
George Kingsley Zipf (1902-1950)

(1949): Human behavior and the principle of least effort 
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Rank      Name                                               Population
1  New York City, New York  8,143,197 
2  Los Angeles, California   3,844,829 
3  Chicago, Illinois    2,842,518 
4  Houston, Texas    2,016,582 
5  Philadelphia, Pennsylvania  1,463,281 
6  Phoenix, Arizona   1,461,575 
7  San Antonio, Texas   1,256,509 
8  San Diego, California   1,255,540 
9  Dallas, Texas    1,213,825 
10  San Jose, California   912,332 
11  Detroit, Michigan   886,671 
12  Indianapolis, Indiana   784,118 
13  Jacksonville, Florida   782,623 
14  San Francisco, California  739,426 
15  Columbus, Ohio   730,657 
16  Austin, Texas    690,252 
17  Memphis, Tennessee   672,277 
18  Baltimore, Maryland   635,815 
19  Fort Worth, Texas   624,067 
20  Charlotte, North Carolina  610,949 
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smaller b values characterize flat profiles with relatively low contrast
between the high and low-rank regions of any given profile, while
larger b values indicate a sharper separation between the two regions.

In Fig. 2(a) we plot ci(r) for each scientist from dataset [A] as well
as the average of the 100 individual curves !c rð Þ: 1

100

P100
i~1 ci rð Þ (see

Figs. S1 and S2 for analogous plots for datasets [B] and [C]). We find
robust power-law scaling

!c rð Þ*r{b b<0:92+0:01½ $ ð4Þ

for 100 # r # 102. The scaling value calculated for other rank-size
(Zipf) distributions in the social and economic sciences is typically
around unity, b < 1, for example in studies of word frequency23 and
city size20,21,24. Here we calculate bi for each individual author and

observe a distribution which is centered around characteristic values
Æbæ 5 0.83 6 0.23 [A], Æbæ 5 0.70 6 0.16 [B], Æbæ 5 0.79 6 0.38 [C].

We calculate each bi value using a multilinear least-squares regres-
sion of ln ci(r) for 1 # r # r1 using the DGBD model defined in Eq.
[3]. To properly weight the data points for better regression fit over
the entire range, we use only 20 values of ci(r) data points that are
equally spaced on the logarithmic scale in the range r g [1, r1]. We
elaborate the details of this fitting technique in the methods section.
We plot five empirical ci(r) along with their corresponding best-fit
DGBD functions in Fig. 1 to demonstrate the goodness of fit for the
entire range of r.

In order to demonstrate the common functional form of the
DGBD model, we collapse each ci(r) along a universal scaling func-
tion c(r9) 5 1/r9, by using the rescaled rank values r0:rbi defined for
each curve. In Figs. 2(b), S1(b) and S2(b), we plot the quantity ci(r9)
; ci(r)/A(r1 1 1 2 r)c, using the best-fit ci and Ai parameter values
for each individual c,su b.i(r) profile. While the curves in Fig. 2(a)
are jumbled and distributed over a large range of c(r) values, the
rescaled ci(r) curves in Fig. 2(b) all lie approximately along the pre-
dicted curve c(r9) 5 1/r9.

Using ci(r) to quantify career production and impact. A main
advantage of the h-index is the simplicity in which it is calculated,
e.g. ISI Web of Knowledge25 readily provides this quantity online for
distinct authors. Another strength of the h-index is its stable growth
with respect to changes in ci(r) due to time and information-
dependent factors26. Indeed, the h-index is a ‘‘fixed-point’’ of the
citation profile. This time stability is evident in the observed
growth rates of h for scientists. Average growth rates, calculated
here as h/L, where L is the duration in years between a given
author’s first and most recent paper, typically lie in the range of
one to three units per year (this annual growth rate corresponds to
the quantity m introduced by Hirsch14). Annual growth rates h/L < 3
correspond to exceptional scientists (for the histogram of P(h/L) see
Fig. S3 and for h/L values see the SI text (Tables S1–S6)). As a result,
h/L is a good predictor for future achievement along with h27.

