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I1.—A Mathematical Theory of Evolution, based on the Conclusions of
Dr. J. C. Willis, I'R.S.
By G. Upny Yuig, C.B.E., M.A., F.R.S., University Lecturer vn Statistics, and Fellow
of St. John’s College, Cambridge.
(Received June 11, 1923.—Read February 7, 1924.)
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INTRODUCTION.

The following work is founded on that conception of evolution, the most recent and
precise formulation of which is due to Dr. J. C. WiLLis,* and represents an attempt to
develop the quantitative consequences of the conception.

By his statistical studies of distribution Dr. WiLLis was led to two conclusions :—

(1) Species occupying large areas are, on the whole, older than those occupying small
areas, provided that allied forms are compared.

It is to be noted that by the *“ area occupied ” by a species is meant, not the total
acreage actually covered by individuals of the species in question, but the area of the
contour drawn round its outermost stations—the ‘“ areal range ’ of the species as it
might be termed.

(2) The larger genera, i.e., the genera with most species, are, on the whole, those
occupying the larger areas.

The first is the conclusion which Dr. WiLLis briefly summarises as the principle of
“ Age and Area,” the second as the principle of “ Size and Space.” From these statistical
inductions the deduction follows, time being the ruling factor in both cases :—

(8) The larger genera are, on the whole, the older.

* “ Age and Area,’” Cambridge University Press, 1922, and numerous papers therein cited published

during the past fifteen years,
VOL., ¢OXIII,—B. 403, B [Published May 14, 1924.]
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22 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION,

The size of the genus, that is to say, is not an absolute measure of its age but is an
index to it, very much as the total number of children born to a marriage is an index to
the duration of that marriage.

On the Darwinian view that species are continually dying out—that a species rises,
flourishes and dies, superseded by the more advantageous form—a species occupying
a very small area may be young, but it is equally likely or more likely to be old (a dying
species). On Darwin’s own view that the whole body of individuals in a species becomes
altered together,* the young, species must be found occupying a large area at once, and
the species occupying a small area could only be a “ dying ”” species. On the Darwinian
view therefore either there need be no relation between Age and Area, or there would
be a negative relation, species occupying small areas being on the whole the oldest.
Similarly, on the Darwinian view a genus of a few, or of only one, species may be either
young or old—a dying genus—and there need be no necessary relation between Age and
Size. That species occupying very small areas, and the species of monotypic genera
are mainly “relic”” forms, is, I gather, the predominant Darwinian view. Dr. WiLLis’s
conclusions are inconsistent with that view.

We are accordingly led directly to the mutational view of evolution that has been
held by more than one writer both before Darwin and after : the view that specific differ-
ences arise, not cumulatively by the natural selection of slight favourable variations, but
at once per saltum as “ mutations.” On this view a new form must necessarily occapy
a small area, and the required correlation between age and area follows at once. The
new form may possibly differ so largely from the parent stock as to be classed not merely
in a new species, but even in a new genus or a new family. If the new form is badly
unsuited to its immediate surroundings, it will be killed out at once ; natural selection
will strangle the species at birth. But if the species hold out long enough to spread over
any considerable range it is highly unlikely to be extinguished by natural selection, for
it has a chance to find the niches that suit it best. The operation of natural selection,
on Dr. WILLIS’S view, is not denied : what is denied is the origin of species by natural
selection, and what is affirmed is that natural selection operates mainly on the very young
species before it has time to spread. The species that is killed out at birth we may
regard as a non-viable mutation, and non-viable mutations may be to all intents and
purposes disregarded : they are not likely to be seen in life or to be found in the geological
record. When we speak in future therefore of a “* specific mutation ” or of a * generic
mutation ” it may be understood that a viable mutation is implied. If attention is
confined to viable mutations, we have on the present view little or no further concern
with the extinction of species by natural selection, or indeed with any extinction of
species, so long as conditions are constant. It seems doubtful, at the least, whether
we have any reason to predicate death as normal for a species in the same sense that
it may be normal for one of the higher plants or the higher animals.

* Letter to G. Bentham, November 25, 1869 : “° More Letters of Charles Darwin,” vol. I, 379,
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 23

How then, it is naturally asked, do you account for the number of extinct species in
the geological record ? The answer is by their having been killed out; in the main,
as 1t seems to me, by agencies which act less continuously than spasmodically and may
fairly be described as cataclysmic, e.g., the sinking of land under the sea, the onset of
a glacial epoch, or other great change of climate, such as desiccation. I am not for a
moment denying uniformitarianism or demanding catastrophism, but the term
“ cataclysm ” seems to me quite applicable. In the case of land sinking below sea-level
it applies in the literal, derivative, sense. But * cataclysm ” has now come to carry the
meaning of any overwhelming disaster, not a deluge alone, with some implication, I
think, of the disaster being sudden and extensive. Such “ disasters ” as I have in mind
are certainly extensive in their range. They are not ““sudden ” on a scale of time on
which a year is regarded as a long period, but on the geological time-scale they may well
be regarded as sudden. So far as I can judge from the evidence, the age of the flowering
plants is of the order of 100 million years (¢f. Section VI). Suppose this length of time
to be shown on a scale 100 inches long. On such a scale one-hundredth of an inch
represents 10,000 years, and if changes of climate are shown by a curve to such a scale,
a change say from temperate to glacial or from glacial to temperate accomplished in
10 or 20,000 years will appear to be absolutely sudden. This is the order of time
estimated to have elapsed since the culmination of the last glacial epoch.

Now a “ cataclysm ” in the sense explained would kill out the whole or a great part
of the organic life existing in the region over which it swept. It would necessarily act
differentially, for some only of all the species in the world would lie within its range, but
it would not act selectively if the cataclysm was overwhelming and the extermination
complete : the species exterminated would be killed out not because of any inherent
defects but simply because they had the ill-luck to stand in the path of the cataclysm.
Only in so far as extermination was not complete there would be selective action, the
species surviving being on the whole the fitter to survive in the new circumstances.
But even so, the selection would be only interspecific, and selective of already existing
species.

If we then put aside for the moment “ cataclysmic ”” destruction of species, we may
consider ““free ” or undisturbed evolution as proceeding without any species being
killed out or ““ dying ” out, the number of species continually increasing without a break
as mutations occur.

With this brief introduction, the assumptions made for the mathematical work may
be stated as follows :—

(1) Within any species, in any interval of time, an * accident ” may happen that
brings about a (viable) “ specific mutation,” 7.e., the throwing of a new form which is
regarded as a new species, but a species within the same genus as the parent.

The chance of this occurrence in any assigned interval of time (an hour, or a year or a
century) is taken as the same for all species within the group considered and as constant

for all time.
E2
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(2) Within any genus, in any interval of time, an ““ accident ” may happen that brings
about the throwing of a (viable) ““ generic mutation,” i.e., a new form so different from
the parent that it will be placed in a new genus.

The chance of this occurrence in any assigned interval of time is similarly taken as
the same for all genera within the group considered and as constant for all time.

These statements call for some comment.

(¢) The assumptions that the chances of specific (or generic) mutation are identical
for all forms within the group considered and constant for all time are unlikely to be
in accordance with the facts, but have to be made to simplify the work.

(b) The chance of a generic mutation or a specific mutation occurring is not taken as
dependent on the number of individuals in the genus or species. It cannot be said with
certainty whether it 1s so dependent or no till we know the nature of a mutation, though
there very probably is such dependence, and there must be dependence if the *“ accident
that brings about a mutation is of the nature of a breakdown in the mechanism which
forms the germ-cells. But in any case, and apart from the great additional complexity
it would introduce, I was compelled to ignore the number of individuals as I could feel
no confidence in any assumption as to the function which number of individuals, that
is the ““ size of the species,” would be of the age of the species. At first, as the species
spreads, the number of individuals must tend to increase. But over the very long
periods which have to be considered there must be a countervailing tendency to ultimate
decrease in the number of individuals, owing to the increase in the number of species.
The area available being limited, the tendency, as it seems to me, must be towards greater
and greater numbers of species and fewer individuals in each.* Possibly the fact that
ignoration of the number of individuals leads to results in close accordance with the data
may only indicate this tendency first to increase and then to decrease in the size of the
species.

(¢) The possible effect of size of genus (number of species in the genus) on the chance
of a generic mutation is also ignored. This assumption may or may not be correct, but
was deliberate. The generic characters are regarded as representing a main position
of stability, and the chance of occurrence of a transfer from one main position of stability
to another is regarded as independent of the number of minor positions of stability
(species) which may have been taken up within the main position (genus).

(d) If A, B, C, D are the existing genera and one of them throws a generic mutation,
it is assumed that this will represent a new genus E. The possibility is ignored that A,
for example, may throw a generic mutation which will be classed under the already
existing genus B. Again this is an assumption based on complete ignorance : it seems
the simplest assumption that one can make, and that is all that can be said.

We are completely ignorant as to the nature of specific mutations, and if my conclusions

* During the discussion on Darwinism at the Hull mecting of the British Association, 1922, the point
was made that indefinite increase in the number of species was impossible owing to the limited space
available, I see no practical limit to the number of species, but only to the total number of individuals.
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as to their extreme rarity are correct I do not think we are at all likely in any near future
to obtain direct information as to their nature. The whole scheme has therefore, I
think justifiably, been simplified to the greatest possible extent to enable us to get a
first notion, in quantitative terms, of the possible consequences of the conceptions, and
to compare them as far as possible with the facts.

I will now endeavour to summarise the conclusions reached in general terms which
I hope may be comprehensible to the non-mathematical biologist. The conclusions
result, of course, from the assumptions, and simply exhibit their consequences. In
so far as the deductions do not agree with the known facts, the assumptions are probably
incorrect or incomplete. In so far as we find agreement, or the more nearly we find
agreement, the assumptions are probably correct. It is only by a full development of
the consequences that an effective test of the assumptions can be made.

In Section I the question is considered, what is the average law of increase of the
number of species within the genus. Within any single genus, starting at zero time
from one primordial species, the increase in the number of species will, of course, proceed
with complete irregularity, the occurrence of specific mutations being assumed a matter
of chance. But if we suppose some large number N of primordial species, each belonging
to a different genus but similar in so far that we can take the chance of a specific mutation
occurring as the same for all (¢f. above, p. 23), to start together at zero time, we can
then ask what is the average law of increase. The answer obtained is that, on an average,
the number of species (that is the size of the genus) increases in geometric progression :
if at zero time there is 1 species and at time 1 there are 2 species, at time 2 there will
be 4 species, at time 3 there will be 8 species, at time 4 there will be 16 species and so
on, the number of species, on an average, doubling in successive equal intervals of time.
This law is important : for it suggests the ““ doubling-period for species within the genus
as a natural unit of time in investigations of the present kind. Specific mutations may
occur much more frequently within one group than another, and the doubling period
will then be much shorter in the first group than in the second; but if in each case we
take the doubling-period as the unit of time matters are reduced to the same relative
scale and will proceed pari passw in the two groups. In most of the following work,
consequently, the doubling-period for species within the genus is taken as the unit of
time and it must be remembered that in terms of years it varies from group to group.

But the above law is only an average. The further question therefore arises, what
is the “ frequency distribution,” as the statistician terms it, of the sizes of these N genera,
which all started as monotypic genera from primordial species at zero time, after any
given time has elapsed ? It is not enough to say that after one doubling-period the average
size of a genus will be 2 species : we want to known how many of the genera have
remained monotypic, how many of them have become ditypic, how many have become
genera of 3, 4, 5 species, and so on. The answer obtained to this question is that the
proportional frequencies of genera of 1, 2, 8 species may be expected to form a descending
geometric series (i.e., a series with a common ratio less than unity). After one doubling
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interval the frequencies should be proportional to %, 1, %, {, and so on, the common
ratio being § : after two doubling-periods the series should be }, ¥, ¢%, and so on, the
common ratio being 2 ; if @ is the first term of the series the common ratio must be
(1-@) to make the sum of the series unity. Clearly we are not in a position to compare
this deduction with the facts, for we cannot pick out any group of genera, let alone a
group of similar genera, which are all precisely of the same age.

We have, therefore, to proceed to the much more general problem. In the above,
generic mutations are ignored, attention being fixed on the primordial genera alone.
But during the long lapse of time generic mutations as well as specific mutations will
be thrown, and any observed distribution will include both the derived and the pri-
mordial genera : what will be the form of the distribution of size of genus in the resulting
aggregate ! This question is considered in two successive sections of the paper. In
Section II the limiting form is found when the time elapsed from the beginning of evolu-
tion is taken as infinite, and then in Section III the practical problem is solved for finite
time. The mathematical results here are complicated : I would refer the non-mathe-
matical reader in the first place to Table II, p. 43, where a series of calculated distri-
butions is given. Kvolution is assumed to start as before at zero time, and the form
of the frequency distribution for size of genus is shown at times (expressed in terms of
doubling-periods for species within the genus) 1, 2, 3, 4, 5, and 6-28 (the time found
for a certain case below), the table concluding with the limiting form of distribution
when an infinite time has elapsed.

To render the distributions comparable, the number of genera at each stage has been
taken as 1,000 ; as the figures are rounded off to the nearest unit they are necessarily
subject to abrupt variation in the tail of the distribution. Besides the time, it is
necessary to fix one other quantity in order to determine the distribution, namely the
ratio p of the chance of a specific mutation occurring in a given small interval of time
to the chance of a generic mutation occurring in the same small interval of time : this
has been taken at its value in an actual case (the Chrysomelid beetles, Tables IV, V,
pp. 54, 56, and Appendix, Table A, p. 85), namely 1-925. Those who are familiar with
the forms of distribution found in practice, or will refer to the typical tables given in
the Appendix, will see that the distributions of Table IT are at least of the right form
so far as the eye can judge : monotypic genera are the most frequent, ditypic genera less
frequent, tritypic genera less frequent still, and so on, the numbers gradually tailing away
as the size of genusisincreased. The length of this “ tail ” grows very rapidly with time,
and the fully characteristic form (at least for such tables as those given in the Appendix)
is not reached until two, three or more doubling-periods have elapsed. Thus after one
doubling-period the percentage of monotypes is as high as 57, and only some 3 per 1,000
of all genera have 9 species or more. After two doubling-periods the percentage of
monotypes has fallen to 42 and some 5 per 1,000 of all genera have 17 species or more.
After three doubling-periods the percentage of monotypes has fallen further to 37, and
there is a considerable proportion of the larger genera such as we seem more usually
to find.
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The mathematical form of the distribution may be better illustrated graphically.
If we form a chart in which the number of genera of a given size is plotted vertically and
the size of the genus horizontally, not to ordinary scales but to logarithmic or ratio
scales, that is scales on which numbers that bear equal ratios to each other (like 1, 2, 4,
8, 16) stand at equal distances apart, the resulting points in any actual case run rather
irregularly but fairly closely round a straight line, usually up to genera of 30 species
or so, sometimes even up to genera of 100 species or more, after which the points fall
rather abruptly away from the line. Three specimen charts so drawn are given in figs. 1,
2 and 3 (pp. 45, 46), to which the reader should refer, as well as to the adjacent explanatory
text ; two others will be found on pp. 241-2 of  Age and Area.” If, now, similar charts
are drawn for the calculated distributions of Table II they will be found to run as in
figs. 4 to 9, pp. 47-49). It will be seen that at first, when time is very short—no more
than one or two doubling periods-—the graph drops away rapidly ; but as time is increased
the graph soon takes on the form noted for actual data, at first nearly straight and
then falling away rather abruptly. For the longest time considered, 6-28 doubling-
periods, the point at which the abrupt fall begins lies outside the chart on the right.
So far as the graphic test goes, accordingly, the theory gives very well indeed precisely
the form of distribution required.

In Section IV the test of agreement between theory and fact on this point is completed
by fitting a calculated distribution to the actual distribution in four cases. To fit a
given distribution, we require to determine from it the two constants that determine
its form, the time « (in doubling-periods) elapsed since the commencement, and the
ratio p of the chance of a specific mutation to the chance of a generic mutation : we also
require the initial number N, of primordial genera, which determines the total number
of genera existing.  The first two constants are found from the proportion of monotypes
and the mean size of genus in the data : N, is then given by the number of species (or
genera) in the data.® The reader will find the results in Tables V to VIII (pp. 56-58) and
the values of 7, p, and N, in Table IV (p. 54). The numbers of monotypic genera
observed and calculated must agree within a decimal point or so owing to the method
of fitting : but I think the reader who studies Tables V to VIII will admit that the agree-
ment between observation and calculation is throughout extraordinarily close. It
1s in fact better than one has any right to expect. I admit very considerable difficulties
of interpretation and would refer to the discussion on pp. 58-62. Here I would only
direct attention to the rather large number of primordial genera found in each case
(Table IV, line 7, p. 54) : to the comparatively limited range of values of = (4-26 to
628, sbid. line 5): and to the comparatively limited range also of the values of o
(1-188 to 1-925, sbid. line 6).  Subject to the admitted difficulties of interpretation,
the results of this test, on the one point on which direct comparison can be made with
the facts, could hardly be better.

