
site IIIa is associated with Na+ release. High-
resolution structures that accurately reveal Na+

coordination and associated hydrogen-bonding
networks will be essential for a better understand-
ing of the structure-function relations of ion ex-
change, transport, and specificity and how the
mechanism is affected by regulation and disease-
related mutations.

References and Notes
1. G. Blanco, R. W. Mercer, Am. J. Physiol. 275, F633–F650

(1998).
2. J. P. Morth et al., Nature 450, 1043–1049 (2007).
3. T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Nature

459, 446–450 (2009).
4. H. Ogawa, T. Shinoda, F. Cornelius, C. Toyoshima,

Proc. Natl. Acad. Sci. U.S.A. 106, 13742–13747
(2009).

5. M. Laursen, L. Yatime, P. Nissen, N. U. Fedosova,
Proc. Natl. Acad. Sci. U.S.A. 110, 10958–10963
(2013).

6. H. Poulsen et al., Nature 467, 99–102 (2010).
7. A. P. Einholm, M. S. Toustrup-Jensen, R. Holm,

J. P. Andersen, B. Vilsen, J. Biol. Chem. 285,
26245–26254 (2010).

8. S. Meier, N. N. Tavraz, K. L. Dürr, T. Friedrich, J. Gen.
Physiol. 135, 115–134 (2010).

9. N. Vedovato, D. C. Gadsby, J. Gen. Physiol. 136, 63–82
(2010).

10. M. S. Toustrup-Jensen et al., J. Biol. Chem. 284,
18715–18725 (2009).

11. P. Blanco-Arias et al., Hum. Mol. Genet. 18, 2370–2377
(2009).

12. P. de Carvalho Aguiar et al., Neuron 43, 169–175
(2004).

13. M. Esmann, J. C. Skou, Biochem. Biophys. Res. Commun.
127, 857–863 (1985).

14. C. Olesen et al., Nature 450, 1036–1042 (2007).
15. T. L. Sørensen, J. V. Møller, P. Nissen, Science 304,

1672–1675 (2004).
16. C. Toyoshima, T. Mizutani, Nature 430, 529–535

(2004).
17. R. E. Dempski, K. Hartung, T. Friedrich, E. Bamberg,

J. Biol. Chem. 281, 36338–36346 (2006).
18. A. M. Winther et al., Nature 495, 265–269 (2013).
19. C. Toyoshima et al., Nature 495, 260–264 (2013).
20. M. Holmgren et al., Nature 403, 898–901 (2000).
21. H. Ogawa, C. Toyoshima, Proc. Natl. Acad. Sci. U.S.A. 99,

15977–15982 (2002).
22. T. Imagawa, T. Yamamoto, S. Kaya, K. Sakaguchi,

K. Taniguchi, J. Biol. Chem. 280, 18736–18744
(2005).

23. E. A. Jewell-Motz, J. B. Lingrel, Biochemistry 32,
13523–13530 (1993).

24. C. Li, K. Geering, J. D. Horisberger, J. Membr. Biol. 213,
1–9 (2006).

25. A. Vasilyev, K. Khater, R. F. Rakowski, J. Membr. Biol.
198, 65–76 (2004).

26. E. A. Azizan et al., Nat. Genet. 45, 1055–1060 (2013).
27. M. De Fusco et al., Nat. Genet. 33, 192–196 (2003).
28. E. L. Heinzen et al., Nat. Genet. 44, 1030–1034

(2012).
29. H. Rosewich et al., Lancet Neurol. 11, 764–773

(2012).
30. I. A. Anselm, K. J. Sweadner, S. Gollamudi, L. J. Ozelius,

B. T. Darras, Neurology 73, 400–401 (2009).
31. P. Zanotti-Fregonara et al., J. Neurol. Sci. 273, 148–151

(2008).
32. L. Yatime et al., J. Struct. Biol. 174, 296–306 (2011).

