
 6-1 Rewriting Newton’s Second Law
 In this chapter, we will begin by taking a look at two ideas that we are familiar with from 
previous chapters. Let’s see what happens when we combine Newton’s second law, , 

with the definition of acceleration, . This gives . Let’s be a bit creative 
and write this relationship in a form more as Newton himself originally did:

   (Equation 6.1: General form of Newton’s Second Law)

Equation 6.1 is more general than Newton’s second law stated in the form , 
because equation 6.1 allows us to work with systems (such as rockets) where the mass changes. 

 applies only to systems where the mass is constant, although so many systems have 
constant mass that we find this form of the equation to be very useful.

The general form of Newton’s second law connects the net force on an object with the 
rate of change of the quantity . This quantity has a name, which you may already be familiar 
with. 

An object’s momentum is the product of its mass and its velocity. Momentum is a vector, 
pointing in the direction of the velocity. The symbol we use to represent momentum is .

 .  (Equation 6.2: Momentum)

Equation 6.1 can be re-arranged to read: . 

Thus, to change an object’s momentum, all we have to do is to apply a net force for a 
particular time interval. To produce a larger change in momentum, we can apply a larger net force 
or apply the same net force over a longer time interval. The product of the net force and the time 
interval over which the force is applied is such an important quantity that we should name it, too.

The product of the net force and the time interval over which the force is applied is called 
impulse. An impulse produces a change in momentum. An impulse is a vector.

 .  (Equation 6.3: Impulse)

EXPLORATION 6.1 – Hitting the boards
Just before hitting the boards of an ice rink, a hockey puck is sliding along the ice at a 

constant velocity. The components of the velocity are 3.0 m/s in the direction perpendicular to the 
boards and 4.0 m/s parallel to the boards. After bouncing off the boards, the puck’s velocity 
component perpendicular to the boards is 2.0 m/s and the component parallel to the boards is 
unchanged. The puck’s mass is 160 g.

Step 1 - What is the impulse applied to the puck by the boards? Let’s sketch a diagram (see 
Figure 6.1) to help visualize what is going on. Impulse is the product of the net force and the 
time--but we don’t know the net force so we can’t get impulse that way. Impulse is also equal to 
the change in momentum, as we can see from equation 6.3, so let’s figure out that change.
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 Remember that momentum, impulse, and velocity are all vectors. Let’s choose 
a coordinate system with the positive x-direction to the right and the positive y-direction 
up. It is important to notice that there has been no change in the puck’s velocity in the y-
direction, so there is no change in momentum, no impulse, and no net force in that 
direction. We can focus on the x-direction to answer the question.

The puck’s mass is constant, so the puck’s momentum changes because there is 
a change in velocity. What is the magnitude of the change in the puck’s velocity in the x-
direction, perpendicular to the boards? It’s tempting to say 1.0 m/s, but it is actually 5.0 
m/s. That result comes from:

.

Knowing the change in velocity, we can find the impulse, which is 
in the +x-direction:

.

Step 2 - If the puck is in contact with the boards for 0.050 s, what is the average force applied 
to the puck by the boards? The force varies over the 0.050 s the puck is in contact with the 
boards, but we can get the average force from:

Key ideas for impulse and momentum: Analyzing situations from an impulse-momentum 
perspective can be very useful, as it allows us to directly connect force, velocity, and time. It is 
absolutely critical to account for the fact that momentum, impulse, force, and velocity are all 
vectors when carrying out such an analysis.      Related End-of-Chapter Exercises: 14, 15

Let’s now summarize a general method we can use to solve a problem involving impulse 
and momentum. We will apply this method in Exploration 6.2.

Solving a Problem Involving Impulse and Momentum
A typical impulse-and-momentum problem relates the net force acting on an object over a 

time interval to the object’s change in momentum. A method for solving such a problem is:

1. Draw a diagram of the situation.
2. Add a coordinate system to the diagram, showing the positive direction(s). Keeping 

track of direction is important because force and momentum are vector quantities.
3. Organize what you know, and what you’re looking for, such as by drawing one or 

more free-body diagrams, or drawing a graph of the net force as a function of time.
4. Apply equation 6.3  to solve the problem.

Essential Question 6.1: At some time T after a ball is released from rest, the force of gravity has 
accelerated that ball to a velocity v directed straight down. Taking into account impulse and 
momentum, what is the ball’s velocity at a time 2T after being released?
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Figure 6.1: The puck’s velocity 
components before and after it 
collides with the boards.



Answer to Essential Question 6.1: The force is constant, and Equation 6.3 tells us that the 
velocity increases linearly with time. Thus, at a time 2T, the velocity will be 2v directed down.

6-2 Relating Momentum and Impulse
In this section, we will apply the general method from the end of Section 6-1 to solve a 

problem using the concepts of impulse and momentum.

EXPLORATION 6.2 – An impulsive bike ride
Suki is riding her bicycle, in a straight line, along a flat road. Suki and her bike have a 

combined mass of 50 kg. At t = 0, Suki is traveling at 8.0 m/s. Suki coasts for 10 seconds, but 
when she realizes she is slowing down, she pedals for the next 20 seconds. Suki pedals so that the 
static friction force exerted on the bike by the road increases linearly with time from 0 to 40 N, in 
the direction Suki is traveling, over that 20-second period. Assume there is constant 10 N resistive 
force, from air resistance and other factors, acting on her and the bicycle the entire time.

Step 1 - Sketch a diagram of the 
situation. The diagram is shown in Figure 
6.2, along with the free-body diagram that 
applies for the first 10 s and the free-body 
diagram that applies for the 20-second 
period while Suki is pedaling.

Step 2 - Sketch a graph of the net force 
acting on Suki and her bicycle as a 
function of time. Take the positive 
direction to be the direction Suki is 
traveling. In the vertical direction, the 
normal force exactly balances the force 
of gravity, so we can focus on the 
horizontal forces. For the first 10 
seconds, we have only the 10 N resistive 
force, which acts to oppose the motion and is thus in the 
negative direction. For the next 20 seconds, we have to account 
for the friction force that acts in the direction of motion and the 
resistive force. We can account for their combined effect by 
drawing a straight line that goes from –10 N at t = 10 s, to +30 
N (40 N – 10N) at t = 30 s. The result is shown in Figure 6.3.

Step 3 - What is Suki’s speed at t = 10 s? Let’s apply Equation 
6.3, which we can write as: 

 . 

Solving for the velocity at t = 10 s gives:

.
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Figure 6.2: A diagram of (a) Suki on her bike, as well as free-
body diagrams while she is (b) coasting and while she is (c) 
pedaling. Note that in free-body diagram (c), the static friction 
force  gradually increases because of the way Suki pedals.

Figure 6.3: A graph of the net force acting 
on Suki and her bicycle as a function of time.



Thus, Suki’s speed at t = 10 s is 6.0 m/s. We can also 
obtain this result from the force-versus-time graph, by 
recognizing that the impulse, , represents the area under 
this graph over some time interval . Let’s find the area under 
the graph, over the first 10 seconds, shown in Figure 6.4. The 
area is negative, because the net force is negative over that time 
interval. The area under the graph is the impulse: 

From Equation 6.3, we know the impulse is equal to 
the change in momentum. Suki’s initial momentum is 

. Her momentum at t = 10 s is therefore 

. Dividing this by the mass to find the velocity at 
t = 10 s confirms what we found above:

.

Step 4 - What is Suki’s speed at t = 30 s? Let’s use the area under 
the force-versus-time graph, between t = 10 s and t = 30 s, to find 
Suki’s change in momentum over that 20-second period. This area 
is highlighted in Figure 6.5, split into a negative area for the time 
between t = 10 s and t = 15 s, and a positive area between t = 15 s 
and t = 30 s. These regions are triangles, so we can use the 
equation for the area of a triangle, . The area 
under the curve, between 10 s and 15 s, is 

. The area between 15 s and 
30 s is . The total area (total 
change in momentum) is +200 kg m/s. 

Note that another approach is to multiply the average 
net force acting on Suki and the bicycle (+10 N) over this 
interval, by the time interval (20 s), for a +200 kg m/s change in 
momentum.

