diagrams for various situations. In figures a and b the field is uniform 
and directed down. The field vectors are darker in figure b, reflecting the fact that the field has 
a larger magnitude in figure b than in figure a. Figures c and d represent non-uniform fields, 
such as those found near a planet. Again, the fact that each field vector in figure c is darker than 
its counterpart in figure d tells us that the field at any point in figure c has a larger magnitude 
than the field at an equivalent point in figure d.



Answer to Essential Question 8.3: The direction of the gravitational field at a particular point is 
represented by the direction of the field vector at that point (or the ones near it if the point does 
not correspond exactly to the location of a field vector). The relative strength of the field is 
indicated by the darkness of the arrow. The larger the field’s magnitude, the darker the arrow.

8-4 Gravitational Potential Energy

The expression we have been using for gravitational potential energy up to this point, 
, applies when the gravitational field is uniform. In general, the equation for 

gravitational potential energy is:

. (Equation 8.4: Gravitational potential energy, in general)

This gives the energy associated with the gravitational interaction between two objects, of 
mass m and M, separated by a distance r. The minus sign tells us the objects attract one another.

Consider the differences between the mgh equation for gravitational potential energy and 
the more general form. First, when using Equation 8.4 we are no longer free to define the 
potential energy to be zero at some convenient point. Instead, the gravitational potential energy is 
zero when the two objects are infinitely far apart. Second, when using Equation 8.4 we find that 
the gravitational potential energy is always negative, which is certainly not what we found with 
mgh. That should not worry us, however, because what is critical is how potential energy 
changes as objects move with respect to one another. If you drop your pen and it falls to the floor, 
for instance, both forms of the gravitational potential energy equation give consistent results for 
the change in the pen’s gravitational potential energy.

Equation 8.4 also reinforces the idea that, when two objects are interacting via gravity, 
neither object has its own gravitational potential energy. Instead, gravitational potential energy is 
associated with the interaction between the objects.

EXPLORATION 8.4 – Calculate the total potential energy in a system
Three balls, of mass m, 

2m, and 3m, are placed in a line, 
as shown in Figure 8.9. What is 
the total gravitational potential 
energy of this system?

To determine the total 
potential energy of the system, 
consider the number of interacting pairs. In this case there are three ways to pair up the objects, so 
there are three terms to add together to find the total potential energy. Because energy is a scalar, 
we do not have to worry about direction. Using a subscript of 1 for the ball of mass m, 2 for the 
ball of mass 2m, and 3 for the ball of mass 3m, we get:

.

Key ideas for gravitational potential energy: Potential energy is a scalar. The total gravitational 
potential energy of a system of objects can be found by adding up the energy associated with 
each interacting pair of objects.                      Related End-of-Chapter Exercises: 25, 29, 40.
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Figure 8.9: Three equally spaced balls placed in a line.



EXAMPLE 8.4 – Applying conservation ideas
A ball of mass 1.0 kg and a ball of mass 3.0 kg are initially separated by 4.0 m in a region 

of space in which they interact only with one another. When the balls are released from rest, they 
accelerate toward one another. When they are separated by 2.0 m, how fast is each ball going?

SOLUTION
Figure 8.10 shows the balls 

at the beginning and when they are 
separated by 2.0 m. Analyzing 
forces, we find that the force on 
each ball increases as the distance 
between the balls decreases. This 
makes it difficult to apply a force 
analysis. Energy conservation is a 
simpler approach. Our energy equation 
is:

.

In this case, there are no non-conservative forces acting, and in the initial state the kinetic 
energy is zero because both objects are at rest. This gives . The final kinetic energy 

represents the kinetic energy of the system, the sum of the kinetic energies of the two objects.

Let’s solve this generally, using a mass of m and a final speed of for the 1.0 kg ball, 

and a mass of 3m and a final speed of  for the 3.0 kg ball. The energy equation becomes:

.

Canceling factors of m gives: .

Multiplying through by 2, and combining terms, gives: .

Because there is no net external force, the system’s momentum is conserved. There is no 
initial momentum. For the net momentum to remain zero, the two momenta must always be 
equal-and-opposite. Defining right to be positive, momentum conservation gives:

, which we can simplify to .

Substituting this into the expression we obtained from applying energy conservation:

This gives , and .

Using m = 1.0 kg, we get and .

Related End-of-Chapter Exercises: Problems 43 – 45.

Essential Question 8.4: Return to Example 8.4. If you repeat the experiment with balls of mass 
2.0 kg and 6.0 kg instead, would the final speeds change? If so, how?
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Figure 8.10: The initial situation shows the balls at rest. 
The force of gravity causes them to accelerate toward one 
another.