Acknowledgments: B. Vilsen and J. Petersen, Department
of Biomedicine, Aarhus University, Denmark, are thanked

for preparing enzyme for crystallization. We thank
C. Schulze-Briese, T. Tomizaki, and V. Olieric (Swiss Light
Source) for assistance with synchrotron data collection;
B. Bjerring Jensen, A. M. Nielsen, and J. L. Karlsen for
technical assistance; and J. P. Morth, L. Yatime, M. Laursen,
H. Khandelia, and M. J. Clausen for valuable discussions.
Support was provided by the Danscatt program of the Danish
Natural Science Research Council. M.N. was supported by the
Swedish Research Council, L.R. by the Danish Council for
Independent Research in Medical Sciences, E.L. by a European
Research Council starting grant (contract 209825), and P.N.
by a European Research Council advanced grant (contract
250322). H.P. was supported by the Lundbeck Foundation, the
Carlsberg Foundation, and L’Oréal/United Nations Educational,
Scientific, and Cultural Organization. The authors made the
following contributions: H.P. and P.N. performed study
design. M.N. crystallized the protein, collected and processed
x-ray data, and determined and refined the structure,
assisted by L.R. and P.G. The structural analysis was carried
out by M.N., L.R., and P.G., assisted by P.N., whereas M.A.
and E.L. performed the MD simulations, assisted by P.G. H.P.
designed and performed the electrophysiological studies.
N.F. designed and performed the deocclusion experiments.
M.N., L.R., P.G., H.P., and P.N. wrote the paper. All authors
discussed the results and commented on the manuscript.
Coordinates and structure factors have been deposited in the
Protein Data Bank (PDB) with accession no. 4hqj.

Supplementary Materials
www.sciencemag.org/content/342/6154/123/suppl/DC1
Materials and Methods
Figs. S1 to S12
Table S1
References (33–58)

17 July 2013; accepted 3 September 2013
10.1126/science.1243352

Quantifying Long-Term
Scientific Impact
Dashun Wang,1,2* Chaoming Song,1,3* Albert-László Barabási1,4,5,6†

The lack of predictability of citation-based measures frequently used to gauge impact, from impact
factors to short-term citations, raises a fundamental question: Is there long-term predictability
in citation patterns? Here, we derive a mechanistic model for the citation dynamics of individual papers,
allowing us to collapse the citation histories of papers from different journals and disciplines into a
single curve, indicating that all papers tend to follow the same universal temporal pattern. The
observed patterns not only help us uncover basic mechanisms that govern scientific impact but also
offer reliable measures of influence that may have potential policy implications.

Ofthemany tangiblemeasures of scientific
impact, one stands out in its frequency of
use: citations (1–10). The reliance on

citation-based measures, from the Hirsch index
(4) to the g-index (11), from impact factors (1) to
eigenfactors (12), and on diverse ranking-based

metrics (13) lies in the (often debated) perception
that citations offer a quantitative proxy of a dis-
covery’s importance or a scientist’s standing in
the research community. Often lost in this debate
is the fact that our ability to foresee lasting impact
on the basis of citation patterns has well-known
limitations.

1) The impact factor (IF) (1), conferring a
journal’s historical impact to a paper, is a poor
predictor of a particular paper’s future citations
(14, 15): Papers published in the same journal a
decade later acquire widely different number of
citations, from one to thousands (fig. S2A).

2) The number of citations (2) collected by a
paper strongly depends on the paper’s age; hence,
citation-based comparisons favor older papers and
established investigators. It also lacks predictive

power: A group of papers that within a 5-year span
collect the same number of citations are found to
have widely different long-term impacts (fig. S2B).

3) Paradigm-changing discoveries have noto-
riously limited early impact (3), precisely because
the more a discovery deviates from the current
paradigm, the longer it takes to be appreciated by
the community (16). Indeed, although for most
papers their early- and long-term citations corre-
late, this correlation breaks down for discoveries
with the most long-term citations (Fig. 1B). Hence,
publications with exceptional long-term impact
appear to be the hardest to recognize on the basis
of their early citation patterns.

4)Comparison of different papers is confounded
by incompatible publication, citation, and/or ac-
knowledgment traditions of different disciplines
and journals.

Long-term cumulative measures like the Hirsch
index have predictable components that can be
extracted via data mining (4, 17). Yet, given the
myriad of factors involved in the recognition of a
new discovery, from the work’s intrinsic value to
timing, chance, and the publishing venue, finding
regularities in the citation history of individual
papers, the minimal carriers of a scientific discov-
ery, remains an elusive task.