In step 3, we determined that Suki’s momentum at t = 10 s is +300 kg m/s. With the 
additional 200 kg m/s, the net momentum at t = 10 s is +500 kg m/s. Dividing by the 50 kg mass 
gives a velocity at t = 30 s of +10 m/s.

Key idea for the graphical interpretation of impulse: The area under the net force versus time 
graph for a particular time interval is equal to the change in momentum during that time interval.   
Related End-of-Chapter Exercises: 24, 27 – 30.

Essential Question 6.2: Return to the 30-second interval covered in Exploration 6.2. At what 
time during this period does Suki reach her minimum speed?
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Figure 6.4: The rectangle represents the area 
under the graph for the first 10 s. The area is 
negative, because the force is negative.

Figure 6.5: The shaded regions correspond 
to the area under the curve for the time 
interval from t = 10 s to t = 30 s.



Answer to Essential Question 6.2: At t = 15 s. The graph in Figure 6.4 is helpful in determining 
when Suki reaches her minimum speed. As long as the net force is negative, Suki slows down 
(unless her velocity becomes negative, which never happens in this case). Suki continues to slow 
down until t = 15 s. After that time, the net force is positive, so Suki speeds up after t = 15 s.

6-3 Implication of Newton’s Third Law: Momentum is Conserved

EXPLORATION 6.3A – Two carts collide
Let’s do an experiment in which two carts, cart 1 and 

cart 2, collide with one another on a horizontal track, as 
shown in Figure 6.6. How does the momentum of each cart 
change? What happens to the momentum of the two-cart 
system? The upward normal force applied by the track on 
each cart is balanced by the downward force of gravity, so the net force experienced by each cart 
during the collision is that applied by the other cart. 

Let’s use the subscripts i for the initial situation (before the collision), and f for the final 
situation (after the collision). 

The collision changes the momentum of cart 1 from to .

Similarly, the collision changes the momentum of cart 2 from to .

The total momentum of the system beforehand is . 

The total momentum of the system afterwards is . 

Consider , the change in momentum experienced by cart 1 in the collision. This 
change in momentum comes from the force applied to cart 1 by cart 2 during the collision. 
Similarly, , cart 2’s change in momentum, comes from the force applied to cart 2 by cart 1 
during the collision. Newton’s third law tells us that, no matter what, the force applied to cart 1 by 
cart 2 is equal and opposite to that applied to cart 2 by cart 1. Keeping in mind that the change in 
momentum is directly proportional to the net force, and that we’re talking about vectors, this 
means:

.

 Substituting this result into our expression for the total momentum of the system after the 
collision shows that momentum is conserved (momentum remains constant):

.

Key idea: The total momentum of the system after the collision equals the total momentum of the 
system before the collision. This Law of Conservation of Momentum applies to any system 
where there is no net external force.       Related End-of-Chapter Exercise: 4.

We’ll spend more time on the law of conservation of momentum in Chapter 7 but, for 
now, consider the following exploration.
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Figure 6.6: Two carts colliding.



EXPLORATION 6.3B – An explosive situation
Two carts are placed back-to-back on a horizontal track. 

One cart contains a spring-loaded piston. When the spring is 
released, the piston pushes against the other cart and the two 
carts move in opposite directions along the track, as shown in 
Figure 6.7. Assume the carts are initially at rest in the center of 
the track and that friction is negligible.

Step 1 - If the two carts have equal masses, is momentum conserved in this process? A good 
answer to this question is “it depends.” The momentum of each cart individually is not conserved, 
because each cart starts with no momentum and ends up with a non-zero momentum. This is 
because each cart experiences a net force (applied by the other cart), so its momentum changes 
according to the impulse equation (Equation 6.3). 

On the other hand, the law of conservation of momentum tells us that the momentum of 
the two-cart system is conserved because no net external force acts on this system. The upward 
normal force, exerted by the track on this system, balances the downward force of gravity. Cart 1 
acquires some momentum because of the force applied by cart 2, but cart 2 acquires an equal-
and-opposite momentum because of the equal-and-opposite force applied to it by cart 1. The net 
momentum of the two-cart system is zero, even when the carts are in motion. Momentum is a 
vector, so the momentum of one cart is cancelled by the momentum of the other cart.

Step 2 - If we double the mass of one of the carts and repeat the experiment, is momentum 
conserved? Yes, the momentum of this system is conserved because no net external force acts on 
the system. Changing the mass of one cart will change the magnitude of the momentum acquired 
by each cart, but the momentum of the two-cart system is always zero, both before and after the 
spring is released. To conserve momentum, the force applied on cart 1 by cart 2 must be equal 
and opposite to the force applied on cart 2 by cart 1. Newton’s third law tells us that these forces 
are equal and opposite, no matter how the masses compare.

Step 3 - If we make the experiment more interesting, by balancing 
the track on a brick before releasing the spring, will the track tip 
over after the spring is released? If we tried this experiment when 
the masses are equal, what would happen? The track would remain 
balanced, even when the carts are in motion, because of the 
symmetry. The tendency of cart 1 to tip the track one way is balanced 
by the tendency of cart 2 to tip it the opposite way. We don’t have 
the same symmetry in step 2, but the track still remains balanced. 
The cart with half the mass of the other cart is always twice as far 
from the balance point. That maintains the balance, as shown in 
Figure 6.8.

Key idea for momentum conservation: Even if the momenta of individual parts of a system are 
not conserved, the momentum of the entire system is conserved (constant), as long as no net 
external force acts on the system. Conservation of momentum is a consequence of Newton’s third 
law.               Related End-of-Chapter Exercises: 44, 45.

Essential Question 6.3: In Exploration 6.3B, the momentum of the system is always zero. Is there 
anything about the two-cart system that remains at rest and that shows clearly why the track 
doesn’t tip over when balanced on the brick?
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Figure 6.7: A diagram showing the initial 
situation (top), and the situation after the 
carts have moved apart (bottom).

Figure 6.8: As the carts move apart, the 
track remains balanced on the brick 
even if the carts have different masses.



 Answer to Essential Question 6.3: No matter how the masses of the two carts in Exploration 
6.3B compare, the center of mass of the system remains at rest at the balance point of the track.

6-4 Center of Mass
 In the previous chapters, we treated everything as a 
particle, or, equivalently, as a ball. A ball, or particle, thrown 
through the air follows a parabolic path. What if you take a 
non-spherical object (a pen, for instance) and throw it so it 
spins? Most points on the object follow complicated paths, but  
the center of mass still follows a parabolic curve, as shown in 
Figure 6.9.

For a uniform object, the center of mass is located at 
the geometric center of the object. In general, the center of 
mass of an object, or a collection of objects, is given by 
Equation 6.4. 

The center of mass is the point on an object that moves as though all the mass of the 
object is concentrated there. The x-coordinate of the center of mass is given by:

        (Equation 6.4: Position of the center of mass)

where the m’s represent the masses of different objects in the system (or of various 
pieces of a single object) and the x’s represent the x-coordinates of those objects or pieces. 
Similar equations give us the y and z-coordinates of the center of mass.

EXAMPLE 6.4A – Three balls on a stick
Three balls are placed on a meter stick. Ball 1, at the 0-cm mark, has a mass of 1.0 kg. 

Ball 2, at the 80-cm mark, has a mass of 3.0 kg. Ball 3, at the 90-cm mark, has a mass of 2.0 kg.
(a) If the meter stick has negligible mass, where is the system’s center of mass?
(b) If the meter stick has a mass of 2.0 kg, where is the system’s center of mass?

SOLUTION
(a) As usual, let’s begin with a diagram of 

the situation (see Figure 6.10).

To find the center of mass, we can 
substitute the given values into Equation 6.4:

 
(b) If the stick’s mass is uniformly distributed, we can treat the stick as a fourth ball, with 

a mass of 2.0 kg, located at the 50-cm mark. Making use of the result from part (a), which says 
that the first three balls are equivalent to a single 6.0-kg ball located at the 70-cm mark, we get:

 .

Related End-of-Chapter Exercises: 31, 32. 
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Figure 6.9: The motion of three balls on a 
stick. Only the red ball, located at the center 
of mass of the system, follows the parabolic 
path characteristic of free fall.