Answer to Essential Question 8.4: If we double each mass, the analysis above still works. 
Plugging m = 2.0 kg into our speed equations shows that the speeds increase by a factor of .

8-5 Example Problems
EXAMPLE 8.5A – Where is the field zero?
Locations where the net gravitational field is zero are special, because an object placed 

where the field is zero experiences no net gravitational force. Let’s place a ball of mass m at the 
origin, and place a second ball of mass 9m on the x-axis at x = +4a. Find all the locations near the 
balls where the net gravitational field associated with these balls is zero. 

SOLUTION
A diagram of the situation is shown in Figure 8.11. Let’s now approach the problem 

conceptually. At every point near the balls there are two gravitational fields, one from each ball. 
The net field is zero only where the two fields are equal-and-opposite. These fields are in exactly 
opposite directions only at locations on the x-axis between the balls. If we get too close to the first  
ball it dominates, and if we get too close to the second ball it dominates; there is just one location 
between the balls where the fields exactly balance.

 
An equivalent approach is to use forces. Imagine having a third ball (we generally call 

this a test mass) and placing it near 
the other two balls. The third ball 
experiences two forces, one from 
each of the original balls, and these 
forces have to exactly balance. This 
happens at one location between 
the original two balls.

Whether we think about fields or forces, the approach is equivalent. The special place 
where the net field is zero is closer to the ball with the smaller mass. To make up for a factor of 9, 
representing the ratio of the two masses, we need to have a factor of 3 (which gets squared to 9) 
in the distances. In other words, we need to be three times further from the ball with a mass of 9m  
than we are from the ball of mass m for the fields to be of equal magnitude. This occurs at x = +a.

We can also get this answer using a quantitative approach. Using the subscript 1 for the 
ball of mass m, and 2 for the ball of mass 9m, we can express the net field as:

Define right to be positive. If the point we’re looking for is between the balls a distance x 
from the ball of mass m, it is (4a – x) from the ball of mass 9m. Using the definition of  gives:

Canceling factors of G and m, and re-arranging gives: 

Cross-multiplying leads to: 

We could use the quadratic equation to solve for x, but let’s instead take the square root of 
both sides of the equation. When we take a square root the result can be either plus or minus:
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Figure 8.11: The two balls in Example 8.5A.



Using the positive sign, we get , so . This is the correct solution, lying 
between the balls and closer to the ball with the smaller mass. Because it is three times farther 
from the ball of mass 9m than the ball of mass m, and because the distance is squared in the 
equation for field, this exactly balances the factor of 9 in the masses.

Using a minus sign gives a second solution, . This location is three times farther 
(6a) from the ball of mass 9m than from the ball of mass m (2a). Thus at x = -2a the two fields 
have the same magnitude, but they point in the same direction so they add rather than canceling.

Related End-of-Chapter Exercises: 13, 14, 20.

EXAMPLE 8.5B – Escape from Earth
When you throw a ball up into the air, it comes back down. How fast would you have to 

launch a ball so that it never came back down, but instead it escaped from the Earth? The 
minimum speed required to do this is known as the escape speed. 

SOLUTION
A diagram is shown in Figure 8.12. Let’s assume the ball starts at the surface of the Earth 

and that we can neglect air resistance (this would be fine if we were escaping from the Moon, but 
it is a poor assumption if we’re escaping from Earth - let’s not worry about that, however). We’ll 
also assume the Earth is the only object in the Universe. So, this is an 
interesting calculation but the result will only be a rough approximation of 
reality.

Let’s apply the energy conservation equation:
.

We’re neglecting any work done by non-conservative forces, so 
= 0. The final gravitational potential energy is negligible, because the 

distance between the ball and Earth is very large (we can assume it to be 
infinite). What about the final kinetic energy? Because we’re looking for the 
minimum initial speed let’s use the minimum possible speed of the ball 
when it is very far from Earth, which we can assume to be zero. This leads 
to an equation in which everything on the right-hand side is zero:

.

.

The mass of the ball does not matter, because it cancels 
out. This gives:

.

This is rather fast, and explains why objects we throw up in the air come down again!

Related End-of-Chapter Exercises: 41, 42.

Essential Question 8.5: Let’s say we were on a different planet that had the same mass as Earth 
but twice Earth’s radius. How would the escape speed compare to that on Earth?
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Figure 8.12: Energy bar graphs are 
shown in addition to the pictures 
showing the initial and final situations.