* If there are N genera in the data, and one primordial genus would only yield # genera after the given
lapse of time, we must have Ny = N/n.
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The next point considered (Section V) is the frequency distribution of ages for genera
of a given size : given, that is to say, N existing genera all of the same size, we require
to know how many of them are likely to be of each successive age. The non-mathe-
matical reader will do best to turn first to fig. 10, p. 66, showing the limiting forms of these
distributions for genera of 1 to 10 species after an infinite time has elapsed from the begin-
ning of evolution : ¢ is taken as 15, and the unit of the scale of time is the doubling-
period for species within the genus as usual. - For monotypic genera the curve is a simple
logarithmic curve, falling way steadily from age zero: the most probable age of a
monotypic genus is zero, though the average age is, of course, something greater. For
the ditypic genera the form of the distribution is quite different. The curve rises abruptly
from zero to a maximum at a certain ““ modal ”’ (most frequent) age, in this case 0-68
units as shown in Table IX, p. 67, and then falls away to a long tail. For the tritypic
genera or genera of three species the form changes slightly again, the curve not rising
from zero abruptly but starting tangentially to the base. The maximum frequency
is reached at a mode of 1-14 units and then falls away again. For larger genera the
form of the distribution remains the same, but the mode and mean are thrown further
and further towards the right, increasing with the size of the genus. It will be noticed,
however, that the increase in the mean, which is at first fairly rapid, gets slower and
slower : the distribution for genera of 4 species is evidently pushed more to the right
as compared with the distribution for genera of 3 species than is the distribution for
genera of 10 species as compared with the distribution for genera of 9 species. The means
are tabulated in column 2 of Table IX for genera of 1 to 10 species, and thence by intervals
of 10 to genera of 100 species, and these bring out the point very clearly.

The mean age of monotypic genera, in the given case, is 0-87 of a unit, of genera of
10 species 3-22 units, giving an increase of 2-35 units of age for an increase of 9 units
in the size of the genus. But a further increase of 10 units in the size of the
genus only gives a mean age of 4-14 units, or an increment of 0-92 unit of
age, and the next increment of 10 units in size of genus only gives an increment
of 0-56 unit of age, and so on. For the larger genera of, say, 10 species and
over, the mean age varies nearly as the logarithm of the size : v.e., if we increase
the number of species in the genus from s to s* we must multiply the mean age
by o (or a value very near it). Thus the mean age of genera of 100 species
(6-40) is not 10 times but barely twice the mean age of genera of 10 species (3-22),
since 100 is 102. The reader should note this approximate result and also how very
largely the successive distributions of fig. 10 overlap each other. Apart from a further
complication introduced when time is limited and not infinite, they suggest that, if
we want to compare say areas occupied by genera of different sizes, (1) we should group
the genera, not in groups of 1-10, 11-20, 21-30, etc., species, but in groups round
2,4, 8, 16, 32, 64, 128, etc., species or some other series in geometric progression ; (2) we
must have as many genera as possible in each group in order to average out their varying
ages ; and even so (3) we must expect considerable fluctuations of sampling as the ages
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of genera even of one and the same size differ largely inter se. The chart, fig. 10, is
drawn, as stated, for p = 1-5. A larger value of o would give rather more scattered
distributions with higher means and modes, but the general forms would remain the
same. Conversely, a lower value of p would give more contracted distributions with
lower means and modes.

When only a limited time has elapsed since the commencement of evolution, matters
are not quite so simple. After an infinite lapse of time the number of derived genera—
genera, which have arisen by generic mutations—becomes indefinitely great as compared
with the number of the primordial genera, which are, so to speak, lost in the mass. The
age distributions are, therefore, simply the limiting forms of the age distributions of
derived genera. When time is limited, and as we have seen the four illustrations taken
show times varying only from 4-26 to 6-28 doubling-periods, the genera really form two
distinet groups: (a) the derived genera, for which the frequency distributions of ages
are of the forms shown by fig. 10, but truncated at the assigned time, say , since the
age of a derived genus obviously cannot exceed +; (b) the primordial genera, all of
age 7. The larger a genus, the greater is its probable age, and the greater therefore is
the probability that it may be a primordial genus.

Table X and fig. 11 illustrate the case, using the constants found for the Chrysomelid
beetles (Table V, p. 56). Turning first to Table X (p. 70), columns 4 to 7 give the essential
figures : first, the mean age of the derived genera (column 4), then in columns 5 and 6
the proportions of derived and primordial genera respectively (or if we prefer to read
it so, the chance that a genus is derived or primordial, terms which apply even if there
is only one primordial genus), and finally in column 7 the mean age of the derived and
primordial genera together, found from the figures of the three preceding columns.
Thus for the monotypic genera, the most probable distribution is a proportion 0-9961
of derived genera of mean age 0-94, and a proportion 0-0039 of primordial genera all
of age 628, giving a mean age for the entire aggregate

(0-9961 X 0-94) 4 (0-0039 X 6-28) = 0-96.

The proportion of primordial genera, or the chance that a genus may be primordial,
increases rapidly with the size of the genus. For the monotypic genera it is only 0-0039,
for genera of 10 species 0-0842, for genera of 60 species 0-5045, for genera of 100 species
0-6549. Itisroughly an even chance accordingly that a genus of 60 species is primordial ;
and the odds are nearly 2 to 1 (65 to 35) that a genus of 100 species is primordial.

Fig. 11, p. 71, shows the frequency distributions of age for genera of 1, 2, 3, 10, 60 and
100 species. The distributions for the derived genera are of the general forms shown
In fig. 10, but rather more scattered, since p is larger, and truncated at the limiting age
6-28 : the area is also reduced from unity to the value given by the figure in column 5
of Table X. The proportion of primordial genera is shown by a square to the right of
each distribution, the area on the same scale being given by the figure of column 6,
Table X, so that the area of the curve and the square taken together is equal to unity

VOL. CCXIIL—B. F
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Tables XI, XII and XIII, pp. 72, 74, give similar information for the three other
examples and are illustrated similarly by figs. 12, 13 and 14, pp. 73, 75. The reader
should refer to the adjacent text.

In the concluding section, VI, an attempt is made to estimate the order of magnitude
of the doubling-period in the case of the flowering plants, and the present rate of occur-
rence of specific mutations. It will be remembered that in Section I it was found that
the law of increase for species within the genus was geometric, the numbers tending to
double in successive equal intervals of time, so that this ““ doubling-period ” could be
taken as the usual unit of our scale. In the entire aggregate of genera and species evolving
from one or more primordial genera this law does not, on the given assumptions, hold
good, but the divergence is only marked during the earlier stages of the evolution. The
total number of species in the aggregate more than doubles during each successive
doubling-period for species within the genus, but the ratio rapidly falls and tends to
approach 2 more and more closely. If the reader will refer to the figures in the last
column of Table XIV, p. 78, giving to the nearest unit the total number of species
in such an aggregate at successive units of time when ¢ = 1-5, he will see that after
some 5 or 6 doubling-periods the law approximates fairly closely to the geometric law
of increase with a common ratio of 2. It was judged sufficient therefore to assume, for
the rough estimation required in this section, that within the aggregate as within the
genus the law might be taken as of this simple form.

On this assumption an estimate of the doubling-period is not difficult if we can fix :
(1) the approximate age of the flowering plants, (2) the number of existing species.
The latter Dr. WiLLis has placed at roundly 160,000 ; the former I have taken as
roundly 100 million years. On this basis, if evolution has proceeded freely and without
any destruction of species, the doubling-period works out at roundly some 6 million
years, and the present rate of production of (viable) specific mutations at 1 in some 50 or
60 years, amongst all species of flowering plants on the whole surface of the globe (Table
XV, section 1, p. 81).

Destruction of species will clearly tend to lower our estimate of the free doubling-
period and raise our estimate of the present rate of production of specific mutations,
for if species are destroyed from time to time by cataclysms or otherwise the rate of
production during the undisturbed intervals must be increased in order to give the
required final number of 160,000. The important question, therefore, arises how far
variations in the time-incidence of destruction, a subject on which we have little know-
ledge, may also affect our estimate. On this point the interesting conclusion is reached
that variations in the time-incidence have no effect, so long as the chance of a species
surviving from zero time to the time of observation is kept constant, on the estimate of either
the doubling-period or the present rate of production of specific mutations, but only
on the estimated number of species killed-out. If we fix the number of extinct species
but alter the time-incidence of destruction, assuming first, for example, that the
killing-out has been effected almost continuously throughout the lapse of time and then
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that it has been effected by a series of highly destructive cataclysms occurring at intervals,
we will arrive at different alternative estimates for the doubling-period and the rate of
production of specific mutations at the present time. If, on the other hand, we fix the
chance of a species surviving from zero time to the time of observation, an alteration
in the time-incidence of destruction will vary the estimated number of extinet species
alone.

In sections 2 to 5, Table XV, a series of comparisons is given on the first method.
In each section of the table two cases are taken, in the first of which the destruction
of species is cataclysmic, in the second continuous and of such severity as to give the
same total of species killed-out ; the severity of the destruction is raised from each
section of the table to the next. I need hardly say that no importance is to be attached
to the precise number of cataclysms taken and the (very large) proportion of the then-
existing species killed-out by each : the scheme is simply so arranged as to illustrate
the effect of very different time-incidences of destruction.

Of the four columns on the right of Table XV, the first gives the number of species
killed-out. ~The second shows a chance that I have termed for brevity in the heading
the chance of a species surviving for 10 million years : it is, in fact, the tenth-root of the
chance of a species surviving for the whole period of 100 million years, which we have
assumed is the time elapsed since the genesis of the flowering plants. If p is the chance
of surviving 10 million years, p? is the chance of surviving 20 million years under the same
conditions, 3° the chance of surviving 30 million years, and so on: since p'® in several
of the examples is vanishingly small, it is more convenient to give p.  The third column
gives the doubling-period, and the fourth the present rate of production of specific
mutations. By increasing the destruction of species (section 5) to such an extent that
over 700,000 must have been killed-out, which would require if there had been 100
equally destructive cataclysms that each should have killed-out no less than one-third
of the then-existing species, the estimated length of the doubling-period has been lowered
to a little over one million years, and the estimated rate of production of specific mutations
raised to 1 in some 10 or 12 years : it makes no practical difference whether the killing-
out has been continuous or cataclysmic. But there is little to guide us as to the where-
abouts of the truth on the scale of results from section 2 to section 5 of the table, except
one broad consideration. We know that the chance of a species surviving over the whole
100 million years must be practically zero—a vanishingly small quantity. We also
know, from such cases as Ginkgo, that a species may survive for enormously long periods
of geological time. It therefore seems probable that sections 2 and 3 underestimate
the amount of extinction, for they give too high a value for the chances of survival ;
while section 5, it seems probable, overestimates the amount of extinction, giving too
low a value.

The tentative conclusion is confirmed by sections 6 and 7 of the table, based on a
table of Mrs. CLEMENT REID’S (reproduced on p. 83 below) showing the approximate
percentages of species which have become extinct in certain deposits of various ages

F2

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp
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in the Pliocene : they suggest a figure somewhere between 1-7 and 3-2 million years
for the doubling-period, and between 1 in 15 years and 1 in 29 years for the present rate
of production of (viable) specific mutations. The reader should refer to the more detailed
discussion at the end of Section VI of the paper.

Considering the roughness of the basis the final conclusion is extraordinarily definite,
and leaves no doubt as to the order of magnitude of the required figures. To quote
from p. 84, ““ If the age of the flowering plants is 100 million years, or thereabouts, the
doubling-period for species is probably of the order of some 2 or 3 million years : it is,
say, almost certainly over 1 million and less than 6 millions. The present rate of pro-
duction of (viable) specific mutations, amongst all flowering plants on the whole surface
of the globe, is almost certainly less than 1 in 10 years and more than one in 60 years :
it probaby lies between 1 in 15 and 1 in 30 years.” The results are, of course, of the
nature of averages, since the flowering plants are a very heterogeneous group.

It is clear that specific mutations must be events of the very greatest rarity ; and no
argument, as it seems to me, can be based on the fact that we have no knowledge or
experience of such phenomena. My work on the point entirely confirms the conclusion
of Dr. WiLL1s.*

If any conclusions stated in this Introduction or in the body of the paper seem to be
too confident, or at all dogmatic, I hope the reader will attribute the appearance to
inadvertence of wording, or a simple desire to avoid the wearisome reiteration of qualifying
phrases. I have no desire at all to be dogmatic: but Dr. WiLLis’s conclusions do
appear to me to explain a great range of facts, to be natural and reasonable in themselves,
and to present for the first time a conception of evolution at once so simple and so
definite that it can be expressed—even if only roughly owing to the gaps in our knowledge
—in quantitative terms, and quantitative deductions drawn. Admitting all the diffi-
culties of interpreting some results (Section IV)—and as I have said, they are considerable
—these may yield to further work, to the co-operation of biologists with more competent
mathematicians, or more likely still to the mathematically trained biologist. I may
be optimistic, but it seems to me that the future holds the possibility of great develop-
ments.

To Dr. Wirtis himself my acknowledgments are difficult adequately to express.
The paper is founded on his work, but would hardly have been carried through without
the encouragement and stimulus of personal intercourse. I have, in particular, to
thank him for placing at my disposal the data given in Tables A to E of the Appendix
and utilised as illustrations.

* ¢ Age and Area,’ p. 212.
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1. THE INCREASE IN THE NUMBER OF SPECIES WITHIN THE GENUS WITH TIME, AND
THE FREQUENCY DISTRIBUTION OF SIZES OF GENERA ALL OF THE SAME AGE.

Let the chance of a species “ throwing ” a specific mutation, 7.e., a new species of the
same genus, in some small assigned interval of time be p, and suppose the interval so
small that p* may be ignored compared with p. Then, putting aside generic mutations
altogether for the present, if we start with N prime species of different genera, at the
end of the interval we will have Ng genera (¢ = 1—p) which remain monotypic and
Np genera of two species.

The new species as well as the old can now throw specific mutations and the matter
becomes more complex. Of the Ng monotypics a proportion g will again fail to throw
in the second interval and we will have, at the end of the interval, Ng monotypics.

Of the same Ng a proportion p will throw, contributing Npg to the genera of 2 species.
Of the Np genera already possessing 2 species at the end of the first interval, a proportion
g% will fail to throw from either of the species they already possess, giving Npg? genera
of 2 species at the end of the second interval, or a total of Npg (1-+¢) ditypic genera
(¢f. the scheme below).

Of the same Np genera that already possessed 2 species at the end of the first interval,
the proportion in which one or other will throw a new species in the second interval is
2pq, the second term in the expansion of (¢-+p)?, giving N. 2p%¢ genera of 3 species.

The proportion in which both of the two will throw a new species is p? giving Np?
genera of 4 species.

Proportional frequencies of numbers of genera with 1, 2, 3 species after 0, 1, 2, 3 intervals
of time, the genera being initially monotypic.

Intervals of Time.

Number of species
in the genus.

@ ... e

pg+q.. )

2p%q e 29°2 (L 4 q 4 ¢%)
PP PP (1 g+ 6¢ + @)

R A A

PET T Tsw

Q=T T O DO =

PEo
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The work may be continued on the same simple lines. Thus at the end of the third
interval, omitting the common factor N, we will have genera—

With 1 species : ¢*Xgq . . . . . . .. 0. ... g
With 2 species :

From the 1’s : ¢2Xxp

From the 2’s : P (1"i"fl)><([2 } .......... pq2 (l+q+q2)
With 3 species :

i‘ﬁ i}}i ?,Z 220%2;12%) e } ---------- 2p°¢* (1+9+4°)
With 4 species :

From the 2’s : pg (14-¢) X p?

From the 3’s : 2p%¢ < 3pg? } .......... g (1-+9-+692+-¢°)

From the 4’s : p* X ¢ ,
With 5 species :

From the 3’s : 2p2q X< 3p?

From the 4’s : p]so;(l 4qu ! } ---------- 2p'* (3+29)
With 6 species :

From the 3’s : 2p?¢ X p?

From the 4’s : 7% X 6p*¢? } ........... 2p%q (1+-3¢)
With 7 species :

Fromthe4’s : p*X4p®q . . . . . . . . . ..o 4p'q
With 8 species :

Fromthe4’s: p*Xp* . . . . . . .« . ..o P’

The formulse, summarised in the scheme above, may be verified by checking that they

total to unity in each column.

We must now proceed to the limit, taking the time-interval A¢ as indefinitely small
but the number of such intervals n as large, so that the time n . At =1t is finite. We

may write
pn = st

p=s.Al
and we have the usual approximation
= (1—p)* = (1—st/n)" ~ e~
Omitting the common factor N, the first term is ¢* or in the limit e™
the proportional frequency of monotypic genera at time ¢,

fl — g5t

As regards the second term, after # intervals we have
Pt Q4+t .. ) = ¢ Ay

oooooooooooooo
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or in the limit, f, being the proportional frequency of genera with 2 species at time ¢,

fo=et(l—e™). . . ... ... (2

But this expression may be derived by a process which is more convenient for the
higher terms. If ,f,, ,,.f; are the proportional frequencies of ditypic genera after
n and n - 1 intervals respectively, and so on,

n+1f2 - pnfl + q271f2'

7z+1f2 - nf2 - pnfl _I— ((12 - 1)'/lf29
or in the limit, putting p =s.dt, ,fi=e, 1 — @ =2p=2s.dt

if_Z_ _ J— —st
dt—[ 2s . fy=s.e",

&dz (62stf2) =g .e"

f2 = -5t + Ce—Zst.

