
7-1 The Law of Conservation of Energy
In Chapter 6, we looked at the work-energy relationship: . If we break the net 

work up into two pieces, , the work done by conservative forces (such as gravity), and , 
the work done by non-conservative forces (such as tension or friction), then we can write the 
equation as: . Recall that the work done by a conservative force does not depend 
on the path taken between points. The work done by non-conservative forces is path dependent, 
however.

As we did in Chapter 6 with the work done by gravity, the work done by any conservative 
force can be expressed in terms of potential energy, using . We can now write the 
work-energy equation as 

. (Equation A).

Let’s use i to denote the initial state and f to denote the final state. The change in a 
quantity is its final value minus its initial value, so we can use  and . 

Substituting these expressions into Equation A gives . With a bit of 

re-arranging to make everything positive, we get Equation 7.1, below.

Equation 7.1 expresses a basic statement of the Law of Conservation of Energy: 
“Energy can neither be created nor destroyed, it can only be changed from one form to another.” 

 (Equation 7.1: Conservation of energy)

The law of conservation of energy is so important that we will use it in Chapters 8, 9, and 
10, as well as in many chapters after that. With equation 7.1, we have the only equation we need 
to solve virtually any energy problem. Let’s discuss its five different components.

Ki and Kf are the initial and final values of the kinetic energy, respectively.

Ui and Uf are the initial and final values of the potential energy, respectively.

Wnc is the work done by non-conservative forces (such as by the force of friction).

The conservation of energy equation is very flexible. So far, we have discussed one form 
of kinetic energy, the translational kinetic energy given by . When we get to 

Chapter 11, we will be able to build rotational kinetic energy into energy conservation without 
needing to modify equation 7.1. Similarly, no change in the equation will be necessary when we 
define a general form of gravitational potential energy in Chapter 8, and define spring potential 
energy in Chapter 12. It will only be necessary to expand our definitions of potential and kinetic 
energy.

Mechanical energy is the sum of the potential and the kinetic energies. If no net work is 
done by non-conservative forces (if Wnc = 0), then mechanical energy is conserved. This is the 
principle of the conservation of mechanical energy.
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EXAMPLE 7.1 – A frictional best-seller
A popular book, with a mass of 1.2 kg, is pushed across a table. The book has an initial 

speed of 2.0 m/s, and it comes to rest after sliding through a distance of 0.80 m.
(a) What is the work done by friction in this situation?
(b) What is the average force of friction acting on the book as it slides?

SOLUTION
(a) As usual, we should draw a diagram of the situation and 

a free-body diagram. These diagrams are shown in Figure 7.1. Three 
forces act on the book as it slides. The normal force is directed up, at  
90° to the displacement, so the normal force does no work. The 
effect of the force of gravity is accounted for via the potential energy 
terms in equation 7.1, but the gravitational potential energy does not 
change, because the book does not move up or down. The only force 
that affects the energy is the force of friction. The work done by 
friction is accounted for by the Wnc term in the conservation of energy 
equation.

So, the five-term conservation of energy equation, , can be 

reduced to two terms, because  and the final kinetic energy Kf = 0. We are left with:

 so, .

The work done by the non-conservative force, which is kinetic friction in this case, is 
negative because the force of friction is opposite in direction to the displacement.

(b) To find the force of kinetic friction, FK , use the definition of work. In this case, we 
get: .

Solving for the force of friction gives .

Related End-of-Chapter Exercises: 37, 40, 42.

A general method for solving a problem involving energy conservation
This general method can be applied to a wide variety of situations.

1. Draw a diagram of the situation. Usually, we use energy to relate a system at one 
point, or instant in time, to the system at a different point, or a different instant.

2. Write out equation 7.1, .

3. Choose a level to be the zero for gravitational potential energy. Defining the zero 
level so that either Ui or Uf (or both) is zero is often best.

4. Identify the terms in the equation that are zero.

5. Take the remaining terms and solve.

Essential Question 7.1: Did we have to solve Example 7.1 using energy ideas, or could we have 
used forces and Newton’s second law instead?
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Figure 7.1: A diagram of the 
sliding book and a free-body 
diagram showing the forces 
acting on it as it slides.



Answer to Essential Question 7.1: In the case of the book sliding on the table, we can apply 
either an energy analysis or a force analysis. Let’s now compare these different methods.

7-2 Comparing the Energy and Force Approaches
In Example 7.1, there is no real advantage in using an energy analysis over a force 

analysis. In some cases, however, the energy approach is much easier than the force approach.

EXPLORATION 7.2A – Which ball has the higher speed?
Three identical balls are launched with equal speeds v from a height h above level 

ground. Ball A is launched horizontally, while the initial velocity of ball B is at 30º above the 
horizontal, and the initial velocity of ball C is at 45º below the 
horizontal. Rank the three balls, based on their speeds when they 
reach the ground, from largest to smallest. Neglect air 
resistance.

Step 1 – Sketch a diagram of the situation. See Figure 7.2.

Step 2 – Briefly describe how to solve this problem using 
methods applied in earlier chapters. Consider the projectile-
motion analysis we applied in chapter 4. For each ball, we 
would break the initial velocity into components, determine the 
y-component of the final velocity using one of the constant-acceleration equations, and then find 
the magnitude of the final velocity by using the Pythagorean theorem. We would have to go 
through the process three times, once for each ball.

Step 3 – Instead, solve the problem using an energy approach. Our starting point for energy is 
always the conservation of energy equation, . There is no air resistance, 

so Wnc = 0. If we define the zero for gravitational potential energy as the ground level, then 
Uf  = 0, and Ui = mgh, where m is the mass of a ball (each ball has the same mass). Substituting 
this expression into the conservation of energy equation gives: .

Both terms on the left are the same for all three balls. The balls have the same initial 
kinetic energy and they experience the same change in potential energy. Thus, all three balls have 
identical final kinetic energies. Because , and the balls have equal masses, the 

final speeds are equal. Based on one energy analysis that works for all three balls, instead of three 
separate projectile-motion analyses, the ranking of the balls based on final speed is A=B=C.

Step 4 – Would the answer be different if the balls had unequal masses?  Starting from 
, and using the definition of kinetic energy, we can show that mass is irrelevant:

.

Factors of mass cancel, giving: . 

So, the balls have the same final speed even if their masses are different.

Key idea for solving problems: We now have two powerful ways of analyzing physical 
situations. We can either apply force ideas, or apply energy ideas. In certain situations the energy 
approach is simpler than the force approach.         Related End-of-Chapter Exercises: 6, 38.
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Figure 7.2: A diagram showing the 
directions of the initial velocities of 
the three balls in Exploration 7.2A.



EXPLORATION 7.2B – Which cart wins the race?
As shown in Figure 7.3, two identical carts have a 

race on separate tracks. Cart A’s track follows a straight 
path sloping down, while cart B’s track dips down below 
A’s just after the start and rises up to meet A’s again just 
before the finish line. If the carts are released at the same 
time, which cart reaches the end of the track first? Make a 
prediction, and justify your answer.

After considering the three balls of Exploration 
7.2A, it is tempting to predict that the race will end in a tie. 
An energy analysis, for instance, follows the same logic as 
that in Exploration 7.2A, except that the analysis in this case is simplified by the initial kinetic 
energy being zero. Once again, energy tells us that the carts should arrive at the finish line with 
the same speed. Having the same speed does not mean that they arrive at the same time, however.

Another popular answer is that A wins the race because B travels farther. In actuality, for 
most tracks, cart B wins the race. Cart A gradually picks up speed as it loses potential energy. In 
contrast, cart B immediately drops below A, transforming potential energy into kinetic energy, 
and reaching a speed larger than that of cart A. The carts then travel along parallel paths, with B 
always moving faster than A. Even while B slows as it climbs the hill near the end, it is traveling 
faster than A. The larger distance B travels is more than made up for by B’s larger average speed.

Key idea about energy and time: Energy can be a powerful concept, but energy generally gives 
us no direct information about time.                       Related End-of-Chapter Exercises: 4, 35.