Answer to Essential Question 8.5: Since , keeping the mass the same while 

doubling the radius reduces the escape speed by a factor of .

8-6 Orbits
Imagine that we have an object of mass m in a circular orbit around an object of mass M. 

An example could be a satellite orbiting the Earth. What is the total energy associated with this 
object in its circular orbit?

The total energy is the sum of the potential energy plus the kinetic energy:

.

This is a lovely equation, but it doesn’t tell us much. Let’s consider forces to see if we 
can shed more light on what’s going on. For the object of mass m to experience uniform circular 
motion about the larger mass, it must experience a net force directed toward the center of the 
circle (i.e., toward the object of mass M). This is the gravitational force exerted by the object of 
mass M. Applying Newton’s second law gives:

, directed toward the center.

, which tells us that .

Substituting this result into the energy expression gives:

.

This result is generally true for the case of a lighter object traveling in a circular orbit 
around a more massive object. We can make a few observations about this. First, the magnitude 
of the total energy equals the kinetic energy; the kinetic energy has half the magnitude of the 
gravitational potential energy; and the total energy is half of the gravitational potential energy. All 
this is true when the orbit is circular. Second, the total energy is negative, which is true for a 
bound system (a system in which the components remain together). Systems in which the total 
energy is positive tend to fly apart.

What happens when an object has a velocity other than that necessary to travel in a 
circular orbit? One way to think of this is to start the orbiting object off at the same place, with a 
velocity directed perpendicular to the line connecting the two objects, and simply vary the speed. 
If the speed necessary to maintain a circular orbit is denoted by , let’s consider what happens if 

the speed is 20% less than ; 20% larger than ; the special case of ; and . The 

orbits followed by the object in these cases are shown in Figure 8.13.

Unless the object’s initial speed is too small, causing it to eventually collide with the 
more massive object, an initial speed that is less than will produce an elliptical orbit where the 

initial point turns out to be the farthest the object ever gets from the more massive object. The 
initial point is special because at that point the object’s velocity is perpendicular to the 
gravitational force the object experiences. 
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If the initial speed is larger than , the result depends on how much larger it is. When 

the initial speed is that is the escape speed, and is thus a special case. The shape of the orbit 

is parabolic, and this path marks the boundary between the elliptical paths in which the object 
remains in orbit and the higher-speed hyperbolic paths in which the object escapes from the 
gravitational pull of the massive object.

Related End-of-Chapter Exercises: 47, 59, and 60.

Essential Question 8.6: Is linear momentum conserved for any of these orbits? If so, which? 
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Figure 8.13: The orbits resulting from starting at a particular spot, the right-most point on each 
orbit, with initial velocities directed the same way (up in the figure) but with different initial 
speeds. The dark circular orbit represents the almost-circular orbit of the Earth, where the 
distances on each axis are in units of meters and the Sun is not shown but is located at the 
intersection of the axes. If the Earth’s speed was suddenly reduced by 20%, the Earth would 
instead follow the smallest orbit, coming rather close to the Sun. If, instead, the Earth’s speed 
was increased by 20%, the resulting elliptical orbit would take us quite a long way from the Sun 
before coming back again. Increasing the Earth’s speed to times its current speed (an 
increase of a little more than 40%) the Earth would be moving at the escape speed and we would 
follow the parabolic orbit to infinity (and beyond). Any initial speed larger than this would result  
in a hyperbolic orbit to infinity. Note that the speeds given in the picture represent initial speeds, 
the speed the Earth would have at the right-most point in the orbit to follow the corresponding 
path.
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8-7 Orbits and Energy
Plots of the kinetic and potential energy as a function of time for five orbits are shown in Figure 

8-7A, and graphs of the total energy are shown in Figure 8-7B. The total energy determines whether the 
orbit is closed or open (in the open case the object never comes back). If the total energy is negative the 
orbit is closed, and if it is positive the orbit is open. The special case of zero total energy represents the 
situation in which the initial speed is the escape speed.

Figure 8-7A: Kinetic energies (positive values) and gravitational potential energies (negative values) for 
five different orbits, one being circular and corresponding closely to the Earth’s orbit around the Sun; two 
being elliptical (and periodic); one corresponding to the escape speed; and the fifth being an open orbit in 
which the Earth would never come back. The y-axis has units of joules while the x-axis is time in units of 
days.

Figure 8-7B: Plots of the total mechanical energy (the sum of the kinetic plus the gravitational potential 
energy) for the five orbits discussed above. The y-axis has units of joules while the x-axis is time in units 
of days.