It is truly remarkable how a single number, hi, correlates with other
measures of impact. Understandably, being just a single number, the
h-index cannot fully account for other factors, such as variations in
citation standards and coauthorship patterns across discipline28–30,
nor can hi incorporate the full information contained in the entire
ci(r) profile. As a result, it is widely appreciated that the h-index can
underrate the value of the best-cited papers, since once a paper
transitions into the region r # hi, its citation record is discounted,
until other less-cited papers with r . hi eventually overcome the rank
‘‘barrier’’ r 5 hi. Moreover, as noted in14, the papers for which r . hi

do not contribute any additional credit.
Instead of choosing an arbitrary hp as an productivity-impact

indicator, we use the analytic properties of the DGBD to calculate
a crossover value r%i . In the methods section, we derive an exact
expression for r%i which highlights the distinguished papers of a given
author. To calculate r%i , we use the logarithmic derivative x(r) ; d ln
c(r)/dr to quantify the relative change in ci(r) with increasing r. We
defined papers as ‘‘distinguished’’ if they satisfy the inequality
ci rð Þ=ci rz1ð Þw exp xð Þ, where x is the average value of x(r) over
the entire range of r values. This inequality selects the peak papers
which are significantly more cited than their neighbors. The peak
region r[ 1,r%i

! "
corresponds to a ‘‘knee’’ in ci(r) when plotted on log-

linear axes. The dependence of x and r%i on the three DGBD para-
meters bi, ci and Ni are provided in the methods section.

The advantage of r%i is that this characteristic rank value is a com-
prehensive representation of the stellar papers in the high-rank scal-
ing regime since it depends on the DGBD parameter values bi, ci and
Ni, and thus probes the entire citation profile. Fig. 3 shows a scatter
plot of the ‘‘c-star’’ c%i :ci r%i

# $
and hi values calculated for each sci-

entist and demonstrates that there is a non-trivial relation between

Figure 2 | Data collapse of each ci(r) along a universal curve. A
comparison of 100 rank-citation profiles ci(r) demonstrates the statistical
regularity in career publication output. Each scientist produces a cascade
of papers of varying impact between the ci(1) pillar paper down to the least-
known paper ci(Ni). (a) Zipf rank-citation profiles ci(r) for 100 scientists
listed in dataset [A]. For reference, we plot the average !c rð Þ of these 100
curves and find !c rð Þ*r{b with b 5 0.92 6 0.01. The solid green line is a
least-squares fit to !c rð Þ over the range 1 # r # 100. We also plot the H2(r)
and H80(r) lines for reference. (b) We re-scale the curves in panel (a),
plotting ci(r9) ; ci(r)/A(r,/i .1 1 1 2 r)c, where we use the best-fit ci and
Ai parameter values for each individual ci(r) profile. Using the rescaled
rank value r0:rbi , we show excellent data collapse onto the expected curve
c(r9) 5 1/r9. (see Figs. S1 and S2 for analogous plots for dataset [B] and [C]
scientists). Green data points correspond to the average c(r9) value with 1s
error bars calculated using all 100 ci(r9) curves separated into
logarithmically spaced bins.

www.nature.com/scientificreports
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19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (15, 16 ).

For further analysis, I used a tabulation from
Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed (! " 1.059), as determined by
ordinary least squares (OLS) regression in log-
log coordinates (Fig. 1). There are too few very
small and very large firms with respect to the
Zipf fit, presumably due to finite size effects,
yet the power law distribution well describes
the data over nearly six decades of firm size
(from 100 to 106 employees). This result sug-
gests both that a common mechanism of firm
growth operates on firms of all sizes, and that
the fundamental unit of analysis is the individ-
ual employee.

But firms having a single employee are
not the smallest economic entities in the U.S.
economy. Although there were some 5.5 mil-
lion firms that had at least one employee at
some time during 1997, there were another
15.4 million business entities in that year
with no employees. These are predominantly
self-employed individuals and partnerships,
and are called “nonemployer” firms by Cen-
sus. These smallest of firms account for near-
ly $600 billion in receipts in 1997. Yet, if
these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
employees

Pr[S ! si ] " ! s0

si#1" !

, si ! 0, ! # 0 (2)

Here, OLS yields an estimate of ! " 1.098
(SE " 0.064), and the adjusted R2 " 0.977.
Including self-employment drives the aver-
age firm size down to 5.0 employees/firm,
and makes the median number of employees
0.

An interesting property of firm size distri-
butions noted in previous studies of large
firms is that the qualitative character of such
distributions is independent of how size is
defined (1). Although the position of individ-
ual firms in a size distribution does depend on
the definition of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (! " 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribution is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distributions (1, 5, 17, 18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
(19, 20) and growth rate variance declines
with size (21, 22). Consider a variation of the
Gibrat process known as the Kesten process
(23-25), in which sizes are bounded from
below; i.e.,

si$t $ 1% " max&s0,'$t%si$t%( (3)

where ' is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent ! defined implicitly by (26 )

N "
! % 1

! # ! s0

A"!

