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Niigata University�Niigata University�

Where*am*I*from?�

Niigata&City&
Popula.on:*811,996&
Niigata&City&is&an&urban&center&developed&by&its&port.&&
Even&though&it&is&located&on&a&substan.al&expansion&of&
agricultural&landscapes,&it&has&also&easy&accesses&to&
major&ci.es&by&airplanes,&express&omnibuses,&and&bullet&
trains.&&Also&from&its&interna.onal&airport,&there&are&
regular&flights&to&Harbin,&Shanghai,&Seoul,&�������	
���,"
Khabarovsk,&Guam.&&Niigata&aspires&to&be&a&gateway&to&
the&East&Asia.&



Econophysics*Approach*to*Financial*Markets�
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! Plerou,&V.,&Gopikrishnan,&P.,&Rosenow,&B.,&Amaral,&L.&A.&N.,&
Stanley,&H.,&E.,&Phys.&Rev.&LeQ.&83,&1471&(1999).&

Sta.s.cally&meaningful&informa.on �

Noise&elimina.on&using&the&random&matrix&theory&(RMT) �

! Plerou,&V.,&Gopikrishnan,&P.,&Rosenow,&B.,&Amaral,&L.&A.&N.,&Guhr,&
T.,&Stanley,&H.,&E.,&Phys.&Rev.&E&65,&066126&(2002).&

! Utsugi,&A.,&Ino,&K.,&Oshikawa,&M.,&Phys.&Rev.&E&70,&026110&(2004).&
! Kim,&D.,&H.,&Jeong,&H.,&Phys.&Rev.&E&72,&046133&(2005). �
! Pan,&R.,&K.,&Shinha,&S.,&Phys.&Rev.&E&76,&046116&(2007).&
! And&more&

>&Insight&into&correla.on&structure&in&stock&exchange&markets&
>&Iden.fica.on&of&collec.ve&mo.on&of&business&groups�



Objec've:*Stock*Market*as*a*Network�

•&S.&Gómez,&P.&Jensen&and&A.&Arenas,&A.,&Phys.&Rev.&E&80,&036115&(2009).&
•&V.A.&Traag&and&J.&Bruggeman,&Phys.&Rev.&E&80,&016114&(2009). �

Community&detec.on&for&networks&with&links&of&both&signs:�

We*revisit*correla'on*structures*in*the*Tokyo*Stock*Exchange*(TSE)*
and*S&P*500*markets*from*a*network*theore'c*point*of*view.*
&
"  Correla.on&matrix&is&regarded&as&an&adjacency*matrix*for&a&

network&
"  The&network&thus&constructed&has&links&with&nega've&weights&as&

well&as&links&with&posi've&weights.&
&
Communi'es*are*then*detected*through*minimizing*frustra'on*due*
to*an'correla'ons*inside*communi'es*of*nodes*(stock*prices).*
&



Market*Data*Used*in*the*Present*Study�
Tokyo*Stock*Exchange*
>&557&stocks&
>&2707&days&(Jan.&4,&1996&through&Dec.&29,&2006)&
>&33&industrial&groups&(SIC)& �

S&P*500**
>&483&stocks&
>&1009&days&(Jan.2,&2008&through&Dec.&30,&2011)&
>&24&industrial&groups&(GICS)& �
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Standard*Industrial*Classifica'on*(SIC)*System*ZZZ*TSE�
Main classification No. Sub classification No. of Stocks

Fishery, Agriculture & Forestry 1 Fishery, Agriculture & Forestry 4
Minig 2 Mining 2

Construction 3 Construction 31
4 Foods 32
5 Textiles & Apparels 17
6 Pulp & Paper 5
7 Chemicals 60
8 Pharmaceutical 13
9 Oil & Coal Products 3

10 Rubber Products 7
11 Glass & Ceramics Products 15
12 Iron & Steel 20
13 Nonferrous Metals 14
14 Metal Products 8
15 Machinery 55
16 Electric Appliances 72
17 Transportation Equipment 30
18 Precision Instruments 13
19 Other Products 14

Electric Power & Gas 20 Electric Power & Gas 13
21 Land Transportation 17
22 Marine Transportation 5
23 Air Transportation 1
24 Warehousing & Harbor Transportation Services 5
25 Information & Communication 10
26 Wholesale Trade 21
27 Retail Trade 17
28 Banks 20
29 Securities & Commodity Futures 6
30 Insurance 6
31 Other Financing Business 9