Figure 6.10: A diagram showing the 
position of the three balls on the meter stick.



The center of mass is particularly useful in systems experiencing no net external force. In 
such systems, the motion of the system’s center of mass is unchanged, even if the motion of 
different parts of the system changes. This is a consequence of Newton’s Second Law. Without a 
net external force acting, the acceleration of the center of mass of the system is zero. Different 
parts of the system can accelerate, but the forces associated with these accelerations cancel 
because the net force on the system is zero. Let’s now consider an example of such a system.

EXAMPLE 6.4B – Canoe move the center of mass?
A man, with a mass of 90 kg, stands 2.0 from the center of a 30 kg canoe that is floating 

on the calm water of a lake. Both the man and the canoe are initially at rest.
(a) If the man then moves to the point 2.0 m on the opposite side of the center of the 

canoe from where he starts, how far does the canoe move? 
(b) How far does the man actually 

move relative to a fixed point on the shore?

SOLUTION

(a) We could solve this problem 
formally, but let’s solve it conceptually by 
looking at Before and After pictures in Figure 
6.11. First, let’s determine the position of the 
center of mass of the system in the Before 
picture, before the man changes position. 

Define the man’s initial position as the 
origin (you can pick a different origin if you 
want), and assume the canoe’s center of mass 
to be the middle of the canoe. We get:

In the Before picture, the man is 50 cm to the left, and the canoe’s center of mass is 1.5 m 
to the right, of the system’s center of mass. The canoe’s center of mass is three times farther from 
the system’s center of mass than the man is because the canoe’s mass is 1/3 of the man’s mass. 
Because no net external force acts on the canoe-man system, when the man moves to the right, 
the canoe moves left in such a way that the system’s center of mass remains at rest. The man 
moves to a position that is a mirror image of his initial position, so the After picture is a mirror 
image of the Before picture (placing the mirror at the system’s center of mass). The canoe’s center 
of mass moves from 1.5 m to the right of the system’s center of mass to 1.5 m to the left of the 
system’s center of mass, for a net displacement of 3.0 m to the left.

(b) Applying a similar analysis to the man, the man moves from 0.5 m to the left of the 
system’s center of mass to 0.5 m to the right, a net displacement of 1.0 m right. Equivalently, the 
man moves 4.0 m to the right relative to the canoe while the canoe moves 3.0 m to the left with 
respect to the shore, so the man ends up moving just 1.0 m right relative to the shore.

Related End-of-Chapter Exercise: 33.

Essential Question 6.4: In Example 6.4B, what force makes the canoe move when the man starts 
to move? What force stops the canoe when the man stops?
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Figure 6.11: The position of the man and the canoe before and 
after the man moves from one end of the canoe to the other.



 Answer to Essential Question 6.4: In each case, the force of friction (static friction if there is no 
slipping) between the man’s shoes and the canoe causes the changes in the canoe’s motion.

6-5 Playing with a Constant Acceleration Equation
Once again, let’s start with a familiar relationship and look at in a new way to come up 

with a powerful idea. Return to one of our constant acceleration equations: . If we 

re-arrange this equation to solve for the acceleration, we get: .

Substituting this into Newton’s second law, , gives, after some  re-arranging:

 .

We can do the same thing in the y-direction. Adding the x and y equations gives:

 .

Recognizing that , the left side of the equation can be simplified:

.

The right side can also be simplified, because its form matches a dot product:

,  (Equation 6.5)

where ! is the angle between the net force and the displacement .

So, we’ve now come up with two more useful concepts, which we name and define here.
Kinetic energy is energy associated with motion:

 ;  (Equation 6.6: Kinetic energy)

Work relates force and displacement .     (Eq. 6.7: Work)

Both work and kinetic energy have units of joules (J), and they are both scalars.

Equation 6.5, when written in the form below, is known as the work-kinetic energy 
theorem. In this case, the work is the work done by the net force.

,  (Eq. 6.8: The work-kinetic energy theorem)

where ! is the angle between the net force  and the displacement .

In general, when a force is perpendicular to the displacement, the force does no work. If 
the force has a component parallel to the displacement, the force does positive work. If the force 
has a component in the direction opposite to the displacement, the force does negative work. 

Compare Exploration 6.5 to Exploration 6.2, in which Suki was riding her bike.
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EXPLORATION 6.5 – A hard-working cyclist
Peter is riding his bicycle in a straight line on a flat road. Peter and his bike have a total 

mass of 60 kg and, at t = 0, he is traveling at 8.0 m/s. For the first 70 meters, he coasts. When 
Peter realizes he is slowing down, he pedals so that the static friction 
force exerted on the bike by the road increases linearly with distance 
from 0 to 40 N, in the direction Peter is traveling, over the next 140 
meters. A constant 10 N resistive force acts on Peter and the bicycle 
the entire time.

Step 1 - Sketch a graph of the net force acting on Peter and his 
bicycle as a function of position. Take the positive direction to be the 
direction Peter is traveling. In the vertical direction, the normal force 
balances the force of gravity, so we can focus on the horizontal 
forces. For the first 70 m, we have only the 10 N resistive force, 
which opposes the motion and is thus in the negative direction. For 
the next 140 m, we have to account for the friction force, which acts in 
the direction of motion, and the resistive force. We can account for their 
combined effect by drawing a straight line, as in Figure 6.12,  that goes 
from –10 N at x = 70 m to +30 N (40 N – 10N) at x = 210 m.

Step 2 - What is Peter’s speed at x = 210 m? Let’s use the area under 
the Fnet versus position graph, between x = 0 and x = 210 m, to find 
the net work over that distance. This area is shown in Figure 6.13, split  
into a negative area for the region x = 0 to x = 105 m, and a positive 
area between x = 105 m and x = 210 m. Each box on the graph has an 
area of  . The negative area covers two-and-a-
half boxes on the graph, while the positive area covers four-and-a-half 
boxes, for a net positive area of 2 boxes, or 700 N m.

The net area under the curve in Figure 6.13 is the net 
work done on Peter and the bicycle, which is the change in kinetic 
energy ( ). Thus, the final kinetic energy is:

.

Solving for the final speed from  gives: .

Key idea: The area under the net force-versus-position graph for a particular region is the work, 
and the change in kinetic energy, over that region.     Related End-of-Chapter Exercises: 48, 49.

Essential Question 6.5: Initially, objects A and B are at rest. B’s 
mass is four times larger than A’s mass. Identical net forces are 
applied to the objects, as shown in Figure 6.14. Each force is 
removed once the object it is applied to has accelerated through 
a distance d. After the forces are removed, which object has 
more (a) kinetic energy?  (b) momentum? 
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Figure 6.12: A graph of the net force 
acting on Peter and his bicycle, as a 
function of position.

Figure 6.13: The area within the shaded 
regions represents the area under the curve 
for the region from x = 0 to x = 210 m.

Figure 6.14: An overhead view of two objects, 
A and B, experiencing the same net force F as 
they move from rest through a distance d.



Answer to Essential Question 6.5: The two objects experience equal forces over equal 
displacements, so the work done is the same. Thus, the change in kinetic energy is the same for 
each and, because they start with no kinetic energy, their final kinetic energies are equal. 

The change in momentum is the force multiplied by the time over which the force acts. 
Both objects experience the same force, but, because B has more mass, B takes more time to 
move through the distance d than A does. The force acts on B for a longer time, so B’s final 
momentum is larger than A’s.           Related End-of-Chapter Exercises: 9, 10, 52 – 54.

6-6 Conservative Forces and Potential Energy
Let’s first write down a method for solving a problem involving work and kinetic energy, 

similar to the method we use for solving an impulse-and-momentum problem.

A General Method for Solving a Problem Involving Work and Kinetic Energy
1. Draw a diagram of the situation.
2. Add a coordinate system to the diagram, showing the positive direction(s). Doing 

so helps remind us that force and displacement are vector quantities.
3. Organize what you know, perhaps by drawing a free-body diagram of the object, 

or drawing a graph of the net force as a function of position.
4. Apply Equation 6.8  to solve the problem.