% 1

! s0

A"!

% ! s0

A"$ (4)

where N is the total number of firms and A is
the number of employees. For N " 5.5 ) 106

and A " 105 ) 106, as in 1997 (excluding
self-employment), s0 " 1 implies ! * 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE " 0.054; adjust-
ed R2 " 0.992), meaning that ! "
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE "
0.064; adjusted R2 " 0.976).

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated ! Adjusted R2

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of ! was approximately unchanged.

Year Firms Employees Mean firm size !, from (4)

1997 5,541,918 105,299,123 19.00 0.9966
1996 5,478,047 102,187,297 18.65 0.9986
1995 5,369,068 100,314,946 18.68 0.9983
1994 5,276,964 96,721,594 18.33 1.0004
1993 5,193,642 94,773,913 18.25 1.0008
1992 5,095,356 92,825,797 18.22 1.0009
1991 5,051,025 92,307,559 18.28 1.0004
1990 5,073,795 93,469,275 18.42 0.9995
1989 5,021,315 91,626,094 18.25 1.0006
1988 4,954,645 87,844,303 17.73 1.0039
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Zipf Distribution of U.S. Firm
Sizes

Robert L. Axtell

Analyses of firm sizes have historically used data that included limited samples
of small firms, data typically described by lognormal distributions. Using data
on the entire population of tax-paying firms in the United States, I show here
that the Zipf distribution characterizes firm sizes: the probability a firm is larger
than size s is inversely proportional to s. These results hold for data from
multiple years and for various definitions of firm size.

Firm sizes in industrial countries are highly
skew, such that small numbers of large firms
coexist alongside larger numbers of smaller
firms. Such skewness has been robust over
time, being insensitive to changes in political
and regulatory environments, immune to
waves of mergers and acquisitions (1), and
unaffected by surges of new firm entry and
bankruptcies. It has even survived large-scale
demographic transitions within work forces
(e.g., women entering the labor market in the
United States) and widespread technological
change. The firm size distribution within an
industry indicates the degree of industrial
concentration, a quantity of particular interest
for antitrust policy.

Beginning with Gibrat (2), firm sizes have
often been described by lognormal distribu-
tions. This distribution is a consequence of
the “law of proportional effect,” also known
as Gibrat’s law, whereby firm growth is treat-
ed as a random process and growth rates are
independent of firm size (3). Such distribu-
tions are skew to the right, meaning that
much of the probability mass lies to the right
of the modal value. Thus, the modal firm size
is smaller than the median size, which, in
turn, is smaller than the mean.

The upper tail of the firm size distribution
has often been described by the Yule (1) or
Pareto (also known as power law, or scaling)
distributions (4, 5). For a discrete Pareto-
distributed random variable, S, the tail cumu-
lative distribution function (CDF) is

Pr[S ! si] " ! s0

si
"#

, si ! s0, # $ 0 (1)

where s0 is the minimum size (6 ). Recent
analysis of data on the largest 500 U.S. firms
gives # as %1.25, whereas it is closer to 1 for
many other countries (7 ). The special case of
# & 1 is known as the Zipf distribution and
has somewhat unusual properties insofar as
its moments do not exist (8). This distribution
describes surprisingly diverse natural and so-

cial phenomena, including percolation pro-
cesses (9), immune system response (10),
frequency of word usage (4 ), city sizes (4,
11), and aspects of Internet traffic (12).

From an analysis using a sample of firms
in Standard & Poor’s COMPUSTAT, a com-
mercially available data set, it has been re-
ported that U.S. firm sizes are approximately
lognormally distributed (13). The COMPU-
STAT data cover nearly all publicly traded
firms in the United States—some 10,776
firms in 1997, almost 4300 of which had
more than 500 employees. Firms covered by
COMPUSTAT collectively employed over
52 million people, approximately one-half of
the U.S. work force. However, these data are
unrepresentative of the overall population of
U.S. firms. Data from the U.S. Census Bu-
reau put the total number of firms that had
employees sometime during 1997 at about
5.5 million, including over 16,000 having
more than 500 employees. Furthermore, the
Census data have a qualitatively different
character than the COMPUSTAT data. Cen-
sus data display monotonically increasing
numbers of progressively smaller firms, a
shape the lognormal distribution cannot re-
produce, and suggesting that a power law
distribution may apply. As shown in Table 1
(14 ), the mean firm size in the COMPU-
STAT data is 4605 employees (6349 for firms
larger than 0), whereas in the Census data it is

Center on Social and Economic Dynamics, The Brook-
ings Institution, 1775 Massachusetts Avenue, NW,
Washington, DC 20036, USA.