But when # is zero f, must be zero, and therefore C must be —1, so that finally
fo= e (1—e)

That is

as before.
Considering f, in the same way, we have

n+1f3 - 2_pq;r,f2 »{” qgn,f:{-

Or proceeding to the limit, when 1—¢* = 3p and pg=p
df + 3sf; = 2s (7t — &™),
dt
L
dt

.fS J— e—-st o 26—2st + C 63.—3“.

Since f, must be zero when ¢ is zero, C must be + 1, and therefore finally

() = 25 (e — e,

fi=est(l—e™ . . .. ... ... .. .. (3)
Evaluating f, in the same way we find
fi=et(l—e™)® . . ... B €3

The general form of the law is now obvious. We have

j‘l — g%t
fo=e(1—e)

fa=et(1 —e )2 . (5)

e

fn — g5t (1 _ e-st)‘)l"1 J
That is to say, if N prime genera start together at zero time when they are all mono-
typic, after time ¢ we will find the numbers that have 1, 2, 3, . . . species given by a
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36 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION,

geometric series of which the common ratio is 1—e™*, s being a constant proportional
to the chance of a specific mutation occurring in a given time.

The sum of the series (5) to infinity is unity as it must be. As regards the mean,
consider the general geometric series

S=1-F7-fr2+r -+ .
where S 1s the sum to infinity. We have
dS/dr = (1 — )2 =1 - 27 - 31* +-
which is the first moment about zero, so that the mean is 1/(1 —#). Therefore the
mean of (5), say M, is given by
My=e" . ... (8

That is to say, while the number of species within any single genus increases, of course,
quite irregularly as chance mutations occur, the mean number within a group of genera
all starting at the same time increases as an exponential function of the time.

As regards the increase in the number of genera, the whole process will proceed on
precisely the same lines. If N genera, belonging to distinct families, start simultaneously
at zero time, at time ¢ the numbers of families with 1, 2, 3, . . genera will be given by
N multiplied by the successive terms of the series

= )
fy = €79 (1 — e™%) !
fom e —ee g
f e L]
where ¢ is a constant proportional to the chance of a generic mutation (or mutation
from genus to genus) occurring in a given time. The mean number of genera in a family
at time ¢ in these circumstances will be given by

M,y=e" ... oo e (8

the mean increasing as an exponential function of the time.

The series (5) gives the frequency distribution of sizes of genera for genera all of the
same age {. We have next to proceed to the question, what is the form of the frequency
distribution for genera of all ages ? If we start at zero time with a group of monotypic
genera, both generic and specific mutations will be thrown as time goes on. At time ¢
therefore we will actually observe, not merely the frequency distribution of the sizes
of the primordial genera as given by (5), but.the frequency distribution of the primordial
and the derived genera together, and it is this frequency distribution which is now
required. We will first consider the limiting form of the distribution when the time
¢t is infinite, and the primordial genera become practically negligible in numbers as
compared with the derived genera.
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II. Tug Limitine FforM oF THE FREQUENCY DISTRIBUTION FOR THE SIZES
orF DErRIVED GENERA WHEN TiMe 1s INFINITE.

We first require to know how many out of the totality of genera existing at any given
time, say T, are of any assigned age . From (8) the total number of genera at time
¢t is Ne#t.  The number coming into existence during the interval 41d¢ round time ¢ is
therefore Nge#* dt, and the number of age = at time T is

Ng /0= d,

The proportion aged x at time 'I' is therefore ge™** dx. Note that these are the derived
genera only, ignoring the prime genera with which we started ; but, as stated at the
end of Section I, since we are going to take time as infinite the number of derived genera
will be infinitely great as compared with the number of primordial genera, and the latter
may legitimately be ignored during the present stage of the work.

We have now got to take the series (5), writing  for ¢ throughout, term by term,
multiply each term by ge " dz and integrate from zero to infinity. The first term will
give

gl e de =g+ rt=04e)" ... .. ... 9
JO
where

e=s8lg. .. .. ... ... .(10)

As we can only suppose that specific mutations are more frequent than generic mutations
e must be greater than unity.
The second term will give

D
g j J],e~(_(/+s)w . 6—(//+23)z} dx
0 L

=gllg+ 87" —g -+ 257"]

=ol+e)td+2) ... (1LY
Proceeding similarly for the further terms we find for the limiting form of the frequency
distribution of sizes of genera of all ages after infinite time the series

l N
T
] P

T T
f::]' 0 2 T € )|
S o T 1211 3 l
A P 2 (=1

Tl el 42143 1+ mne

The series has been written in the form most convenient for caleulation : the fractions
/(1 +¢), o (1 4 20), ete., are first run out on the calculating machine and f,, f.. f; - ..
are then obtained by successive multiplication.
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The series can be summed to #» terms. We have

(m—1)e
‘fnm 1—}-7/&9 f—-l)

(1 '{" P)fn - ’ﬂ, o 1 (fn- f)
1+ P)fn_l = (n—2) P (foca—fuld)

1‘5‘ Ve = P(f1 — fs)
(1 +e) f1 = 1.
Hence if S, 1s the sum of the first n terms
(I+)8,=1+e(fit+fat oot fui)) —(r—1)0f,
=1-+4p8,—oenf,

S,=1—opnf. . . . . . . . ... ... (13)
This result (which with much of the following I owe to the kindness of Mr. F. P. White,
Fellow of St. John’s College) is exceedingly useful for checking calculations : it also
follows from it at once that S, is unity, as it should be.
The series may be written in the form

1 P 1. 2¢?
1 S
1+p{ +1+29+(1+20)(1+3p) | }

e IR
=21ty +Y(\(Jrl)Jr

where y = 2-p~1. Apart from the common factor, the series is therefore a hyper-

geometrical series in which

or

or

w=f=g=1
Yy =2+
1.2 1.2.3...(n—1)
n — . . .. (14
Y ) AR VS | Y e e
giving the first moment of (12) about zero. In this series
y—2

12—

Consider the series

1+2 Y D ..

U1 —
n

As y > 2 the ratio exceeds unity, only approaching it as » increases. But

it )

which is less than unity, so the series (14) is divergent. The frequency distribution
given by the terms of (12) is therefore one of those paradoxical distributions in which,
though the median, etc., are finite, the mean is infinite. This is, of course, as it should
be, for on our assumptions the mean size of a genus after infinite time must itself be
infinite.
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Since the limiting distribution (12) is the foundation of all subsequent work, even
when time is limited and not infinite, it may be as well to examine its form in some
detail. It evidently gives, as required by all the data for size of genus that have yet
been tabulated, a distribution with a maximum frequency for monotypic genera, the
frequency tailing off at first rapidly and then more slowly as the successive multipliers
(n — 1) p/(1 4 np) approach unity. The greater p, the smaller is the frequency of mono-
types and the more slowly do the frequencies fall away. Table I shows the values
of the successive terms (giving only every tenth term after f,) for p = 1-925, the value
suggested by the Chrysomelid beetles (cf. below, p. 54).

TaBLE I.—Values of 107, in the p-series (12) and of — A logf,/A logn,

for p = 1-925.
' 107 £, — A logfu . 107 f. —Alogfn
Alog n Alog n

1 341 8803 1-3331 15 7 3329 1-4951

2 135 6948 1-3939 16 6 6584 1-4965

3 77 1107 1-4244 17 6 0810 1-4978

4 51 1856 1-4430 18 5 5820 1-4989

5 37 0945 1-4554 19 5 1475 1-4999

6 28 4489 1-4644 20 4 7663 1-5008

7 22 17002 1-4712 30 2 5906 1-5068

8 18 6515 1-4764 40 1 6786 1-5099

9 15 6744 1-4807 50 1 1982 1-5118
10 13 4103 1-4841 60 9095 1-5131
11 11 6414 1-4870 70 7202 1-5139
12 10 2285 1-489 80 5883 1-5146
13 9 0789 1-4916 90 4922 1-5152
14 8 1288 1-4935 100 4196 1-5156

Consider the approximate form of the tail of the distribution. We have

£, = (n —1)!pmt
"o 4e) (L H4-20) ... (1 mp)
o (n—1)!
Celmte) (n—14pT) @ Fe )M FeY)
_ (@ +e™) I (n)

P I'(n-+1-e71)
If n be large, we may write by Stirling’s theorem
log I' (n) ~ (n — %) log n — n + 1 log 2n
logT'(n +a) ~ (n-+a—3%) logn (1 +a/n) —n(l + a/n) + 1 log 2~
~n-+a—13)logn —n-+§log2n
where ¢ is assumed small compared with # : whence in the limit

f - (1471 n-@+e7h
P

a2
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This formula holds fairly even for moderate values of %, the approximation rapidly
becoming exceedingly close, as shown by the following comparison with the true
values of f, as given by (12) in Table I:

Value of f, as given by
n (12) (15)
10 0-013 410 0-013 932
20 0-004 766 0-004 860
50 0-001 198 0-001 208
100 0-000 4196 0-000 4212

It follows that, if we plot log f, to log n, the resulting points lie nearly on a straight line :
how nearly is shown by the dotted line in figs. 4-9, in which log f, is plotted to log » for
the data of Table I. The dotted line is actually concave towards the base, but the
curvature is so small that it is hardly appreciable to the eye, and for no statistical data
which followed the law would such a divergence from linearity appear significant.
The values of — Alog f,/A log n given in Table I bring out better than the charts the
gradual increase in the slope of the curve, and the approach of the slope to the limiting
value 1 4 g7 or 1:5195.

When work on the frequency distributions of sizes of genera was first begun,
considerations of a very rough kind suggested that the limiting form of the distribution
for infinite time should approach this logarithmic-linear law. The generation of species
from species, or genera from genera, seemed closely parallel to the generation of offspring
in a given stock in which mortality might be ignored : hence it seemed reasonable to
assume that the proportion y of genera of age ¢ at any given epoch (apart from the
primordial genera which might be ignored if time were infinite) would follow the law

y x e " ds.

Similarly it seemed reasonable to assume that the number of species z in a genus of
age ¢ would be given by

T « et

Now suppose that chance can be ignored, that the number of species in a genus can be
taken as a continuous variable, and that the above can be taken as absolute functional
relations. The size of a genus is then absolutely determined by its age, and we can
find the number of genera of each size by eliminating # from the first relation. We have

¢t = log z'*, dt = sz~ 'dx
whence
y o w“(y'l")ll"dx
® -0 dg,

The method of approach was obviously exceedingly crude, but it suggested
logarithmic plotting of the data. Further trial showed that the law did in fact hold
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very approximately, both for animals and plants, up to genera of 30 species or so, after
which the points began to drop away more or less rapidly from the line, i.e., the
observed frequencies of the larger genera were smaller than those suggested by the
law : figs. 2 and 3 (below, pp. 45, 46) bring out the point very well. The approximation
was, however, sufficiently close to encourage further work. As will be seen from the
following, the fundamental mistake was the notion that time might be regarded for
practical purposes as infinite : it must in fact be regarded as quite short.

III. THE FREQUENCY DISTRIBUTION FOR SiZEs OF (GENERA (DERIVED AND
PriMorDIAL) WHEN TiIME 1S FINITE.

If time is finite we can no longer, as at the beginning of Section II, ignore the number
of prime genera as compared with the number of derived genera. At time T, out of
unit total, we will have ge~#* da derived genera of age z, together with e~#" of age T—the
term which vanishes if T is infinite.

To obtain the required frequency distribution there will, therefore, be two corrections
to make to the limiting distribution (12). (a) We must add to each term of (12) the
corresponding term of (5) (writing T for #) multiplied by e=#*. (b) We must subtract
from each term of (12) the value given by making the upper limit of the integral T
instead of infinity. The additive corrections to f;, fs, fs, . . - are therefore

e (g+8)T

e (a-l-c)T(l . e—nT)
e (y+a)'.l‘(1 — 6—8’1')2

and the subtractive corrections
glg+a) e
g (g -} 8)—1 e~ wraT _ g (g + 23)—1 e~ 9+20T
g (!] + s)—l e~ 09T __ 29 (g - 28)"1 e~ T +_g (g + 33)_.1 e=@+39T

Bringing the two together, the entire corrections are :—
6 =s(g+8)te T
0 =8(g+8)1e T — 25 (g -+ 25) 1~ O+ ]k
cs =38 (g _.|_ s)—l e g+ T __ 4s (g _I_ 28)"‘ e~ +29)T + 3s (g + 38)"1 e-(y+83)'r "
: : : )
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It will be noticed that these may be written in the form

61 - 6/]

c, =¢,— ¢,
63 = ¢/} —2¢'y + ¢y
e,=¢,—38c¢y,+ 3, — ¢,
and so on, where one new term ¢’ is introduced at each stage, and the numerical
coefficients are the coefficients of (1 — 1)
For numerical purposes the terms ¢y, ¢’,, ¢’s, etc., must be put in a different form.

As before, we write p = s/g. As the unit of time we will take the average time A in
which the number of species within the genus doubles, writing

v e
¢’ = e = e,

where
«=1log, 2=0-6931472. . . . . . . . . .. .. (18)
Then
g=afp
g+ ns=a(l+mnp)fe,
and ¢y, ¢y, ¢y, . . . may be written, v being the time in the new units
¢y = p(l+p) e
/. — 90 (1-+920)"1 g~ (G+2p)r l
¢s =2 (142) e b (19)
¢’y =3p(1+3p)™* g P (3 i
. . . J
Given p and v, the values of ¢;, ¢/, ¢’5, . . . are calculated from (19), thence the
values of ¢;, ¢y, Cs, . . . from (17) : the values of the limiting frequencies , fi, . f2; o Jfss ---
are found from (12), and finally the frequencies at time © are given by
'rfl = q;fl + cl 1
L L (20)

S ehite

Since sufficiently extensive tables of the binomial coefficients were not, so far as I
could find, available, tables were calculated giving all the coefficients of (1 + 1)* up to
n = 31, and the coefficients up to the twelfth for values of n from 32 to 101. The
correcting series on the right of (17) converge with fair rapidity in the illustrative examples
that have been tried (¢f. Section 1V), and twelve terms usually give more than sufficient
precision. The corrections ¢;, ¢;, ¢5, . . . are at first positive, but decrease steadily
in value and sooner or later become negative : such a change of sign must, of course,
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occur since Zj (c,) must be zero. After reaching a negative maximum the corrections
again diminish until ¢, approximates to —_ f,.

To illustrate the change in the form of the distribution with time, Table II has been
calculated, showing the successive distributions when + =1, 2, 38, 4, 5, and 6-28 units
(doubling-periods for species within the genus) and p is 1-925 (p = 1:925, v = 6-28,
being the values found for the Chrysomelidee, below, p. 54) ; the limiting distribution
for © = oo is also given. The table shows in a very interesting way the rapid growth
in the tail of the distribution towards large genera, and the quick approximation of the
first part of the distribution towards the limiting form for infinite time. These features
speak for themselves. It may be added that the correcting terms, which are necessarily
positive at the beginning of the series, when + = 1 become negative with ¢,, ¢, reaching
the negative maximum. When = =2, ¢, is the first correction to become negative
and the negative maximum is reached with ¢;;. When © = 3, ¢, is the first to become
negative and the negative maximum lies (not far) beyond c;;. When © = 4, ¢y, is the
first to become negative, and when v =5 the first correction to become negative lies
somewhere between cg and csp. When v = 6-28, as for the Chrysomelide, the correcting
terms are still positive at the limit to which calculation was carried, viz., fig,.

TasLe IL.—Showing, at successive epochs, the calculated numbers of genera with
1,2, 3,. . . species out of 1,000 genera in all at each stage when p = 1-925, the
value found for the Chrysomelid beetles (Table V, p. 56, and Appendix, Table A).
The table shows the distribution after 1, 2, 3, 4 and 5 doubling-periods for species
within the genus ; then for 6-28 doubling-periods, the time found for the Chrysome-
lde ; and finally the limiting form of the distribution after an infinite lapse of

time.
Number of Time = in doubling-periods.
species in
bhe genus. 1 2 3 ‘ 4 l 5 6-28 ©
1 571 422 370 352 345 343 342 1
2 227 192 159 145 139 1317 136 2
3 104 115 97 85 80 78 7 3
4 50 7 68 59 54 52 b1 4
5 24 53 51 44 40 38 37 )
6 12 38 40 35 31 29 28 6
7 6 27 33 29 26 24 23 7
8 3 20 27 24 21 19 19 8
9 1 15 22 21 18 16 16 9
10 — 11 19 18 16 14 13 10
11 - 8 16 16 14 12 12 1
12 . 6 13 14 13 11 10 12
13 - 4 12 13 11 10 9 13
14 - 3 10 11 10 9 8 14
(T'able continued overleaf.)
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TaBLE 1I—(continued).