Real Estate 32 Real Estate 6
Services 33 Services 6

Manufacturing

Finance & Insurance

Trade

Transportation, Information & Communication



Global*Industry*Classifica'on*Standard*(GICS)*ZZZ*S&P*500 �
Sector No. Industry No. of Stocks

Energy 1 Energy 39
Materials 2 Materials 29

3 Capital Goods 40
4 Commercial & Professional Services 11
5 Transportatin 9
6 Automobiles & Components 4
7 Consumer Durables & Aparel 14
8 Consumer Services 14
9 Media 15

10 Retailing 32
11 Food & Staples Retailing 9
12 Food Beverage & Tobacco 21
13 Household & Personal Products 6
14 Health Care Equipment & Services 31
15 Pharmaceuticals, Biotechnology & LifeSciences 19
16 Banks 15
17 Diversified Financials 27
18 Insurance 21
19 Real Estate 16
20 Software & Services 28
21 Technology Hardware & Equipment 26
22 Semiconductors & Semiconductor Equipment 16

Telecommunication Services 23 Telecommunication Services 8
Utilities 24 Utilities 33

Information Technology

Industrials

Consumer Discretionary

Consumer Staples

Health Care

Financials



Preprocessing*of*the*Stock*Price*Data�

:&&&Price&of&stock&n&at&.me&t& �
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Examples*of*the*Preprocessed*TSE*Data�



Principal*Component*Analysis*(PCA)�
Principal&Components&(normal&
coordinates&in&physics)�
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Spectral*Decomposi'on*of*Correla'on*Matrix �

The&correla.on&matrix&can&be&decomposed&into �

Correla.on&matrix&C �
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Illusion*in*Randomness�
Finite&length&of&.me&series&data&brings&about&spurious&correla.ons,&
which&may&be&observed&even&in&completely&random&data.&&

The&RMT&is&a&clue&to&this&problem!&

T

T →∞ ⇒ Cij = δ ij

N

T →∞, N →∞ with fixed Q ≡
T

N
⇒ nontrivial results for Cij

RMT�



Random*Matrix*Theory*(RMT)�

&&&&&&&&&&are&random&variables&following&N(0,1)&and&hence&mutually&
independent.*
&
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&
&
&
The&random&correla.on&matrix&is&calculated&by&
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In&the&limit&N,T→∞#with&����&fixed,&&
&&&&>&Eigenvalue&distribu.on&
&&&&>&Eigenvector&components&distribu.on&
&&&&>&NearestPneighbor&eigenvalue&distribu.on,&etc.&
have&universal&proper.es.&&
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RMT:*Eigenvalue*Distribu'on�
The&eigenvalue&distribu.on&for&
the&random&matrix&of&infinite&size&
with&a&given&aspect&ra.o&Q:&
&
&
&
&
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Numerical*Demonstra'on*of*RMT�
Q =
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My*First*Encounter*with*RMT�
VOLUME 46, NUMBER 6 PHYSICAL REVIEW LETTERS 9 FEBRUARY 1981

Exact Results for the Two-Dimensional One-Component Plasma

B. Jancoviei
Labo~atoi~e de Wysique Theorique et Hautes Energies, Univexsite de I'a&s-Sud, E-91405 Oxsay, France

(Received 5 November 1980)

At some special temperature 1'0, the distribution functions of a two-dimensional one-
component plasma are explicitly computed up to the four-body one. The correlations
have a Gaussian falloff. The distribution functions at 1'0 are used for building a temper-
ature expansion around &0.

PACS numbers: 05.20.-y, 51.10.+y, 52.52.-b

A one-component plasma is a system of N iden-
tical particles of charge e embedded in a uniform
neutralizing background of opposite charge. In
two dimensions, the Coulomb interaction poten-
tial between two particles at a distance r from
one another is

e n(r) = —e'ln(r/L),

where L is a length scale. If one assumes the
particles to be confined in a disk of radius R,
the total potential is'

sion around T,.
Using for z, polar coordinates (z;, 9;), one ob-

tains at To from (2) a Boltzmann factor

exp(- V/k~ T,)
=&exp(-Pz )III(z;-z, )I', (8)

where A is a constant and Z, =z; exp(i8;). This
expression (6), which also occurs in the theory
of random matrices, can be integrated upon vari-
ables z, (0~ z, ~ KN) by expanding the Vander-
monde determinant Q(Z, -Z, ). One obtains the
partition function"

f exp(- V/k~ T,)d'z, ~ ~ d'z„
—e'Q ln ", (2) =X~"N. g y(j,N),

j= 1
where r, is the position of particle i (the origin
is chosen at the center of the disk). By using the
scaled variables z,. =N"'r, /R, one easily shows
that the excess free energy per particle, which
must have a well-behaved thermodynamic limit, '
is necessarily of the form