Correspondence should be addressed to raxtell@
brookings.edu.

Table 1. U.S. firm size distribution in 1997, com-
pared across data sources. Number of firms in
various size categories, with size defined as the
number of employees, comparing COMPUSTAT
and U.S. Census Bureau data for 1997. Note that
there are monotonically decreasing numbers of
progressively larger firms in the Census data,
whereas this is not the case in the COMPUSTAT
data (29).

Size class COMPUSTAT Census

0 2,576 719,978
1 to 4 123 2,638,070
5 to 9 149 1,006,897
10 to 19 251 593,696
20 to 99 1,287 487,491
100 to 499 2,123 79,707
500' 4,267 16,079
Total 10,776 5,541,918
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Elementary derivation of the Zipf law

Rules of the model:
• At each time step a person is born in a city.
• All cities have approximately the same birth rate. 
• With very small probability a person creates a new city.
Properties:
• The total population, n0, of the cities existing at time t0  is 

proportional to t0 : n0~t0

• The  rank of the city created at time t is proportional to t: R~t0

• The ratio of the size of this city to the total population remains 
 the same K/n ~1/n0 => K~1/n0~1/t0

• Finally: K~1/t0~1/R => K~1/R  
Conclusion:
• Size is inversely proportional to its rank. 



















Our goal is to build a simple model which
would explain this graph



Preferential Attachment Model
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1. for small g,  
    P(g) ≈ exp[- |g| (2 / Vg)1/2].

2. for large g,   P(g)  ~  g-3 .

Crossover in P(g) from Exp. to Power Law

g, growth rate

P(
g)

g, growth rate

P(
g)

 P(g) same as  Pold(n) and Pnew(n).
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Universality---6 examples
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Universality---6 more examples



Behavior of the distribution for large time intervals

• Since 

• We expect by Central Limit 
Theorem that P(R) for larger 
times to converge to a 
Gaussian

• Indeed a generated power 
law distribution with the 
same exponent ζR converges 
quickly to Gaussian under 
aggregation. Consider 

Convergence of generated iid variables



Do large returns arise from large market activity ?

For this to be possible, since                             we expect 

Fluctuations in market activity too mild to explain fat tails of returns.

In sharp contrast, we
find:

too large to explain



28

 http://polymer.bu.edu/hes   (PDF of published papers)



   Data analyzed (Gopikrisnan/Plerou/Liu/...)
Trades and Quotes (TAQ) database 

•     2 years 1994-95

•     1000 stocks largest by market cap on Jan 1, ’94  (200 million records)

Center for Research in Security Prices (CRSP) database

•     35 years 1962-96

•     approximately 6000 stocks 

Tick data for the London Stock Exchange

•     2 yrs 2000-01

•     250 stocks.

Transactions data from the Paris Bourse

•      30 stocks; 1994-95

To test “universality”, also analyze other databases, including:
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Each stock is a unit, 
interacting with other stocks 
(units).  This type of model 
studied in statistical physics.  

Typical models:
 
1. set of units,each of which 
can be in Q different states 
(POTTS MODEL).  

2. set of n-dimensional 
units, each of which can be 
in a continuum of states    
(n-VECTOR MODEL)

After-Dinner Drink: theory/model?

MH⇧
M

H ⇤1⌅aH↵/aH
⇥

M

H1/⌃
, (11b)

and

⌅H⇧
⌅

HaT /aH
⇥

⌅

H1/ (11c)

are termed the scaled magnetization and scaled tempera-
ture, while the function F (1)(x)⇥M(1,x) defined in Eq.
(11a) is called a scaling function.

In Fig. 1, the scaled magnetization MH is plotted
against the scaled temperature ⌅H , and the entire family
of M(H⇥const,T) curves ‘‘collapse’’ onto a single func-
tion. This scaling function F (1)(H)⇥M(1,⌅H) evidently
is the magnetization function in fixed nonzero magnetic
field.