Let’s compare and contrast the energy approach with the force approach. Energy can be a 
very effective tool, because in many cases we only have to consider the initial and final states and 
we don’t have to worry about how the system gets from one state to the other. On the other hand, 
energy tells us nothing about the time it takes to get from one state to another. In Exploration 
7.2B, for instance, the three balls reach the ground at different times, but we would have to use 
forces, and the constant-acceleration equations, to find those times. Energy is also a scalar, so it 
tells us nothing about direction. Energy is perfect, however, for connecting speed and position.

If we want to learn about time, or about the direction of a vector, analyzing forces is a 
better approach. So far, though, we are limited to applying force concepts to situations in which 
the net force is constant, when we can apply the constant-acceleration equations. We will go 
beyond this in Chapter 8 but, at the level of physics we are concerned with in 
this book, we will always be limited in how far we can go with forces. A 
good example of the limitations of force is shown in Figure 7.4, where an 
object slides from point A to point B along various paths. If the object comes 
down path 1, the straight line connecting A and B, we can use forces or 
energy to analyze the motion, even if friction acts as the object slides. If the 
object slides along a path other than path 1, then we can’t get far with forces. 
The difficulty is that the force approach is path dependent – the forces 
applied to the object depend on the path, and the forces change if the object 
moves along a different path.

Essential Question 7.2: Could we use energy to analyze the motion along 
paths 2, 3, or 4 in Figure 7.4?
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Figure 7.3: A race between two identical 
carts. Cart A’s track has a constant slope, 
while cart B’s track dips down below A’s 
before rising up to meet A’s again at the end.

Figure 7.4: Various paths 
for an object to slide along 
in traveling from A to B.



Answer to Essential Question 7.2: If there is no friction, the energy analysis is path independent, 
so we treat all paths the same. If friction does act on the object, however, even energy is hard to 
apply, because then the work done by friction depends on the path.

7-3 Energy Bar Graphs: Visualizing Energy Transfer
Energy conservation is a powerful tool. To make it easier for us to use this tool, it can be 

useful to use a visual aid to keep track of the various types of energy. One way to visualize how 
energy in a system is transformed from one type of energy to another is to use energy bar graphs. 
Consider the following example.

EXAMPLE 7.3A – Learning to use energy bar graphs
Consider a ball that you throw straight up into the air, and neglect air resistance. Define 

the gravitational potential energy to be zero at the point from which you release it. Draw energy 
bar graphs to show how the ball’s mechanical energy is divided between kinetic energy and 
gravitational potential energy at the following points: (a) the point you release it; (b) the point 
halfway between the release point and the maximum-height point, on the way up; (c) the 
maximum-height point; (d) the point halfway between the release point and the maximum height, 
on the way down; and (e) the release point, on the way down.

SOLUTION
The five sets of bar graphs are 

shown in Figure 7.5. The vertical 
position of the ball is indicated above 
each set of graphs, making it clearer why 
the second and fourth sets of graphs are 
the same, and why the first and last sets 
are the same. As the ball rises, its kinetic 
energy is transformed into potential 
energy, reaching 100% potential at the 
maximum height point. As the ball falls, 
the potential energy transforms back to 
kinetic energy.

Related End-of-Chapter Exercises: 21, 22.

In this case, the total mechanical energy is conserved. Let’s do another example to see 
how bar graphs are used to depict a situation in which energy is not conserved.

EXAMPLE 7.3B – Extending the use of energy bar graphs
A string is tied to a block that has a mass of 2.0 kg. As shown in 

Figure 7.6, the string passes over a pulley, and you hang onto the end of the 
string to prevent the block from moving. Initially, the block is 1.0 m above the 
ground. You then pull down on the string so the block accelerates upward at a 
constant rate of 4.0 m/s2. Use g = 10 m/s2, and define the zero for gravitational 
potential energy to be at ground level. Draw bar graphs to show the block’s 
gravitational potential energy, kinetic energy, total mechanical energy, and the 
work you have done on the block (a) at the instant the block starts to 
move, and (b) 0.50 s after the block starts to move.
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Figure 7.5: Energy bar graphs for a ball going 
straight up and down. The ball’s corresponding 
vertical position is shown above each of the bar 

Figure 7.6: The system of 
the string, pulley, and block. 
You hold the string.



SOLUTION
(a) Let’s define up to be the positive y-direction. Initially, 

the block is at rest and you have not done any work, so the energy is 
all gravitational potential energy. This relation is written 

. Because there is 
no kinetic energy, the block’s total mechanical energy is 20 J. 
The bar graphs for the initial energies are shown in Figure 7.7.

(b) To find the block’s gravitational potential energy at t 
= 0.50 s, we must determine how far off the ground the block is 
at that time. Because the acceleration is constant, we can use a 
constant-acceleration equation:

.

This y-position corresponds to a gravitational potential energy of:

.

To find the kinetic energy at t = 0.50 s, let’s find the speed of the 
block. We can use a constant-acceleration equation to find the block’s 
velocity at t = 0.50 s and then take the magnitude to get the speed.

.

The kinetic energy is then 

.

The total mechanical energy is the sum of the potential 
energy and the kinetic energy, for a total of 34 J. This is 14 J larger 
than the initial mechanical energy, meaning that you must have done 
14 J of work on the block. All the energies are represented by the bar 
graphs in Figure 7.8.

To summarize this section, the visualization technique of drawing energy bar graphs can 
be applied to systems in which mechanical energy is conserved, or even to systems when it is not 
conserved. Drawing these bar graphs is a good way to keep track of the different types of energy 
in a system.

Related End-of-Chapter Exercises: 23, 24.

Essential Question 7.3: In Example 7.3B, the bar graphs representing the various energies and 
the work are all either positive or zero. Could any of these be negative in some circumstances?
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Figure 7.7: Energy bar graphs showing the 
energy at the start of the motion. Each 
small rectangle represents an energy of 2 J. 
E is the total mechanical energy.

Figure 7.8: Energy bar graphs 
showing the energy of the block, and 
the work (W) you have done on the 
block up to that point, at t = 0.50 s.



Answer to Essential Question 7.3: All of them can be negative except for the kinetic energy, 
which can’t be negative because  and neither the square of the speed nor the mass 

can be negative. What is key is how the energies change, not what the values of the energies are.

7-4 Momentum and Collisions
Let’s extend our understanding of momentum by analyzing a collision, which is an event 

in which two objects interact. As we learned in Chapter 6, Newton’s third law tells us that, when 
no net external force acts on a system, the total momentum of the system is conserved. The 
momenta of the individual objects can change, but the total momentum of the system does not.

Generally, when we analyze a collision, we look at the situation immediately before the 
collision and compare it to the situation immediately after the collision. What happens during the 
collision itself can be interesting, and complicated. Fortunately, by using momentum we don’t 
have to worry about such complications. The usual starting point in analyzing a collision is to 
write down a conservation of momentum equation reflecting the following relation:

Total momentum before the collision = total momentum after the collision.

 (Equation 7.2: Momentum conservation)

where the subscripts i and f stand for initial and final, and the two colliding objects are 
denoted by 1 and 2.

EXPLORATION 7.4 – Two carts collide…again
Two identical carts experience a collision on a horizontal track. Before the collision, cart 

1 is moving at speed v to the right, directly toward cart 2, which is at rest. Immediately after the 
collision, cart 2 is moving with a velocity of  to the right. 

Step 1 - What is the velocity of 
cart 1 immediately after the 
collision? Let’s begin, as usual, by 
drawing a diagram of the situation 
in Figure 7.9, showing the carts before and 
after the collision.

The first step in applying equation 7.2 is to remember that momentum is a vector. Let’s 
define right as the positive x-direction. We can say that each cart has a mass m, and we are given 
that , , and . Substituting all these terms into the conservation of 

momentum equation gives:

 

Dividing out a factor of m and solving for the velocity of cart 1 after the collision gives:

 .