We now have the tools needed to investigate some intriguing ideas about energy.

EXPLORATION 6.6A – Making gravity work
Step 1 - Take a ball of weight mg = 10 N and move it through a distance of 2 m. How much 
work does gravity do on the ball during the motion? It is tempting to multiply 10 N by 2 m to 
get 20 J and say that’s the work, but the work depends on the angle between the force and the 
displacement (see Equation 6.7, ). The direction of the displacement was not 
given, so we can’t say how much work is done. 

Let’s consider the extreme cases. If we move the ball up 2 m, the force of gravity and the 
displacement are in opposite directions, so the work done is –20 J. If we move it down 2 m, the 
force and displacement are in the same direction, so the work done is +20 J. So, the work done is 
somewhere between –20 J and + 20 J. Work can even be zero, if the displacement is horizontal.

Step 2 – What is the work done by gravity, if we give our 10 N ball a displacement of 2 m down 
at the same time we displace it 4 m horizontally? Gravity still does +20 J of work. All we have to 
worry about is the vertical motion. There is no work done by gravity 
for the horizontal motion.

Step 3 - Does the path followed make any difference? In Figure 6.15, 
point B is 2 m below, and 4 m horizontally, from A. For any path 
starting at A and ending at B, the work done by gravity in moving a 
10-N ball is +20 J. The horizontal motion does not matter. What 
matters is that every path involves the same net 2 m vertical 
downward displacement. 
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Figure 6.15: The work done by gravity, 
when an object is moved from point A to 
point B, is the same no matter what path 
the object is moved along.

Key idea: The work done by gravity on an object is 
path-independent. All that matters is the position of the 
initial point and the position of the final point. It doesn’t  
matter how the object gets from the initial point to the 
final point.      Related End-of-Chapter Exercise: 43.



When the work done by a force is path-independent, we say the force is conservative. 
Gravity is a conservative force, and we will discuss other examples later in the book. Other 
conservative forces include the spring force (chapter 12) and the electrostatic force (chapter 16).

Instead of talking about the work done by a conservative force, we usually do something 
equivalent and talk about the change in potential energy associated with the force. Potential 
energy can, in general, be thought of as energy something has because of its position.

At the surface of the Earth, where we take the force of gravity to be constant, the work 
done by gravity is . The change in gravitational potential energy, , has the 

opposite sign:  .    (Eq. 6.9: Change in gravitational potential energy)

When the force of gravity is constant, we define gravitational potential energy as 

,    (Equation 6.10: Gravitational potential energy)

where h is the height that the object is above some reference level. We can choose any 
convenient level to be the reference level.

EXPLORATION 6.6B – Talking about potential energy
A 10-N ball is moved by some path from A to B, where B is 2 m lower than A. What is 

the ball’s initial gravitational potential energy? What is its final gravitational potential energy? 
What is the change in the gravitational potential energy? Analyze the following conversation.

Bob: “We can use Equation 6.9 to find the change in gravitational potential energy. 
Because B is 2 meters lower than A, the in the equation is –2 meters. Multiplying this 
by an mg of 10 newtons gives a change in gravitational potential energy of –20 joules.”

Andrea: “If I define B as the level where the potential energy equals zero, then the 
ball’s potential energy at A is +20 joules. The ball’s potential energy changes from 
+20 joules to zero for a change of –20 joules.”

Bob: “I agree with what you get for the change but we have to define the zero for 
potential energy at A. That gives the object a potential energy of –20 joules at B.”

Christy: “We can each pick our own zero. It doesn’t make any difference. No matter 
where you put the zero you get –20 joules for the change in potential energy.”

Which student is correct?

Bob’s first statement is correct. Andrea is correct, and so is Christy. Christy makes an 
important point – everyone agrees on the value of the change in potential energy, no matter which 
level they choose as the zero. In his second statement, Bob is incorrect about having to set the 
potential energy to be zero at A. You can do that, but, as Christy points out, you don’t have to.

Key idea: The change in potential energy, which everyone agrees on, is far more important than 
the actual value of the potential energy.         Related End-of-Chapter Exercise: 12.

Essential Question 6.6: We often use terminology like “the ball’s gravitational potential energy.” 
Does the ball really have gravitational potential energy all by itself?
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Answer to Essential Question 6.6: No, gravitational potential energy really does not belong to an 
object. Rather, it is associated with the interaction between two objects, such as the interaction 
between the ball and the Earth in Exploration 6.6A. We will explore this idea further when we 
discuss gravity in more detail in Chapter 8.

6-7 Power
Let’s say you are buying a new vehicle. While you are searching the Internet to compare 

the latest models, an advertisement for a fancy sports car catches your eye. You read that the car 
can go from rest to 100 km/h in under five seconds, considerably less time than it takes a base-
model Honda Civic, for instance, to do the same. Then, when you tell your friend about what 
you’re planning, he encourages you to buy a pickup truck. The truck and the Civic have similar 
accelerations, but the truck can achieve that acceleration while loaded down with bikes and 
kayaks. What is the difference between these vehicles? Their engines can all do work, but an 
important difference between them is the rate at which they do work. 

The ability to do work quickly is something that we celebrate. For instance, in many 
Olympic events, the gold medal goes to the individual who can do more work, and/or do work in 
less time, than the other athletes. Once again, we should name this important concept.

Power is the rate at which work is done. The unit of power is the watt, and 1 W = 1 J/s.

 ,  (Equation 6.11: Power)

where ! is the angle between the force and the velocity.

EXAMPLE 6.7 – Climbing the hill
A car with a weight of mg = 16000 N is climbing a hill that is 120 m long and rises 30 m 

vertically. The car is traveling at a constant velocity of 72 km/h. In addition to having to contend 
with the component of the force of gravity that acts down the slope, the car also has to deal with a 
constant 1000 N in resistive forces as it climbs. 

(a) What is the power provided to the 
drive wheels by the car’s engine?

(b) The power unit the horsepower was 
first used by James Watt in 1782 to compare 
steam engines and horses. What is the car’s 
power in units of horsepower, where 1 hp = 
746 W?

SOLUTION
Let’s begin by sketching a diagram of 

the situation (see Figure 6.16), along with a 
free-body diagram. If we use a coordinate 
system aligned with the slope, with the positive 
x-direction up the slope, we can re-draw the 
free-body diagram with all the forces parallel 
to the coordinate axes. Doing so involves 
breaking the force of gravity into components.
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appropriate coordinate system, aligned with the 
slope, and (d) a revised free-body diagram, with all 
forces aligned with the coordinate system.



(a) Let’s assume that this case is typical and the tires do not slip on the road surface as the 
car climbs the hill. If so, the force propelling the car up the slope is a static force of friction, much 
like the force propelling you forward when you walk is a static force of friction. This force of 
static friction, directed up the hill, must balance the sum of the 1000 N resistive force and the 
component of the force of gravity acting down the hill, which is . The value of can 
be found from the geometry of the hill:

 .

The net force directed up the hill is:

.

The car’s velocity is also directed up, so, if we multiply the force by the speed, we get the 
power. The speed has to be expressed in units of m/s, however. So, we perform the conversion:

.

The power associated with the drive wheels is:

.

(b) Converting watts to horsepower gives:

.

Not every car is capable of putting out that much power, but many cars are, so that’s a 
reasonable value. The car is probably working at close to its maximum power output, however.

Related End-of-Chapter Exercise: 57, 58.

Question: A typical adult takes in about 2500 nutritional Calories of food energy in a day. Using 
the fact that 1 Calorie is equivalent to 1000 calories, and that 1 calorie is equivalent to 4.186 J, 
show that a typical adult takes in about 1 x 107 J worth of food energy in a day. 

Answer: Much like converting from watts to horsepower, this is an exercise in unit conversion.

.

Essential Question 6.7: As we have just shown, a typical adult takes in about 1 x 107 J of food 
energy in a day. Assuming this energy equals the work done by the person in a day, what average 
power output does this correspond to? Compare this power to the power output of a world-class 
cyclist, who can sustain a power output of 500 W for several hours.
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When the work done by a force is path-independent, we say the force is conservative. 
Gravity is a conservative force, and we will discuss other examples later in the book. Other 
conservative forces include the spring force (chapter 12) and the electrostatic force (chapter 16).