Number of Time 7 in doubling-periods.

species in l

the genus. 1 9 3 s 5 6.9 .
15 - 2 8 10 9 8 7 15
16 - 2 7 9 9 7 7 16
17 1 6 9 8 7 6| 17
18 1 5 8 7 6 6| 18
19 - 5 7 7 6 5 19
20 - - 4 7 6 5 50 2
21 - 4 6 6 5 4 21
22 3 6 6 5 4 22
23 3 5 5 4 4 23
24 o - 2 5 5 4 4| 2
25 i 2 4 5 4 3| 2
26 - 2 4 4 4 3 26
21 2 4 4 4 3 27
28 - 1 3 4 3 3 28
29 1 3 4 3 3 29
30 1 3 4 3 3 30
31 - 1 3 3 3 2 31
32 - 3 3 3 2 32
33 - 2 3 3 2 33
34 - . 2 3 3 2 31
35 ) - 2 3 3 2| 3
36 - - 2 3 2 2 36
37 - - 2 3 2 2 37
38 - - 2 2 2 2 38
39 - - - 2 2 2 2 39
40 2 2 2 2 40
41 1 2 2 2 41
42 1 2 2 2 42
43 1 2 2 2 43
44 1 2 9 1 14
45 - - 1 p) P 1 45
46 - - 1 2 2 1 46
41 1 2 2 1| 47
48 S - 1 2 2 1| 48
4:9 cee ces — —— — - 2 2 1 49
50 vee ees —= - e 1 9 1 50
Over the last

frequency

given above... 2 3 6 11 43 85 116 —

Total ... 1,000 1,000 1,000 1,000 1,000 1,000 1,000 | —

The gradual approximation of the double logarithmic graph of the frequency dis-
tribution towards its limiting, nearly linear, form is very interesting. ~Before the present
theory had been developed the form of the graphs observed seemed rather puzzling.
The initial part of the graph, say up to genera of 30 species or more, appeared extra-
ordinarily nearly linear ; but after a certain point there was always a more or less rapid
falling away of the data from the line. Figs. 1, 2 and 3 are given to illustrate the point,
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number of species
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Fig. 1.—Double logarithmic chart for the frequency distribution of sizes of genera in the Chrysomelide :
logarithm of the number of genera plotted on the vertical to logarithm of the number of species on the
horizontal. Data in Appendix, Table A.
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log (number of species)
Fig. 2.—Double logarithmic chart for the frequency distribution of sizes of genera in the Cerambycine.
Data in Appendix, Table B.
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Fig. 1 is for the Chrysomelid beetles (data in Table A of the Appendix). Here the data
are suggestive of nothing but a straight line right up to the limit of the chart, .e., up
to genera of 100 species; calculation shows, however, that beyond this point there is
a heavy deficiency of the larger genera as compared with the numbers that would be
given by the logarithmic-linear law. Fig. 2 for the Cerambycinee (beetles) (data in Table
B of the Appendix) is suggestive of linearity only up to genera of some 20 or 30 species :
the points given by the frequencies of the larger genera lie well below the line. In fig. 3,

number of species

| 10 100

2 100
©
g o
g o
2 :
[P
N 10
£ 5
£ 3
£ £
g c

0 Fig.3. S —

! \

0 2 4 ‘6 I-0 -2 5’4 I'6 -8 20

-8
log (number of species
Fig. 3.—Double logarithmic chart for the frequency distribution of sizes of genera in the Leguminos®. Data
in Appendix, Table E.

for the Leguminose, the falling away occurs at much the same point and is very abrupt.*
The forms of such graphs seemed so odd, it appeared so unlikely that the natural form
of the graph could be nearly linear over the first part of the range and then rapidly
curved, that they gave rise in one’s mind to all kinds of speculations—e.g., the possibility
of the natural distributions being truncated by the last glacial epoch! But when the
logarithmic graphs are drawn for the distributions of Table II it will be seen that such
forms are precisely those to be expected. The graphs, drawn from a larger number of
significant figures than are given in Table II, are shown in figs. 4 to 9, the graph for each
value of = being given by the full line and the limiting graph for = « by the broken line.

* Tt is of course always necessary to group or graduate the data for such charts, at least in the tail of the
distribution. The following were the actual groupings, etc., used in the three charts shown. Chrysomelide :
ungrouped to 8; thence in groups 9-11, 12-15, 16-19, 20-23, 24-27, 28-33, 34-43, 44-53, 54-73, 74-103.
Cerambycine : the same way up to 53, but terminating with 54-83. Leguminose: 1, 2, 3 ungrouped ;
graduated from 4 to 23 by the two groups 4-13, 14-23 ; thenec grouped 24-33, 34-43, 44-53.
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Fig. 4.-—Double logarithmic graph of the frequency distribution of size of genus for v =1, p =1-925,
full line ; the broken line showing the limiting form at + = oo for comparison. Figs. b to 9 show the

gradual approximation of the form of the graph towards the limiting, nearly linear, form as the time is
increased (cf. Table II).
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Fig. 5.——{)ouble logarithmic graph (full line) of the frequency distribution of size of genus for r = 2,
0 =1-925.

H 2

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

48 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION,

2
2
[}
C
Q
o
(i
(o]
~
ol
0
£
2
£
lon)
2

0 Fig.6. 3 I

. | I [

0 2:0

-0 .
log (number of specles)
Fig. 6.—Double logarithmic graph (full line) of the frequency distribution of size of genus for r =3,

p =1-925,
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Fig. 7—Double logarithmic graph (full line) of the frequeney distribution of size of genus for
=4, p =1-925.

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

49

BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S.

log(number of genera)
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Fig. 8.—Double logarithmic graph (full line) of the frequency distribution of size of genus for v =25,
p=1-925.
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Tig. 9.—Double logarithmic graph (full line) of the frequency distribution of size of genus for » = 6-28,

P = 1 '925.
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It will be seen that at first, for very short values of the time, the graph is more or less
suggestive of an arc of a parabola, but the curve lies rather close to its tangent for some
distance from the start. As time increases the last feature becomes more and more
conspicuous, the graph being almost straight for some portion of its length and then
falling away very rapidly : fig. 7 (r = 4) is very suggestive of the sort of graph given
by the Cerambycine (fig. 2) or the Leguminose (fig. 3). When © increases to 6-28,
as for the Chrysomelide (figs. 1 and 9), the “ straight ”’ portion of the graph covers the
whole chart and the point at which falling away becomes conspicuous lies outside the
picture on the right. Within the limits shown (genera of 1 to 100 species) no actual
data following the law of fig. 9 could well suggest anything but a linear law ; the diver-
gence from linearity with 1000 or 2000 genera available in all would never appear
significant. It should be noted, however, that the line fitted to the data within the
given range would have a smaller slope than the limiting “ line,” and hence if p were
estimated therefrom on the assumption that time could be regarded as infinite too high
a value would be assigned to that constant. The values of p estimated in this way and
given at the meeting of the Linnean Society on February 2nd, 1922, when papers were
read by Dr. WiLris and myself, were in error from this cause.

Since we have not obtained the expression (20) for the frequency distribution in any
simple form, the deduction of the mean size of genus from the distribution would be
complex, but it may be directly deduced from quite simple considerations.

The total number of genera at time T is Ne* where N, is the number of primordial
genera.

The total number of species at time T is the number in genera of all ages, the number
in a genus aged « being ¢”". Hence, Ny being the required number (cf. the first paragraph
of Section II),

o
aNT — Noesr’l‘ + NO ey (L —x) e~ dw
g 0

=No{s(s—g) e —gs—g)'¢"} . . .. .. ... (21)
which checks by putting T = 0, when ,N; = N,.
The mean number of species per genus, dividing by the number of genera Nye’" is
M= (s—g) Mse*PT—gt . . . . ..o (22)
In terms of the notation when the doubling-period for species within the genus is
taken as unit the equations may be written :

No=Neew ™ e (23)
N =Nolp—1) "{pe™ — e " . v v i i vt (24)
R D A | (25)

These expressions increase continuously with the time and are infinite for v = oo: but
it is to be noted that the fotal number of species N, increases not at a steady (percentage)
rate but with decreasing rapidity. The second term, depending on the number of genera,
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becomes of less and less importance as the proportion of genera to species decreases ;
while the total number of species more than doubles in the first unit of time, the per-
centage increase falls in every following interval and rapidly asymptotes towards 100.
It will of course be noted that we have not considered any group of higher order than
the genus. If the assumption that generic mutations give fresh starting points for specific
mutations is correct, the effect shown by equation (24) or (25) must follow, and it would
seem, therefore, that mutations of a higher order still, such as would give rise to new
families, must emphasise the result. But I have not developed the matter further.

IV. Tae Frrrine To DATA oF THE EXPRESSION OBTAINED IN Secrtion III.

Given an actual frequency distribution for size of genus, the problem is to determine
from it the values of p and r. The method of moments would not, with distributions of
the present form, be a good method to use even if it led to a simple solution, for the very
long “ tail ” of the distribution implies high probable errors in the moments.* But I
have not seen my way to any simple and direct solution. The method finally adopted
was—(1) to fix on the proportion of monotypes and the mean number of species to the
genus as the characteristics to be used for determining ¢ and = ; (2) to draw up a table
giving the proportion of monotypes ( f;) and the mean number of species to the genus (M)
for all values of ¢ and + that seemed likely to occur, and (3) in any given case to
determine p and = from this table by inverse interpolation.

Table III is the fundamental table, giving f, and M for all values of p from 1:0 to
3-0 by tenths of a unit, and for all values of = from 1 to 10 by units. As examples of
fitting I have taken four tables kindly given me by Dr. WiLLis and shown in full, by his
permission, in the Appendix to this paper. They refer to the Chrysomelide (beetles),
the Cerambycinee (beetles), the Snakes and the Lizards respectively. Table IV shows
the numbers of genera and species in each group, the values of M and f; given by the
data, the approximate values of p and « determined from Table III by interpolation as
shown below, and N, the number of primordial genera. Lines 8 and 9 are simply a
check on the work and the precision of interpolation in Table III : such interpolation is
not accurate, and the calculation of-M and f, from the values of ¢ and « determined by
interpolation is a desirable check. Lines 10 to 12 give the results of applying the
x? test of ““ goodness of fit ”” for the respective groupings of the data shown in Tables V
to VIII: the P-tables (Tables for Statisticians and Biometricians) are entered with n’
taken as 2 less than the number of groups, since two constants have been fitted to the
data.t

As an example of the detailed work the Cerambycine may be taken. M is 5-584 and

* Cf. R. A. FisHER, “ On the mathematical foundation of theoretical statistics,” ¢ Phil. Trans.,’A, vol. 222,
pp. 309-368.

T R. A. Fisugr, ““ On the interpretation of x* from contingency tables and the calculation of P,” ‘ Jour.
Roy. Stat. Soc.,” vol. 85, p. 87 (1922).
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J118 0-45801. Looking over Table III to find a. pair of values near these, we find that
they must be taken between p = 1-1 and p = 1-2, for a value of © very near 5. Using
simple interpolation only, we find that the observed value of f, is given by (v = 6,
p = 1-185165) and by (v = 5, p = 1-188224), or approximately by any values of ¢ and
= subject to the equation

p + 0-003059, = =1-203519 . ... ... ..... (&

Similarly M = 5584 is given by (¢ =11, »=5'520408) and by (¢ =12, r=4-908312),
or approximately by any values of p and + subject to the equation
o+ 0-163373,7=2-001886 . . . . . ... ..... (D)
Solving (a) and (b) we find v = 4-980, p = 1-188.

TaBLE II1.—Values of the proportion of monotypes (f;) and of the mean size of genus (M)
for values of the time = from 1 to 10 (the unit being the doubling period for species
within the genus) and of the ratio p (of the chance of a specific mutation to the
chance of a generic mutation) from 1:0 to 3-0 (decimal point omitted before f)).

Time.

1 2 3 4 5 6 7 8 9 10

1-0 A | 62,500 | 53,125 | 50,781 | 50,195 | 50,049 | 50,012 | 50,003 | 50,001 } 50,000 | 50,000
M 1-693 | 2-386 | 3-079 | 3-773 | 4-466 | 5-159 | 5-852 | 6-545 | 7-238 | 7-931

1-1 fi | 61,566 | 51,333 | 48,608 | 47,882 | 47,680 | 47,638 | 47,624 | 47,620 | 47,619 | 47,619
M 1-715 | 2-477 | 3-289 | 4-153 | 5-074 | 6-054 | 7-098 | 8-211 | 9-395 | 10-656

1-9 fu | 60,761 | 49,750 | 46,660 | 45,793 | 45,549 | 45481 | 45,462 | 45,457 | 45,455 | 45,455
M 1-735 | 2-560 | 3-485 | 4-524 | 5-691 | 7-000 [ 8-470 | 10-119 | 11-971 | 14-049

1-3 fi | 50,060 | 48,343 | 44,905 | 43,897 | 43,601 | 43,514 | 43,489 | 43,481 | 43,479 | 43,479
M 1-752 | 2634 | 3-669 | 4-883 | 6-309 | 7-981 | 9-944 | 12-247 | 14-949 | 18-121

1-4 i | 59,444 | 47,084 | 43,318 | 42,170 | 41,820 | 41,713 | 41,681 | 41,671 | 41,668 | 41,667
M 1-767 | 2-701 | 3-840 | 5-229 | 6-921 | 8-985 | 11-500 | 14-566 | 18-304 | 22-860

1-5 fi | 58,899 | 45,953 | 41,875 | 40,591 | 40,186 | 40,059 | 40,018 | 40,006 | 40,002 | 40,001
M 1-780 | 2:762 | 4-000 | 5-560 | 7-524 | 10-000 | 13-119 | 17-049 | 22-000 | 28-238

1-6 fi | 58,413 | 44,930 | 40,559 | 39,141 | 38,682 | 38,533 | 38,485 | 38,469 | 38,464 | 38,462
M 1-792 | 2-818 | 4-149 | 5-876 | 8-115 | 11-018 | 14-784 | 19-667 | 25-999 | 34-212

1-7 fr | 57,977 | 44,001 | 39-353 | 37,807 | 37,293 | 37,122 | 37,065 | 37,046 | 37,040 | 37,038
M 1-802 | 2-869 | 4:289 | 6-178 | 8-690 | 12-032 | 16-479 | 22-393 | 30-262 | 40-730

1-8 fi | 7,584 | 43,164 | 38,245 | 36,5675 | 36,007 | 35,814 | 35,748 | 35,726 | 35,718 | 35,716
M 1-812 | 2-916 | 4-420 | 6-465 | 9-249 | 13-037 | 18-191 | 25-205 | 34-750 | 47-738

Ratio p of chance of specific mutation to chance of generic mutation.

1-9 fu | 57,228 | 42,379 | 37,224 | 35,434 | 34,813 | 34,597 | 34,523 | 34,407 | 34,488 | 34,484
M 1:820 | 2-960 | 4-542 [ 6-739 | 9-790 | 14-027 | 19-910 | 28-080 | 39-426 | 55-180
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TaBLE IIT—(continued).

Time.