F,„JN=——,
' eln(n Lp') f+(T),

where p =N/wR' is the number density, and f (T)
is some function of the temperature alone. There-
fore, the equation of state has the simple form'

p = (k,T ——,'e')p,

where kB is Boltzmann's constant and T is the
temperature. More information can be obtained
at the special temperature T, = e'/2k B; recently,
the free energy has been exactly computed at Tp,
with the result

F,„JN=——,'e' In(mpL') +e'[—,——,In(2v)].

In the present Letter, the distribution functions
at T, are explicitly computed up to the four-body
one and used for building a temperature expan-

where

y(j, N) = f ~"exp(-z')z"' '&2z dz (8)

In the thermodynamic limit N- ~, y(l, N) —(l
—1)!, and K„(Z,.Z,.*)—exp(Z,.Z,.*) [the terms with
l close to N make no trouble since y(N, N) - —,(N
—1)!]. In this limit, one obtains from (10) the
following explicit distribution functions: The one-
body density p(1) = pg(1) has the constant value p.
The pair distribution function is

g (1,2) = 1—exp(- ~pr»'), (12)

= f"e 't' 'dt (9)

is the incomplete gamma function; in Ref. 4, (8)
was used for computing the free energy (5). One
can also obtain the n-body distribution functions"
g(1, . . . , n)

n
= exp(- Q z )D«[K (Z; Z,*)];;=& . . „, (1o)i= 1

where
N (z z g)/-1

K„(z,z,.*)—P (l )y, N
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or, equivalently, the internal energy U and the
specific heat g at I'=2. Their excess parts per
particle are found to be

and

U,„,/N= —,'e —ln(rrpL ) ——,'e'C,

c,„JN=k s (ln2 —n'/24).

(1S)

(19)

R. R. Sari, D. Merlini, and R. Calinon, J. Phys. A:
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Quantum-Statistical Metastability
Ian Aff leek

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 08138
(Received 22 September 1980)

Consider a system rendered unstable by both quantum tunneling and thermodynamic
fluctuation. The tunneling rate 1, at temperature P, is related to the free energy E by
I'= (2/S) ImF. However, the classical escape rate is I"= (~P/n) ImF, —&u being the nega-
tive eigenvalue at the saddle point. A general theory of metastability is constructed in
which these formulas are true for temperatures, respectively, below and above uk/2v
with a narrow transition region of O(@3 ).
PACS numbers: 05.30.-d

Consider a system with a localized metastable
ground state and a saddle point through which the
system can escape to the true ground state. A
simple example is a particle in the one-dimen-
sional (1D) potential of Fig. 1. I shall at first
concentrate on this example and then generalize
to an arbitrary system (which may be a field the-
ory). One may safely assume that both the ground-
state energy, 2&to, [V"(s,) =to,'], and the tempera-
ture are small compared to the barrier height,
V„' otherwise, the system would not be metasta-
ble.
At temperatures small compared to S~, the par-

ticle is mainly in the low-lying metastable states.
These have wave functions that vanish at —, are
standing waves normalized to 1 in the well, and
give an exponentially small probability current,
J, at positive x, which is identified with the de-
cay rate, I (E). The nonconservation of J re-
quires that E have an (exponentially small) imagi-
nary part' which obeys I = (2/&) ImE. Taking a

Boltzmann average of I"(E), we find I' = (2/5) ImF,
to lowest order in exponentially small quantities.
At temperatures large compared to @to, (but

still small compared to V,) we would expect clas-
sical thermodynamic fluctuations to dominate.
The classical rate' is calculated by setting up a

FIG. 1. The potential for a 1D metastable system.
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Distribu'on*of*Eigenvalues*for*Correla'on*Matrix �
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Market*Mode*in*S&P*500�
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Group*Correla'ons �

The&correla.on&matrix&may&be&decomposed&into �
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Network*Approach*to*Financial*Markets�

�1 � �ij � 1 2 � d(i, j) � 0
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Hierarchical structure in financial markets
R.N. Mantegnaa
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Abstract. I find a hierarchical arrangement of stocks traded in a financial market by investigating the
daily time series of the logarithm of stock price. The topological space is a subdominant ultrametric space
associated with a graph connecting the stocks of the portfolio analyzed. The graph is obtained starting from
the matrix of correlation coe�cient computed between all pairs of stocks of the portfolio by considering the
synchronous time evolution of the di↵erence of the logarithm of daily stock price. The hierarchical tree of the
subdominant ultrametric space associated with the graph provides a meaningful economic taxonomy.