The two carts have the same velocity, and thus move together, after the collision. We 
could arrange this special case by attaching Velcro to both carts so they stick together. When the 
objects move together afterwards, we say that the collision is completely inelastic.
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Figure 7.9: Two carts, immediately before 
and immediately after their collision.



Step 2 - Is kinetic energy conserved in this collision? Kinetic energy does not have to be 
conserved in a collision, although in certain special cases it is. Let’s see what happens to the 
kinetic energy in this case.

Before the collision: .

After the collision: .

In this case, only 50% of the kinetic energy from before the collision is in the system as 
kinetic energy after the collision. The total energy has to be conserved, but in this case, some of 

the kinetic energy of cart 1 before the collision is transformed to other forms of energy (such 
as thermal energy, which is energy associated with the motion of molecules, and sound energy) 
in the collision process.

Step 3 - What is the velocity of the system’s center of mass before the collision? By dividing 
both sides of Equation 6.4, for the position of the center of mass, by a time interval, , and 
using the definition of velocity, we can obtain an equation for the velocity of the center of mass:

  (Equation 7.3: Velocity of the center of mass)

The m’s represent the masses of the various pieces of the object or system. The terms in 
the numerator on the right represent the momenta of the individual parts of the system, so the 
equation really says that the total momentum of the system is the vector sum of the momenta of 
its parts, which seems sensible.

Applying the equation to the two-cart system before the collision gives:

.

This result makes sense because the center of mass is halfway between the carts, so the 
center of mass covers half the distance as cart 1 does in the same time.

Step 4 - What is the velocity of the system’s center of mass after the collision? Applying 
equation 7.3 to the system after the collision gives:

  .

 It should come as no surprise that the velocity of the center of mass after the collision is 
the same as the velocity of the center of mass before the collision. Rather, this result is expected 
as a consequence of momentum conservation. In short, the center of mass does not even register 
that a collision has taken place.

Key ideas: In a collision, in general, the system’s momentum is conserved while the system’s 
kinetic energy is not necessarily conserved. In addition, in general, the motion of the system’s 
center of mass is unaffected by the collision.        Related End-of-Chapter Exercises: 25 – 28.

Essential Question 7.4: Under what condition is the momentum of a system conserved in a 
collision?

Chapter 7: Conservation of Energy and Conservation of Momentum Page 7 - 9



Answer to Essential Question 7.4: For momentum to be conserved, either no net force is acting 
on the system, or the net force must act over such a small time interval that it has a negligible 
effect on the momentum of the system.

7-5 Classifying Collisions
 If we attach Velcro to our colliding carts, and the carts stick together after the collision, as 
in Exploration 7.4, the collision is completely inelastic. If we remove the Velcro, so the carts do 
not stick together, we can set up a collision with the same initial conditions (cart 1 moving toward 
cart 2, which is stationary) and get a variety of outcomes. We generally classify these outcomes 
into four categories, depending on what happens to the kinetic energy in the collision.

 We can also define a parameter k called the elasticity. Elasticity is the ratio of the relative 
velocity of the two colliding objects after the collision to the negative of their relative velocity 
before the collision. By this definition, the elasticity should always be positive:

     (Equation 7.4: Elasticity)

The four categories of collisions can also be defined in terms of the elasticity.

Type of Collision
Kinetic Energy Elasticity Example

Super-elastic Kf > Ki k > 1
Carts are initially stationary, then 
pushed apart by a spring-loaded piston, 
as in Exploration 6.4. An explosion.

Elastic Kf = Ki k = 1 Carts with repelling magnets.

Inelastic Kf < Ki k < 1
Describes most collisions, such as two 
cars that make contact when colliding 
but that don’t stick together.

Completely inelastic Kf < Ki , and the 
objects stick together

k = 0 Carts with Velcro, as in Exploration 
7-3, or chewing gum hitting the 
sidewalk.

Table 7.1: Collisions can be classified in terms of what happens to the kinetic energy or in terms 
of the elasticity. Note that, in an elastic collision, the fact that k = 1 can be obtained by combining 
the momentum conservation equation with the conservation of kinetic energy equation.

EXAMPLE 7.5 – An assist from gravity
Sending a space probe from Earth to another planet 

requires a great deal of energy. In many cases, a significant 
fraction of the probe’s kinetic energy can be provided by a 
third planet, through a process known as a gravitational assist. 
For instance, the Cassini-Huygens space probe launched on 
October 15, 1997, used four gravitational assists, two from 
Venus, one from Earth, and one from Jupiter, to speed it on its 
more than 1 billion km trip to Saturn, arriving there on July 1, 
2004. We can treat a gravitational assist as an elastic collision, 
because the long-range interaction of the probe and the planet 
provides no mechanism for a loss of mechanical energy.
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Figure 7.10: The Cassini-Huygens space probe while it was 
being assembled. The desk and chair at the lower left give a 
sense of the scale. Photo courtesy NASA/JPL-Caltech.



A space probe with a speed v is approaching Venus, which is traveling at a velocity V in 
the opposite direction. The probe’s trajectory around the planet reverses the direction of the 
probe’s velocity. (a) How fast does the probe travel away from Venus? (b) If v = 1 x 105 m/s, and 
V = 3.5 x 105 m/s, what is the ratio of the probe’s final kinetic energy to its initial kinetic energy?

SOLUTION
Let’s begin with a diagram of the situation, shown in 

Figure 7.11. Although we will analyze this situation as a collision, 
the objects do not make contact with one another.

(a) The probe’s speed depends on how far away it is from 
Venus. Because no distances were given, let’s assume the probe 
has speed v when it is so far from Venus that the gravitational pull 
of Venus is negligible. We will work out the final velocity under 
the same assumption. This is an elastic collision. We could apply 
conservation of momentum and conservation of energy, but we 
were not given any masses and the resulting equations can be 
challenging to combine to find the final velocity of the probe. Let’s 
try working with the elasticity k instead.

Because this collision is elastic, k = 1. The elasticity is the 
ratio of the final relative speed to the initial relative speed, so those 
two relative speeds must be equal for k to equal 1. Also, we can 
reasonably assume that the probe’s mass is much smaller than the 
planet’s mass and that the planet’s motion is unaffected by its 
interaction with the probe. Thus, the planet’s velocity is V in the 
direction shown both before and after the collision.

Defining the direction of the planet’s velocity as the positive direction, plugging 
everything into the elasticity equation gives:

 ,

where both the numerator and denominator are negative.

Solving for the final speed of the probe gives .

(b) Substituting in the numbers gives a final speed of 8 x 105 m/s, an increase by a factor 
of 8 in speed. Kinetic energy is proportional to the square of the speed, so the probe’s kinetic 
energy is increased by a factor of 64. A more formal way to show this relation is the following:

.

The probe gains an enormous amount of energy, and it does so without requiring massive 
amounts of fuel to be burned. This is why probes to the outer planets are often first sent toward 
Venus, because the large increase in speed more than makes up for the extra distance traveled.

Related End-of-Chapter Exercises: 11, 54, 55.

Essential Question 7.5: In our analysis in example 7.5, we assumed that the planet’s speed is 
constant. Is this absolutely correct? Is it a reasonable assumption?
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Figure 7.11: Before and After 
situations for the interaction 
between Venus and the space probe.



Answer to Essential Question 7.5: To conserve energy of the planet-probe system, the planet's 
speed must decrease when the probe’s speed increases. Because the planet’s mass is so much 
larger than the probe’s, this decrease in speed is negligible. Thus, the assumption is reasonable.

7-6 Collisions in Two Dimensions
Momentum conservation also applies in two and three dimensions. The standard 

approach to a two-dimensional (or even three-dimensional) problem is to break the momentum 
into components and conserve momentum in both the x and y directions separately. For colliding 
objects, the conservation of momentum equation in the x-direction, for instance, is:

. (Eq. 7.5: Conserving momentum in the x-direction)

This can be written in an equivalent form:
       (Eq. 7.6: Momentum conservation, x-direction)

Similar equations apply in the y-direction. 

