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Why study networks?

How can we construct networks from data?

— Advantages and disadvantages of existing
methods
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How are networks built from data?

* Consider N interacting units.
* Construct N x N matrix C, where C; is a
measure of similarity between unitsjand .
— Common example is Pearson correlation:
C,-j = Pj-
* Filter elements of C to edges of a network.

Most methods for this step fall into two
categories:

— Topological/hierarchical methods
— Threshold methods



Hierarchical Method: Minimal Spanning Tree

Mantegna 1999



Topological/hierarchical methods

* Advantages

— Useful for obtaining “skeleton” or outline of
important relationships in a system.

— Intrinsically hierarchical.

e Disadvantages

— Imposes topological constraints (e.g., tree
structure with N-1 edges for MST).

— No information about statistical significance of or
uncertainty in the measures Cj.



Threshold methods

* Construct network from edges C; > C,, for
some similarity threshold C..

* How to choose C,?



Select threshold by statistical confidence?




Threshold methods

* Advantages
— Robust to statistical uncertainty.
— No topological constraints.

* Disadvantages

— Difficult to find single appropriate threshold for all
C; that displays a hierarchical structure.

— Fails to take into account heterogeneities in
relationships among nodes.



Statistically-validated networks



Different thresholds for each pair




e Account for heterogeneities among nodes.

* Associate p-value to each entry of C; construct
network using edges with a p-value below a
threshold.



lllustrate method through concrete example:
lagged correlations among returns of N = 100
stocks in NYSE.

Compare results from two datasets:
2002-2003 and 2011-2012.

“Signals” are returns: r, = In(p,) — In(p,_4,)-

“Similarity measure” is lagged Pearson
correlation.



What is Pearson Correlation?




Construct empirical lagged correlation
matrix C;;

At =130 min:
DEVA Day 2
Stock J C I
Stock j e oo
| | | | | | | |
9:30am 11:40am 1:50pm 4:00pm 9:30am 11:40am 1:50pm 4:00pm



* How many shufflings do we need to perform
to validate links with p = 0.017

— |If we were just interested in one pair of stocks, we
would need 100.

— Because we are testing N? = 1002 = 104
hypotheses, however, we need to perform at least
10 shufflings to account for multiple
comparisons.

 Two protocols for multiple comparisons:
Bonferroni (conservative) and FDR (less
conservative).



Bonferroni minimum positive coefficient
FDR minimum positive coefficient
Bonferroni maximum negative coefficient
FDR maximum negative coefficient
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Distribution of lagged correlation coefficients for all pairs of N = 100 stocks at Af = 15
min. Bounds of coefficients selected using both Bonferroni and FDR filtering procedures
are shown.



Bonferroni minimum positive coefficient
FDR minimum positive coefficient
Bonferroni maximum negative coefficient
FDR maximum negative coefficient

Distribution of lagged correlation coefficients for all pairs of N = 100 stocks at Af = 15
min. Bounds of coefficients selected using both Bonferroni and FDR filtering procedures
are shown.



Network formed using returns sampled at At = 130 min.
Transaction data are from 2011-2012.



Network formed using returns sampled at Af = 65 min.
Transaction data are from 2011-2012.



Network formed using returns sampled at Af = 30 min.
Transaction data are from 2011-2012.



Network formed using returns sampled at Af = 15 min.
Transaction data are from 2011-2012.



Network formed using returns sampled at At = 5 min.
Transaction data are from 2011-2012.



Number of positive links

Number of positive links

e=e Bonferroni
e==a [DR
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Positive links, 2002-2003
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Market efficiency: leaders
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Out-degree distributions (FDR networks)



Market efficiency: followers

[ — 2002-2003]
| — 2011-2012|
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In-degree distributions (FDR networks)



Comparison with threshold method

At # pos. valid. (bootstrap) # pos. valid. (normal dist.) # pos. valid (both)
5 min
15 min

30 min
65 min
130 min




Ongoing work

* How might lagged correlations contribute to
phenomena observed using synchronous
correlations?

— Economic sector clustering
 What changes occur during the trading day?



Hierarchical Method: Minimal Spanning Tree
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Intra-day seasonalities

At =130 min:

DEVA Day 2
Stock i

Stock j

| | | | | |
9:30am 11:40am 1:50pm 4:00pm 9:30am 11:40am 1:50pm

|
4:00pm



What changes occur in the course of a
trading day?

-04 -03 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
Coefficient

Correlations between returns in first 15 min. of trading day with
returns in second 15min. of trading day.



What changes occur in the course of a
trading day?

-0.1 0.0
Coefficient

Correlations between last two 15min. periods in the trading day.



Conclusions

 We have introduced a new tool for the analysis of
complex systems.

e Statistically-validated networks are constructed
without imposing any topology, and account for
heterogeneities in relationships among nodes at
the expense of computation time.

* The method is ideally suited to the analysis of
lagged correlations in financial markets. We find:

— Increase in network connectivity with decreasing time
of return sampling At.

— Increase in market efficiency over the past
decade.



Future work

ntra-day seasonalities
Relation to Epps Effect
Hayashi-Yoshida estimator

Prediction model: to what extent are these
relationships exploitable in the presence of
market frictions?

Thank youl!
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Accuracy of a logistic regression trained using 2011-2012 networks and tested on data from 2013.




Epps effect
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Epps curves of all synchronous correlation Distributions of correlations at Af = 15 min.
coefficients.



Frequency (%)
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Motif counts in Bonferroni networks (2011-2012).




Effect of time series length on statistical power at a fixed time
horizon At = 15 min.
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Magnitude of filtered correlations
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Effect of changing time lag at a fixed time horizon At = 15 min.
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Market efficiency
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Degree per link

Out-degree distributions (FDR networks) normalized by total number of links




Market efficiency
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In-degree distributions (FDR networks) normalized by total number of links