Instead of talking about the work done by a conservative force, we usually do something 
equivalent and talk about the change in potential energy associated with the force. Potential 
energy can, in general, be thought of as energy something has because of its position.

At the surface of the Earth, where we take the force of gravity to be constant, the work 
done by gravity is . The change in gravitational potential energy, , has the 

opposite sign:  .    (Eq. 6.9: Change in gravitational potential energy)

When the force of gravity is constant, we define gravitational potential energy as 

,    (Equation 6.10: Gravitational potential energy)

where h is the height that the object is above some reference level. We can choose any 
convenient level to be the reference level.

EXPLORATION 6.6B – Talking about potential energy
A 10-N ball is moved by some path from A to B, where B is 2 m lower than A. What is 

the ball’s initial gravitational potential energy? What is its final gravitational potential energy? 
What is the change in the gravitational potential energy? Analyze the following conversation.

Bob: “We can use Equation 6.9 to find the change in gravitational potential energy. 
Because B is 2 meters lower than A, the in the equation is –2 meters. Multiplying this 
by an mg of 10 newtons gives a change in gravitational potential energy of –20 joules.”

Andrea: “If I define B as the level where the potential energy equals zero, then the 
ball’s potential energy at A is +20 joules. The ball’s potential energy changes from 
+20 joules to zero for a change of –20 joules.”

Bob: “I agree with what you get for the change but we have to define the zero for 
potential energy at A. That gives the object a potential energy of –20 joules at B.”

Christy: “We can each pick our own zero. It doesn’t make any difference. No matter 
where you put the zero you get –20 joules for the change in potential energy.”

Which student is correct?

Bob’s first statement is correct. Andrea is correct, and so is Christy. Christy makes an 
important point – everyone agrees on the value of the change in potential energy, no matter which 
level they choose as the zero. In his second statement, Bob is incorrect about having to set the 
potential energy to be zero at A. You can do that, but, as Christy points out, you don’t have to.

Key idea: The change in potential energy, which everyone agrees on, is far more important than 
the actual value of the potential energy.         Related End-of-Chapter Exercise: 12.

Essential Question 6.6: We often use terminology like “the ball’s gravitational potential energy.” 
Does the ball really have gravitational potential energy all by itself?
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End-of-Chapter Exercises

Exercises 1 – 12 are conceptual questions designed to see whether you understand the main 
concepts of the chapter. 

1. Three identical objects are traveling north with identical speeds v. Each object 
experiences a collision, after which the states of motion are: Object A is at rest; object B 
is traveling south with a speed v; and object C is traveling east with a speed v. Rank these 
objects, from largest to smallest, based on the magnitude of the impulse they experienced 
during their collision.

2. Case 1: you run with speed v toward a wall and then stick to it because you and the wall 
are covered with Velcro. Case 2: you run with speed v toward a wall and bounce straight 
back at speed v because the wall is covering with an elastic material. If you assume that 
the time during which you experience an acceleration, because of the force applied by the 
wall, is the same in both cases, in which case do you experience a larger force?

3. You are driving down the road at high speed.  All of a sudden, you see your evil twin, 
driving an identical car with an equal-and-opposite velocity to you. You both apply the 
brakes, but it is too late and a collision is imminent. At the last instant, you see a large 
immovable (completely rigid) object on the side of the road. Considering only the 
likelihood that you will survive the crash, is it better for you to hit your evil twin or to hit 
the immovable object? Briefly explain your answer. 

4. As you are driving along the road, you hit a mosquito, squashing it on the windshield of 
your car. During the collision, which object (a) exerts a force of a larger magnitude on the 
other? (b) experiences a change in momentum of larger magnitude? (c) experiences a 
change in velocity of larger magnitude?

5. Must the center of mass of an object always be located at a point where the object has 
some mass? If it must, explain why. If not, give an example (or two) of objects where the 
center of mass is located at a point where none of the mass of the object is located.

6.  (a) Give an example of an object (or system of objects) such that when you make a 
single straight cut through the center of mass the object (or system) is split into two parts 
with the same mass. (b) If possible, give an example of an object or system such that 
when you make a single straight cut through the center of mass the two parts have 
different masses.

7. Consider the following four cases, in which a net force is applied to an object initially 
moving in the +x direction with a velocity of 5 m/s. Case 1: the object’s mass is 1 kg, and 
a force of 10 N in the +x direction is applied for 1 s. Case 2: the same as case 1 except the 
object’s mass is 2 kg. Case 3: the same as case 1 except the force is in the –x direction. 
Case 4: the same as case 1 except the magnitude of the force is 5 N. Rank the four cases 
from largest to smallest based on (a) the magnitude of the change in momentum the 
object experiences; (b) the magnitude of the object’s final momentum; (c) the object’s 
final speed; (d) the final kinetic energy of the object.

8. Cars have crumple zones that are designed to crumple and compress when your car is in a 
collision. In many cases after a collision, this crumpling means that the car is ruined and 
you have to buy a new one (preferably with the aid of a payment from your insurance 
company). Is the crumple zone a huge conspiracy on the part of the auto industry, or is it 
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an important safety feature? Briefly explain your answer, using concepts of impulse and 
momentum, or work and kinetic energy.

9. Two objects, A and B, are initially at rest. The mass of object B is two times larger than 
that of object A. Identical net forces are then applied to the two objects, making them 
accelerate. Each net force is removed once the object that it is applied to has moved 
through a distance d. After both net forces are removed, how do: (a) the kinetic energies 
compare? (b) the speeds compare? (c) the momenta compare?

10. Repeat Exercise 9, assuming that both net forces are removed after the same amount of 
time instead. 

11. (a) Is it possible to apply a force to an object so that the object’s momentum changes but 
its kinetic energy remains the same? If so, give an example. (b) Is it possible to apply a 
force to an object so that the object’s kinetic energy changes but its momentum remains 
the same? If so, give an example.

12. Consider Exploration 6.6B, in which Andrea and Bob chose different points as the zero 
point of the ball’s gravitational potential energy. Do Andrea and Bob agree or disagree 
about the following? The value of (a) the ball’s initial gravitational potential energy? (b) 
the ball’s final gravitational potential energy? (c) the ball’s change in gravitational 
potential energy?  (d) the work done by gravity on the ball?

Exercises 13 – 18 deal with momentum and impulse.

13.  Three identical objects are traveling north with identical speeds v. Each object 
experiences a collision, after which the states of motion are: Object A is at rest; object B 
is traveling south with a speed v; and object C is traveling east with a speed v. If the mass 
of each object is 40 kg and v = 12 m/s, find the magnitude and direction of the impulse 
experienced by (a) object A,  (b) object B, and  (c) object C.

14. Just before hitting the boards of a hockey rink, a puck is sliding along 
the ice at a constant velocity. As shown in Figure 6.17, the components 
of this velocity are 3 m/s in the direction perpendicular to the boards 
and 4 m/s parallel to the boards. Immediately after bouncing off the 
boards, the puck’s velocity component parallel to the boards is 
unchanged at 4 m/s, and its velocity component perpendicular to the 
boards is 1 m/s in case A, 2 m/s in case B, and 3 m/s in case C. Without 
doing any calculations, rank the three cases based on the impulse the 
puck experienced because of its collision with the boards.

15. Return to the situation described in Exercise 14, and shown in Figure 
6.17. If the puck’s mass is 160 g, find the impulse applied by the boards 
in (a) case C;  (b) case A.

16. An object with a mass of 5.00 kg is traveling east at 4.00 m/s. It  
is then subjected to a constant net force for a period of 2.00 s. 
In which direction should the force be applied if you want the 
object (a) to be moving fastest once the force is removed? (b) to 
experience the largest-magnitude change in momentum over 
the time period during which the force is applied?
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colliding with the boards, for 
Exercises 14 and 15.



17. Return to the situation described in Exercise 16. What are the magnitude and direction of 
the applied force if the object’s velocity after the force is removed is (a) 12.0 m/s east? 
(b) zero? (c) 12.0 m/s west?