EXPLORATION 7.6 – A two-dimensional collision
An object of mass m, moving in the +x-direction with a velocity of 5.0 m/s, collides with 

an object of mass 2m. Before the collision, the second object has a velocity given by 
, while, after the collision, 

its velocity is 3.0 m/s in the +y-direction. What is the 
velocity of the first object after the collision?

Step 1 – Draw a diagram of the situation. This is 
shown in Figure 7.12.

Step 2 - Set up a table showing the momentum 
components of each object before and after the 
collision. Organizing components into a table helps 
us keep the x-direction information separate from the 
y-direction information. We can combine the components 
into one vector at the end.

x-direction y-direction
Before the collisionBefore the collision

After the collisionAfter the collision

Table 7.2: Organizing the collision data in a table helps to keep the x-direction information 
separate from the y-direction information, and doing so can also help us solve the problem.

Step 3 – Apply conservation of momentum in the x-direction, and find the x-component of the 
first object’s final velocity. Applying momentum conservation in the x-direction involves writing 
down the equation .

This gives  .
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Figure 7.12: A diagram of the 
objects before and after they collide.



To get the velocity component in the x-direction we just divide by the mass, m.

.

Step 4 – Use a similar process in the y-direction to find the y-component of the first object’s 
final velocity. Applying momentum conservation in the y-direction involves writing down the 
equation .

This equation gives  .

To get the velocity component in the y-direction, we divide by the mass, m.

.

Step 5 – Combine the x and y components to find 
the first object’s final speed. Also, write down an 
expression for the first object’s final velocity. We 
can use the Pythagorean theorem to find the final 
speed of the first object:

.

The velocity can be written in terms of 
components as . The first 

ball’s final velocity is shown in Figure 7.13.

Key idea for momentum problems: We can solve a momentum problem in two dimensions with 
a strategy based on the independence of x and y, breaking a two-dimensional problem into two 
independent one-dimensional problems.            Related End-of-Chapter Exercises: 29, 57.

Now that we’ve looked at a few examples, let’s summarize a general method for solving 
a problem in which there is a collision.

 A General Method for Solving a Problem That Involves a Collision
1. Draw a diagram of the situation, showing the velocity of the objects immediately 

before and immediately after the collision.
2. In a two-dimensional situation, set up a table showing the components of the 

momentum before and after the collision for each object.
3. Use momentum conservation: . (Apply this 

twice, once for each direction, in a two-dimensional situation.) Account for the 
fact that momentum is a vector by using appropriate + and – signs.

4. If you need an additional relationship (such as in the case of an elastic collision), 
use the elasticity relationship or write an energy-conservation equation.

Essential Question 7.6: The strategy outlined above, which we applied in Exploration 7.6, relies 
on breaking vectors into components. Is there another method that we could use to solve the 
problem without using components?
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and After the collision.



Answer to Essential Question 7.6: A whole-vector approach, not splitting the velocity and 
momentum vectors into components, would also work (see End-of-Chapter Exercise 58).

7-7 Combining Energy and Momentum
To analyze some situations, we apply both energy conservation and momentum 

conservation in the same problem. The trick is to know when to apply energy conservation (and 
when not to!) and when to apply momentum conservation. Consider the following Exploration.

EXPLORATION 7.7 – Bringing the concepts together
Two balls hang from strings of the same length. Ball A, with a mass of 4.0 kg, is swung 

back to a point 0.80 m above its equilibrium position. Ball A is released from rest and swings 
down and hits ball B. After the collision, ball A rebounds to a height of 0.20 m above its 
equilibrium position and ball B swings up to a height of 0.050 m. Let’s use g = 10 m/s2 to 
simplify the calculations.

Step 1 – Sketch a diagram of the situation. This is shown in Figure 
7.14.

Step 2 – Our goal is to find the mass of ball B. Can we find the mass 
by setting the initial gravitational potential energy of ball A equal to 
the sum of the final potential energy of ball A and the final potential 
energy of ball B? Explain why or why not.  The answer to the 
question is no. We can use energy conservation to help solve the 
problem, but setting the mechanical energy before the collision equal 
to the mechanical energy after the collision is assuming too much. The 
balls make contact in the collision, so it is likely that some of the 
mechanical energy is transformed to thermal energy, for instance.

Step 3 – Apply energy conservation to find the speed of ball A 
just before the collision. The gravitational potential energy of ball 
A is transformed into kinetic energy just before the collision. We 
will neglect the work done by air resistance, so we can apply 
energy conservation before the collision. Let’s start with the conservation of energy equation: 

.

For ball A’s swing before the collision, we know that the initial kinetic energy is zero. We 
are assuming that non-conservative forces do no work. We can also define the zero level for 
gravitational potential energy to be the lowest point in the swing, just before A hits B, so Uf = 0. 
The five-term equation reduces to:

;

;

So, .

Step 4 – Apply conservation of energy again to find the speed of ball A just after the collision. 
We could try applying conservation of momentum here, but there are too many unknowns. 
Instead, we can follow the conservation of energy method we used above. Note that we will not 
state that the kinetic energy immediately before the collision is equal to the kinetic energy after 
the collision, because that is not true. We can apply energy conservation, however, if we confine 
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Figure 7.14: A diagram of the two balls 
on strings. Ball A is swung back until it 
is 0.80 m higher than its equilibrium 
point and released from rest.



ourselves to the mechanical energy before the collision (as in step 3) or to the mechanical energy 
after the collision (this step). If we focus on the upswing, we have the kinetic energy of ball A, 
immediately after the collision, being transformed into gravitational potential energy. The 
conservation of energy equation reduces to:

;

;

So, .

Let’s be clear on what we have calculated in parts 3 and 4, because the notation can be 
confusing. We are analyzing the motion in three separate parts. The first part of ball A’s motion is 
the downswing, which we analyzed in step 3. The third part is the upswing, which we analyzed in 
step 4. The second part is the collision, which we still have to analyze. The velocity of ball A 
immediately before the collision, at the end of the downswing, is  to the right, 

while A’s velocity just after the collision, at the start of the upswing, is  to the left. 

These are the values we will use in the conservation of momentum equation in step 5.

Step 5 – First, apply energy conservation to find the speed of ball B after the collision. Then, 
apply momentum conservation to find the mass of ball B. We still have to find the velocity of 
ball B, after the collision, before we use the conservation of momentum equation to find ball B’s 
mass. We can find B’s speed immediately after the collision by following the same process we 
used for ball A in step 3. We get:

So, .

The velocity of ball B immediately after the collision is  to the right.

Now, we can write out a conservation of momentum equation to solve for the mass of 
ball B. It is critical to account for the fact that momentum is a vector. In this case, we account for 
the vector nature of momentum by using a minus sign for the velocity of ball A after the collision 
to reflect that it is moving to the left, when we chose right to be the positive direction. This gives: 

, where . Solving for the mass of ball B gives:

.

Key idea: In some situations, we can apply conservation of energy and conservation of 
momentum ideas together. In general, we apply conservation of momentum to connect the 
situation before the collision to the situation after the collision. We use energy conservation to 
learn something about the situation before the collision and/or the situation afterwards.       
Related End-of-Chapter Exercises: 30 – 32.

Essential Question 7.7: Is the collision in Exploration 7.7 super-elastic, elastic, inelastic, or 
completely inelastic? Justify your answer in two different ways. 
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Answer to Essential Question 7.7: The balls don’t stick together, so we know the collision is not 
completely inelastic. One way to classify the collision is to find the elasticity, k (see equation 7.4).

.

The fact that k is less than 1 means the collision is inelastic. We can confirm this result by 
looking at the kinetic energy before and after the collision.

.

;

.

The kinetic energy in the system after the collision is less than it is before the collision, so 
we have an inelastic collision.

Chapter Summary

 Essential Idea about Conservation Laws
 Many physical situations can be analyzed using forces, which we learned about 

in previous chapters, and/or by applying the fundamental concepts of conservation of momentum 
and conservation of energy, which we learned about in this chapter.