In the past, much attention has focused on
citation distributions, with debates on whether they
follow a power law (2, 18, 19) or a log-normal
form (3, 7, 15). Also, universality across disci-
plines allowed the rescaling of the distributions
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by discipline-dependent variables (7, 15). To-
gether, these results offer convincing evidence
that the aggregated citation patterns are charac-
terized by generic scaling laws. Yet little is known
about the mechanisms governing the temporal
evolution of individual papers. The inherent dif-
ficulty in addressing this problem is well illus-
trated by the citation history of papers extracted
from the Physical Review (PR) corpus (Fig. 1A),
consisting of 463,348 papers published between
1893 and 2010 and spanning all areas of physics
(3). The fat-tailed nature of the citation distribution
30 years after publication indicates that, although
most papers are hardly cited, a few do have ex-
ceptional impact (Fig. 1B, inset) (2, 3, 7, 19, 20).
This impact heterogeneity, coupled with widely
different citation histories (Fig. 1A), suggests a
lack of order and hence lack of predictability in
citation patterns. As we show next, this lack of
order in citation histories is only apparent, because

citations followwidely reproducible dynamical pat-
terns that span research fields.

We start by identifying three fundamental
mechanisms that drive the citation history of in-
dividual papers:

Preferential attachment captures the well-
documented fact that highly cited papers are
more visible and are more likely to be cited again
than less-cited contributions (20, 21). Accord-
ingly a paper i’s probability to be cited again is
proportional to the total number of citations ci the
paper received previously (fig. S3).

Aging captures the fact that new ideas are in-
tegrated in subsequent work; hence, each paper’s
novelty fades eventually (22,23). The resulting long-
termdecay is best described by a log-normal survival
probability (Fig. 1C and supplementary materials
S2.1), where t is time; m indicates immediacy, gov-
erning the time for a paper to reach its citation peak;
and s is longevity, capturing the decay rate.

PiðtÞ ¼
1ffiffiffiffiffi
2p

p
sit

exp −
ðln t − miÞ

2

2s2i

" #

ð1Þ

Fitness, hi, captures the inherent differences
between papers, accounting for the perceived
novelty and importance of a discovery (24, 25).
Novelty and importance depend on so many
intangible and subjective dimensions that it
is impossible to objectively quantify them all.
Here, we bypass the need to evaluate a paper’s
intrinsic value and view fitness hi as a collec-
tivemeasure capturing the community’s response
to a work.

Combining these three factors, we can write
the probability that paper i is cited at time t after
publication as

PiðtÞ ˜ hic
t
iPiðtÞ ð2Þ

Solving the associated master equation, Eq. 2
allows us to predict the cumulative number of

Fig. 1. Characterizing ci-
tationdynamics. (A) Yearly
citation ci(t) for 200 ran-
domly selected papers pub-
lished between 1960 and
1970 in the PR corpus. The
colorcodecorrespondstoeach
papers’ publication year. (B)
Average numberof citations
acquired 2 years after publi-
cation (c2) for papers with
the same long-term impact
(c30), indicating that forhigh-
impact papers (c30 ≥ 400,
shaded area) the early ci-
tations underestimate future
impact. (Inset) Distributionof
citations30years after pub-
lication (c30) for PR papers
published between 1950
and 1980. (C) Distribution
of papers’ ages when they
get cited. To separate the ef-
fect of preferential attach-
ment, we measured the
aging function for papers
with the samenumber of pre-
vious citations (here ct=20;
see also supplementary ma-
terials S2.1). The solid line
corresponds to a Gaussian fit
of the data, indicating that
P(ln∆t|ct) follows a normal
distribution. (D) Yearly ci-
tation c(t) for a research
paper from the PR corpus.
(E) Cumulative citations ct

for the paper in (D) togeth-
er with the best fit to Eq. 3
(solid line). (F)Data collapse
for 7775 papers with more
than 30 citations within 30
years in the PR corpus pub-
lished between 1950 and 1980. (Inset) Data collapse for the 20-year citation histories of all papers published by Science in 1990 (842 papers). (G) Changes in the citation
history c(t) according to Eq. 3 after varying the l, m, and s parameters, indicating that Eq. 3 can account for a wide range of citation patterns.