18. Return to the situation described in Exercise 16. What are the magnitude and direction of 
the applied force if the object’s velocity after the force is removed is (a) 4.00 m/s north? 
(b)  m/s northeast? (c) 8.00 m/s south?

Exercises 19 – 23 are designed to give you some practice in applying the general method for 
solving a problem involving impulse and momentum For each exercise, begin with the 
following parts: (a) Sketch a diagram of the situation. (b) Choose a coordinate system, and show 
it on the diagram. (c) Organize what you know, such as by drawing a free-body diagram or a 
graph of the net force as a function of time.

19. You throw a 200-gram ball straight up into the air, releasing it with a speed of 20 m/s. 
The goal here is to use impulse and momentum concepts to determine the time it takes 
the ball to reach its maximum height, assuming g = 10 m/s2 down. Parts (a) – (c) as 
described above, where you should draw a free-body diagram of the ball after it leaves 
your hand for part (c). (d) What is the ball’s momentum at the instant you let go of it? (e) 
What is the ball’s momentum at the maximum-height point? (f) What is the change in the 
ball’s momentum between the time you release it and the time it reaches its maximum 
height? (g) What is the force acting on the ball over this time interval? (h) Using equation 
6.3, determine the time the ball takes to reach its maximum height.

20. You launch a 200-gram ball horizontally, with a speed of 30 m/s, from the top of a tall 
building, 80 m above the ground. The goal in this exercise is to use impulse and 
momentum concepts to determine the ball’s momentum just before it hits the ground, 
assuming g = 10 m/s2 down and air resistance is negligible. Parts (a) – (c) as described 
above, where you should draw a free-body diagram of the ball after it leaves your hand 
for part (c). (d) Using one or more constant-acceleration equations, determine the time it 
takes the ball to reach the ground. (e) What is the ball’s momentum at the instant you let 
go of it? (f) Using equation 6.3, what is the change in the ball’s momentum during the 
time it is in flight? (g) Use your answers to parts (e) and (f), noting that they are vectors, 
to find the ball’s momentum just before it reaches the ground.

21. The Williams sisters are playing one another in the semi-finals at Wimbledon. At the 
instant Venus’ racket makes contact with one of Serena’s serves, the ball is traveling 
horizontally at 20 m/s, and it has no vertical velocity. The racket is in contact with the 
ball (which has a mass of 100 g) for 0.030 s, and the ball leaves the racket traveling at 40 
m/s horizontally, in a direction exactly opposite to the path it was traveling just as her 
racket made contact with it. Parts (a) – (c) as described above, where you should sketch 
the x and y components of the average force exerted on the ball by the racket for the free-
body diagram of the ball in part (c). (d) What is the x-component of the average force 
exerted by the racket on the ball in this case? (e) Does the average force exerted by the 
racket on the ball also have a non-zero y-component? Briefly explain your answer.
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22. A box, with a weight of 40 N, is initially at rest on a horizontal surface. The coefficients 
of friction between the box and the surface are and . You then exert a 
horizontal force on the box that increases linearly from 0 to 40 N over a 1.0-second 
period. Assume g = 10 m/s2. Parts (a) – (c) as described above, where you should sketch a 
graph of the net force acting on the box, as a function of time, in part (c). (d) When does 
the box start to move? (e) What is the area under the net force versus time graph over the 
1.0-second period? (f) Determine the speed of the box at the end of the 1.0-second period.

23. While you are out for a run, you see a patch of smooth ice ahead of you. You decide to 
slide (on your running shoes) across the ice. Your initial speed is 6.0 m/s. When you 
reach the end of the horizontal ice patch, after sliding for 2.0 s, your speed is 4.0 m/s. 
Your goal here is to determine the coefficient of kinetic friction between your running 
shoes and the ice, assuming that g = 10 m/s2. Parts (a) – (c) as described above, where 
you should sketch a free-body diagram for the period you are sliding, in part (c). (d) 
Write an expression for the net force acting on you while you are sliding. This should 
involve the coefficient of kinetic friction and g. (e) Write an expression representing your 
change in momentum while you are sliding. (f) Use equation 6.3 to relate the expressions 
you wrote down in parts (d) and (e). (g) Solve for the coefficient of kinetic friction.

Exercises 24 – 30 deal with working with graphs.

24. At a time t = 0, a wheeled cart  with a mass of 2.00 kg has an initial velocity of 5.00 m/s 
in the +x-direction. For the next 8.00 seconds, the cart then experiences a net force. As 
shown in the graph in Figure 6.18, the x-component of the applied force is +1.00 N for 
2.00 seconds, then –4.00 N for 5.00 seconds, then +2.00 N for 1.00 seconds. (a) Sketch a 
graph of the x-component of the cart’s momentum as a function of time. (b) What is the 
cart’s maximum speed during the 8.00-second interval when the varying force is being 
applied? At what time does the cart 
reach this maximum speed? (c) What  is 
the cart’s minimum speed during the 
8.00-second interval when the varying 
force is being applied? At what time 
does the cart  reach this minimum 
speed?

25. Return to the situation described in 
Exercise 24. (a) How much work is 
done on the cart during the 8.00-second 
interval over which the force acts? (b) If 
the cart starts at the origin at t = 0, where 
is it at t = 8 s?
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26. A spaceship of mass 4000 kg is drifting at constant velocity through outer space, 
unaffected by any gravitational 
interactions. Figure 6.19 shows 
the trajectory followed by the 
spaceship in a particular x-y 
coordinate system during a 2.00 
second interval. At t = 2.00 
seconds, the spaceship fires its 
engine, producing a net force on 
the spaceship of 8000 N in the 
+y direction. The engine is 
turned off again after 2.00 
seconds, at t = 4.00 seconds. 
Assume the mass of the 
spaceship does not change. The 
square boxes in the Figure 6.19 
measure 1.00 m by 1.00 m. (a) 
Carefully plot the trajectory 
followed by the spaceship after 
t = 2.00 seconds. Note in 
particular where the spaceship 
is at t = 3.00 s, t = 4.00 s, and t 
= 5.00 s. (b) What is the speed of 
the spaceship at t = 5.00 seconds?

27. An object of mass 2.0 kg is at rest at the 
origin, at t = 0, when it is subjected to a 
net force in the x-direction that varies in 
magnitude and direction as shown by the 
graph in Figure 6.20. (a) When does the 
object reach its maximum speed? (b) 
What is the maximum speed reached by 
the object? (c) What is the object’s 
velocity at t = 8 s?

28. Repeat Exercise 27, with the only 
change being that the object has an 
initial velocity of 2.0 m/s in the 
negative x direction at t = 0.

29. After the time t = 0, an object of mass m = 
1.0 kg is moving in the positive x direction 
at a constant speed of 8.0 m/s. The object 
is on a frictionless horizontal surface. 
Before t = 0, however, the object 
experienced a net force in the positive x-
direction as shown in Figure 6.21. 
Determine the object’s velocity at a time of 
(a) t = –1.0 s  (b) t = –2.0 s  (c) t = –4.0 s.

30. Repeat Exercise 29, but this time use a 
mass of m = 0.25 kg.
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Figure 6.19: A plot of a spaceship’s position as a function 
of time between t = 0 and t = 2 seconds, for Exercise 26.

Figure 6.20: A graph of the net force in the x-direction 
that an object experiences, for Exercises 27 and 28.

Figure 6.21: A graph of the net force applied to an 
object as a function of time, for Exercises 29 and 30.



Exercises 31 – 34 deal with the concept of center of mass.

31. A system consists of three balls. (a) Find the center of mass of the system, given that: 
Ball 1 has a mass of 2.0 kg and is located at x = +3 m, y = 0; ball 2 has a mass of 3.0 kg 
and is located at x = –1 m, y = –1 m; and ball 3 has a mass of 5.0 kg and is located at 
x = 0, y = +2 m. (b) If the mass of ball 3 is increased, the position of the center of mass 
shifts. In which direction does it shift?