1 2 3 4|5t6l7,8‘9 10

2.0 Sfi | 56,904 | 41,667 | 36,280 | 34,375 | 33,702 | 33,464 | 33,379 | 33,350 ! 33,339 | 33,335
M 1-828 | 3-000 | 4-657 | T7-000 | 10-314 | 15-000 | 21-627 | 31-000 | 44-255 | 63-000

21 Ju | 56,607 | 41,010 | 35,404 | 33,389 | 32,664 | 32,404 | 32,311 | 32,277 | 32,265 | 32,261
"M 1-836 | 3-037 | 4-765 | 7-248 | 10-819 | 15-953 | 23-335 | 33-948 ; 49-206 | 71-144

9.9 fi | 56,335 | 40,403 | 34,590 | 32,468 | 31,695 | 31,412 | 31,309 | 31,272 | 31,258 | 31,253
M 1-842 | 3-072 | 4-866 | 7-485 | 11-307 | 16-885 : 25-027 | 36-909 : 54-251 | 79-561

9.3 1 | 56,084 | 39,840 | 33,831 | 31,608 | 30,786 | 30,482 | 30,369 | 30,327 | 30,312 | 30,306
M 1-849 | 3-104 | 4-962 ( 7-710 | 11-777 { 17-795 | 26-698 | 39-872 | 59-364 | 88-204

9.4 01 55,862 | 39,316 | 33,122 | 30,801 | 29,932 | 29,607 | 29,485 | 29,439 | 29,422 | 29,416
M 1-854 | 3-134 | 5-052 | 7-925 | 12-230 | 18-681 | 28-345 | 42-826 | 64-522 | 97-030

9.5 fi | 55,638 | 38,828 | 32,468 | 30,044 | 29,129 | 28,783 | 28,652 | 28,602 | 28,583 | 28,576
1-860 | 3-162 | 5-137 | 8-130 : 12-667 | 19-543 | 29-965 | 45-763 | 69-707 (106-000

9.6 S | 55,438 | 38,372 | 31,835 | 29,332 | 28,373 | 28,006 | 27,865 | 27,811 | 27,791 | 27,783
M 1-864 | 3-189 | 5-218 ; 8-326 | 13-087 | 20-381 | 31-5566 | 48:675 | 74-901 |{115-078

9.7 fi | 55,252 | 37,944 | 31,250 | 28,660 | 27,659 | 27,271 | 27,122 | 27,064 | 27,041 | 27,032
M 1-869 | 3-214 | 5-294 | 8-512 | 13-492 | 21-196 | 33-115 | 51-557 | 80-089 |124-233

9.8 £ | 55,079 | 37,544 | 30,699 | 28,027 | 26,984 | 26,576 | 26,418 | 26,356 | 26,331 | 26,322
M 1-873 | 3-237 | 5-366 [ 8-691 | 13-882 | 21-987 | 34-643 | 54-404 | 85-259 |133-436

9.9 Ji | 54,916 | 37,167 | 30,179 | 27,428 | 26,344 | 25,918 | 25,750 | 25,684 | 25,668 | 25,648
M 1-877 | 3-259 | 5-435 | 8-861 | 14-257 | 22-755 | 36-137 | 57-211 | 90-399 |142-663

Ratio p of chance of specific mutation to chance of generic mutation.
=

3.0 S | b4,764 | 36,812 | 29,687 | 26,860 | 25,738 | 25,203 | 25,116 | 25,046 | 25,018 | 25,007
M 1-881 | 3-280 | 5-500 | 9:024 | 14-619 | 23-500 | 37-598 | 59-976 | 95-500 [151-890

These values, it will be seen from Table IV, reproduce f; almost with precision (0-457979
against 0-45801) but give by equation (25) a mean 5-593 instead of 5-584, a small and
hardly material difference. The value not being quite precise, however, we have two
alternative values for the initial number of genera. Putting Ny=1, the numbers
of genera and of species at time « are found by equations (23) and (24) to be 18-2765 and
102-2133 respectively : hence the initial number of genera is either

1024/18-2765 = 56-03
or

5718/102-2133 = 55-94

or roundly 56-0. The interpolation is less precise in the case of the Chrysomelide,
where the two alternatives are 65-35 and 66-05, the number corresponding to the
estimate based on the genera being given in Table IV.

VOL. COXII.—B. I
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TaBLE 1V.—Giving particulars respecting four frequency distributions for size of genus.
The distributions are given in a condensed form in the following Tables V to VI1I1
and in full in the Appendix.

—_ Chrysomelidee. | Cerambyecinze. Snakes. Lizards.
1. Number of genera, ... 627 1,024 293 259
2. Number of species ... 9,997 5,718 1,475 1,580
3. Mean species per genus, M ... 15-94 5-584 5-034 6-100
4. Proportion of monotypes, f; ... 0-3429 0-4580 0-4471 0-4054
5. T 6-28 4-980 4260 4-281
6. p 1-925 1-188 1-253 1-496
7. Ny 65-4 56-0 27-8 36-0
8. Mean from p, T 15-77 5-593 5-038 6-130
9. Proportion of monotypes from p, 7 ... 03428 0-4580 0-4466 0-4049
10. 2 11-21 13-76 13-77 3-50
11. 7/ 16 14 11 11
12. P vee T e 0-74 0-39 5 0-18 0-96
i

From the given value of p, the values of the successive terms of the p-series (12) are
calculated as there described, and checked from equation (13) by summation at intervals.
The first few values in the present case are :—

1. ... 0-457 038
2 .. ... 0-160 830
3 .. ... 0-083 727
4 ... ... 0-051 878
5 ... ... 0:035 522

The series for the Cerambycine was calculated up to fes.

Next, the values of ¢/, ¢), ¢, ... are calculated from equations (19). As already
mentioned, the tables of binomial coefficients were only calculated up to the twelfth
in the final part of my table, so it was no use going beyond ¢;;": as many correcting
terms as this may not always be wanted, but it saves time to calculate all the twelve at
once in case they may be needed.

¢ ... ... 107® x 0-941 3398
¢y ... ... 107 x0-386 6267
¢y ... ... 1079 x 0-135 9285
e ... - ... 1077 x 0:455 6658
¢ ... ... 1078 x 0-149 5844
cs ... ... 10710 % 0-485 6397
¢’ ... ... 1071 x 0-156 2737
¢’ ... ... 10718 % 0-503 0638
¢’ ... ... 107 x 0-161 1061
¢ ... ... 107" x 0-514 8885
e’ ... ... 107177 x 0-164 3085
e’ ... o 10710 % 0-523 7340
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Retaining seven decimal places in the work,* so as to be fairly confident of correctness
in the sixth place of the result, terms were required up to ¢;;” in the corrections to f;,
onwards. I have found it convenient to arrange the work of equations (17) in the
following form : the decimal places have been reduced to six for the illustration, and
the decimal point and zeros thereafter are omitted for brevity as they were in working.

1 2 3 4 Multiplied
Total . P

f + . 4 _ correction. p-eeries. Total. 18%’ 4.

1 941 — — — +941 457,038 457,979 469-0

2 941 39 — — +902 160,830 161,733 165-6

3 941 7 1 — 865 83,727 84,592 86-6

4 941 116 4 — -+829 51,878 52,707 54:0

5 941 155 8 — +794 35,522 36,317 37-2

6 941 193 14 — 4762 25,960 26,721 27-4

7 941 232 20 1 -+728 19,863 20,592 21-1

Each component correcting term ¢’ is taken in turn and multiplied by the corresponding
successive binomial coefficients, the products being entered in the vertical columns
headed 1, 2, 8, 4, etc. For ¢,” the binomial coefficients are unity throughout ; for ¢,’
they run 1, 2, 8, . . . beginning with f, ; for ¢;” they are 1, 3, 6, 10, 15, . . . beginning
with f; ; fore,’1,4,10,20, 35, . . . beginning with f, and so on. The signs of the products
are given at the heads of the columns. The summation of these terms then gives the
total correction, in the next column, the sign of which is always positive at the com-
mencement, and added therefore to the corresponding term of the p-series gives the
required value of ,f,. Finally, multiplying this by the observed number of genera
we have the calculated number of genera of each size. In the case of grouped
distributions like Tables V to VIII the grouped frequency has been calculated by
adding the values of .f, so as to obtain an answer correct in the decimal place.
The distribution for the Chrysomelide was the most laborious to calculate as the
series is very extensive : terms were calculated direct up to fio, but an estimate was
also made by extrapolation of the portion of the remaining frequency lying between fi,
and fiz inclusive. As two different methods of extrapolation gave nearly the same
answer it is hoped the result is fairly close to the truth.

With this digression on the method of fitting we may now revert to Table IV and
consider first the particulars respecting goodness of fit in lines 10-12. It will be seen
that the values of P are highest for the Lizards and the Chrysomelide, the formule giving
in both these cases a most excellent fit to the data. For the Cerambycine and the
Snakes the fits are not quite so good, but still well within the limits of fluctuations of

* In most of the work at this stage six decimal places only were retained, not seven. In calculating the
p-series it is desirable to retain seven significant figures so as to avoid accumulating errors.
12
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sampling ; even in the case of the Snakes one would expect to get a worse fit, merely
owing to the chances of sampling, once in some five or six trials. Reference to Tables V
to VIII fully confirms the impression given by the values of P. For the Chrysomelide

TaBLE V.—Chrysomelidee : observed and calculated numbers of genera of each size.

Number of Number of genera.
species in
genus. Observed. Calculated.

1 21H 214-9
2 90 85-6
3 38 48-9
4 35 32:6
b 21 23-8
6 16 18-3
7 15 14-7
8 ... 14 12-2
91t011 28 27-0
12t014 ... 20 18-6
15t020 ... 30 24-9
21t030 ... 32 25-0
31t040 ... 13 15-9
41t050 ... 14 11-4
51 to 75 ... 17 18-5
76 to 100 ... 13 11-1
101 to 150 7 12-3*
151 upwards 9 11-3*

Total ... 627 627-0

* The frequency of genera of 101 species and upwards was subdivided by extrapolation.

the fit is worst for genera of 3 species, of whieh there are only 38 against an expectation
of 49, and genera of 101-150 species, of which there are only 7 against an expectation
of over 12: of all genera with more than 100 species there are only 16 against an
expectation of 23-6. The signs of the divergences from expectation are fairly well
scattered except over the range 7 to 30 where (for the given grouping) all the observed
frequencies are slightly in excess of expectation.

If we re-group the frequencies of Table V according to the runs of sign of the differences
from expectation, using groups 1-2, 3, 4, 5—.6, 7-30, 31-40, 41-50, 51-75, 76-100, 101
upwards, there are 10 groups; =’ is 8, x2 is 9:59, and P 021, so that the distribution
stands the severe test very well.

For the Cerambycine the most marked divergence is in the group of genera with
15-20 species, of which there are 40 against an expectation of only 27-4 : reference to
the detailed data in the Appendix will show that there is here a marked “ hump ” in
the data which could not be covered by any smooth curve. Re-grouping Table VI

by the runs of sign of the differences between observation and expectation only reduces
P from 0-39 to 0-32.
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TaBLE VI-—Cerambycine : observed and calculated numbers of genera of each size.

Number of Number of genera.
species in
genus. Observed. Calculated.

] 469 469-0
2 152 1656
3 82 86-6
4 61 54-0
5 33 37-2
6 36 274
7 18 211
8 .. 17 16-8
9to 11 ... 36 35-1
12t014 ... 23 22-4:
151020 ... 40 27-4
21t0 30 ... 21 24-1
31 to 40 ... 15 13:0
41 to 50 ... 8 8-0
bl to 65 ... 4 7-0
66 upwards 9 9:5

Total ... 1,024 1,024-2

TaBLE VII.—Snakes: observed and calculated numbers of genera of each size.

Number of Number of genera.
species in
genus. Observed. Calculated.
1 131 1309
2 35 47:2
3 28 25-2
4 17 16-0
5 16 11-2
6 9 8-3
7 8 65
8 ... 8 52
9toll ... 13 111
12t014 ... 3 72
15020 ... 7 8-8
21 to 34 ... 14 9:2
35 upwards 4 6-2
Total f 293 293-0
|

For the Snakes the fit is clearly less satisfactory, and the data (Appendix, Table C)
are irregular. It is true that we have passed from a family and a sub-family amongst
the beetles to the members of an entire order, but the comparative poorness of the fit can
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TaBLE VIII.-—Lizards : observed and calculated numbers of genera of each size.

Number of Number of genera.
species in
genus. Observed. Calculated.
1 105 104-9
2 44 39-9
3 23 22-2
4 14 14-5
5 12 10-5
6 7 8-0
7 6 6-4
8 ... 4 5-2
9to11 ... 13 11-4
12t0o14 ... 4 11
15t020 ... 10 9-8
21t0 34 ... 11 10-8
35 upwards 6 717
Total ... 259 259-0

hardly be due to this cause, for the Lizards give the best fit of the four tables, the cal-
culated figures being extraordinarily close to those observed. It may be noticed that
in each table the numbers of the largest genera, those in the terminal group, are in defect
as compared with expectation, but the deficiency is very small in one case at least
(Table VI), and the experience too limited to suggest a general rule. In the case of
the Chrysomelide, moreover, the lack of precision in interpolation has partly contributed
to the result, for it will be seen that the mean of the fitted distribution (Table IV, lines 3
and 8) is slightly too low. Desire of the systematist to break up a genus which he regarded
as unwieldy might well tend to cause a deficiency of very large genera, but such a deficiency
can hardly be held to be proved by the present tables.

So far as the tests go I think it must be admitted that the formula given is capable
of representing the facts with considerable precision, more closely indeed than we have
any right to expect. One might well have expected the personal factor in classification,
the practically cataclysmic destruction of species at numerous epochs in geological
time, and all the varied changes that have diversified the organic history of our planet,
to have left so many irregularities in the distribution that any formula could at most
have given a very rough analogy with the general run of the data. But apparently
the formula arrived at can do far more than this. Why this is so seems to me to be a
point which requires some discussion. I return to it briefly below.

Having shown, however, that the formula is capable of closely describing the facts,
we can revert to Table IV, and the actual values of p and =. It will be seen in the
first place that the values found for = range only from 4-26 to 6-28, the unit of time being
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the doubling-period for species within the genus in each several case. Time must, there-
fore, be regarded as not merely finite, but short : it is indeed obvious, once the point
is considered, that when the mean size of genus is only some 5 to 15 species time cannot
well be anything but short. It may be as well to emphasise that our unit of time being
a relative unit, its equivalent in years or in geological time will vary from group to group
and can only be determined if the results can effectively and without fallacy be collated
with the geological record.

But line 7 of Table IV suggests that great caution will have to be used in interpreting
doubling-periods in terms of geological time. In every case the number of genera at
zero time required to fit the data is very substantial : roundly, some 10 per cent. of
the existing number for the Chrysomelide and the Snakes, 5 per cent. of the existing
number for the Cerambycine, and nearly 15 per cent. for the Lizards. What does this
mean ? Such a result would presumably be shown in any case where the origin of the
group was polyphyletic, but I think it may have another significance and one which
will render the interpretation of the figures a matter of difficulty.

Consider the effect on a distribution of the advent of a “ cataclysm,” e.g., of a glacial
epoch, killing off a large number of species. Every genus will be reduced in size; a
genus of 20 species may be reduced to a genus of 5 species, a genus of 10 species to a
genus of 2, and so on. Some—possibly many—genera will be killed oft outright. In
the limit, if the cataclysm be very severe, most genera will be killed out entirely and no
genera will be left with more than a single species. On the passing of such a cataclysm
of the utmost possible severity and the restoration of conditions favourable to life, evolu-
tion will start again de novo, but from an initial number of N, monotypic genera instead
of a single one. When, long ages after, the biological statistician examines the frequency
distribution for sizes of genus in the group evolved from the survivors of the .cataclysm,
he will therefore find, as we have found, a number of primordial genera N, in excess
of unity : and further he will have to remember that the time = will be measured,
not from the origin of the group, but from the passing of the cataclysm.

In fact, of course, we must expect matters to be far more complex even than this.
The action of a “ cataclysm ” of less than limiting severity might be represented, in
highly simplified terms, somewhat as follows. For any species the chance of survival
is p, of destruction ¢ (p+gq =1). The chance of 0, 1, 2, . . . n species surviving out
of a genus of n species will then be given by the successive terns of (¢ 4- p)*. Given the
pre-cataclysmic distribution and the value of p, it will then be possible, though a lengthy
piece of work, to calculate the post-cataclysmic distribution. It is desirable to carry
out such a test on assumed data to see whether, if the pre-cataclysmic distribution be
of the form above derived, the post-cataclysmic distribution will or will not also be
closely fitted by the same formula, and, if it is closely fitted, what is the effect on the
constants. It is evident that the distribution will remain of the same general form to
the eye, with a maximum frequency for the monotypics, and I am inclined to suspect
that it may be fairly closely of the same mathematical form, but have not yet carried
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out the test. It would be further desirable to find the form of the post-cataclysmic
distribution after a subsequent period of evolution. These are problems still unsolved.

I have, however, carried out two brief empirical tests to find the effect of compounding
the distribution. A cataclysm might—or probably would in general—cover part only
of the area occupied by a given organic group. The post-cataclysmic distribution would
then be compound as regards time, one portion starting de novo, if the cataclysm were
of limiting severity, one portion remaining untouched.

Suppose that at the time of observation the constants for the two portions are :—

p=2} 9=2}
T=2 T =28

and that there is the same number of genera in each of the two groups. We will then
have

S M
p =2 T =2 0-41667 3-000
p=2 T=28 0-33350 31-000
Compound 0-37508 17-000

the values of f; and M for the compound distribution being the means of the values for
the components. Using the method of interpolation described above, we would find for
the compound distribution the constants

p = 1-668 T = 7-203

~ tends accordingly to be nearer the higher value of the time and p is reduced below its
true value. The first 10 terms of the respective series work out as follows, taking the
total as 10,000 :—-

p= 2 2 1-668
— — eiomm e ———| - Compound.
T o= 2 8 7-203
1... 4,167 3,335 3,751 3,750
2... 1,917 1,335 1,626 1,444
d... 1,162 764 963 803
4 ... 715 510 642 525
5... 540 371 455 375
6 ... 385 286 335 285
7... 218 229 253 225
8... 203 189 196 184
9.. 149 159 154 183
10 ... 110 137 123 131

The fitted distribution is, it will be seen, a poor fit to the actual distribution, the fitted
frequencies being badly in defect over the range from f, to fs inclusive. Over this range
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observation would give a total frequency 4,470, while the fitted distribution would give
only 3,841—a deficiency of 14 per cent.