 Comparing the Energy and Force Methods
The primary methods we use to analyze situations are to use forces and Newton’s Laws, 

or to use energy conservation. Let’s compare these two methods.
• The energy approach can be very effective, because we often just have to deal with the 

initial and final states and we don’t have to account for the path taken by the system in 
going from one state to another, as we do with the force approach.

• The energy approach, by itself, does not give us any information about time, such as 
about how long it takes a system to move from one state to another. If you need to know 
about time, use a force analysis.

• Energy is a scalar. Thus energy, by itself, tells us nothing about direction. Force is a 
vector, and this it can give us information about direction.

• If Wnc, the work done by non-conservative forces, is zero, then the total mechanical 
energy (the sum of the kinetic and potential energies) is conserved.

 A General Method for Solving a Problem Involving Energy Conservation

1. Draw a diagram of the situation. Usually, we use energy to relate a system at one 
point, or instant in time, to the system at a different point, or a different instant.

2. Apply energy conservation: . (Eq. 7.1)

3. Choose a level to be the zero for gravitational potential energy. Setting the zero 
level so that either Ui or Uf (or both) is zero is often best.

4. Identify the terms in the equation that are zero.
5. Take the remaining terms and solve.
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 Collisions and Momentum Conservation
In general, the momentum of a system is conserved in a collision, but the system’s kinetic 

energy is often not conserved in a collision. In fact, one of the two ways in which we classify 
collisions is based on how the kinetic energy before the collision compares to that afterwards. The 
second way collisions can be classified is in terms of the elasticity, k, which is the ratio of the 
relative speed of the colliding objects after the collision to their relative speed after the collision:

 .    (Equation 7.4: Elasticity)

This equation is particularly useful when the collision is elastic and the relative velocity 
of the objects has the same magnitude before and after the collision.

The four collision categories are:
Type of Collision Kinetic Energy Elasticity

Super-elastic Kf > Ki k > 1
Elastic Kf = Ki k = 1

Inelastic Kf < Ki k < 1
Completely inelastic Kf < Ki , and the objects stick together k = 0

 A General Method for Solving a Problem Involving a Collision

1. Draw a diagram of the situation, showing the velocity of the objects immediately 
before and immediately after the collision.

2. In a two-dimensional situation, set up a table showing the components of the 
momentum before and after the collision for each object.

3. Use momentum conservation:  .   (Eq. 7.2) 

Apply equation 7.2 twice, once for each direction, in a two-dimensional 
situation). Account for the fact that momentum is a vector with  + and – signs.

4. If you require an additional relationship (such as in the case of an elastic 
collision) use the elasticity relationship or write an energy-conservation equation.
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End-of-Chapter Exercises

Several of these exercises can be answered without a calculator, if you use g = 10 m/s2.

Exercises 1 – 12 are conceptual questions designed to see whether you understand the main 
concepts of the chapter. 

1. Why is it more tiring to walk for an hour up a hill than it is to walk for an hour on level 
ground?

2. (a) Is it possible for the gravitational potential energy of a system to be negative? (b) Is it 
possible for the kinetic energy of a system to be negative? (c) Can the total mechanical 
energy of a system be negative?

3. Given the right (or wrong, depending on your perspective) conditions, a mudslide or 
avalanche can occur, in which a section of earth or snow that has been at rest slides down 
a steep slope, reaching impressive speeds. Where does all the kinetic energy that the mud 
or snow has at the bottom of the slope come from?

4. Three identical blocks (see Figure 7.15) are released simultaneously from rest from the 
same height h above the floor. Block A falls straight down, while blocks B and C slide 
down frictionless ramps. B’s ramp is steeper than C’s. (a) Rank the blocks according to 
their speed, from largest to 
smallest, when they reach the 
floor. (b) Rank the blocks 
according to the time it takes them 
to reach the floor, from greatest to 
least. (c) If the two ramps are not 
frictionless, and the coefficient of 
friction between the block and 
ramp is identical for the ramps, do 
any of your rankings above 
change? If so, how?

5. You are on a diving platform 3.0 m above the surface of a swimming pool. Compare the 
speed you have when you hit the water if you: A, drop almost straight down from rest; B, 
run horizontally at 4.0 m/s off the platform; C, leap almost straight up, with an initial 
speed of 4.0 m/s, from the end of the platform.

6. Consider the following situations. For each, state whether or not you would apply energy 
methods, force/projectile motion methods, or either to solve the exercise. You don’t have 
to solve the exercise, but you can if you wish. (a) Find the maximum height reached by a 
ball fired straight up from level ground with a speed of 8.0 m/s. (b) Find the maximum 
height reached by a ball launched from level ground at a 45˚ angle above the horizontal if 
its launch speed is 8.0 m/s. (c) Find the time taken by the ball in part (b) to reach 
maximum height. (d) Determine which of the balls, the one in (a) or the one in (b), 
returns to ground level with the higher speed. (e) Determine the horizontal distance 
traveled by the ball in (b) before it returns to ground level.

7. You drop a large rock on an empty soda can, crushing the can. (a) Is mechanical energy 
conserved in this process? Explain. (b) Is energy conserved in this process? Explain.
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from rest from the same height above the floor, for Exercise 4.



8. A block of mass m is released from 
rest at a height h above the base of a 
frictionless loop-the-loop track, as 
shown in Figure 7.16. The loop has a 
radius R. In this situation, h = 3R, and, 
defining the block’s gravitational 
potential energy to be zero at point a, 
the block’s gravitational potential 
energy at point b is twice the size of 
the block’s kinetic energy at point b. 
Sketch energy bar graphs showing 
the block’s gravitational potential 
energy, kinetic energy, and total 
mechanical energy at (a) the starting 
point;  (b) point a;  (c) point b.

9. Two boxes, A and B, are released simultaneously from rest from the top of ramps that 
have the same shape. Box A slides without friction down its ramp, while a kinetic friction 
force acts on box B as it slides down its ramp. The two boxes have the same mass. For 
the two boxes, plot the following as a function of time: (a) the kinetic energy; (b) the 
gravitational potential energy, taking the bottom of the ramp to be zero; (c) the total 
mechanical energy. There are no numbers here, so just show the general trend on each 
graph.

10. Repeat Exercise 9, but now plot the graphs as a function of distance traveled along the 
ramp instead of as a function of time.

11. A block is sliding along a frictionless horizontal surface with a speed v when it 
encounters a spring. The spring compresses, bringing the spring momentarily to rest, and 
then the spring returns to its original length, reversing the direction of the block’s motion. 
If the block moves away from the spring at speed v, how can we explain what the spring 
has done in terms of conservation of energy? Note: this is a preview of how we will 
handle energy conservation for springs in Chapter 12. Hint: is there a parallel between 
what the spring does to the block and what the force of gravity does to the block if we 
toss the block straight up in the air?

12. Comment on the applicability of conservation of energy, conservation of mechanical 
energy, and momentum conservation in each of the following situations. (a) A car 
accelerates from rest. (b) In six months, the Earth goes halfway around the Sun. (c) Two 
football players collide and come to rest on the ground. (d) A diver leaps from a cliff and 
plunges toward the ocean below.

Exercises 13 – 16 deal with various aspects of the same situation.

13. A ball with a mass of 200 g is tied to a light string with a length of 2.4 m. The end of the 
string is tied to a hook, and the ball hangs motionless below the hook. Keeping the string 
taut, you move the ball back and up until it is a vertical distance of 1.25 m above its 
equilibrium point. You then release the ball from rest. (a) What is the highest speed the 
ball achieves in its subsequent motion? (b) Where does the ball achieve this maximum 
speed? (c) What is the maximum height reached by the ball in its subsequent motion? (d) 
Of the three numerical values stated in this exercise, which one(s) do you actually require 
to solve the problem?
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Figure 7.16: A block released from rest from a height h above 
the bottom of a loop-the-loop track, for Exercise 8.



14. Take a ball with a mass of 200 g and drop it from rest. (a) When the ball has fallen a 
distance of 1.25 m, how fast is it going? (b) How does this speed compare to the 
maximum speed of the identical ball in Exercise 13? Briefly explain this result. (c) Which 
ball takes longer to drop through a distance of 1.25 m? Justify your answer.