Related End-of-Chapter Exercises: 11 and 61.
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Essential Question 8.7: For which of the orbits discussed above is the total mechanical energy 
conserved? What does the value of the total mechanical energy have to do with the orbit?

Answer to Essential Question 8.7: There is no energy-loss mechanism, so the total mechanical energy is 
conserved in each case. A total energy of 0 corresponds to the escape speed, while if the total energy is 
positive the orbit is open and the orbiting object escapes from the system. Negative total energies 
correspond to bound systems in which the orbiting object remains in orbit. The circular orbit is a special 
case in which and .
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Answer to Essential Question 8.6: Linear momentum is not conserved for any orbit, because 
linear momentum is a vector and the direction of the momentum changes. The magnitude of the 
linear momentum is constant for the circular orbit, but not for any of the others. Linear 
momentum is not conserved because the Sun exerts a net force on the orbiting object.

Chapter Summary

 Essential Idea
 Gravity is one of the four fundamental forces in the universe, and it strongly influences 
each of us all the time. In addition, because the way objects with mass interact with each other is 
similar to the way objects with charge interact with one another, the material covered in this 
chapter lays a foundation for our understanding of charged particles in Chapters 16 and 17.

 Newton’s Law of Universal Gravitation
The gravitational force an object of mass M exerts on an object of mass m when the 

distance between their centers-of-mass is r is known as Newton’s Law of Universal Gravitation:

  (Equation 8.1: Gravitational force between two objects)

where is the universal gravitational constant. The magnitude of the 

force is equal to while the direction is given by , which means that the force is 
attractive, directed back toward the object exerting the force.

 The Gravitational Field, 
In previous chapters we have referred to as “the acceleration due to gravity”, but a 

more appropriate name is “the strength of the local gravitational field”. A field is something that 
has a magnitude and direction at all points in space. It is also one way to examine how an object 
with mass influences the space around it. The gravitational field can be defined as the 
gravitational force per unit mass:

.    (Equation 8.2: Gravitational field)

For an object of mass M, such as the Earth, the gravitational field outside of the object 
that is produced by that object is:

 ,  (Equation 8.3: Gravitational field from a point mass)

where r is the distance from the center of the object to the point. The magnitude of the 
field is , while the direction is given by , which simply means that the field is directed 
back toward the object producing the field.
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 Gravitational Potential Energy
Previously we have defined gravitational potential energy as mgh, but that applies only in a 

uniform gravitational field. More generally the gravitational potential energy associated with the 
interaction between objects of mass m and M, separated by a distance r, is given by:

.   (Equation 8.4: Gravitational potential energy)

The negative sign is associated with the fact that gravitational interactions are always 
attractive. In other words, the force of gravity always causes objects to attract one another, rather 
then repel one another. 

 Orbits and Energy
When an object is held in orbit around another object via the force of gravity, the total energy 

is always negative, indicating that the system is bound. If the total energy in the system is positive 
then the system is not bound, and the objects tend to fly apart from one another.

In the special case of a circular orbit, the total energy is half the value of the gravitational 
potential energy, as well as equal in magnitude, but opposite in sign, to the kinetic energy of the 
orbiting object.
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End-of-Chapter Exercises

Exercises 1 – 12 are primarily conceptual questions that are designed 
to see if you have understood the main concepts of the chapter. 
Treat all balls with mass as point masses.

1. Figure 8.14 shows the force a small object feels 
when it is placed at the location shown, near two 
balls. The ball on the left has a mass M, while the 
ball on the right has an unknown mass. Based on 
the force experienced by the small object, state 
whether the mass of the ball on the right is more 
than, less than, or equal to M. Justify your answer.

2. Return to the situation described in the previous problem, and 
shown in Figure 8.14. Determine the mass of the ball on the right, 
in terms of M.

3. Figure 8.15 shows the net gravitational force experienced by a 
small object located at the center of the diagram. The force comes 
from two nearby balls, one with a charge of M and one with an 
unknown mass. (a) Is the mass of the second 
ball more than, less than, or equal to M? (b) 
Find the mass of the second ball.

4. Figure 8.16 shows the net gravitational force experienced by a 
small object located at the center of the diagram. The force comes 
from two nearby balls, one with a mass of M and one with an 
unknown mass. (a) Is the mass of the second ball more than, less 
than, or equal to M? (b) Find the mass of the second ball.