F GE

A

B C D
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citations acquired by paper i at time t after pub-
lication (supplementary materials S2.2)

cti ¼ m e
bhi
A F

ln t − mi
si

" #

− 1

2

4

3

5 ≡ m e
liF

ln t − mi
si

" #

− 1

" #

ð3Þ

where

FðxÞ ≡ ð2pÞ−1=2∫
x

−∞e
−y2=2dy ð4Þ

is the cumulative normal distribution,mmeasures
the average number of references each new paper

contains, b captures the growth rate of the total
number of publications (supplementary materials
S1.3), and A is a normalization constant (supple-
mentary materials S2.2). Hence m, b, and A are
global parameters, having the same value for all
publications. We have chosen m = 30 through-
out the paper, because our results do not depend
on this choice (supplementary materials S2.3).
Equation 3 represents a minimal citation model
that captures all known quantifiable mecha-
nisms that affect citation histories. It predicts
that the citation history of paper i is characterized
by three fundamental parameters: the relative fit-

ness, li ≡ hib=A, capturing a paper’s importance
relative to other papers; mi; and si. By using the
rescaled variables t̃ ≡ ðln t − miÞ=si and c̃ ≡
lnð1þ cti=mÞ= li, we obtain our main result

c̃ ¼ Fðt̃ Þ ð5Þ

predicting that each paper’s citation history should
follow the same universal curve Fðt̃Þ if rescaled
with the paper-specific (li, mi, and si) parameters.
Therefore, given a paper’s citation history, that is,
t and cti , we can obtain the best-fitted three pa-
rameters for paper i by using Eq. 3. To illustrate
the process, we selected a paper from our corpus,
whose citation history is shown in Fig. 1, D and E.
We fitted to Eq. 3 the paper’s cumulative citations
(Fig. 1E) by using the least square fit method,
obtaining l = 2.87, m = 7.38, and s = 1.2. To il-
lustrate the validity of the fit, we show (Fig. 1E)
the prediction of Eq. 3 using the uncovered fit
parameters.

To test the model’s validity, we rescaled all
papers published between 1950 and 1980 in the
PR corpus, finding that they all collapse into
Eq. 5 (Fig. 1F, see also supplementary materials
S2.4.1 for the statistical test of the data collapse).
The reason is explained in Fig. 1G: By varying l,
m, and s, Eq. 3 can account for a wide range of
empirically observed citation histories, from jump-
decay patterns to delayed impact. We also tested
our model on all papers published in 1990 by 12
prominent journals (table S4), finding an excep-
tional collapse for all (see Fig. 1G, inset, for Science
and supplementary materials S2.4.2 and fig. S8
for the other journals).

The model Eqs. 3 to 5 also predicts several
fundamental measures of impact:

Ultimate impact (c∞) represents the total
number of citations a paper acquires during its
lifetime. By taking the t → ∞ limit in Eq. 3, we
obtain

c∞i ¼ mðeli − 1Þ ð6Þ

a simple formula that predicts that the total number
of citations acquired by a paper during its lifetime
is independent of immediacy (m) or the rate of
decay (s) and depends only on a single parameter,
the paper’s relative fitness, l.

Impact time (T*i ) represents the character-
istic time it takes for a paper to collect the bulk
of its citations. A natural measure is the time nec-
essary for a paper to reach the geometric mean of
its final citations, obtaining (supplementary ma-
terials S2.2)

T %
i ≈ expðmiÞ ð7Þ

Hence, impact time is mainly determined by the
immediacy parameter mi and is independent of
fitness li or decay si.

The proposedmodel offers a journal-freemeth-
odology to evaluate long term impact. To illus-
trate this, we selected three journals with widely
different IFs:Physical Review B (PRB) (IF = 3.26
in 1992), Proceedings of the National Academy of
Sciences USA (PNAS) (10.48), and Cell (33.62).