32. A system consists of three balls at different locations on the x-axis. Ball 1 has a mass of 
6.0 kg and is located at x = +3 m; ball 2 has a mass of 2.0 kg and is located at x = –1 m; 
ball 3 has an unknown mass and is located at x = –4 m. (a) If the center of mass of this 
system is located at x = –2 m, what is the mass of ball 3? (b) Let’s say that you can make 
ball 3 as light or as heavy as you like. By adjusting the mass of ball 3, what range of 
positions on the x-axis can the center of mass of this system occupy?

33. A man with a mass of 120 kg is out fishing with 
his daughter, who has a mass of 40 kg. They are 
initially sitting at opposite ends of their 3.0-m 
boat, which has a mass of 80 kg and is at rest in 
the middle of a calm lake. If the man and the 
daughter then carefully trade places, how far 
does the boat move?

34. A uniform sheet of plywood measuring 4L by 4L 
is centered on the origin, as shown in Figure 
6.22. One quarter of the sheet (the part in the 
first quadrant) is removed. Where is the center 
of mass of the remaining piece?

Exercises 35 – 39 are designed to give you some practice in applying the general method for 
solving a problem involving work and kinetic energy. For each exercise, begin with the 
following parts: (a) Sketch a diagram of the situation. (b) Choose a coordinate system, and show 
it on the diagram. (c) Organize what you know, such as by drawing a free-body diagram or a 
graph of the net force as a function of position.

35. You throw a 200-gram ball straight up into the air, releasing it with a speed of 20 m/s. 
The goal here is to use work and energy concepts to determine the ball’s maximum 
height, assuming g = 10 m/s2 down. Parts (a) – (c) as described above, where you should 
draw a free-body diagram of the ball after it leaves your hand for part (c). (d) What is the 
ball’s kinetic energy at the instant you let go of it? (e) What is the ball’s kinetic energy at 
the maximum-height point? (f) What is the change in the ball’s kinetic energy between 
the point at which you release it and the point of maximum height? (g) What is the force 
acting on the ball over this distance? (h) Using equation 6.8, determine the distance 
between the point from which you released the ball and the point of maximum height.

36. You launch a 200-gram ball horizontally, with a speed of 30 m/s, from the top of a tall 
building, 80 m above the ground. The goal in this exercise is to use work and kinetic 
energy concepts to determine the ball’s speed just before it hits the ground, assuming 
g = 10 m/s2 down and air resistance is negligible. Parts (a) – (c) as described above, 
where you should draw a free-body diagram of the ball after it leaves your hand for part 
(c). (d) What is the ball’s kinetic energy when you release it? (e) What is the net work 
done on the ball over its path from your hand to just above the ground? Hint: you can find 
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the net work by multiplying the net force acting on the ball by the ball’s displacement in 
the direction of the net force. (f) Using equation 6.8, what is the ball’s kinetic energy just 
before the ball reaches the ground? (g) What is the ball’s speed just before it reaches the 
ground?

37. An object with a mass of 2.0 kg is following a straight path, along a line we can call the x 
axis. When it passes x = 4.0 m, it is traveling with a velocity of 8.0 m/s in the positive x 
direction. The object experiences a net force of 4.0 N in the positive x-direction at all 
locations where x < 2.0 m and a net force of 10 N in the positive x-direction at all 
locations where x > 2.0 m. Parts (a) – (c) as described above, where you should draw a 
graph of the net force acting on the ball as a function of position in part (c). The goal of 
this exercise is to determine, with the help of the graph, at what location the object has a 
velocity of 10 m/s in the positive x-direction, and at what location the object has a 
velocity of 2.0 m/s in the positive x-direction. (d) What is the object’s kinetic energy at 
x = 4.0 m? (e) What is the object’s kinetic energy when its speed is 10 m/s? (f) How 
much work is required to change the object’s kinetic energy from what the object has at 
x = 4.0 m to what it has at the point at which the velocity is 10 m/s in the positive x-
direction? Shade in the corresponding area on the force-vs.-position graph. (g) At what 
location will the object have a velocity of +10 m/s? (h) Follow a similar procedure to 
determine at what location the object will have a velocity of +2.0 m/s.

38. You are traveling in a car at 54 km/h when the car is involved in an accident. Assume that 
your mass is 60 kg. (a) What is your kinetic energy? (b) You are wearing your seat belt, 
and you come to rest after you and the car move through a distance of 2.0 m. What is the 
average force exerted on you by the seat belt? (c) What is your average acceleration? 
Express this in units of g, assuming g = 10 m/s2. (d) If you are not wearing your seat belt, 
you may come to rest after striking the windshield and moving through a distance of 10 
cm. What is your average acceleration in this case? Again, express this in units of g.

39. While you are out for a run you see a long patch of smooth ice ahead of you. You decide 
to slide (on your running shoes) across the ice. When you begin sliding, your speed is 
6.0 m/s. When you reach the end of the horizontal ice patch, after sliding for a distance of 
5.0 m, your speed is 4.0 m/s. Your goal here is to determine the coefficient of kinetic 
friction between your running shoes and the ice, assuming that g = 10 m/s2. Parts (a) – (c) 
as described above, where you should sketch a free-body diagram for the period in which 
you are sliding, in part (c). (d) Write an expression for the net force acting on you while 
you are sliding. This expression should involve the coefficient of kinetic friction and g. 
(e) Write an expression representing your change in kinetic energy while you are sliding. 
(f) Use equation 6.8 to relate the expressions you wrote down in parts (d) and (e). (g) 
Solve for the coefficient of kinetic friction.

General Exercises and Conceptual Questions

40. A hose is used to spray water horizontally at a wall. The water has a speed of 4 m/s, and 
the flow rate is 5 liters per second. (a) Assuming that the water stops completely when it 
hits the wall, how much force does the water exert on the wall? (b) Rather than stopping 
completely, the water rebounds when it hits the wall. Does this change the force exerted 
by the water on the wall? If so, how?

41. An object has a momentum with a magnitude of 20 kg m/s and a speed of 4 m/s. It is then 
subjected to an impulse of 15 kg m/s in the +x direction. What is the object’s final 
velocity if the initial momentum is in the (a) +x direction? (b) –x direction? (c) +y 
direction?

Chapter 6 – Linking Forces to Momentum and Energy Page 6 - 24



42. A hockey puck is sliding east at a constant velocity v over some ice. A net force F is then 
applied to the puck for 5 seconds. In case 1, the net force is directed west. In case 2, the 
net force is directed south. In case 3, the net force is directed east. The magnitude of the 
applied force is the same in each case. Rank the cases from largest to smallest, based on: 
(a) the magnitude of the change in momentum experienced by the puck, (b) the 
magnitude of the puck’s final momentum, and (c) the work done on the puck.

43. You are shooting a free throw in basketball. If the center of the basket is 1.0 m higher, 
and 4.0 m horizontally, from the point at which the ball loses contact with your hands, 
what momentum (magnitude and direction) must the ball have when you release it, if the 
ball takes exactly 1.0 s to reach the center of the basket? The basketball has a mass of 
0.50 kg. Use g = 9.8 m/s2 for this exercise.

44. A firework of mass 10M is launched from the ground and follows a parabolic trajectory 
(assume air resistance is negligible) as shown in Figure 6.23. Its initial velocity has 
components vix = 30 m/s to the right and viy = 20 m/s up. It follows the parabolic trajectory 
shown at right. When the firework reaches its maximum height, it explodes into four 
pieces, A, B, C, and D (not shown on the diagram). The masses and velocities of the four 
pieces immediately after the explosion are:
mA = 1M, vAf = 24 m/s vertically up;
mB = 2M, vBf = 50 m/s horizontally to the right;
mC = 3M, vCf = an unknown speed vertically down;
mD = 4M, vDf = an unknown speed horizontally right or left.
(a)What is the speed of piece C after the collision? (b) What is 
the velocity (magnitude and direction) of piece D after the 
collision? (c) Before the explosion, the firework follows the 
typical parabolic path of an object moving under the influence 
of gravity alone. What path will the center of mass follow after 
the collision? Qualitatively, when will the center of mass divert 
from this path?

45. Repeat Exercise 44, parts (a) and (b), with the firework 
exploding not at the top of its trajectory, but 2.3 s after 
launch instead. Use g = 10 m/s2, so you can do the 
calculations without a calculator.