15. Consider the ball in Exercise 13. (a) Is it reasonable to assume that the work done by non-
conservative forces is negligible over the time during which the ball swings down 
through the equilibrium position and up to its maximum height point on the other side? 
Why or why not? (b) If we watch this ball for a long time, it will eventually stop and 
hang motionless below the hook. Explain, in terms of energy conservation, why the ball 
eventually comes to rest. (c) In part (b), how much work is done by resistive forces in 
bringing the ball to rest?

16. Consider the ball in Exercise 13. Assuming that mechanical energy is conserved (that 
friction and air resistance are negligible), graph the ball’s potential energy, kinetic energy, 
and total energy as a function of height above the equilibrium position. Take the zero of 
potential energy to be the equilibrium position.

Exercises 17 – 20 are designed to give you some practice in applying the general method of 
solving a problem involving energy conservation. For each exercise, begin with the following: 
(a) Sketch a diagram of the situation, showing the system in at least two states that you will relate 
by using energy conservation. (b) Write out equation 7.1, and define a zero level for gravitational 
potential energy. It is usually most convenient to define a zero level so that the initial and/or final 
gravitational potential energy terms are zero. (c) Identify which, if any of the terms in the 
equation equal zero, and explain why they are zero.

17. You drop your keys, releasing them from rest from a height of 1.2 m above the floor. The 
goal of this exercise is to use energy conservation to determine the speed of the keys just 
before they reach the floor. Assume g = 9.8 m/s2. Parts (a) – (c) as above. (d) Use the 
remaining terms in the equation to find the speed of the keys before impact.

18. During a tennis match, you mis-hit the ball, making the ball go straight up in the air. The 
ball, which has a mass of 57 g, reaches a maximum height of 7.0 m above the point at 
which you hit it, and the ball’s velocity just before you hit it was 12 m/s directed 
horizontally. The goal of the exercise is to determine how much work your racket did on 
the ball. Parts (a) – (c) as described above. (d) Determine the work the racket did on the 
ball. (e) Would your answer to part (d) change if the initial velocity was not horizontal 
but had the same magnitude?

19. You and your bike have a combined mass of 65 kg. Starting from rest, you pedal to the 
top of a hill, arriving there with a speed of 6.0 m/s. The net work done on you and the 
bike by non-conservative forces during the ride is 1.5 x 104 J. The goal of the exercise is 
to determine the height difference between your starting point and the top of the hill. 
Parts (a) – (c) as described above. (d) Determine the height difference between your start 
and end points.

20. A block slides back and forth, inside a frictionless hemispherical bowl. The block’s speed 
is 20 cm/s when it is halfway (vertically) between the lowest point in the bowl and the 
point where it reaches its maximum height. The goal of the exercise is to determine the 
maximum height of the block, relative to the bottom of the bowl. Parts (a) – (c) as 
described above. (d) Determine the block’s maximum height.
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Exercises 21 – 25 involve energy bar graphs.

21. You throw a ball to your friend, launching it at an angle of 45˚ from the horizontal. 
Neglect air resistance, define the zero of gravitational potential energy to be the height 
from which you release the ball, and assume your friend catches the ball at the same 
height from which you released it. Draw a set of energy bar graphs, showing the ball’s 
gravitational potential energy and the kinetic energy, for each of the following points: (a) 
the launch point;  (b) the point at which the ball is halfway, vertically, between the launch 
point and the maximum height;  (c) the point where it reaches maximum height.

22. You are on your bicycle at the top of an incline that has a constant slope. You release your 
brakes and coast down the incline with constant acceleration, taking a time T to reach the 
bottom. Neglecting all resistive forces, and taking the zero of gravitational potential 
energy to be at the bottom of the incline, sketch a set of energy bar graphs, showing your 
gravitational potential energy and kinetic energy for the following points: (a) your 
starting point  (b) at a time of T/2 after you start to coast  (c) halfway down the incline  
(d) at the bottom of the incline.

23. Repeat Exercise 22, but this time make it more realistic by accounting for a resistive 
force. The bar graphs should show your gravitational potential energy, kinetic energy, and 
total mechanical energy, with a separate bar graph for the work done by the resistive 
force. Assume the resistive force is constant, and that it causes your kinetic energy at the 
bottom of the incline to be half of what it would be if the resistive force were not present. 
If the total time it takes you to come down the incline is now , in part (b) the energy 
bar graphs should represent the energies at a time of after you start to coast.

24. You show three of your friends a set of energy bar graphs. The bar graphs represent the 
energy, at the release point, of a ball hanging down from a string that you have pulled up 
and back and released from rest, so it swings with a pendulum motion. These bar graphs 
are the “Initial” set in Figure 7.17. You ask your three friends to draw the bar graphs 
representing the ball’s energy as it passes through the lowest point in its swing. Margot 
draws the set of bar graphs shown at the upper right, Jean the set on the lower left, and 
Wei the set on the lower right. (a) Are the sets 
of bar graphs, drawn by your friends, consistent 
with the idea of energy conservation? Justify 
your answer. (b) Which (if any) of your friends 
has the right answer? (b) If Jean has the right 
answer, from what height above the lowest 
point was the ball released? Assume each of the 
small rectangles making up the bar graphs 
represents 1 J, that g = 10 m/s2, and that the 
ball’s mass is 1.0 kg.
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Exercises 25 – 29 are designed to give you some practice in applying the general method for 
solving a problem that involves a collision. For each exercise, start with the following parts: (a) 
Draw a diagram showing the objects immediately before and immediately after the collision. (b) 
Apply equation 7.2, the momentum-conservation equation. Choose a positive direction, and 
account for the fact that momentum is a vector with appropriate + and – signs.

25. A car with a mass of 2000 kg is traveling at a speed of 50 km/h on an icy road when it 
collides with a stationary truck. The two vehicles stick together after the collision, and 
their speed after the collision is 10 km/h. The goal of this exercise is to find the mass of 
the truck. Parts (a) – (b) as described above. (c) Solve for the mass of the truck.

26. Repeat Exercise 25, except that, in this case, the truck is moving at 20 km/h in the 
opposite direction of the car before the collision, and, after the collision, the two vehicles 
move together at 10 km/h in the same direction the truck was traveling initially.

27. Two identical air-hockey pucks experience a one-dimensional elastic collision on a 
frictionless air-hockey table. Before the collision, puck A is moving at a velocity of v to 
the right, while puck B has a velocity of 2v to the left. The goal of the exercise is to 
determine the velocity of each puck after the collision. Parts (a) – (b) as described above. 
(c) Use the elasticity relationship to get a second connection between the two final 
velocities. (d) Find the two final velocities.

28. Repeat Exercise 27, except that in this case puck B has a mass twice as large as the mass 
of puck A.

29. While shooting pool, you propel the cue ball at a speed of 1.0 m/s. It collides with the 8-
ball (initially stationary), propelling the 8-ball into a corner pocket. The cue ball is 
deflected by 42˚ from its original path by the collision, and it moves away from the 
collision with a speed of 0.70 m/s. The goal of this exercise is to determine the magnitude 
and direction of the 8-ball’s velocity after the collision. The cue ball has a little more 
mass than the 8-ball, but assume for this exercise that the masses are equal. Parts (a) – (b) 
as described above. For part (b), set up a table to keep track of the x and y components of 
the momenta of the two balls before and after the collision. (c) Use the information in the 
table to determine the velocity of the 8-ball after the collision.

Exercises 30 – 32 involve combining energy conservation and momentum conservation.

30. As shown in Figure 7.18, a wooden ball with a mass of 250 g swings back and forth on a 
string, pendulum style, reaching a maximum speed of 
4.00 m/s when it passes through its equilibrium 
position. Use g = 10.0 m/s2. (a) What is the maximum 
height above the equilibrium position reached by the 
ball in its motion? (b) At one instant, when the ball is at  
its equilibrium position and moving left at 4.00 m/s, it 
is struck by a bullet with a mass of 10.0 g. Before the 
collision, the bullet has a velocity of 300 m/s to the 
right. The bullet passes through the ball and emerges 
with a velocity of 100 m/s to the right. What is the 
magnitude and direction of the ball’s velocity 
immediately after the collision? Neglect any change 
in mass for the ball.