PACS. 02.50.Sk Multivariate analysis – 89.90.+n Other areas of general interest to physicists

Financial markets are well-defined complex systems. They
are studied by economists, mathematicians and, recently,
also by physicists. The paradigm of mathematical fi-
nance is that the time series of stock returns are un-
predictable [1]. Within this paradigm, time evolutions of
stock returns are well described by random processes. A
key point is if the random processes of stock returns time
series of di↵erent stocks are uncorrelated or, conversely, if
economic factors are present in financial markets and are
driving several stocks at the same time. Ross introduced
common economic factors in his arbitrage pricing theory
model [2].

On the side of modeling of financial markets by using
tools and procedures developed to model physical systems
[3–11], there is the need to quantify a distance between dif-
ferent stocks traded in a financial markets. In the present
analysis, I detect a hierarchical structure present in a port-
folio of n stocks traded in a financial market. The observ-
able which is used to detect the hierarchical arrangement
of the stocks of a given portfolio is the synchronous cor-
relation coe�cient of the daily di↵erence of logarithm of
closure price of stocks. The correlation coe�cient is com-
puted between all the possible pairs of stocks present in
the portfolio in a given time period. The goal of the present
study is to obtain the taxonomy of a portfolio of stocks
traded in a financial market by using the information of
time series of stock prices only.

In this letter, I report results obtained by investigat-
ing the portfolio of the stocks used to compute the Dow
Jones Industrial Average (DJIA) index and the portfolio
of stocks used to compute the Standard and Poor’s 500
(S&P 500) index in the time period from July 1989 to
October 1995. Both indices describe the performance of
the New York Stock Exchange. The starting point of my

a e-mail: mantegna@ifata1.deaf.unipa.it

investigation is to quantify the degree of similarity be-
tween the synchronous time evolution of a pair of stock
price by the correlation coe�cient [12]

⇢ij =
hYiYji � hYiihYjiq

(hY 2

i i � hYii2)(hY 2

j i � hYji2)
(1)

where i and j are the numerical labels of stocks, Yi =
lnPi(t)� lnPi(t � 1) and Pi(t) is the closure price of the
stock i at the day t. The statistical average is a temporal
average performed on all the trading days of the investi-
gated time period.

For both portfolios, I determine the n ⇥ n matrix
of correlation coe�cients for daily logarithm price di↵er-
ences (which almost coincides with returns). By definition,
⇢ij can vary from �1 (completely anti-correlated pair of
stocks) to 1 (completely correlated pair of stocks). When
⇢ij = 0 the two stocks are uncorrelated.

The matrix of correlation coe�cients is a symmetric
matrix with ⇢ii = 1 in the main diagonal. Hence, in each
portfolio, n (n� 1)/2 correlation coe�cients characterize
the matrix completely. An investigation of the statistical
properties of the set of correlation coe�cients is published
elsewhere [13]. In this letter, I investigate the correlation
coe�cient matrix to detect the hierarchical organization
present inside a portfolio of stocks traded in a stock mar-
ket. In the search for an appropriate taxonomy of stocks
of a given portfolio, I first look for a metric. The corre-
lation coe�cient of a pair of stocks cannot be used as a
distance between the two stocks because it does not fulfill
the three axioms that define a metric. However a metric
can be defined using as distance a function of the correla-
tion coe�cient. An appropriate function is [14]

d(i, j) =
q

2 (1� ⇢ij). (2)
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associated with a graph connecting the stocks of the portfolio analyzed. The graph is obtained starting from
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subdominant ultrametric space associated with the graph provides a meaningful economic taxonomy.
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Financial markets are well-defined complex systems. They
are studied by economists, mathematicians and, recently,
also by physicists. The paradigm of mathematical fi-
nance is that the time series of stock returns are un-
predictable [1]. Within this paradigm, time evolutions of
stock returns are well described by random processes. A
key point is if the random processes of stock returns time
series of di↵erent stocks are uncorrelated or, conversely, if
economic factors are present in financial markets and are
driving several stocks at the same time. Ross introduced
common economic factors in his arbitrage pricing theory
model [2].