46. How much work do you do on a box with a weight of 10 N in the following situations? 
(a) You hold the box motionless over your head for 2.0 s (b) You move the box 2.0 m 
horizontally at constant velocity (c) Starting and ending with the box at rest, you move 
the box 2.0 m straight up.

47. A box with a weight of 20.0 N is initially at rest on a horizontal surface, when a force is 
applied to it for 6.00 seconds. As shown in Figure 6.24, in case 1, the force is 5.00 N to 
the right, while in case 2, the force is 10.0 N at an 
angle of 60˚ above the horizontal. (a) If there is no 
friction between the box and the surface, in which 
case is more work done on the object? (b) What is 
the net work done in the two cases? (c) If, instead, 
the coefficients of friction are µs = 0.400 and µk  = 
0.300, in which case is more work done on the 
object? What is the net work done in the two cases 
now? Use g = 10.0 m/s2 to simplify the calculations.
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Figure 6.23: An exploding firework, 
for Exercises 44 and 45.

Figure 6.24: Two situations of a box 
subjected to a force, for Exercise 47.



48. A wheeled cart, which is free to move along the x-axis, is initially at rest at the origin. As 
the graph in Figure 6.25 shows, if the cart is between x = –1 m and x = +2 m, the net 
force is 1.00 N in the positive x-direction. If the cart is between x = +2 m and x = +7 m, 
the net force is 4.00 N in the negative x-direction. If the cart is between x = +7 m and 
x = +8 m, the net force is 2.00 N in the positive x-direction. The net force is zero at all 
other locations. (a) Describe, qualitatively, 
the resulting motion of the cart. (b) What is 
the maximum distance the cart gets from the 
origin? (c) Graph the cart’s kinetic energy as 
a function of position as it moves. (d) If you 
wanted the cart to travel at least as far as 
x = +8 m, what is the minimum kinetic 
energy the cart needs to have at the origin?

49. Consider again the situation in Exercise 48. 
Assume the cart has a mass of 0.250 kg 
and is released from rest at the origin. (a) 
How long after the cart is released does it  
first pass x = +2 m? (b) What is the cart’s 
maximum speed during its motion? (c) 
How long after it is released does the cart first return to the origin? (d) Graph the cart’s 
velocity, as a function of time, for the first 10 seconds after its release.

50. We’ll deal with springs in detail in chapter 
12, but consider the situation shown in 
Figure 6.26. A block of mass m = 0.25 kg 
is traveling with a velocity v = 4.0 m/s to 
the left on a frictionless horizontal 
surface. When it reaches x = 0, the block 
encounters a spring, which exerts a force 
directed right on the block that depends 
on how much the spring is compressed. 
The graph shows the force the spring 
exerts on the block as a function of 
position, x. (a) How far will the block 
compress the spring in this case? (b) How 
far is the spring compressed when the 
block has a speed of v = 2.0 m/s?

51. Consider the situation described in 
Exercise 50. How far will the block 
compress the spring (a) if the mass of 
the block is doubled?  (b) if, instead, 
the initial velocity of the block is 
doubled?
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Figure 6.25: A graph showing the force applied to an 
object as a function of position, for Exercises 48 and 49.

Figure 6.26: The graph shows the force a spring exerts on 
a block as a function of position. The diagram below the 
graph shows the block moving left on a frictionless surface 
before encountering the spring. For Exercises 50 and 51.



52. Two identical boxes of mass m are sliding along a horizontal floor, but both eventually 
come to rest because of friction. Box A has an initial speed of , while box B has an 
initial speed of . The coefficient of kinetic friction between each box and the floor is 

, and the acceleration due to gravity is g. (a) If it takes box A a time T to come to a 
stop, how much time does it take for box B to come to a stop? (b) Find an expression for 
T in terms of the variables specified in the exercise. (c) If box A travels a distance D 
before coming to rest, how far does box B travel before coming to rest? (d) Find an 
expression for D in terms of the variables specified in the exercise.

53. Return to the situation described in Exercise 52. How does T, the stopping time for box 
A, change if (a) m is doubled?  (b) v is doubled?  (c) is doubled?

54. Return to the situation described in Exercise 52. How does D, the stopping distance for 
box A, change if (a) m is doubled?  (b) v is doubled?  (c) is doubled? (d) g is doubled?

55. A car traveling 50 km/h can be brought to a stop in a distance of 40 m under controlled 
braking conditions. (a) Assuming the force used to bring the car to rest is the same, how 
much distance is required to bring the car to a stop if the car is traveling 100 km/h, twice 
as fast as it was originally? (b) How do the stopping times compare? (Ignore the reaction 
time of the driver and find the distance and time after the brakes are applied.)

56. A box, with a weight of mg = 25 N, is placed at the top of a ramp and released from rest. 
The ramp is in the shape of a 3-4-5 triangle, measuring 4 meters horizontally and 3 
meters vertically. The box accelerates down the incline, attaining a kinetic energy at the 
bottom of the ramp of 55 J. There is a force of kinetic friction acting on the box as it 
slides down the incline. (a) Sketch a free-body diagram of the box, showing all the forces 
acting on it. (b) How much work does the normal force do on the box as the box slides 
down the incline? (c) Calculate the change in gravitational potential energy that the box 
experiences in this process. (d) How much work does the force of friction do on the box 
as the box slides down the incline? (e) What is the coefficient of kinetic friction between 
the box and ramp?

57. A car is accelerating from rest and takes a time T to reach speed v. (a) Assuming the force 
accelerating the car is constant, what is the total time (measured from the starting point) 
needed to reach a speed of 2v? (b) Assuming instead that the power associated with 
accelerating the car is constant, what is the total time needed to reach a speed of 2v?

58. You are cycling at a constant speed of 10 m/s. (a) If the net resistive force acting against 
you from things like air resistance is 35 N, what is your power output as you pedal? (a) 
(b) How much additional power is required to maintain this speed up a hill inclined at 
8.0° with the horizontal? Assume the combined mass of you and your bicycle is 50 kg. 

59. On a monthly electricity bill, the power companies charge you for the number of 
kilowatt-hours you consume. (a) What kind of unit is the kilowatt-hour? Is it power? 
Momentum? Something else? (b) Convert 1 kW-h to MKS units. (c) 1 kilowatt-hour 
typically costs about 20 cents. If you were somehow able to obtain your daily intake of 
2500 Cal by plugging yourself into a wall socket (don’t try this, of course!), how much 
would it cost you?
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60. An energy bar contains about 200 Cal. If your brain consumes about 20 W under typical 
conditions, for how long does one energy bar keep the brain functioning? 1 Cal = 1000 
calories, and 1 calorie is approximately 4 J.

61. Consider the Earth, with a mass of 6.0 x 1024 kg, in its orbit around the Sun, with a mass 
of 2.0 x 1030 kg. Assume the orbit is circular, with a radius of 1.5 x 1011 m. The Earth, 
traveling at 30 km/s, takes six months to travel halfway around the orbit. (a) What is the 
magnitude of the Earth’s change in momentum over this six-month period? (b) How 
much work does the Sun do on the Earth over this six-month period?

62. Comment on the statements made by three students who are working together to solve the 
following problem, and state the answer to the problem. A cart with a mass of 2.0 kg has 
an initial velocity of 4.0 m/s in the positive x-direction. A constant net force of 8.0 N, in 
the positive x-direction, is then applied to the cart for 0.50 s. What is the cart’s kinetic 
energy at the end of this 0.50 second interval?

Christina: I think we should use impulse here. Using impulse, we can figure out the 
change in velocity, and then the final velocity. Once we get that, we can use the mass and 
velocity to get the kinetic energy.

Sandy: Don’t we need to find the acceleration? That’s just 4.0 meters per second squared. 
Then we can use one of the constant-acceleration equations to find the final speed, and get 
the kinetic energy that way.

Phil: I like getting the acceleration first, but then we can find the displacement using 
one of the constant-acceleration equations. After that, we can get the work, which is the 
change in kinetic energy, and then get the final kinetic energy. They basically give us the 
initial kinetic energy.
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