V. WHAT IS UNIVERSALITY?

Empirically, one finds that all systems in nature be-
long to one of a comparatively small number of such
universality classes. Two specific microscopic interaction
Hamiltonians appear almost sufficient to encompass the
universality classes necessary for static critical phenom-
ena.

The first of these is the Q-state Potts model (Potts,
1952; Wu, 1982). One assumes that each spin i can be in
one of Q possible discrete orientations � i (� i
⇥1,2, . . . ,Q). If two neighboring spins i and j are in the
same orientation, then they contribute an amount ⌅J to
the total energy of a configuration. If i and j are in dif-
ferent orientations, they contribute nothing. Thus the
interaction Hamiltonian is [Fig. 2(a)]

H⇤d ,s ↵⇥⌅J⌦
⇥ij�

⌃⇤� i ,� j↵, (12a)

where ⌃(� i ,� j)⇥1 if � i⇥� j , and is zero otherwise. The
angular brackets in Eq. (12a) indicate that the summa-
tion is over all pairs of nearest-neighbor sites ⇥ij�. The
interaction energy of a pair of neighboring parallel spins
is ⌅J , so that if J�0, the system should order ferromag-
netically at T⇥0.

The second such model is the n-vector model (Stan-
ley, 1968), characterized by spins capable of taking on a
continuum of states [Fig. 2(b)]. The Hamiltonian for the
n-vector model is

H⇤d ,n ↵⇥⌅J⌦
⇥ij�

S� i•S� j . (12b)

Here, the spin S� i⇧(Si1 ,Si2 , . . . ,Sin) is an
n-dimensional unit vector with ⌦⌥⇥1

n Si⌥
2 ⇥1, and S� i inter-

acts isotropically with spin S� j localized on site j . Two
parameters in the n-vector model are the system dimen-
sionality d and the spin dimensionality n. The parameter
n is sometimes called the order-parameter symmetry
number; both d and n determine the universality class of
a system for static exponents.

Both the Potts and n-vector hierarchies are generali-
zation of the simple Ising model of a uniaxial ferromag-
net. This is indicated schematically in Fig. 2(c), in which
the Potts hierarchy is depicted as a north-south ‘‘Metro
line,’’ while the n-vector hierarchy appears as an east-
west line. The various stops along the respective Metro
lines are labeled by the appropriate value of s and n .
The two Metro lines have a correspondence at the Ising
model, where Q⇥2 and n⇥1.

Along the north-south Metro line (the Q-state hierar-
chy), Kasteleyn and Fortuin showed that the limit Q
⇥1 reduces to the random percolation problem, which
may be relevant to the onset of gelation (Stauffer and
Aharony, 1992; Bunde and Havlin, 1996). Stephen dem-
onstrated that the limit Q⇥0 corresponds to a type of
treelike percolation, while Aharony and Müller showed
that the case Q⇥3 has been demonstrated to be of rel-
evance in interpreting experimental data on structural
phase transitions and on absorbed monolayer systems.

The east-west Metro line, though newer, has probably
been studied more extensively than the north-south line;
hence we shall discuss the east-west line first. For n⇥1,
the spins Si are one-dimensional unit vectors which take
on the values ⇤1. Equation (12b), H(d ,1), is the Ising
Hamiltonian, which has proved extremely useful in in-
terpreting the properties of the liquid-gas critical point
(Levelt Sengers et al., 1977). This case also corresponds
to the uniaxial ferromagnet introduced previously.

FIG. 2. Schematic illustrations of the possible orientations of
the spins in (a) the s-state Potts model, and (b) the n-vector
model. Note that the two models coincide when Q⇥2 and n
⇥1. (c) North-south and east-west ‘‘Metro lines.’’
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H⇤d ,s ↵⇥⌅J⌦
⇥ij�

⌃⇤� i ,� j↵, (12a)

where ⌃(� i ,� j)⇥1 if � i⇥� j , and is zero otherwise. The
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S� i•S� j . (12b)

Here, the spin S� i⇧(Si1 ,Si2 , . . . ,Sin) is an
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n Si⌥
2 ⇥1, and S� i inter-

acts isotropically with spin S� j localized on site j . Two
parameters in the n-vector model are the system dimen-
sionality d and the spin dimensionality n. The parameter
n is sometimes called the order-parameter symmetry
number; both d and n determine the universality class of
a system for static exponents.