But the question also arises, what is the effect of a distribution being compound as
regards o ¢ In all the preceding work we have assumed p to be the same for all genera
in the group, an assumption which is on‘the face of it very unlikely to be in accordance
with the facts. To carry out a test on this point I took the two distributions

p =1-3] p =20
T == f T =28 I

and assumed them to be compounded in equal proportions, giving :—

i M
p=1-3 T =8 0-43481 12-247
p =20 T =8 0-33350 31-000
Compound 0-384155  21-6235

Fitting the compound as before, I find approximately
p = 1-603 7= 8-203

Here ¢ takes a value between those of the components, while = is thrown up above its
true value. The first ten terms of the respective series run as shown in the table below.

p= 1-3 2 1-603
Compound.

T = 8 8 8-293

1... 4,348 3,335 3,842 3,842
2. 1,670 1,335 1,453 1,465
3. 833 764 798 809
4. 524 510 517 525
5... 364 371 367 373
6 .. 269 286 277 282
7... 208 229 218 222
8... 166 189 177 180
9. 136 159 148 150
10 ... 114 137 125 127

The misfit over the first part of the range is now reversed, the fitted frequencies being
in excess, but the excess is relatively small.
For the four Tables V to VIII, I find :—

Sum of fz to fg inclusive.
Observed.  Calculated.

Chrysomelidee . . . . . . .. ... .. 229 236-1

Cerambycinee . . . . . . . . . ... .. 399 408-7

Smakes . . . . ... ... ... 121 119-6

Lizards . . . .. ... ........ 110 106-7
VOIL. CCXIIL—B, K
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The differences are all small, the fitted frequencies being in excess for the first two tables
and in defect for the last two. There is no clear evidence of either type of compounding,
and the goodness of fit remains rather puzzling.

The four tables given as illustrations in this section were the first, and at the time
of writing the only, tables which I had completely fitted : they are in no way tables
selected to show exceptionally good fit. A good deal of the preliminary work with
purely graphic charts was done with data for the flowering plants, but these are not
satisfactory for a precise test of theory. The flowering plants have not been completely
catalogued and the numbers of species in the larger genera are estimates rounded off
to the nearest 5 or 10 (or even for the very large genera the nearest 50 or 100). In these
circumstances all that can be expected, at the best, is a fair fit of the formule to data
which have been submitted to a preliminary graduation. Dr. WirLris had compiled an
estimated distribution for the aggregate of all the flowering plants, 12,571 genera and
160,171 species, giving 38-605 per cent. of monotypes and mean species per genus 12-741.
These data give p = 1-594, - = 6-484, N, = 750 approximately (750 to 756). But
these constants do not give a good fit, expectation exceeding observation for genera
of 2 and 3 species and being continuously in defect of the graduated data from genera of
4 to genera of 34 species, which was as far as I carried the work. The group is so
heterogeneous that I do not think a good fit was to be expected : but the type of misfit
is not very clearly analogous with either type of misfit shown in the two illustrations
above for + compound and ¢ compound respectively. We might reasonably, of course,
expect compoundedness as regards both elements.

Brief and inadequate as it is, this discussion is at least sufficient to indicate, I hope,
that the interpretation of the values of ¢ and ~ arrived at in any given case or series
of cases is not a simple matter nor likely to be quite straightforward.

To all the other difficulties of interpretation is to be added the fact that errors of
sampling in = and p are very high. This became evident at an early stage of the work,
since mere inspection of Table III showed that alterations of f; and M well within the
limits of fluctuations of sampling would produce relatively large changes in + and p.
The conclusion is fully confirmed by the following investigation.

We determine « and p virtually by solving the equations

f1==f]5(p,‘t) MZV’(PJT)‘
Hence
Uy =L do -+ F e |
X 'r .......... (26)
M =2 g + Py |
ap oT J
Writing for brevity
oP/ce = @, oy /ce = a,
k= 30, —- 6,10y
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and solving (26) for dp and dr we have

de = K7 (a df, — &, dM)
de = k7" (by dM — b, dfy)-
Whence, squaring and summing,
o2 = k"2 (a,20,2 + a,20,2 — 2a40, 7, 7 Cnl f)l
62 = k7% (blo,? -|-bPo 2 —2b; by 7, 40,0 f)J )
Where o,,, 5,are the standard errors of M and f; and 7,,is the correlation between errors
of sampling in these two constants, I find
@ =—p (1 +p) M (L+arp™) +frp {(1 + )7 +arp™}
@y =+ (e — 1) (L tarp™) —Mp™ {(p — 1) —arp”'} .. (@
b, = _{fl — @+ ) a(l+p)o™?
by = +{M + (p—1) " }a (p—1)p
and the only undetermined quantity in (27) is .. Iff;, fe, fs, - . . f, are the propor-
tional frequencies, so that

h+fetfs+ ... +Hfa=1
L+2fa+ 3+ ... +nf,=M

If, now, there is an error § in f; the compensating errors in the remaining frequencies
will most probably be distributed over those frequencies in proportion to their respective
magnitudes, so that the new distribution will be

fl + 3, fa “‘fzs/(l _fl)’ fs —f38/(1 '—fl)’ LRI fn —f,,S/(l _fl)

the mean of which reduces to

we have

M—3sM—-1)Q1—f)"
Hence the regression of errors in M on errors in f; is — (M — 1) (1 — f;)™*

or
Tm O[O =Tupci (L —fi) = — (M~ 1) (1 —f)
where o is the standard deviation of size of genus : that is

Tog= =M —DeffA—f)F 1L (29)
Tp 00y =— N(M—1)f,
I have failed to get any effective simplification by inserting the values of a,, a,, by, bs,
and 7,, in (27), and it seems best to conduct the calculation by working out the values
of the partial differential coefficients from (28), checking from Table III to see that they
are approximately correct, and inserting the numerical values in (27).

The following statement shows the results of the calculation for the four illustrations
used above. It will be seen that in each case the standard error of = is of the order of
half & unit, and the standard error of ¢ of the order of 0-1 t0 0-2. For the time especially
the determination is wholly lacking in precision: the high standard error renders a
better method of fitting, which would reduce the standard error, very desirable.

X 2
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Chrysomelidee  f; = 0-342903 M = 15-9442 6 = 46-2341
N= 627 | o,=0-01896 O = 1-8464 Ty = — 0-2335
p=1-925 } 0, = —0-11550 Gy = ~+ 11-6068
T=6-28 b, = — 0:0010771 b, = + 5-6706
5, = 0-418 6, = 0-167
Cerambycinz Ji = 0-458008 M = 5-5840 o = 11-5871
N= 1024 6, = 0-01557 s, = 0-3621 Ty = — 0+3637
p =1-188 } o, = — 0-20614 Gy, = + 6-1426
v =4-08 b, = —0:0012378  b,= -+ 1-1960
6, = 0-408 5, = 0-077
Snakes Ji = 0-447099 M = 5-0341 6 = 9:2045
N= 293y o, =0-02905 s, = 0-5430 7,4 = — 0-3903
p = 1-253 } a, = —0-18975 ty = + 4-1762
T = 4-260 b, = — 0-0052924 b, = +1-25775
o, = 0-576 c, = 0-164
Lizards Ji = 0-40541 M = 6-1004 o = 13-9294
N= 259 7 o,=0-03051 6, = 0-8655 Fp = — 0+3023
p = 1-496 } a; = — 0-15291 a; = -+ 3-8879
v = 4-281 J/ b, = — 0-0055153 b, = -+ 1-8652
o, = 0-563 5, = 0-211

V. THE FREQUENCY DISTRIBUTION OF AGES, AND THE MEAN AGE, ETC., FOR GENERA
oF A Given Size.

On the assumptions we have made the size of a genus is not an absolute measure of
its age, for chance enters largely into the matter, but it is an index to age. On an
average, within a homogeneous group, genera of 2 species are older than monotypes,
genera of 3 species older than genera of 2 species, and so on. It is therefore of importance
to determine the frequency distribution of ages for genera of a given size, i.e., to determine
what proportion of genera of n species, with assigned values of p and =, are likely to possess
any assigned age.

We will first take the limiting case when time is infinite, since the main effect of limiting
time is simply to truncate the frequency distribution of the ages of the derived genera
at age 7. The required expressions for genera of 1 and 2 species have, in fact, already
been given under the integrals of equations (9) and (11) at the beginning of Section II,
p- 37. Thus for monotypic genera the distribution of ages is given by

Y =1, 6—-(y+.v) ;c,

where y, must be assigned the value that will make the total unity, so that
y=I(g+s) e ™"
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Similarly for genera of 2 species

y=1(9+9)(g+29) s (1 —e™),
and so on. Generally, for genera of n species, the proportion y of genera of each age z,
time being infinite, is given by

y=gf e (1 —e)

1
= “9—1 n—l e_a(lﬂ'—l)g (]_ —_ e"‘li)n-l J --------

where f, is the nth term of the p-series (12), e* as before is 2, and & is the age measured

in terms of the doubling-period for species within the genus.
The mean age of genera of n species, in terms of the same relative unit of time, is

(time infinite)

s _ef 1, 1 1
wg”_“{l+p4 s "'+1-|—n9}' N 1))

As regards the most frequent or modal age, when n = 1, (30) reduces to a simple
exponential, and consequently the most probable age of monotypes is zero. When n
is 2 or more, the modal age is (common logarithms)

o5 =(log 2)*{log (1 +ne) —log(1 +e)} . . . . . . (32)

the modal frequency being

2 /1-+p >1+p—1 /(,n — 1) p>n—1
ofa Kl + mp ( 1 4-mne '
Tor the standard deviation of ages of genera of n species, I find

e _#f 1 1 . 1
0% = o2 {(] )2 . 0O %) 4+ { ——————__l_ np)“} ,,,,, (33)

From (31) and (33) it will be seen that for a given size of genus the mean age and the
standard deviation of ages (measured in terms of our relative unit of time) are both the
larger, the greater p ; and the modal age naturally increases with the mean age.

As an illustration of the general character of the limiting frequency distributions of
age and of the variation in the limit values of means, modes and standard deviations
with size of genus, fig. 10 has been drawn and the data of Table IX calculated with
¢ = 1+5 (nearly the mean of the four values 1-925, 1-188, 1-253, 1-496 found for Tables V
to VIII).

Fig. 10 shows the age distributions for genera of 1, 2, 3, . . . 10 species. For mono-
typic genera the curve is, as already pointed out, a simple exponential, the most probable
age being zero. The mean age is 0-87 of a doubling-period (Table IX), and the standard
deviation is 0-87 also; the relative frequencies of ages 0, 1, 2 and 3 units are 1-155,
0-364, 0-115, and 0-036.

Genera of 2 species show quite a different form of distribution. It rises abruptly,
with finite slope, from a frequency zero at age 0, rises to a maximum at age 0-68 (TableIX),
and then tails away slowly. The mean age is 1-41, considerably in excess of the mode.
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Age of derived genera
0 1 2 3 4 5 6 7 8
Spfciesl ] ] ] ] ] ] ]

Genus

10
I |
o I 2 3 4 5 6 7 8

Fig. 10.—Limiting forms of the frequency distributions of age for genera 0f1,2,3, . . . 10species when
time is infinite ; p == 1-5 (¢f. Table IX).
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TaBLE IX.—Limit values (time infinite) of mean and modal ages and standard deviations
for genera of 1 to 100 species: p =1-5. Unit of time, the doubling-period for
species within the genus.

1 2 3 1
Number of Standard
species in Mean age. Most dPIiObs‘ble deviation
the genus. (modal) age. of ages.

1 0-87 0 0-87
2 . 1-41 0-68 1-02
3 . 1-80 1-14 1-09
4 . 2-11 1-49 1-14
5 . 2-36 1-77 1-16
6 . 2-58 2-00 1-18
7 . 2-77 2-20 1-20
8 . 2-93 238 1-21
9 . 3-08 2-54 1-22
10 . 3-22 2+68 1-23
20 4-14 3-63 1-26
30 4-70 4-20 1-28
40 5-10 4-61 1-28
50 5-42 4-93 1-29
60 5-67 5-19 1-29
70 5-89 5-41 1-29
80 6-08 5-60 1-29
9 . 6-25 5-77 1-29
100 6-40 5-92 1-29

For genera of 3 species the distribution is tangential to the base at the start, the fre-
quency is a maximum for the modal age 1-14, and the mean is 1-80. From genera of
3 species onwards the general form of the distribution remains the same, but mean and
mode increase with the size of the genus, at first fairly rapidly and them more slowly.
The nature of the variation is well shown by Table IX, which is carried up to genera of
100 species.

When the number of species in the genus » is moderately large, say over 20, we have
to a high degree of approximation—

ng m+d
x5 (L) ~ o [ (L fee) 7 de

~ (log2)™ {log [1 + (n, + §) o] —log [1 4 (n, — §)e]} . . (34)
an expression which was used for calculating the means for genera of 40 species and
over in Table IX. Using the true mean by (31) at 10 species, and thence calculating
the mean age for genera of 20 species by (34), the error is only 3 in the fourth decimal
place. It follows then as n becomes large the mean age varies nearly as log n; the
mean age of genera of 100 species (6-40), for example, is very nearly double the age of
genera of 10 species (3-22), but slightly less.
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68 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION,

The rate of increase of the standard deviation also falls off rapidly as » increases.
To carry the figures to another place of decimals beyond those given in the table, it is
1-286 for genera of 50 species and no more than 1-294 for genera of 100 species. Here
again the similar approximation, obtained by substituting integration for summation,
is useful :—

a2 Z':’(l +n0) ™% ~ o™ {1+ (ny — Pe]™ — [1-+ (2 + Pe]™} . . (35)

It can be safely used, with an error in the sixth place of decimals only, for genera of 30
species onwards.

All the above are limiting results, true only when the time elapsed from the genesis
of the primordial species is infinite, and proceedings have continued ever since without
break or disturbance. All that can be said by way of comment at the present stage
is that they do not look unreasonable. It may be particularly emphasised that the
size of the genus is by no means a precise measure of its age.

When time is not infinite but limited, the genera of any given size fall into two distinct
groups : (1) the primordial genera, all of age v ; (2) the derived genera, the frequency
distribution of which is of the form (30) but truncated at age & = .

As we saw at the beginning of Section III, the proportion of primordial genera of #
specles to all genera of every size is

6—(1/+s)'l‘ (1 - c——x’l‘)n-l

or in terms of the relative notation

e—a(l+p—1)‘r (1 _ e—a‘l’)n—l.
If, then, ¢ be the proportion of primordial genera of » species to all genera of n species
g=-.f" L L § B (36)

where ,f, is the proportional frequency of genera of n species at time © (equation 20).
The proportion of derived genera is then given by

p:l—q ................... (37)

and if ,M,, is the mean age of the derived genera of n species, ,M, the mean age of all

genera of n species
Mo=pMy+4qv . . oL oL e e e e (38)

Equation (30) leads to very complex expressions for ,M,, by integration, and as in
any case it is desirable to have the frequency distributions, it seemed to me simpler
to calculate the average directly (¢.e., arithmetically) from the distribution, which is
very rapidly done on the machine and sufficiently precise except for the monotypic
genera (see below).

The procedure adopted to calculate the mean ages of genera of each size for the four
lustrations of the last section was accordingly as follows.
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(1) The proportion of primordial genera ¢ was found by (36) for genera of 1, 2, 3, 4, 5,
6,7,8,9,10, 20, . . . species, and thence p by (37).
(2) The age distributions
e-a(l-l-a_l)x‘? (1— e""f)’Pl

were calculated for the same genera, using values of £ 0-125, 0-375, 0-625, 0-875,
1-25, 1-75, 2-25, 2-75, and so on, and the value for the centre of the final group in the
tail. E.g., for the Chrysomelidce, where = = 6-28, the final value of £ is 614, the centre
of the interval 6-00 to 6-28.

(83) The mean age of the derived genera .M,, was then calculated from these distri-
butions on the machine.

(4) The mean age of all genera of n species was obtained by (38).

(56) In order to plot diagrams of the frequency distributions, the ordinates calculated
under (2) were multiplied by the factor necessary to give a total area p.

For the monotypic genera the mean age of the derived genera found by the above process
is not very acourate and integration gives a simple result. The area from 0 to = of
the curve

y = e—a(H-a_])é‘
is
271 (1 + 9-1)-1 [1 — G—u(l+9—1)'r]
which gives the factor necessary for the reduction under (5), and the mean is

o1 (1 + °—1)—1 _ ,ce-a(l+p—1)'r [l _ e-a(1+p"1)r -1
1)

Table X summarises the results for the Chrysomelide, the averages, etc., being carried
up to genera of 100 species—a limit of size exceeded by 16 only out of the 627 genera.
Turning first to columns 5 and 6, it will be seen that as the size of genus is increased the
proportion of primordial genera also increases, at first with increasing and then with
decreasing rapidity. The larger a genus, the older is it likely to be, and as the primordial
genera are the oldest of all they will be most likely to be caught in the net by picking out
the larger genera. Of the monotypic genera only 0-4 per cent. (roundly) are primordial,
t.e., the odds are about 250 to 1 against a monotypic genus being primordial. Of the
genera of 10 species only 8-4 per cent. are primordial, or the odds are about 11 to 1
against a genus of 10 species being primordial. For a genus of 60 species it is about an
even chance whether the genus is derived or primordial, and for a genus of 100 species
the odds are nearly 2 to 1 that it is primordial.