Chapter 7: Conservation of Energy and Conservation of Momentum Page 7 - 22

Figure 7.18: A bullet colliding with 
a ball on a string, for Exercise 30.



31. A pendulum, consisting of a ball of mass m on a light string of length 1.0 m, is swung 
back to a 45˚ angle and released from rest. The ball swings down and, at its lowest point, 
collides with a block of mass 2m that is on a frictionless horizontal surface. After the 
collision, the block slides 1.0 m across the frictionless surface and an additional 0.50 m 
across a horizontal surface where the coefficient of friction between the block and the 
surface is 0.10. (a) What is the block’s speed after the collision?  (b) What is the velocity 
of the ball after the collision? (c) Is the ball-block collision elastic, inelastic, or 
completely inelastic? Justify your answer. Use g = 10 m/s2 to simplify the calculations.

32. Two balls hang from strings of the same length. Ball A, with a mass m, is swung back to a 
height h above its equilibrium position. Ball A is released from rest and swings down and 
hits ball B, which has a mass of 3m. Assuming that all collisions between the balls are 
elastic, describe the subsequent motion of the two balls.

General Problems and Conceptual Questions

33. A Boeing 747 has a mass of about 3 x 105 kg, a cruising speed of 965 km/h, and cruises at  
an altitude of about 10 km. (a) Assuming the plane starts from rest at an airport at sea 
level, how much energy is required to reach its cruising height and altitude? Neglect air 
resistance in this calculation. (b) Comment on the validity of neglecting air resistance.

34. One way to estimate your power is to time yourself as you run up a flight of stairs. (a) In 
terms of simplifying the analysis, should you start from rest at the bottom of the stairs or 
should you give yourself a running start and try to keep your speed as constant as 
possible? (b) Which of the following distance(s) is/are most important for the power 
calculation, the magnitude of the straight-line displacement along the staircase or the 
vertical or horizontal components of this displacement? (c) Find a staircase and a 
stopwatch and estimate your average power.

35. A toy car rolls along a track. Starting from rest, the car drops gradually to a level 2.0 m 
below its starting point and then gradually rises to a level 1.0 m below its starting point, 
where it is traveling at a speed vf. The goal of the exercise is to find vf. Assume that 
mechanical energy is conserved, and use g = 9.8 m/s2. (a) Should you first use energy 
conservation to relate the initial point to the lowest point, and then apply energy 
conservation to relate the lowest point to the final point, or can you relate the initial point 
directly to the final point using energy conservation? Justify your answer. (b) Find vf.

36. Ball A is released from rest at a height h above the floor and has a speed v when it reaches 
the floor. (a) If ball B, which has half the mass of ball A, is released from rest at a height 
of 4h above the floor, what is its speed when it reaches the floor? Neglect air resistance. 
(b) What if ball B had double the mass of A instead?

37. A box with a mass of 2.0 kg slides at a constant speed of 
3.0 m/s down a ramp. The ramp is in the shape of a 3-4-5 
triangle, as shown in Figure 7.19. (a) Does friction act on 
the box? Briefly justify your answer. (b) If you decide that 
friction does act on the box, calculate the coefficient of 
kinetic friction between the box and the ramp. (c) The mass 
and speed of the box are given, but could you solve this 
exercise without them? Briefly explain.
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Figure 7.19: A box sliding on an 
incline, for Exercise 37.



38. A ball is launched with an initial velocity of 28.3 m/s, at a 45˚ angle, from the top of a 
cliff that is 10.0 m above the water below. Use g = 10.0 m/s2 to simplify the calculations. 
(a) What is the ball’s speed when it hits the water? (b) What is the ball’s speed when it 
reaches its maximum height? (c) What is the maximum height (measured from the water) 
reached by the ball in its flight?  Note: you could answer these questions using projectile 
motion methods, but try using an energy conservation approach instead.

39. You drop a 50-gram Styrofoam ball from rest. After falling 80 cm, the ball hits the 
ground with a speed of 3.0 m/s. Use g = 10 m/s2. (a) With what speed would the ball have 
hit the ground if there had been no air resistance? (b) How much work did air resistance 
do on the ball during its fall? (c) Is your answer to (b) positive, negative, or zero? 
Explain.

40. As shown in Figure 7.20, two frictionless ramps are joined by a rough horizontal section 
that is 4.0 m long. A block is placed at a height of 124 cm up the ramp on the left and 
released from rest, reaching a maximum height of 108 cm on the ramp on the right before 
sliding back down again. (a) How far up the ramp on the left does the block get in its 
subsequent motion? (b) What is the coefficient of kinetic friction between the block and 
the rough surface? (c) At what location does the block eventually come to a permanent 
stop?

41. Consider again the situation described in Exercise 40. If you took this apparatus to the 
Moon, where the acceleration due to gravity is one-sixth of what it is on Earth, and 
released the block from rest from the same point, what (if anything) would change about 
the motion?

42. Consider again the situation described in Exercise 40. Now, a different block is released 
from the point shown, 124 cm above the flat part of the track. This block does not reach 
the other side at all, but instead it stops somewhere in the rough section of the track. (a) 
What could be different about this block compared to the block in exercise 35?  (b) What, 
if anything, can you say about the coefficient of kinetic friction between this block and 
the rough surface based on the information given here?

43. Two ramps have the same length, height, and angle of incline. One of the ramps is 
frictionless, while for the second ramp the coefficient of kinetic friction between the ramp 
and a particular block is . You release the block from rest at the top of the 
frictionless ramp, and when it reaches the bottom of the incline its kinetic energy is a 
particular value . When you repeat the process with the second ramp, you find that the 

block’s kinetic energy at the bottom of the ramp is 80% of . At what angle with respect  
to the horizontal are the ramps inclined?
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Figure 7.20: A block released from rest 124 cm above the bottom of a track. The curved 
parts of the track are frictionless, while there is some friction between the track and the 
block on the 4.0-meter long horizontal section of the track. For Exercises 40 – 42.



44. Two blocks are connected by a string that passes over a massless, frictionless pulley, as 
shown in Figure 7.21. Block A, with a mass mA = 2.0 kg, rests on a ramp measuring 3.0 m 
vertically and 4.0 m horizontally. Block B hangs vertically 
below the pulley. Note that you can solve this exercise 
entirely using forces and the constant-acceleration 
equations, but see if you can apply energy ideas instead. 
Use g = 10 m/s2. When the system is released from rest, 
block A accelerates up the slope and block B accelerates 
straight down. When block B has fallen through a height h 
= 2.0 m, its speed is v = 6.0 m/s. (a) At any instant in time, 
how does the speed of block A compare to that of block B? 
(b) Assuming that no friction is acting on block A, what is 
the mass of block B?

45. Repeat Exercise 44, this time accounting for friction. If 
the coefficient of kinetic friction for the block A – ramp 
interaction is 0.625, what is the mass of block B?

46. Tarzan, with a mass of 80 kg, wants to swing across a ravine on a vine, but the cliff on the 
far side of the ravine is 1.0 m higher than the cliff where Tarzan is now and 2.0 m higher 
than Tarzan’s lowest point in his swing. Use g = 10 m/s2 to simplify the calculations. (a) 
If Tarzan wants to reach the cliff on the far side, how much kinetic energy must he have 
when he jumps off the cliff where he starts?  (b) How fast is Tarzan going at the bottom 
of his swing? (c) If Tarzan swings along a circular arc of radius 10 m, what is the tension 
in the vine when Tarzan reaches the lowest point in his swing?

47. A block of mass m is released from rest at a height h above the base of a frictionless loop-
the-loop track, as shown in Figure 7.22. The loop has a radius R. When the block is at 
point b, at the top of the loop, the 
normal force exerted on the block 
by the track is equal to mg. (a) 
What is h, in terms of R? (b) What 
is the normal force acting on the 
block at point a, at the bottom of 
the loop?