Both the Potts and n-vector hierarchies are generali-
zation of the simple Ising model of a uniaxial ferromag-
net. This is indicated schematically in Fig. 2(c), in which
the Potts hierarchy is depicted as a north-south ‘‘Metro
line,’’ while the n-vector hierarchy appears as an east-
west line. The various stops along the respective Metro
lines are labeled by the appropriate value of s and n .
The two Metro lines have a correspondence at the Ising
model, where Q⇥2 and n⇥1.

Along the north-south Metro line (the Q-state hierar-
chy), Kasteleyn and Fortuin showed that the limit Q
⇥1 reduces to the random percolation problem, which
may be relevant to the onset of gelation (Stauffer and
Aharony, 1992; Bunde and Havlin, 1996). Stephen dem-
onstrated that the limit Q⇥0 corresponds to a type of
treelike percolation, while Aharony and Müller showed
that the case Q⇥3 has been demonstrated to be of rel-
evance in interpreting experimental data on structural
phase transitions and on absorbed monolayer systems.

The east-west Metro line, though newer, has probably
been studied more extensively than the north-south line;
hence we shall discuss the east-west line first. For n⇥1,
the spins Si are one-dimensional unit vectors which take
on the values ⇤1. Equation (12b), H(d ,1), is the Ising
Hamiltonian, which has proved extremely useful in in-
terpreting the properties of the liquid-gas critical point
(Levelt Sengers et al., 1977). This case also corresponds
to the uniaxial ferromagnet introduced previously.

FIG. 2. Schematic illustrations of the possible orientations of
the spins in (a) the s-state Potts model, and (b) the n-vector
model. Note that the two models coincide when Q⇥2 and n
⇥1. (c) North-south and east-west ‘‘Metro lines.’’
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power) vs a scaled � (� divided by H to some different
power).

The predictions of the scaling hypothesis are sup-
ported by a wide range of experimental work, and also
by numerous calculations on model systems such as the
n-vector model. Moreover, the general principles of
scale invariance used here have proved useful in inter-
preting a number of other phenomena, ranging from
elementary-particle physics (Jackiw, 1972) to galaxy
structure (Peebles, 1980).

B. Universality

The second theme goes by the rather pretentious
name ‘‘universality.’’ It was found empirically that one
could form an analog of the Mendeleev table if one par-
titions all critical systems into ‘‘universality classes.’’ The
concept of universality classes of critical behavior was
first clearly put forth by Kadanoff, at the 1970 Enrico
Fermi Summer School, based on earlier work of a large
number of workers including Griffiths, Jasnow and Wor-
tis, Fisher, Stanley, and others.

Consider, e.g., experimental M-H-T data on five di-
verse magnetic materials near their respective critical
points (Fig. 1). The fact that data for each collapse onto
a scaling function supports the scaling hypotheses, while
the fact that the scaling function is the same (apart from
two material-dependent scale factors) for all five diverse
materials is truly remarkable. This apparent universality
of critical behavior motivates the following question:
‘‘Which features of this microscopic interparticle force are
important for determining critical-point exponents and
scaling functions, and which are unimportant?’’

Two systems with the same values of critical-point ex-
ponents and scaling functions are said to belong to the
same universality class. Thus the fact that the exponents
and scaling functions in Fig. 1 are the same for all five
materials implies they all belong to the same universality
class.

C. Renormalization

The third theme stems from Wilson’s essential idea
that the critical point can be mapped onto a fixed point
of a suitably chosen transformation on the system’s
Hamiltonian (see the recent reviews: Goldenfeld, 1994;
Cardy, 1996; Lesne, 1998). This resulting ‘‘renormaliza-
tion group’’ description has (i) provided a foundation
for understanding the themes of scaling and universality,
(ii) provided a calculational tool permitting one to ob-
tain numerical estimates for the various critical-point ex-
ponents, and (iii) provided us with altogether new con-
cepts not anticipated previously.

One altogether new concept that has emerged from
renormalization is the idea of upper and lower marginal
dimensionalities d⇧ and d⌅ (see the review of Als-
Nielsen and Birgeneau, 1977). For d�d⇧ , the classical
theory provides an adequate description of critical-point
exponents and scaling functions, whereas for d⇥d⇧ , the
classical theory breaks down in the immediate vicinity of
the critical point because statistical fluctuations ne-
glected in the classical theory become important. The
case d⇤d⇧ must be treated with great care; usually, the
classical theory ‘‘almost’’ holds, and the modifications
take the form of weakly singular corrections.