5. Figure 8.17 shows the net gravitational force experienced by a 
small object located at the center of the diagram. The force comes 
from two nearby balls, one with a charge of M and one with an 
unknown mass. Find the mass of the second ball.
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Figure 8.14: A small object experiences the net 
gravitational force shown. The ball on the right 
has an unknown mass. For Exercises 1 and 2.

Figure 8.15: The two balls produce a net gravitational 
force directed up and to the right, as shown, on the 
object at the center of the diagram. For Exercise 3.

Figure 8.16: The two balls produce a net gravitational 
force at a 45° angle directed up and to the right, as shown, 
on the object at the center of the diagram. For Exercise 4.

Figure 8.17: The two balls produce a net force 
directed down and to the left, as shown, on the 
object at the center of the diagram. For Exercise 5.



6. Two identical objects are located at different positions, as shown in 
Figure 8.18. The interaction between the objects themselves can be 
neglected. They experience forces of the same magnitude, and in 
the directions shown. Could these forces be produced by a single 
nearby object? If so, state where that object would be. If not, 
explain why not.

7. Five balls, two of mass m and three of mass 2m, are arranged 
as shown in Figure 8.19. What is the magnitude and direction 
of the net gravitational force on the ball of mass m that is 
located at the origin?

8. Consider a region of space in which there is at least one 
object with mass. Can there be a location in this region where 
the net gravitational field is zero? Briefly justify your answer 
and, if you answer Yes, draw an arrangement of one or more 
objects that produces a zero gravitational field at a particular 
location.

9. You have four balls, two of mass m and two of mass 2m, and you will place one at each 
corner of a square. Show how you can arrange the balls so that the net gravitational field 
at the center of the square is (a) zero (b) directed to the right.

10. Let’s say you were able to tunnel into the center of the Earth (and were somehow able to 
withstand the tremendous pressure and temperature). (a) What would be the magnitude of 
the gravitational force you would experience at the center of the Earth? (b) What does 
Equation 8.1 predict for the magnitude of this force? (c) Are your answers to (a) and (b) 
consistent with one another? Explain.

11. Which of the following is/are conserved for an object that is held in a circular orbit 
around another more massive object by the gravitational force between the objects? 
Justify your answers. (a) Kinetic energy? (b) Gravitational potential energy? (c) Total 
mechanical energy? (d) Linear momentum?

12. Repeat Exercise 11 in the situation where the orbit is elliptical rather than circular.
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Figure 8.18: Two identical objects experience the 
forces shown in the diagram. The interaction between 
the objects themselves can be neglected. For Exercise 6.

Figure 8.19: An arrangement 
of five balls, for Exercise 7.



Exercises 13 – 17 deal with gravitational force.

13. Two balls are placed on the x-axis, as shown in Figure 8.20. The first ball has a mass m 
and is located at the origin, while the second ball has a mass 2m and is located at x = +4a. 
A third ball, with a mass of 4m, is then brought in and placed somewhere on the x-axis. 
Assume that each ball is influenced only by the other two balls. (a) Could the third ball be 
placed so that all three balls simultaneously experience no net force due to the other two? 
(b) Could the third ball be placed so that at least one of the three balls experiences no net 
force due to the other two? Briefly justify your answers.

14. Return to the situation described in Exercise 13, and find all the possible locations where 
the third ball could be placed so that at least one of the three balls experiences no net 
force due to the other two.

15. Refer back to Figure 8.9, showing a ball of mass 3m located halfway between a ball of 
mass m and a ball of mass 2m. Rank the three balls based on the magnitude of the net 
force they experience, from largest to smallest.

16. Three identical balls are arranged so there is one ball at each corner of an equilateral 
triangle. Each side of the triangle is exactly 1 meter long. If each ball experiences a net 
force of 5.00 x 10-6 N because of the other two balls, what is the mass of each ball?

17. Rank the four inner planets of the solar system (Mercury, Venus, Earth, and Mars) based 
on the magnitude of the gravitational force they each experience from the Sun, from 
largest to smallest.

Problems 18 – 23 deal with gravitational field.

18. Using the fact that the gravitational field at the surface of the Earth is about six times 
larger than that at the surface of the Moon, and the fact that the Earth’s radius is about 
four times the Moon’s radius, determine how the mass of the Earth compares to the mass 
of the Moon.
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Figure 8.20: Two balls on the x-axis. These could represent planets you are placing in a solar 
system, in your role as designer of the cosmos. For Exercises 13 and 14.