The mean ages of the derived genera are given in column 4, and are necessarily less
than the limiting values of the means, for infinite time, given for the sake of comparison
in column 2. The modal ages of the derived genera are given in column 3 : it will be
seen that even for genera of 100 species the mode falls below the limit 6-28, so that

all the frequency distributions of age, up to genera of 100 species, show a true modal
age for the derived genera.
VOL. CCXIIL.—B, L
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From columns 4, 5 and 6 the mean age of derived and primordial genera together was
then calculated by (88), the values obtained being given in column 7. It will be seen
that, for the small genera, the effect of limiting the time is slightly to increase the average
age as compared with the limiting value in column 2: the difference increases up to
genera of 20 species or thereabouts and then falls rather abruptly. For a genus of

TaBLe X.—Chrysomelidee. Table showing mean ages, etc., for genera of each size:
unit of time, the doubling-period for species within the genus in the Chrysomelidee.
T =628, p = 1-925.

1 2 3 4 5 6 7
Proportion of

Number of Limit Modal or Mean age Bélcaan.agg

species in mean age most fre- | of derived Oanflrl‘;?-

genus. ge. quent age. genera. Derived Primordial mor dli)al

genera. genera. ’

!

1 0-95 0 0-94 0-9961 0-0039 0-96
2 1-52 0-73 1-50 0-9903 0-0097 1-55
3 1-93 1-21 1-90 0-9832 0-0168 1-98
4 2-25 1-57 2-21 0-9752 0-0248 2-31
5 2-51 1-86 2-45 0-9664 0-0336 2-58
6 2-78 2-10 2-66 0-9570 0-0430 2-82
7 2-93 2-31 2-84 0-9472 0-0528 3-02
8 3-10 2-49 2-99 0-9370 0-0630 3-20
9 3-25 2-65 3-13 0-9265 0-0735 3-36
10 3-38 2-79 3-26 0-9158 0-0842 3-51
20 4-32 3-76 4-05 0-8064 0-1936 4+48
30 4-88 4-33 4-417 0-7071 0-2929 5-00
40 528 4-74 4-75 0-6231 0-3769 5-33
5 559 5-06 4-95 0-5534 0-4466 554
60 5-86 532 5-10 0-4955 0-5045 569
70 6-07 554 522 0-4474 0-5526 5-80
80 6-26 5-73 5-31 04070 0-5930 5-89
90 6-43* 5-90 5-39 0-3735 0-6265 5-95
100 6-58* 6-05 5-46 0-3451 0-6549 6-00

* Beyond the limiting value of the age, 6-28.

somewhere near 45 species the two averages are equal, and for larger genera the mean
age at time v steadily falls more and more below its limiting value, asymptoting, of
course, to v, that is 6+28 in the present case.

Fig. 11 shows as illustrations the age distributions of genera of 1, 2, 3, 10, 60 and 100
species. The distributions of the derived genera are of the same general form as the
distributions of fig. 10, but slightly altered owing to the different value of ¢, and truncated
att = 6-28; the area of the truncated curve is also made equal to p and not unity.
The proportion of the primordial genera is shown by a square just to the right of the
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limit, the area of this square being ¢, so that the square and the curve make up unit
area when taken together. For genera of 1, 2 and 3 species the truncation is scarcely
perceptible and the square is very small. For genera of 10 species the truncation
becomes appreciable and the square is larger. For genera of 60 species the area of the
square is little more than that of the curve, and finally for genera of 100 species most of

Age of derived genera

0 1 2 3 4 5

Species| L I 1 L l | { Primordial
in genera
Genus age 6-28

60

] ] | T
0 ] 2 3 4

5 6

Fig. 11.—Chrysomelide. Frequency distributions of age for genera of 1, 2, 3, 10, 60 and 100 species. The
curves give the age distributions of the derived genera, the squares on the right showing the proportional
frequency of primordial gencra (c¢f. Table X).

the derived distribution is cut off, the modal age lies just to the left of the limit and

the square has nearly twice the area of the small portion of the curve that is left. The

odds are nearly 2 to 1 that a genus of 100 species or more is one of the primordial genera
L2
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(or genera reckoned as such, ¢f. the discussion at the end of Section IV). As a matter
of fact the number of genera with 100 species or more in the Chrysomelide is only 16
(Table V) and we have to class some 65 genera as primordial (Table IV).

Tables XI, XII and XIIT show data arranged in the same form for the Cerambycine,
the Snakes and the Lizards, figs. 12, 13 and 14 showing the age distributions for a few

TasLe XI.—Cerambycine. Table showing mean ages, etc., for genera of each size;
unit of time, the doubling-period for species within the genus in the Cerambycine.
T =4-98, p = 1-188.

1 2 3 4 b} 6 7
Proportion of M
Number of - Modal or Mean age ean age
species of mg;n;t . most fre- | of derived o:;lgn:ie_d
genus. 8% | quent age. genera. Derived | Primordial mor dl;al
genera. genera. )
1 0-78 0 0-77 0+9962 0-0038 0-79
2 1-29 0-63 1-27 0-9896 0-0104 1-30
3 1-67 1-06 1-63 0-9808 0-0192 1-70
4 1-96 1-39 1-91 0-9701 0-0299 2+00
5 2:21 1-67 2:14 0-9580 0:0420 2:26
6 2-42 1-89 2-32 0-9448 0-0552 2-47
7 2-61 2-09 2-49 0-9306 0-0694 2-66
8 2-71 2-26 2+63 0-9157 0-0843 2-83
9 2:92 2:42 2-76 0-9004 0:0996 2-97
10 3-05 2-56 2-86 0-8846 0-1154 3-11
20 3:96 330 3-b5 0-7290 0-2710 3-94
30 4-52 4-07 3-8 0-6012 0-3988 4-30
40 4-91 4-47 4-04 0-5046 0-4954 4-51
50 5-23*% 4-79 417 0-4310 0-5690 4-63
60 5-48% 5-05% 4-25 0-3764 0-6236 4-71

* Beyond the limiting value of the age, 4-98.

selected sizes of genus in the same way. The tables and charts will repay some study
but do not seem to call for special comment. It may once more be emphasised that
the unit of time is different in each case if measured in years : it is the doubling-period
for species within the genus in the given group.

Charts such as those in figs. 11 to 14 suggest the question whether an examination of
the larger genera in some group might not be of interest : the age distribution of such
genera ought to be markedly compound, the genera being in part primordial and in
part derived. Is it beyond the bounds of possibility that one familiar with the group
might be able to effect at least a tentative separation of the two ?
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TaBrLE XII.-—Snakes. Table showing mean ages, etc., for genera of each size: unit
of time, the doubling-period for species within the genus in the Snakes. = 4-26,

p = 1-253.
1 | 2 3 4 5 6 7
; Proportion of Mean age
Number of —_— Modal or | Mean age 28
species in m:‘;:l;t’ o most fre- | of derived of d(;anvgd

genus. ge- quent age. genera. Derived Primordial an rdl?nl-

genera. genera. morcial.
1 0-80 0 0-78 0-9889 0-0111 0-82
2 1-32 0-64 1-26 0-9709 0-0291 1-35
3 1-70 1.08 1-62 0-9483 0-0517 1-75
4 2:00 1-42 1-88 0-9227 0-0773 2:06
5 225 1-69 2-09 0-8953 0-1047 2-31
6 246 1-92 2:26 0-8670 0-1330 2:52
1 2-64 212 2-40 0-8384 0-1616 2-70
8 2-81 229 2-53 0-8100 0-1900 2-86
9 2-96 245 2-64 07823 0-2177 2-99
10 3-09 2-59 273 | 07562 0-2448 3-11
20 4-00 3-53 3-29 ! 0-5403 0-4597 |  3-73
30 4-b6* 4:10 3:54 0-4086 0-5914 3:97
40 4-96* 4-50* i 3:69 0-3253 0-6747 4-07

* Beyond the limiting value of the age, 4-26.

TasLe XIII.—Lizards. 'l'able showing mean ages, etc., for genera of each size: unit
of time, the doubling-period for species within the genus in the Lizards. « = 4281,
o = 1-496.

1 2 3 A 5 | 6 7
i
: Proportion of Mean age
Number of - Modal or Mean age .
species in m;?:l;t o most fre- | of derived o:!:l;n;rﬁd
genus. 8% | quent age. genera. | Derived Primordial morc%al
! genera. genera. ’
1 0-86 0 0-83 0-9825 0-0175 0-89
2 1-41 0-68 1-33 0-9564 0-0436 1-46
3 1-80 1-14 1-69 0-9256 0-0744 1-88
4 2-11 1-48 1-95 0-8923 0-1077 2-20
] 2-36 1-76 2-16 0-8580 0-1420 2-46
6 2-58 2-00 2-33 0-8238 0-1762 267
7 2:77 2-20 2-47 0-7904 0-2096 2-85
8 2:93 2-38 2:59 0-7581 0-2419 3:00
9 3:08 2-53 2:70 0-7270 0-2730 3-13
10 3-22 2-68 2-79 0-6976 0-3024 3-24
20 4-14 3-63 3-33 0-4796 0-5204 3-82
30 4-53* 4-20 3-67 0-3566 0-6434 4-03
40 5-10* 4-61* 3T 0-2814 0-7186 4-12
l i 1

|
|

* Beyond the limiting value of the age, 4+28.

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 79

Age of dgrived genera,

Species | l | L Iy Primordial

in genera
Genus 8ge 4-28

20

40

T T
] [} 2 3 4

Fig. 14.—Lizards. Frequency distributions of age for genera of 1, 2, 3, 10, 20 and 40 species
(¢f. Table XIII).

VI. AN ArtEMPT TO ESTIMATE THE ORDER OF MAGNITUDE OF THE DOUBLING-PERIOD
FOR SPECIES IN THE CASE OF THE FLOWERING PLANTS, AND THE PRESENT RATE
oF OCCURRENCE OF SPECIFIC MUTATIONS.

Objection has been raised to the assumption of *‘ specific mutations ” on the ground
that no such phenomena have been observed. “ Though undeniable as possibilities *’—
Dr. BaTEsoN wrote in a review of ‘ Age and Area’ (‘Nature,” January 13th, 1923)—
“ we have to consider what warrant for such guesses ”’ (as Coleus elongatus being the
immediate parent of C. barbatus, and so forth) ““ can be drawn from the observed facts
of variation. The answer is quite clear that up to the present scarcely anything com-
parable has been observed.” To such an argument the reply seems to me to be that
we are not likely to observe the actual occurrence of a viable specific mutation—it is
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far too rare an event—unless or until we discover how to stimulate such mutations
artificially. This is in fact the answer already given by Dr. WirLis (‘ Age and Area,’
p- 212): “ Lord RavirieH has estimated the period since the Eocene alone, which
covers but a portion of that occupied in the evolution of the higher plants, at 30,000,000
years. But if we suppose one mutation in 50 years to survive, we should get the whole
of the existing 160,000 species of flowering plants in 8,000,000 years, which is only
26 per cent. of that time.”

Let us look at the matter more closely. In the above illustration Dr. WiLLis has
taken the mutations as occurring uniformly throughout the period of evolution, so that
the total number of species would increase in arithmetic progression. But we concluded
that the total number of species increases, not in arithmetic progression, but according
to a law which gradually approximates to geometric progression (equations 21 and 24,
p. 50).

Let us suppose that for the present very rough calculations it will suffice to take the
number of species 7 as given by

y=Ae" . . ... (39)

where ¢ is the time in years. Let Y be the known number of species at the present
time T. Then

a=(Tloge) (logY —1logd) ......... (40)
Further, if % be the doubling period e = 2 or
A= (log2) (@aloge)™ =Tlog2(log Y —log A" . .. .. (41)

For the present rate of occurrence of specific mutations (viable specific mutations) we
have

(%)T =aY = (Tloge) ' Y(log Y —logA). ... .... (42)

Ignoring for the moment the killing out of species, let us see what values (41) and
(42) give us for A and for dy/dt at the present time : the value so obtained for A will be
an upper limit, and for dy/d¢ a lower limit. For the time that has elapsed since the origin
of the flowering plants I propose to use the round figure of 100,000,000 years. Lord
Ravreier’s figure of 30 million years since the Eocene, used by Dr. WiLLs, is based
on the helium ratio and must be regarded as a lower limit for the time that has elapsed
since that epoch. Where the helium ratio gives 146 million years for the age of the
Carboniferous, the lead ratio gives 340 millions.* In the absence of a definite figure
for the Lower Cretaceous, 100 million years may probably be taken as sufficiently near
the truth for a calculation in which we are really only concerned with the order of magni-
tude of the result : the very roundness of the figure will remind us that no precision is
implied. The constant A (¢f. equation 24) is p/(p—1) : a8 p is apparently about 1-5
(p. 62) we may place its value at 3. Y, as mentioned above, is taken by Dr. WiLLis
as roundly 160,000.

* ArtHUR HoLMEs, ‘ The Age of the Earth’ (Harpers, 1913).
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With these data, we have for the doubling-period

108 X 0-301

= — B 06
5-204 — 0-477 641

and for the present rate of occurrence of specific mutations

(%% __16 X 10 (5-204 — 0-477) _ (174 —1 [57°5.

v 10°X0-4343

The doubling-period (either for species within the genus or for all species at the present
time) is then, on these assumptions, no less than 6-4 million years, and the present
occurrence of viable specific mutations at the rate of 1 in some 57 or 58 years—amongst
all species of flowering plants on the whole surface of the globe. Any alteration in
p, it may be noted, makes a relatively small change in these results. If p = 2 instead
of 1-5, the doubling-period is lowered to 6-1 million years and the rate of occurrence of
viable specific mutations raised to 1 in some 55 years. Raising ¢ to infinity only lowers
A to 5-8 millions and raises dy/d¢ to 1 in some 52 years. If, on the other hand, p is
lowered to 1-2, the doubling-period is raised to 6-8 million years and the rate of occurrence
of mutations lowered to 1 in some 61 years. The order of magnitude of the result is
not affected at all.

A doubling-period of 6-4 million years would give between 15 and 16 doubling-periods
in the 100 million years taken as having elapsed since the genesis of the flowering plants.
A rough estimate of the length of the doubling-period might have been given off-hand
by anyone who kept in front of him a table of the powers of 2 (as in column 2 of Table
XIV)—a useful thing to do when considering questions of this kind. On this table
160,000 lies between the 17th and 18th powers of 2: so that if there had been simple
geometric increase in the number of species (corresponding in strictness to p = ) the
doubling-period would have been between 100/17 and 100/18 or 5-9 and 5-5 million
years and nearer to the former than the latter (5-8 millions, as stated above). The
only effect of the more complex law of equation (24), with p taken as 1-5 is, as shown
by column 3 of Table XIV, to reduce the number of doubling-periods necessary to give
160,000 species from 17 or 18 to 15 or 16 and proportionately increase the length of
the doubling-period.

If the flowering plants had a polyphyletic origin, starting from 2, 4, or 8 viable mutations
which occurred (geologically speaking) at about the same time, the only consequence
would be further to reduce the number of doubling-periods necessary to give the required
total of 160,000 species from 15 or 16 to 12, 13 or 14, and further to ncrease the estimated
length of the doubling-period to possibly as much as 8 or 9 million years.

In all this argument, however, the killing-out of species is ignored. When species
are being killed-out, either more or less continuously during the whole lapse of time
or more or less cataclysmically at intervals, it at once becomes doubtful how far equation
(24) applies. I propose, therefore, to take it that, for present purposes, it suffices to

VOL. CCXIIL—B. M
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TasLe XIV.

Time 7 )
in doubling- Po;v;rs :I;Ii l?y eil_lh;.f:lgn
periods. ot 2. (24): p=1-5.
1 2 3

0 1 1

1 9 3
2 4 7
3 8 16
4 16 35
5 32 76
6 64 160
7 128 333
8 256 637
9 512 1,408
10 1,024 2,869
11 2,048 5,821
12 4,096 11,776
13 8,192 23,763
14 16,384 47,862
15 32,768 96,256
16 65,536 193,357
17 131,072 388,055
18 262,144 778,240
19 524,283 1,559,860
20 1,048,576 3,125,085

assume the law of free increase as simply logarithmic from the beginning, and write A
in (39) as unity. As we have just seen, the only effect of such an assumption in the
above case is to reduce the estimated doubling-period from 6-4 to 5-8 million years.

I will first suppose the killing-out to be practically continuous, though as stated in the
Introduction I do not think this at all closely represents the facts. Let the numbers at
successive small intervals of time be

1, pr, p*2, p%%, ... p""
where p is the proportion of survivors and r gives the free rate of increase. If

p=1-—2360
r=1-}ab
in the limit when the time-interval 6 is made very small we may write
y=€*N . ... .. . .. (43

The total number of deaths from the beginning to the time of observation is
D =gr+gpr*+qp*e -+ . . . +gp
= gr 1) (pr 1)
w g pr— )7 (Y )
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That is approximately, Y being large compared with unity and & and 8 very small,
D=3(@—9Y.
Let
Then finally
D=F—1"Y. ... ......... (45)
If, for example, k = 2, that is, if the number of species killed-out in a small interval
of time is half the number of new species coming into existence in that time, the total
number of species that has been killed-out is equal to the number at present existing.
We have now
a=klogY[(k—1)Tlogel™ .. .. ... ... (46)
and the free doubling-period, the period in which the number of species would double
apart from the killing-out, is given by
r=log2(aloge)yt=(k—1)Tlog2(klogY)™* . . . .. (47)
Finally
/
— = —_ —1 — -1
(dt)‘r a(k—1) k'Y = Ylog Y (T loge)~.