For d⇥d⌅ , fluctuations are so strong that the system
cannot sustain long-range order for any T�0. For d⌅

⇥d⇥d⇧ , we do not know exactly the properties of sys-
tems (in most cases) except when n approaches infinity,
where n will be introduced below as the spin dimension.
One can, however, develop expansions in terms of the
parameters (d⇧⌅d), (d⌅d⌅), and 1/n (see, e.g., the
reviews of Fisher, 1974; and Brézin and Wadia, 1993).

In the remainder of this brief overview, we shall at-
tempt to define somewhat more precisely the concepts
underlying the three themes of scaling, universality, and
renormalization without sacrificing the stated purpose,
that of a colloquium-level presentation.

IV. WHAT IS SCALING?

I offer here a very brief introduction to the spirit and
scope of the scaling approach to phase transitions and
critical phenomena using, for the sake of concreteness, a
simple system: the Ising magnet. Further, we discuss
only the simplest static property, the order parameter,
and the two response functions CH and ⇥T . The rich
subject of dynamic scaling is beyond our scope here
(see, e.g., the authoritative review of Hohenberg and
Halperin, 1977).

FIG. 1. Experimental MHT data on five different magnetic
materials plotted in scaled form. The five materials are CrBr3 ,
EuO, Ni, YIG, and Pd3Fe. None of these materials is an ide-
alized ferromagnet: CrBr3 has considerable lattice anisotropy,
EuO has significant second-neighbor interactions. Ni is an
itinerant-electron ferromagnet, YIG is a ferrimagnet, and
Pd3Fe is a ferromagnetic alloy. Nonetheless, the data for all
materials collapse onto a single scaling function, which is that
calculated for the d⇤3 Heisenberg model [after Milošević and
Stanley (1976)].
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p��pb. (15)

C. Fixed points of the renormalization transformation

The actual choice of the function Rb(p) varies, of
course, from one problem to the other. However the
remaining steps to be followed after selecting a suitable
Rb(p) are essentially the same for all problems. First,
we note [Fig. 3(c)] that on carrying out the renormaliza-
tion transformation, the new correlation length ⇤�(p�) is
smaller than the original correlation length ⇤(p) by a
factor of b :

⇤�⌅p�⌃�b⇥1⇤⌅p ⌃. (16)

Next we consider the effect of carrying out successive
Kadanoff-cell transformations with our one-dimensional
example. Suppose the system starts out at an initial pa-
rameter value p�p0�0.9, as shown schematically in Fig.
4. After a single renormalization transformation, the
value of p becomes p0��Rb(p0)�0.81 by Eq. (15). The
transformed system is farther from the critical point, and

hence ⇤�(p�) is smaller—just as we noted in Fig. 3(c). If
we now perform a renormalization transformation on
the transformed system, we have p0⇥�Rb⇥Rb(p0)�
�(p0�)2�0.64. The doubly-transformed system is now
farther still from the critical point.

Thus the effect of successive Kadanoff-cell transfor-
mations for the example at hand is to take the system
away from its critical point. An important exception to
this statement is the following: if a system is initially at
its critical point (e.g., if p0�pc�1), then ⇤�⇧ and
hence ⇤�, by Eq. (16), is also infinite. A necessary but
not sufficient condition that this occur is for p� to equal
p . The values of p for which p��p are termed the fixed
points p* of the transformation Rb(p),

Rb⌅p*⌃�p*. (17)

Thus, by obtaining all the fixed points of a given renor-
malization transformation Rb(p), we should be able to
obtain the critical point. For the example of one-
dimension percolation, Rb(p)�pb and there are two
fixed points. One is p*�0 and the other is p*�1. In-
deed, we recognize the critical point, pc�1, as one of the
two fixed points.

Now if the system is initially at a value p�p0 , which
is close to the p*�1 fixed point, then under the renor-
malization transformation it is carried to a value of p0� ,
which is farther from that fixed point. We may say a
fixed point is unstable for the ‘‘relevant’’ scaling field u
�(p⇥pc). Conversely, if p0 is close to the p*�0 fixed
point, then it is carried to a value p0� that is still closer to
that fixed point; we term such a fixed point stable. Thus
for the example at hand, there is one unstable fixed
point, p*�1, and one stable fixed point, p*�0.