Citation and Impact Factor Citation and Impact Factor 

A D

B E

C F

Year 2

Year 4

Year 10

Year 20

Cell
PNAS
PRB

Fitness Selection Citation and Impact Factor 
  Selection

Year 2

Year 4

Year 10

Year 20

Fig. 2. Evaluating long-term impact. (A) Fitness distribution P(l) for papers published by Cell, PNAS,
and PRB in 1990. Shaded area indicates papers in the l ≈ 1 range, which were selected for further study.
(B) Citation distributions for papers with fitness l ≈ 1, highlighted in (A), for years 2, 4, 10, and 20 after
publication. (C) Time-dependent relative variance of citations for papers selected in (A). (D) Citation
distribution 2 years after publication [P(c2)] for papers published by Cell, PNAS, and PRB. Shaded area
highlights papers with c2∈[5,9] that were selected for further study. (E) Citation distributions for papers
with c2∈[5,9], selected in (D), after 2, 4, 10, and 20 years. (F) Time-dependent relative variance of
citations for papers selected in (D).
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Wemeasured for each paper published by them the
fitness l, obtaining their distinct journal-specific
P(l) fitness distribution (Fig. 2A).We then selected
all papers with comparable fitness l ≈ 1 and fol-
lowed their citation histories. As expected, they
follow different paths: Cell papers ran slightly
ahead and PRB papers stay behind, resulting in
distinct P(cT) distributions for years T = 2 ÷ 4.
Yet, by year 20 the cumulative number of cita-
tions acquired by these papers shows a notable
convergence to each other (Fig. 2B), supporting
our prediction that given their similar fitness l,
eventually they will have the same ultimate im-
pact: c∞ = 51.5. To quantify the magnitude of
the observed convergence, we measured the co-
efficient of variation sc / c forP(cT), finding that
this ratio decreases with time (Fig. 2C). This
helps us move beyond visual inspection, offer-
ing quantitative evidence that in the long run
the differences in citation counts between these
papers vanishes with time, as predicted by our
model. In contrast, if we choose all papers with
the same number of citations at year two (i.e., the
same c2, Fig. 2D), the citations acquired by them
diverge with time, and sc / c increases (Fig. 2,
E and F), supporting our conclusion that these
quantities lack predictability. Therefore, l and
c∞ offer a journal independent measure of a pub-
lication’s long-term impact.

Themodel (Eqs. 3 to 5) also helps connect the
IF, the traditional measure of impact of a scientific
journal, to the journal’s L, M, and S parameters

(the analogs of l, m, and s; supplementary ma-
terials S4)

IF ≈
m
2

exp LF
M1 − M

S

$ %& '
− exp LF

M2 − M
S

$ %& '( )

ð8Þ

Knowing L, in analog with Eq. 6 we can calcu-
late a journal’s ultimate impact asC∞ ¼ mðeL−1Þ,
representing the total number of citations a paper
in the journal will receive during its lifetime. As
we show in the supplementary materials S4, Eq.
8 predicts a journal’s IF in good agreement with
the values reported by ISI (Institute for Scientific
Information). Equally important, it helps us un-
derstand the mechanisms that influence the evol-
ution of the IF, as illustrated by the changes in the
impact factor of Cell and New England Journal
of Medicine (NEJM). In 1998, the IFs ofCell and
NEJM were 38.7 and 28.7, respectively (Fig.
3A). Over the next decade, there was a remark-
able reversal: NEJM became the first journal to
reach IF = 50, whereas Cell’s IF decreased to
around 30. This raises a puzzling question: Has
the impact of papers published by the two jour-
nals changed so dramatically? To answer this, we
determined L, M, and S for both journals from
1996 to 2006 (Fig. 3, D to F). Although S were
indistinguishable (Fig. 3D), we find that the
fitness ofNEJM increased fromL = 2.4 (1996) to
L = 3.33 (2005), increasing the journal’s ultimate
impact fromC∞ = 300 (1996) to 812 (2005) (Fig.