19. Five identical balls of mass M are placed so there is one ball at each corner of a regular 
pentagon. (a) If each ball is a distance R from the geometrical center of the pentagon, 
what is the magnitude of the gravitational field at the center of the pentagon due to the 
balls? (b) If the ball at the top of the pentagon is completely removed from the system, as 
shown in Figure 8.21, what is the magnitude and direction of the gravitational field at the 
center of the pentagon?

20. At some point on the line connecting the center of the Earth to the center of the Moon the 
net gravitational field is zero. How far is this point from the center of the Earth?

21. A ball of mass 6m is placed on the x-axis at x = -2a. There is a second ball of unknown 
mass at x = +a. If the net gravitational field at the origin due to the two balls has a 

magnitude of , what is the mass of the second ball? Find all possible solutions.

22. Repeat the previous exercise if the net gravitational field at the origin has a magnitude of 

.

23. A ball of mass 2m is placed on the x-axis at x = -a. There is a second ball with a mass of 
m that is placed on the x-axis at an unknown location. If the net gravitational field at the 

origin due to the two balls has a magnitude of , what is the location of the second 

ball? Find all possible solutions.

Exercises 24 – 31 deal with gravitational force, field, and potential energy.

24. A ball of mass 2m is placed on the x-axis at x = -2a. A second ball of mass m is placed 

nearby so that the net gravitational field at the origin because of the two balls is in 

the negative x direction. Where is the second ball?
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Figure 8.21: Initially, there are five identical balls, each placed at one vertex of a regular 
pentagon. The ball at the top is then removed, as shown at right. For Exercise 19.



25.  Consider the three cases shown in Exploration 8.2. (a) Rank these cases based on their 
gravitational potential energy, from most positive to most negative. (b) Determine the 
gravitational potential energy of the system shown in case 2.

26. Consider the three cases shown in Figure 8.22. Rank these cases, from largest to smallest, 
based on the (a) magnitude of the gravitational force experienced by the ball of mass m; 
(b) magnitude of the gravitational field at the origin; (c) gravitational potential energy of 
the system (do this ranking from most positive to most negative).

 

27. Consider the three cases shown in Figure 8.22. Determine the magnitude and direction of 
the gravitational force experienced by the ball of mass m in (a) case1; (b) case 2; (c) case 
3.

28. Consider the three cases shown in Figure 8.22. Determine the magnitude and direction of 
the gravitational field at the origin in (a) case1; (b) case 2; (c) case 3.

29. Consider the three cases shown in Figure 8.22. Determine the gravitational potential 
energy of the system in (a) case1; (b) case 2; (c) case 3.

30. A ball of mass 4m is placed on the x-axis at x = +3a and a second ball of mass m is placed 
on the x-axis at x = +6a, as shown in Figure 8.23. (a) What is the gravitational potential 
energy associated with this system? (b) If you bring in a third ball of with a mass of 3m 
and place it at x = +4a, what is the gravitational potential energy of the three-ball system? 
(c) If the third ball had a mass of 2m instead what is the gravitational potential energy of 
the three-ball system? 

31. Consider again the system shown in Figure 8.253 (a) At how many locations near the two 
balls is the net gravitational field equal to zero? (b) Specify the locations of all such 
points.
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Figure 8.22: Three configurations of balls with mass, for Exercises 26 – 29.

Figure 8.23: Two balls on the x-axis, a ball of mass 4m at x = +3a and a ball of mass 
m at x = +6a, for Exercises 30 – 31.



General problems and conceptual questions

32. (a) Which object, the Sun or the Moon, exerts a larger gravitational force on the Earth? 
(b) By approximately what factor do these forces differ? (c) Is the Sun or the Moon 
primarily responsible for tides on the Earth? How do you explain this, given the answers 
to parts (a) and (b)?

33. Why do we need to have a leap year almost every four years? Sometimes we skip a leap 
year. Why would this be? What is the rule that determines which years are leap years and 
which years are skipped?

34. (a) If time zones were all one hour apart (this is not always the case), how many time 
zones would there be? Using the same assumption, what would the average width of a 
time zone be at (b) the equator? (c) a latitude equal to the latitude of Paris, France, which 
is 48.8° north?

35. (a) What is the speed of the Earth in its orbit around the Sun? (b) What is the acceleration 
of the Earth because of the gravitational force exerted on it by the Sun? (c) What is the 
acceleration of the Sun because of the gravitational force exerted on it by the Earth?

36. Two identical balls are placed some distance apart from one another. (a) Sketch a field 
vector diagram for this situation, assuming only the two balls contribute to the field. (b) 
Sketch a field line diagram for this situation.