We often indicate the results of successive renormal-
ization transformations schematically by means of a
simple flow diagram, as is shown in Fig. 4(b). The arrows
in the flow diagram indicate the effect of successive
renormalization on the system’s parameters. Note that
the ‘‘flow’’ under successive transformations is from the
unstable fixed point toward the stable fixed point. In the
example treated here, there is only one parameter p and

FIG. 3. The Kadanoff-cell transformation applied to the ex-
ample of one-dimensional percolation. The site level in (a) is
characterized by a single parameter p—the probability of a site
being occupied. The cell level in (b) is characterized by the
parameter p�—the probability of a cell being occupied. The
relation between the two parameters, p and p�, is given by the
renormalization transformation R(p) of Eqs. (14) and (15).
Also shown are successive Kadanoff-cell transformations. Af-
ter each transformation, the correlation length ⇤(p) is halved.
The corresponding value of occupation probability is reduced
to p��pb�p2, thus taking the system ‘‘farther away’’ from the
critical point p�pc�1. Occupied sites and cells are shown
solid, while empty sites and cells are open.

FIG. 4. Generic idea of a flow diagram, illustrated here for the
pedagogical example of one dimension. (a) Two curves, p�
�p and p��R2(p)�p2. The fixed points p*�0,1 are given by
the intersection of these two curves; the ‘‘thermal’’ scaling
power aT is related to the slope of Rb(p) at the unstable fixed
point p*�1. Also shown is the effect of successive Kadanoff-
cell transformations, Eq. (15), on a system whose initial value
of the parameter p is p0�0.9. This information is capsulized in
the one-dimensional flow diagram of part (b), which illustrates
the result of Eq. (16)—that each renormalization serves to
halve the correlation length ⇤ .
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19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (15, 16 ).

For further analysis, I used a tabulation from
Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed (! " 1.059), as determined by
ordinary least squares (OLS) regression in log-
log coordinates (Fig. 1). There are too few very
small and very large firms with respect to the
Zipf fit, presumably due to finite size effects,
yet the power law distribution well describes
the data over nearly six decades of firm size
(from 100 to 106 employees). This result sug-
gests both that a common mechanism of firm
growth operates on firms of all sizes, and that
the fundamental unit of analysis is the individ-
ual employee.

But firms having a single employee are
not the smallest economic entities in the U.S.
economy. Although there were some 5.5 mil-
lion firms that had at least one employee at
some time during 1997, there were another
15.4 million business entities in that year
with no employees. These are predominantly
self-employed individuals and partnerships,
and are called “nonemployer” firms by Cen-
sus. These smallest of firms account for near-
ly $600 billion in receipts in 1997. Yet, if
these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
employees

Pr[S ! si ] " ! s0

si#1" !

, si ! 0, ! # 0 (2)

Here, OLS yields an estimate of ! " 1.098
(SE " 0.064), and the adjusted R2 " 0.977.
Including self-employment drives the aver-
age firm size down to 5.0 employees/firm,
and makes the median number of employees
0.

An interesting property of firm size distri-
butions noted in previous studies of large
firms is that the qualitative character of such
distributions is independent of how size is
defined (1). Although the position of individ-
ual firms in a size distribution does depend on
the definition of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (! " 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribution is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distributions (1, 5, 17, 18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
(19, 20) and growth rate variance declines
with size (21, 22). Consider a variation of the
Gibrat process known as the Kesten process
(23-25), in which sizes are bounded from
below; i.e.,

si$t $ 1% " max&s0,'$t%si$t%( (3)

where ' is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent ! defined implicitly by (26 )

N "
! % 1

! # ! s0

A"!

% 1

! s0

A"!

% ! s0

A"$ (4)

where N is the total number of firms and A is
the number of employees. For N " 5.5 ) 106

and A " 105 ) 106, as in 1997 (excluding
self-employment), s0 " 1 implies ! * 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE " 0.054; adjust-
ed R2 " 0.992), meaning that ! "
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE "
0.064; adjusted R2 " 0.976).

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated ! Adjusted R2

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of ! was approximately unchanged.

Year Firms Employees Mean firm size !, from (4)

1997 5,541,918 105,299,123 19.00 0.9966
1996 5,478,047 102,187,297 18.65 0.9986
1995 5,369,068 100,314,946 18.68 0.9983
1994 5,276,964 96,721,594 18.33 1.0004
1993 5,193,642 94,773,913 18.25 1.0008
1992 5,095,356 92,825,797 18.22 1.0009
1991 5,051,025 92,307,559 18.28 1.0004
1990 5,073,795 93,469,275 18.42 0.9995
1989 5,021,315 91,626,094 18.25 1.0006
1988 4,954,645 87,844,303 17.73 1.0039
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