48. Consider again the situation 
described in Exercise 47, and 
shown in Figure 7.22. What is the 
block’s speed at (a) point a  (b) 
point b? Your answers should be 
given in terms of m, g, and/or R 
only.

49. A block of mass m is released from rest, at a height h above the base of a frictionless 
loop-the-loop track, as shown in Figure 7.22. The loop has a radius R. What is the 
minimum value of h necessary for the block to make it all the way around the loop 
without losing contact with the track? Express your answer in terms of R. 
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Figure 7.21: Two blocks connected 
by a string passing over a pulley, for 
Exercises 44 and 45.

Figure 7.22: A block released from rest from a height h above 
the bottom of a loop-the-loop track, for Exercises 47 – 49.



50. On an incline, set up a race between a low-friction block that slides easily down the 
incline and a ball that rolls down the incline. A good approximation of a low-friction 
block is a toy car, or a wheeled cart, with low-friction bearings in its wheels. (a) Predict 
the winner of the race if you release both objects from rest. Run the race to check your 
prediction. (b) If we assume that mechanical energy is conserved for both objects over the 
course of the race, how can you explain the result? Note: this is a preview of how we will 
handle energy conservation for rolling objects in chapter 11.

51. Two air-hockey pucks collide on a 
frictionless air-hockey table, as shown 
in Figure 7.23. Before the collision 
puck A, with a mass of m, is traveling 
at 20 m/s to the right, while puck B, 
with a mass of 4m, is stationary. After 
the collision puck A is traveling to the 
left at 4.0 m/s. (a) What is the velocity 
of puck B after the collision? (b) Is this 
collision super-elastic, elastic, or inelastic? 
Justify your answer.

52. Two identical carts experience a collision on a horizontal track. Immediately before the 
collision, cart 1 is moving at speed v to the right, directly toward cart 2, which is moving 
at speed v to the left. If the collision is completely inelastic then:  (a) What is the velocity 
of cart 1 immediately after the collision? (b) Is kinetic energy, or momentum, conserved 
in this collision? (c) What is the velocity of the system’s center of mass before the 
collision? (d) What is the velocity of the system’s center of mass after the collision?

53. Two carts experience a collision on a horizontal track. Immediately before the collision, 
cart 1 is moving at speed v to the right, directly toward cart 2, which is moving at speed v 
to the left. If cart 2’s mass is three times larger than cart 1’s mass, and the collision is 
completely inelastic, what is the velocity of cart 1 immediately after the collision?

54. A one-dimensional collision takes place between object 1, which has a mass m1 and a 
velocity that is directed toward object 2, which has mass m2 and is initially stationary. 
(a) If the collision is completely inelastic, what is the velocity of the two objects 
immediately after the collision? (b) If the collision is completely elastic, what are the 
velocities of the two objects after the collision? Hint: for part (b) make use of the 
elasticity, k, defined in equation 7.4. Making use of the result of part (b), (c) under what 
condition is object 1 stationary after the collision? (d) Under what condition does object 1 
reverse its direction because of the collision? 

55. A one-dimensional elastic collision between an object of mass m and velocity , and a 
second object of mass 3m and velocity , is a special case. (a) Find the velocities of 
the two objects after the collision to see why. Note that you can arrange such a collision 
by placing a baseball or tennis ball on top of a basketball and letting the balls fall straight 
down from rest. (b) Assuming the masses of the basketball and baseball are in the special 
3:1 ratio, that all collisions are elastic, and that the balls are dropped from a height h 
above the floor, how high up should the baseball go after the collision?
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Figure 7.23: Two air-hockey pucks just before 
and just after they collide, for Exercise 51.



56. Two cars of the same mass collide at an intersection. Just before the collision, one car is 
traveling east at 30 km/h and the other car is traveling south at 40 km/h. If the collision is 
completely inelastic, so that the two cars move as one object after the collision, what is 
the speed of the cars immediately after the collision?

57. Because you are an accident reconstruction expert, working with the local police 
department, you are called to the scene of an accident at a local parking lot. The speed 
limit posted in the parking lot is 20 miles per hour. Although nobody was hurt in the 
accident, the police officer in charge would like to determine whether or not anyone was 
at fault, for insurance purposes. When you reconstruct the accident, you find that the cars, 
an Acura MDX and a Volkswagen Jetta, were approaching one another at a 90˚ angle. 
After the collision, the cars locked together and slid for 3.3 m, traveling along a path at 
45˚ to their original paths, before coming to rest. You also determine that the Acura has a 
mass of 2000 kg, the Jetta’s mass is 1500 kg, and the coefficient of kinetic friction for the 
car tires sliding on the dry pavement is somewhere between 0.75 and 0.85. (a) Which car 
was traveling faster before the collision?  (b) Should either one of the drivers be given a 
speeding ticket and be determined to be at fault for the accident? Justify your answer.

58. A wooden block with a mass of 200 g rests on two supports. A piece of sticky chewing 
gum with a mass of 50 g is fired straight up at the block, colliding with the block when 
the gum’s speed is 10 m/s. The gum sticks to the block, and we want to find the 
maximum height reached by the block and gum in its subsequent motion. (a) To solve for 
this maximum height, should we set the gum’s kinetic energy before the collision equal to 
the gravitational potential energy of the gum-block system after the collision? Why or 
why not? (b) What is the maximum height reached by the gum-block system?

59. Re-do Exploration 7.6, but solve it another way, using a whole-vector approach by adding 
vectors graphically. First, add the momentum of the first object before the collision to that  
of the second object before the collision. That resultant vector is the total momentum 
before the collision, and because momentum is conserved, it is also the total momentum 
after the collision. Using this fact and the known momentum of the second object after 
the collision, you should be able to use the cosine law to find the momentum of the first 
object after the collision. Does the result match what we found using the component 
method in Exploration 7.6?

60. You release a rubber ball, from rest, at a point 1.00 m above the floor, and you observe 
that the ball bounces back to a height of 87.0 cm. (a) What is the net impulse experienced 
by the ball, which has a mass of 50.0 g, while it is in contact with the floor? (b) What is 
the elasticity, k, characterizing the collision between the ball and the floor? (c) Assuming 
the elasticity is the same for each collision, how many times will the ball bounce off the 
floor before losing half its mechanical energy?

61. Two different collisions take place in a large level parking lot, which is otherwise empty 
of vehicles. In collision A, a car with mass M traveling at a speed of vi , runs into a 
stationary truck of mass 4M.  In collision B, a truck of mass 4M, traveling at the same 
speed vi , runs into a stationary car of mass M.  In both collisions, the two vehicles stick 
together and the combined object skids to a halt because of friction. Assume that the force 
of friction is constant and the same for both collisions. (a) What is the speed of the 
combined object immediately after (i) collision A? (ii) collision B? (b) If, in collision A, 
the combined object slides for a time T and a distance D after the collision, for how long 
and through what distance does the combined object slide in collision B?
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62. Comment on the statements made by two students who are working together to solve the 
following problem, and state the answer to the problem. A cart with a mass of 2.0 kg has 
a velocity of 4.0 m/s in the positive x-direction. The first cart collides with a second cart, 
which is identical to the first and has a velocity of 2.0 m/s in the negative x-direction. 
After the collision, the first cart has a velocity of 1.0 m/s in the positive x-direction. What 
is the velocity of the second cart after the collision?

Martha: This is pretty easy. We can use momentum conservation, and we don’t even have 
to worry about the masses, because the masses are the same. So, we have a total of 4 plus 2 
equals 6 meters per second before the collision, so we must have a total of 6 meters per 
second afterwards, too. The first cart has 1 meter per second afterwards, so the second cart 
must have 5 meters per second afterwards.

George: But, what direction is it going afterwards? We need to give the velocity, so is it in the 
plus x-direction or the minus x-direction?

Martha: It can’t be minus x, because that would mean the two carts would pass through 
each other. It must bounce back, and go in the plus x-direction.
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