 
37. Three balls, of mass m, 2m, and 3m, are arranged so there is one ball at each corner of an 

equilateral triangle. Each side of the triangle is exactly 1 meter 
long. (a) Rank the balls based on the magnitude of the net force 
they each experience, from largest to smallest. (b) Find the 
magnitude of the net force acting on the ball of mass 2m.

38. Return to the situation described in Exercise 37. What is the 
magnitude of the gravitational field at the center of the triangle?

39.  (a) Referring to Figure 8.24, which of the two balls of mass m 
experiences the larger net gravitational force? Justify your answer. 
(b) What is the magnitude of the net gravitational force 
experienced by the three different balls of mass 2m?

40. Referring to Figure 8.24, what is the gravitational potential 
energy of this arrangement of five balls?

41.  (a) What is the escape speed for projectiles launched from the surface of the Moon? (b) 
Some people think that if we launch a manned mission to Mars it makes more sense to 
launch the spacecraft from the Moon rather than from the Earth. Comment on whether 
this makes sense, from an energy perspective.

42. If a projectile is launched straight up from the surface of the Moon with 90% of the speed 
necessary to escape from the Moon’s gravity, what is the maximum distance it gets from 
the surface of the Moon before turning around? Assume the Moon is the only object 
influencing the projectile after launch.
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Figure 8.24: An arrangement of 
five balls, for Exercises 39 – 40. 



43. Two identical objects of mass m are completely isolated from anything else and interact 
only with one another via gravity. If the two objects are both at rest when they are 
separated by a distance L, how fast are they each traveling when the distance between 
them is L/4?

44. Repeat the previous problem in the case when one object has a mass m and the second 
has a mass of 2m.

45. Two identical objects of mass 5.0 kg are initially 20 cm apart. They are then each given 
initial velocities of 0.10 m/s directed away from the other object. (a) Assuming they are 
completely isolated from anything else and interact only with one another via gravity, 
will they eventually come back together? (b) If so, determine their maximum separation 
distance; if not, determine how fast each object is traveling when they are very far apart.

46. Do some research on Johannes Kepler, and write two or three paragraphs explaining his 
contributions to our understanding of planetary orbits.

47. There is a Law known as Kepler’s third law that states that when an object of mass m is 
held in a circular orbit around another object of mass M because of the gravitational 
interaction between them, the square of the period of the orbiting object is proportional to 

the cube of the orbital radius. Expressed as an equation, this is . Let’s derive 

the equation. (a) First, express the speed of the object of mass m in terms of the radius 
and period of the orbit. (b) Second, apply Newton’s second law, using the fact that we’re 
dealing with uniform circular motion. (c) Third, substitute your result from (a) into your 
result from (b) and re-arrange to get the result stated above.

48. Knowing that the Earth’s orbit around the Sun 
is approximately circular with a radius of 150 
million km, determine the mass of the Sun 
(see Exercise 47).

49. The speed of light is . When 
Neil Armstrong and Buzz Aldrin landed on the 
Moon in July 1969, they left reflectors that 
would reflect a laser beam fired at the Moon 
from the Earth back to the Earth (see Figure 
8.25). These reflectors are still used today. By 
measuring the round-trip time for the light 
scientists can determine the distance from the 
surface of the Earth to the surface of the Moon 
to within about 1 mm. (a) Assuming the laser 
is fired along the line connecting the centers of 
the Earth and Moon, and the round-trip time 
for the laser beam is measured to be 2.53 s, 
determine the center-to-center distance from 
the Earth to the Moon. The radius of the Earth 
is , and the radius of the Moon is 

. (b) Using the previous result, and 
knowing that the Moon takes 27.3 days to orbit  
the Earth, determine the mass of the Earth.
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Figure 8.25: A photo of the set of 100 reflectors 
left by Neil Armstrong and Buzz Aldrin on the 
Moon in 1969, and described in Exercise 49. 
Photo courtesy of NASA’a Marshall Space Flight 
Center and Science @ NASA.
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50. (a) Neglecting air resistance and the fact that the Earth is spinning, and assuming the ball 
does not hit anything in its travels, how fast would you have to launch a ball horizontally 
near the surface of the Earth so that it traveled in a circular path (with a radius equal to 
the radius of the Earth) around the Earth? (b) How long would the ball take to complete 
one orbit?

51. Some satellites are located in what is called a geosynchronous orbit around the Earth, in 
which they maintain their position over a particular location on the equator as the Earth 
spins on its axis (e.g., one might be over Ecuador at all times). How far from the center of 
the Earth is such a satellite (see Exercise 47), assuming it is over the equator?

