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American vs European Style

» American Style Opfions:
» May be exercised at any fime before the option expires
» All stocks and exchange traded funds (ETFs) have American-style options
» Has absolutely nothing fo do with geographic locafion
» European Style Options:
» May only be exercised on the day they expire

» Maijor indices (S&P 500, DJIA, FISE 100, DAX, NASDAQ,...) have European-
style options

» You cannot buy an index, so index options are cash settled

» Still has nothing fo do with geography
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In/At/Out-of-the-money (“Moneyness”)

» An option is said to be “In the money” (ITM) if it currently has some
intrinsic value

» A callis ITM when the stock price is greater than the strike price

» A putis ITM when the stock price is below the strike price

» An option is “Out of the money” (OTM) if it currently has no intrinsic
value

» A callis OTM when the stock price is below the strike price

» A putis OTM when the stock price is above the strike price

» Sometimes, when the stock price is close to the strike price, you say
the opftion is “At the money” (ATM)

» If the stock price is very far from the strike price you will sometimes
hear it referred to as “deep in the money” or “deep out of the
money”
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Strike Price

» Usually denoted by “K"

» Generally listed in 0.5, 1, 2.5, or 10 point increments depending on
price level

» Example, AAPL trades at around $500 and so the strike prices are listed in
$10 increments

» AMD frades at around $4.00 and strike prices are listed in $0.50
iIncrements

» Details af ( )

» Adjustments to a contract’s size, deliverable and/or strike price may
be made to account for stock splits or mergers
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https://www.cboe.com/Products/EquityOptionSpecs.aspx
https://www.cboe.com/Products/EquityOptionSpecs.aspx

Other common symlbols

» S, —usually denotes the stock price at time t

» Be careful because this S; is sometimes used as a constant, a variable,
and a stochastic process

» K - strike price
» r—risk free rate of return (annualized, continuously compounded)

» More advanced models sometimes describe the risk free rate as a
stochastic process

» A good rule of thumb is that a subscript ‘t' usually is present for a
stochastic process rather than a deterministic function of time or @
constant, but the stock price Is an exception o this because the ‘t' is
usually present regardless
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More symbols (volafility)

» o — volatility, generally the square root of the variance of the log
returns over (Q,t) is used, choice of ‘a’ is up to you

» [t makes sense that you should select ‘a’ so that t-a > T-t

» o or o, — implied volatility, this is what value of ¢ is required to make
the model give you the correct answer

» Always double check what o refers to, the implied volatility is NOT a
statistical measure based on past data

» Implied volatility is a very good proxy for how large the risk premium for

an option is. It gives you an indication of how much risk the market
believes the investment carries.

» Implied volatility is usually not equal to the measured volatility, in fact,
you will most likely not find them to be equal or even close to equal
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Symbols (CEil

» 1 - current time (in years)
» T-usually used as the point in fime when the option expires

» T=T—t
> D) == [* e*/2dz (Standard Normal Cumulative Distribution
Function)

» W - the drift rate of the stock price in the Black-Scholes model
» II-the value of a porifolio

» V(t, S;) — the price of a financial derivative as a function of time and
the stochastic process S;

» C(t, S;) — the price of a European call option, the context will
determine if S; Is a stochastic process or a simple variable

» P(t, S;) — the price of a European put option, S; depends on context
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Assumptions for Black-Scholes

» Black-Scholes prices European style options, not American style
» There exists ariskless asset and it has a constant rate of return, r.

» Assume that the instantaneous log returns of the stock price is given
by geometric Brownian motion with a constant drift rate, u, and @
constant volatility, o

» Assume that there is no arbitrage opportunity in the market (this can
be thought of as saying that there is no way to game the market
and make a riskless profit on the stock...sort of, look up arbitrage if
you want to get a better idea of what it means; this is a required
assumption)

» You can buy and sell any amount, including non-integer values, of
the stock including short-selling (i.e. you can buy e™ shares of the
stock if you want, for example)

» The market is frictionless (assume there are no transaction costs or
fees)
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The Black-Scholes Equation
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Boundary condifions for a call: C(t,S) and S is a number
C(t,0) =0forallt

C(t,S)—>SasS > x

C(t,T) = max{0,S — K}

Note that you will replace V in the partial differential equation with
C or P when you deal with a call or put respectively

Y. .V V

» That means the differential equation holds for both calls and puts

» |'llshow how to get the Black-Scholes equation on the board, but
here is a link to a more advanced extension of the model for
anyone interested
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Black-Scholes Formulo

» Black-Scholes Solutions (note: | am suppressing the subscript ‘' in the
stock price symbol in order to make it clear that in this context it is
NOT a stochastic process)

» dy=——[m(3)+ T -0 +2D)]

= fin (D) + -0 (-] =0T

» C(t,S|r,0,K,T) = S0(d,) — Ke " 0dD(d)

» P(t,S|r,0,K,T)=C(tS|r,0,K,T)—S + Ke "T-0

» P(t,S|r0,K,T)=Ke "TT-0d(—d,) — S®(—d,)

» Note: the variables after the ‘| ' in the call and put formulas above

are the parameters that you need to price the option, but they are
treated as constants when solving the Black-Scholes equation
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