But this consists of two parts :—

Rate of occurrence of new species .— \
<%> =aY=Fk(k—1)"YlogY (T log )~* (@)
1 T
« . . . (48
Rate of killing-out of spectes :— (48)
‘) _ _ay_ gy o
2(dt>1' = —3Y=—(—1)7"Ylog Y (Tlog )™ (b) )

Were we in a position to make even a rough estimate of the number of species of
flowering plants that has been killed-out, (45) would give us an approximate value for .
But unfortunately we are not at present in a position to give even a lower limit for this
figure, which would give an upper limit for k. If, merely as a numerical illustration,
we take k& as 2, A takes half the previous limiting value (p = =) or 2-9 million years,
new species come into existence at about the rate of 1 in 26 years, and species are killed
out at about the rate of 1 in 52 years.

So much for the scheme of continuous killing-out. Let us now turn to a scheme of
cataclysmic killing: supposing that a series of practically instantaneous cataclysms
occurs, each sweeping off a certain proportion of the then existing species. However
crude, it seems to me that such a scheme is a slightly closer representation of the facts ;
at all events, a comparison between the consequences of such a scheme and the scheme
of continuous killing will show whether extreme differences in the time-incidence of
destruction on species have or have not any important effect on the estimated doubling-
period.

M 2
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Suppose then that each cataclysm kills off the same proportion g of the existing species,
a proportion p surviving : that the cataclysms recur at regular intervals¢ : that there
are n such intervalsin the time T : and that observation is made just after the nth cata-
clysm, e.g., the last glacial epoch. During the intervals between cataclysms it will be
assumed as before that increase in the number of species may be taken as approximately
logarithmic. Then the changes in the number of species will take place as follows :-—-

Time in intervals. Number of species.
0 1
1 e — pe*
2 .pezmb — pzezmb
3 P — PP

During the first interval the number of species will increase to e, of which only pe*
survive after the first cataclysm. During the second interval these will increase to
pe**, only p?** surviving after the second cataclysm, and so on. Hence

Y=9pret=9pret . ... ... ... .. ... (49)
Whence

a=(logY —nlogp)(Tloge)y™ . ... ... ... (50)
where log p is, of course, essentially negative. The free doubling-period is

A=Tlog2(logY —nlogp)™ . . ... ... ... (51)
and .

<%%)T =Y (logY —nlogp) (Tloge)™ . .. .... (62)

The number of species killed-out is
D = g (pro—1) (pe*— 1)
=gp Y (Y —1) (Y/—1)

or as Y is large, very nearly

D=gptY®Dla(Y—1) . . ... ... (53)

Compare equations (47) and (51). In (47) T log 2is divided by log Y**-", that is,
by log (Y/e~®"). 1In (51) the divisor of T log 2islog (Y/p"). But e *"in the first case and
p" in the second is the chance, say P, of a species surviving from the origin of the flowering
plants to the time of observation. Hence, so long as p, is the same it is of no consequence
whether the killing-out is continuous or discontinuous; A is unaltered by the changed
incidence of destruction.

A comparison of equations (48a) and (52) shows that a similar statement holds good
for the present rate of production of specific mutations. The rate is the same so long
as pr is the same, whether the killing-out is continuous or cataclysmic. But the number
of species killed-out, it must be noted, is not the same in the two cases : (45) and (53) do
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not lead to the same result for the same value of p;, (45) being the limiting value of

(563) when » is made indefinitely great.

Table XV gives a conspectus of the results for various assumed values of the killing-
out. In the first section of the table are given, for the sake of comparison with the
remainder of the table, the values arrived at for the doubling-period and for the present

rate of production of species if there is no killing-out at all.

In the first line of section 2,

discontinuous killing is assumed to the extent of 10 cquidistant cataclysms each of

TasLe XV.—Estimates of the doubling-period for species in the flowering plants,
and of the present rate of production of specific mutations on various assumptions.

Change of Present rate
Case assumed : Total number| = €% Doubling- lof production
Time elapsed since the origin of the flowering | D of species & Species period of specific
plants, 100 million years : present existing killed-out. ]S(;l r;:i‘ﬁil:)% in million | mutations,
species, 160,000. ' years. 11in years
years. stated below.
1. (@) No killing-out p =1-2 Nil Unity 6-8 61
®) ” p=1-5 Nil Unity 6-4 57-5
(¢ » ’ p=20 Nil Unity 6-1 5H
@ ., ’ p = Nil Unity 5-8 52
In all the following increasc is taken as
simply logarithmic (p = o)
2. (a) Discontinuous killing : 10 cataclysms each
killing-out % of existing species ... ...| 114,600 0-6667 4:3 39
(b) Continuous killing with same total killed-
out: k= 2-396 G e .| 114,600 0-4238 3-4 30
3. (a) Discontinuous killing : 20 cataclysms cach
killing-out % of existing species ... .| 177,500 0-4444 34 33
(b) Continuous killing with same total killed-
out: k£=1-901 e ...| 177,500 0-2645 27 25
4. (a) Discontinuous killing : 50 cataclysms cach
killing-out % of existing species ... ...| 375,400 0-1317 2-1 19
(b) Continuous killing with same total killed-
out: k=1-426 . ...l 375,400 0-0600 1-7 16
5. () Discontinuous killing : 100 cataclysms cach
killing-out % of custmg species ... ...| 708,400 0-0173 1-3 12
(b) Continuous killing with same total killed-
out: k=1-226 e e ...| 708,400 0-0050 1-1 10
6. (@) Discontinuous killing : 100 cataclysms each
killing-out } of existing specics .. 472,300 0-0562 1-7 15
(b) Continuous killing with same value of pr:
k=1-416 .| 384,600 0-0562 1-7 15
7. (a) Discontinuous killing : 100 cataclysms cach
killing-out 0-092 of existing species 143,500 0-3805 3-2 29
(b) Continuous killing with same value of py:
k=2-241 129,000 0-3805 32 29
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which sweeps out of existence one-third of the then existent species. This would give
the total number of species extinct as 114,600 : the free doubling-period would be reduced
to 4-3 million years, and the present rate of production of specific mutations would be
raised to 1 in some 39 years. The chance p, of a species surviving for the whole 100
million years would in several of the cases taken be vanishingly small, hence in the second
column of the table I have given for the sake of readier comparison p,°* or the chance
of a species surviving 10 million years. Since 10 million years, in the present case, only
cover a single cataclysm, this is 2/3 or 0-6667. In the second line of section 2 are given
the corresponding figures when the killing-out is continuous, and of such severity as
to make, not p, the same, but the total number of species killed-out the same. Equation
(45) then gives k, and (47) and (48a) give the doubling-period and the present rate of
production of specific mutations. It will be seen that on these assumptions A is further
reduced to 3-4 million years, the present rate of production of specific mutations is
raised to 1 in some 30 years, and the chance of a species surviving for 10 million years
is reduced to 0-4238. It must be remembered that under 2a we assume observation
just after the last cataclysm : our 160,000 species would then be the survivors of 240,000
which existed immediately prior to the cataclysm, no less than 80,000 of the 114,600
species extinct having been killed-out in the final cataclysm. When the killing-out is
continuous, the deaths are spread over the whole curve of increase, and p, must naturally
be smaller to give the same total of species extinct.

In sections 3, 4, and 5 of the table similar comparisons are made for successively
increased severity of the destruction of species. In section 5, with 100 cataclysms each
killing-out one-third of the then existing species, the total number of species killed-out
would be over 700,000, the free doubling-period would be lowered to 1-3 million years,
and the present rate of production of specific mutations would be raised to 1 in some 12
years.

But unfortunately, as already stated, there seems no basis at present for estimating
even roughly the total number of extinct species, so asto estimate whereabouts on the
table the truth in fact lies. That line of approach, at present at all events, is not possible.
But another and more hopeful line is afforded by the second column—the chance of a
species surviving. We know that the chance of a species surviving from the origin of
the flowering plants to the present time must be infinitesimally small, for no species
has so survived. On the other hand, we know that a species may survive through very
long periods of geological time. Hence we might reasonably conjecture that p, is too
large in sections 2 and 3 of the table, and possibly too small in section 5. The con-
jecture seems to be confirmed by utilising some valuable data given by Mrs. CLEMENT
REID in Chapter XIV of * Age and Area ’ (p. 144) and reproduced below.

Taking, e.g., the lowest figure showing 10 per cent. of survivals from the base of the
Pliocene to the present time—it is founded on a single local deposit only and obviously
too much weight must not be attached to it—can we use it to suggest a value for p,?

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 83

Percentages of Extinct Species belonging to the Chinese-North American Association of
Plants in the West European Pliocene at Successive Periods.

Percentage of

Deposit. Age of Deposit. extinct species
(approximate).
Cromerian ... ... Top of Pliocene 0
Teglian ... Upper Pliocene 35
Castle Eden ... ... Middle Pliocene 44
Reuverian ... ... Lower Pliocene 70
Pont-de-Gail ... ... Base of Pliocene ... 90

If we can fix the approximate time to which it relates, we can readily do so. Lord
Rayrgier’s figure for the age of the Pliocene is 25 million years as determined by the
helium ratio, 6-3 millions for the Miocene, figures which would correspond to about
6 and 15 millions respectively on the lead-ratio scale. Taking these as approximately
central figures for the Pliocene and the Miocene respectively, the age of the base of
the Pliocene must be somewhere between 6 and 15 million years. Suppose we call it
8 millions—probably rather a low figure. Then we have :—

Pt ®=0-1
whence
log pr = — 12:5 =135
while _
0-1log pr =2-75  p1o=0-0562

0-01log pr =1-875  p, =075

If then we assume killing-out to have been effected by 100 cataclysms, the chance of a
species surviving the cataclysm must be taken as 3/4, instead of 2/3 as in section 5,
and this gives the values of the doubling-period and the present rate of production of
species shown in section 6 of the table. The only figure altered if we keep p, the same
but assume killing-out to have been practically continuous is the number of extinct
species, which is lowered from 472,000 odd to 384,000 odd.

But the data in Mrs. REID’s table, though they run consistently from the top to the
bottom of her table, suggest that the more recent figures for the percentages of extinct
species are too low (cf. the zero with which the table begins) or possibly the percentages for
the older deposits too high. If 0-1 is the chance of survival from the base of the Pliocene,
the chance of survival from an epoch only half as distant in time should under uniform
conditions be in the neighbourhood of +/0:1 or 0-32. But the percentage of survivals
from the Middle Pliocene is as high as 56, and this is much more than half as distant in
time. If we call the age of the Middle Pliocene 6 million years, this percentage of survivals
gives the results shown in section 7 of the table—roundly nearly double the figures shown
by section 6. I have purposely taken the age rather low in the first case and possibly
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rather high in the second, so as to give limiting results. On the general reasoning used
above the value of p, for this second case (section 7), approximately 7 X 1075, seems rather
too high, as it gives a probability of about 1 in 14,000 for a species surviving right through
from the origin of the flowering plants to the present time. On the other hand, the value
of py for the first case (section 6 of Table XV), roundly 3107, is perhaps rather too
low, since we know from such instances as Ginkgo that species may survive through very
long periods of geological time.

In any case the figures are quite definite as to order of magnitude. If the age of the
flowering plants is 100 million years, or thereabouts, the doubling-period for species
is probably of the order of some 2 or 3 million ycars: it is, say, almost certainly over
1 million and less than 6 millions. The present rate of production of viable specific
mutations, amongst all flowering plants on the whole surface of the globe, is almost
certainly less than 1 in 10 years and more than 1 in 60 years; it probably lies between
1in 15 and 1 in 30 years. The assumption of a polyphyletic origin for the flowering
plants would not very greatly affect these figures. Specific mutations must, therefore,
be such exceedingly rare events that no valid argument, as it seems to me, can be based
on the fact that we have no experience of such occurrences. My calculations fully
confirm Dr. WiLL1s’s conclusion in this respect.

It should perhaps be added that of course the figures obtained, for a group so hetero-
geneous as the aggregate of the flowering plants, are of the nature of averages and may
well differ considerably for different families and genera. But it does not seem probable
that the order of magnitude is wholly different.
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TaBLeE A.—Chrysomelide: Numbers of genera with 1, 2, 3, . .

APPENDIX.

. Species.

85

(Compiled

by Dr. J. C. WiLLis from Cat. Coleopt., Gemminger and Harold, t. XI, 1874, and

t. XII. 1 876.)

Species. Genera. Species. Genera. Species. Genera.
1 215 32 1 4 1
2 90 33 1 76 1
3 38 34 1 7 1
4 35 35 1 79 1
5 21 36 3 83 1
6 16 37 1 84 3
7 15 38 1 817 2
8 14 39 2 89 1
9 5 40 2 92 2

10 15 41 1 93 1
11 8 43 4 110 1
12 9 44 1 114 1
13 5 45 1 115 1
14 6 46 1 128 1
15 8 49 2 132 1
16 6 50 4 133 1
17 6 52 1 146 1
18 3 53 1 163 1
19 4 56 1 196 1
20 3 58 1 217 1
21 4 59 1 227 1
22 4 62 1 264 1
23 5} 63 3 327 1
24 4 65 1 399 1
25 2 66 1 417 1
26 3 67 1 681 1
27 1 69 - 1

28 3 71 1

29 3 72 1

30 3 73 1 Total 627

VOL. CCXIII.——B.
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TaBLE B.—Cerambycine : Numbers of genera with 1, 2, 3, . . .
by Dr. J. C. WiLLis, from Coleopt. Cat., Junk and Schenkling, Part 39, 1912.)

species. (Compiled

Species. Genera. Species. Genera. Species. Genera.
1 469 21 2 46 1
2 152 22 5 47 1
3 82 23 1 49 I}
4 61 24 3 50 1
5 33 25 3 52 1
6 36 26 3 53 1
7 18 27 1 57 1
8 17 28 1 59 1
9 14 30 2 66 1

10 11 31 3 67 1
11 11 32 1 69 1
12 4 34 3 89 1
13 10 35 2 95 1
14 9 36 1 104 1
15 8 37 1 107 1
16 7 39 2 120 1
17 1 40 2 125 1
18 6 42 1

19 5 43 2

20 3 44 1 Total 1,024

TaBLE C.—Snakes : Numbers of genera with 1, 2, 3, . .

. Species.

(Compiled by Dr.

WiLLis from Boulenger, Cat. of the Snakes in the Brit. Mus., 1893.)

Species. Genera. Species. Genera. Species. Genera.

1 131 10 4 217 1
2 35 13 3 31 L
3 28 15 2 33 1
4 17 17 2 40 1
5 16 18 3 45 1
6 9 21 4 T4 1
7 8 22 b} 97 1
8 8 23 1

9 9 26 1 Total 293

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 87

TaBLE D.—Lizards : Numbers of genera with 1, 2, 3, . . . species. (Compiled by
Dr. WirLis from Boulenger, Cat. of the Lizards in the Brit. Mus., 1885.)
Species. Genera. Species. Genera. Species. Genera.
1 105 13 2 31 1
2 44 14 1 32 1
3 23 15 1 37 1
4 14 16 3 41 1
5 12 17 1 44 1
6 T 18 2 66 1
7 6 19 3 106 1
8 4 21 2 159 1
9 5 22 1
10 5 24 1
11 3 25 3
12 1 27 2 Total 259
TaBLE E.—Leguminose : Numbers of genera with (approximately) 1,2, 3, . . . species,

with graduated or averaged' figures. (Compiled by Dr. WiLLis from Dictionary
of the Flowering Plants.)

Graduated Graduated
Species. Genera. or averaged Species. Genera. or averaged
figures. figures.

1 245 245 34 —

2 66 66 35 5 1-1

3 36 36 40 6

4 24 34-5 43 —

5 28 254 44 —_—

6 30 19-8 45 1 0-5

7 7 16 50 4

8 13 13:3 53 —

9 — 11-3 55 1 —
10 27 9-8 60 3 —
11 3 8:6 65 2 —_
12 20 7-6 70 6 —
13 1 6-8 75 1 —_
14 2 6 80 2 —
15 18 5-4 90 2 —
16 4 4-9 100 4 —
17 —_ 4.6 110 1 —
18 2 4-1 120 3 —
19 —_ 3-8 150 3 —_
20 15 3:6 160 2 —
21 —_ 34 170 1 -
22 1 3:2 175 1 —
23 —_ 3 220 1 —_
24 3 290 1 —
25 8 300 1 —
27 1 1-9 350 1 —_
30 6 400 2 _
33 1 500 1 —

1,600 1 —
Total 617
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