52.  The space shuttle orbits the Earth at an altitude that is typically 360 km above the Earth’s 
surface. (a) What is the magnitude of the Earth’s gravitational field at that altitude? (b) 
Explain why astronauts in the spaceship feel weightless.

53. A ball of mass 2m is placed on the x-axis at x = –a. There is a second ball with an 
unknown mass that is placed on the x-axis at an unknown location. If the force the second 

ball exerts on the first ball has a magnitude of  and the gravitational potential 

energy associated with the interacting balls is , what is the mass and location of 

the second ball? Find all possible solutions.

54. A ball of mass 3m is placed on the x-axis at x = –a. There is a second ball with an 
unknown mass that is placed on the x-axis at an unknown location. If the force the second 

ball exerts on the first ball has a magnitude of  and the net gravitational field at x = 

0 due to these balls is in the positive x-direction, what is the mass and location of 

the second ball? Find all possible solutions.

55. A ball of mass 2m is placed on the x-axis at x = –2a. There is a second ball with an 
unknown mass that is placed on the x-axis at an unknown location. If the gravitational 

potential energy associated with the interacting balls is  and the net gravitational 

field at x = 0 due to these balls has a magnitude of , what is the 

mass and location of the second ball? Find all possible solutions.

56. Four small balls are arranged at the corners of a square that measures 
L on each side, as shown in Figure 8.26. (a) Which ball experiences 
the largest-magnitude force due to the other three balls? (b) What is 
the direction of the net force acting on the ball with the mass of 4m? 
(c) If you reduced the length of each side of the square by a factor of 
two, so neighboring balls were separated by a distance of L/2 instead, 
what would happen to the magnitude of the force experienced by each 
ball?
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Figure 8.26: Four balls at the corners 
of a square, for Exercises 56 – 58.



57. Four small balls are arranged at the corners of a square that measures 
L on each side, as shown in Figure 8.26. Calculate the magnitude and 
direction of the force experienced by (a) the ball with the mass of 2m, 
and (b) the ball with the mass of 3m in the lower right corner.

58. Four small balls are arranged at the corners of a square that measures 
L on each side, as shown in Figure 8.26. (a) Calculate the magnitude 
and direction of the gravitational field at the center of the square that 
is produced by these balls. (b) Could you change the mass of 
just one of the balls to produce a net electric field at the 
center that is directed horizontally to the right? If so, which 
ball would you change the mass of and what would you 
change it to? If not, explain why not.

59. (a) What is the speed of the Earth in its approximately circular orbit around the Sun? (b) 
If the Earth’s mass was suddenly reduced by a factor of 4, what would its speed have to 
be to maintain its orbit?

60. The four inner planets of the Solar System have orbits that are approximately circular. (a) 
Find the orbital speed of each of these four planets. (b) Rank the planets based on their 
orbital speed. Why is the ranking in this order?

61. What is the minimum amount of work required to move a satellite from a circular orbit 
around the Earth at an altitude of 350 km to a circular orbit at an altitude of 500 km?

62. (a) Look up the radius of the Sun, the distance from the Sun to the Earth, and the radius 
of the Earth. Use those numbers to determine the angle the Sun’s diameter subtends if 
you were to look at the Sun (see Figure 8.29). (b) Repeat for the Moon, to determine the 
angle the Moon’s diameter subtends when you look at the Moon. (c) Comment on the 
relative size of these angles.

63. Let’s say you are an elf and are standing exactly at the North Pole looking due south at 
Santa’s workshop. If you turn around 180˚ to face the other way, in which direction are 
you looking now?

64. Three students are having a conversation. Explain what you think is correct about what 
they say, and what you think is incorrect. 

Anna: This question says that we have two objects, one with a mass of m and the other with a 
mass of 2m. It asks us for which one experiences a larger magnitude force because of the 
other object. That should be the smaller one, I think – shouldn’t it feel twice as much force as 
the bigger one?

Mark: Well, the field created by the larger one should be twice as big as the field from the 
smaller one. Does that tell us anything? 

Suzanne: But what about Newton’s third law? Doesn’t that say that any two objects, no 
matter how big, always exert equal-and opposite forces on one another? 

Mark: I just kind of feel like the smaller one should feel more force. 

Anna: I do, too, but what if we look at Newton’s gravitation law? To get the force, you 
actually multiply the two masses together. So, it has to work out the same for each object.
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Figure 8.26: Four balls at the corners 
of a square, for Exercises 56 – 58.
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