On the side of modeling of financial markets by using
tools and procedures developed to model physical systems
[3–11], there is the need to quantify a distance between dif-
ferent stocks traded in a financial markets. In the present
analysis, I detect a hierarchical structure present in a port-
folio of n stocks traded in a financial market. The observ-
able which is used to detect the hierarchical arrangement
of the stocks of a given portfolio is the synchronous cor-
relation coe�cient of the daily di↵erence of logarithm of
closure price of stocks. The correlation coe�cient is com-
puted between all the possible pairs of stocks present in
the portfolio in a given time period. The goal of the present
study is to obtain the taxonomy of a portfolio of stocks
traded in a financial market by using the information of
time series of stock prices only.

In this letter, I report results obtained by investigat-
ing the portfolio of the stocks used to compute the Dow
Jones Industrial Average (DJIA) index and the portfolio
of stocks used to compute the Standard and Poor’s 500
(S&P 500) index in the time period from July 1989 to
October 1995. Both indices describe the performance of
the New York Stock Exchange. The starting point of my

a e-mail: mantegna@ifata1.deaf.unipa.it

investigation is to quantify the degree of similarity be-
tween the synchronous time evolution of a pair of stock
price by the correlation coe�cient [12]

⇢ij =
hYiYji � hYiihYjiq

(hY 2

i i � hYii2)(hY 2

j i � hYji2)
(1)

where i and j are the numerical labels of stocks, Yi =
lnPi(t)� lnPi(t � 1) and Pi(t) is the closure price of the
stock i at the day t. The statistical average is a temporal
average performed on all the trading days of the investi-
gated time period.

For both portfolios, I determine the n ⇥ n matrix
of correlation coe�cients for daily logarithm price di↵er-
ences (which almost coincides with returns). By definition,
⇢ij can vary from �1 (completely anti-correlated pair of
stocks) to 1 (completely correlated pair of stocks). When
⇢ij = 0 the two stocks are uncorrelated.

The matrix of correlation coe�cients is a symmetric
matrix with ⇢ii = 1 in the main diagonal. Hence, in each
portfolio, n (n� 1)/2 correlation coe�cients characterize
the matrix completely. An investigation of the statistical
properties of the set of correlation coe�cients is published
elsewhere [13]. In this letter, I investigate the correlation
coe�cient matrix to detect the hierarchical organization
present inside a portfolio of stocks traded in a stock mar-
ket. In the search for an appropriate taxonomy of stocks
of a given portfolio, I first look for a metric. The corre-
lation coe�cient of a pair of stocks cannot be used as a
distance between the two stocks because it does not fulfill
the three axioms that define a metric. However a metric
can be defined using as distance a function of the correla-
tion coe�cient. An appropriate function is [14]

d(i, j) =
q

2 (1� ⇢ij). (2)



Communi.es&in&Networks �
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Karate&club � Amazon.com� Jazz&club �

Community:&a&group&of&nodes&which&are&.ghtly&connected&
to&each&other&through&links.&



Power*of*the*Community*Detec'on �

Four&communi.es&are&obtained&through&the&modularity&
maximiza.on&for&the&Karate&Club&network&[1],&and&the&dashed&line&
depicts&its&actual&split&into&two&groups.&&

[1]&W.&W.&Zachary:&An&informa.on&flow&model&for&conflict&and&fission&in&small&groups,&
J.&Anthropological&Res.,&Vol.&33,&pp.&452P473,&1977. �
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Detected*Community*Structure*for*the*TSE �
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Detected*Community*Structure*for*S&P*500 �
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Frustra'on*Structure*Embedded*in*TSE�
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Correla'on*State*Space �
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Distribu'on*of*Stocks*in*3D*Correla'on*State*Space�
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Summary�

•  The&correla.on&matrix&of&stock&price&changes,&purified&by&the&
RMT,&was&used&to&construct&a&network&

•  Communi.es&were&detected&through&minimiza.on&of&the&
frustra.on&inside&communi.es.&

•  We&found&frustrated&mul.polar&structures&embedded&in&the&
financial&markets&

&

>&More&compara.ve&study:&applica.on&to&Korean&and&other&markets&
>&Temporal&varia.on&of&the&frustra.on&structure;&rela.onship&to&the&
market&mode,&especially&market&crush&

>&Rela.onship&to&real&economy?&

We&revisited&correla.on&structure&in&the&TSE&and&S&P&500&markets&
from&a&network&theore.c&point&of&view. �

Such&a&hidden&structure&may&give&rise&to&complicated&
market&behavior. �
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