3B). But Cell’s L also increased in this period
(Fig. 3E), moving its ultimate impact from C∞ =
366 (1996) to 573 (2005). If both journals at-
tracted papers with increasing long-term impact,
why did Cell’s IF drop and NEJM’s grow? The
answer lies in changes in the impact time T∗ =
exp(M): Whereas NEJM’s impact time remained
unchanged atT∗ ≈ 3 years,Cell’sT∗ increased from
T∗ = 2.4 years to T∗ = 4 years (Fig. 3C). There-
fore, Cell papers have gravitated from short- to
long-term impact: A typical Cell paper gets 50%
more citations than a decade ago, but fewer of
the citations comewithin the first 2 years (Fig. 3C,
inset). In contrast, with a largely unchanged T∗,
NEJM’s increase in L translated into a higher IF.
These conclusions are fully supported by the
P(l) and P(m) distributions for individual papers
published by Cell and NEJM in 1996 and 2005:
Both journals show a shift to higher-fitness papers
(Fig. 3G), but whereas P(m) is largely unchanged
for NEJM, there is a shift to higher-m papers in
Cell (Fig. 3H).

Can we use the developed framework to pre-
dict the future citations of a publication? For this,
we adopted a framework borrowed from weather
predictions and data mining: We used paper i’s
citation history up to year TTrain after publication
(training period) to estimate li, mi, and si and then
used the model Eq. 3 to predict its future citations
cti and Eq. 6 to determine its ultimate impact c∞i .
The uncertainties in estimating li, mi, and si from
the inherently noisy citation histories affect our

G

H

A B C

D E F

Fig. 3. Quantifying changes in a journal’s long-term impact. (A) IF of
Cell and NEJM reported by Thomson Reuters from 1998 to 2006. (B) Ulti-
mate impact C∞ (see Eq. 6) of papers published by the two journals from
1996 to 2005. (C) Impact time T∗ (Eq. 7) of papers published by the two
journals from 1996 to 2005. (Inset) Fraction of citations that contribute to

the IF. (D to F) The measured time-dependent longevity (S), fitness (L), and
immediacy (M) for the two journals. (G) Fitness distribution for individual
papers published by Cell (left) and NEJM (right) in 1996 (black) and 2005
(red). (H) Immediacy distributions for individual papers published by Cell
(left) and NEJM (right) in 1996 (black) and 2005 (red).
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predictive accuracy (supplementarymaterials S2.6).
Hence, instead of simply interpolating Eq. 3 into
the future, we assigned a citation envelope to each
paper, explicitly quantifying the uncertainty of our
predictions (supplementary materials S2.6). We
show (Fig. 4A) the predicted most likely citation
path (red line) with the uncertainty envelope (gray
area) for three papers, based on a 5-year training
period. Two of the three papers fall within the en-
velope; for the third, however, the model overes-
timated the future citations. Increasing the training
period enhanced the predictive accuracy (Fig. 4B).

To quantify the model’s overall predictive
accuracy, we measured the fraction of papers that

fall within the envelope for all PR papers pub-
lished in 1960s. That is, we measured the z30
score for each paper, capturing the number of
standard deviations (z30) the real citations c30

deviate from the most likely citation 30 years af-
ter publication. The obtained P(z30) distribution
across all papers decayed fast with z30 (Fig. 4C),
indicating that large z values are extremely rare.
With TTrain = 5, only 6.5% of the papers left the
prediction envelope 30 years later; hence, the
model correctly approximated the citation range
for 93.5% of papers 25 years into the future.

The observed accuracy prompts us to ask
whether the proposed model is unique in its abil-

ity to capture future citation histories. We there-
fore identified several models that either have
been used in the past to fit citation histories or
have the potential to do so: the logistic (26), Bass
(27), and Gompertz (26, 28) models (for formu-
lae, see supplementary materials and table S2).

We fit the predictions of these models to PR
papers and used theweightedKolmogorov-Smirnov
(KS) test to evaluate their goodness of fit (see eq.
S43 for definition), capturing the maximum de-
viation between the fitted and the empirical data.
The lowest KS distribution across most papers
was observed with Eq. 3, indicative of the best fit
(Fig. 4D). The reason is illustrated in fig. S18:

Fig. 4. Predicting future
citations. (A andB) Predic-
tion envelopes for three pa-
pers obtained by using 5 (A)
and 10 (B) years of training
(shaded vertical area). The
middle curve offers an exam-
ple of a paper for which the
prediction envelope misses
the future evolution of the
citations. Each envelope il-
lustrates the range for which
z ≤ 1. Comparing (A) and
(B) illustrateshow the increas-
ing training period decreases
the uncertainty of the predic-
tion, resulting in a narrower
envelope. (C) Complemen-
tary cumulative distribution
of z30 [P>(z30)] (see also sup-
plementary materials S2.6).
We selectedpaperspublished
in 1960s in the PR corpus
that acquired at least 10 ci-
tations in 5 years (4492 in
total). The red curve captures
predictions for 30 years after
publication for TTrain = 10,
indicating that for ourmodel
93.5% papers have z30 ≤ 2. The blue curve relies on
5-year training. The gray curves capture the predictions
of Gompertz, Bass, and logisticmodels for 30 years after
publication by using 10 years as training. (D) Goodness
of fit using weighted KS test (supplementary materials
S3.3), indicating that Eq. 3 offers the best fit to our
testing base [same as the papers in (C)] (E and F)
Scatter plots of predicted citations and real citations
at year 30 for our test base [same sample as in (C) and
(D)], using as training data the citation history for the
first 5 (E) or 10 (F) years. The error bars indicate pre-
diction quartiles (25 and 75%) in each bin and are
colored green if y = x lies between the two quartiles
in that bin and red otherwise. The black circles cor-
respond to the average predicted citations in that bin.
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The symmetric c(t) predicted by the logistic model
cannot capture the asymmetric citation curves.
Although the Gompertz and the Bass models pre-
dict asymmetric citation patterns, they also pre-
dict an exponential (Bass) or double-exponential
(Gompertz) decay of citations (table S2) that is
much faster than observed in real data. To quan-
tify how these deviations affect the predictive
power of each of these models, we used a 5- and a
10-year training period to fit the parameters of each
model and computed the predicted most likely
citations at year 30 (Fig. 4, E andF). Independent of
the training period, the predictions of the logistic,
Bass, and Gompertz models always lay outside the
25 to 75% prediction quartiles (red bars), system-
atically underestimating future citations. In contrast,
the prediction of Eq. 3 for both training periods was
within the 25 to 75% quantiles, its accuracy visibly
improving for the 10-year training period (Fig. 4F).
In supplementary materials S3.3, we offer addition-
al quantitative assessment of these predictions (fig.
S19), demonstrating our model’s predictive power
pertaining to both the fraction of papers whose
citations it correctly predicts and the magnitude of
deviations between predicted and the real citations.
The predictive limitations of the current models
were also captured by their P(z30) distribution, in-
dicating that for the logistic, Bass, and Gompertz
models more than half of the papers underestimate
with more than two standard deviations the true
citations (z>2) at year 30 (Fig. 4C), in contrast with
6.5% for the proposed model (Eq. 3).

Ignoring preferential attachment in Eq. 2 leads
to the lognormal model, containing a lognormal
temporal decay modulated by a single fitness pa-
rameter. Aswe analytically show in supplementary
materials S3.4, for small fitness Eq. 3 converged
to the lognormal model, which correctly captured
the citation history of small impact papers. The
lognormal model failed, however, to predict the
citation patterns ofmedium- to high-impact papers
(fig. S20). The proposed model therefore allows
us to analytically predict the citation threshold
when preferential attachment becomes relevant.
The calculations indicate that the lognormalmodel
is indistinguishable from the predictions of Eq. 3
for papers that satisfy the equation

∑∞

n¼2

1
n!
Fnln < 1 ð9Þ

Solving this equation predicts l < 0.25, equivalent
with the citation threshold c∞ < 8.5, representing

the theoretical bound for preferential attachment to
turn on. This analytical prediction is in close agree-
ment with the empirical finding that preferential
attachment is masked by initial attractiveness for
papers with fewer than seven citations (29). Note
that the lognormal function has been proposed
before to capture the citation distribution of a body
of papers (15). However, the lognormals appearing
in (15) and in the lognormalmodel discussed above
have different origins and implications (supplemen-
tary materials S2.5.2).

The proposed model has obvious limitations:
It cannot account for exogenous “second acts,”
like the citation bump observed for superconduc-
tivity papers after the discovery of high-temperature
superconductivity in the 1980s, or delayed impact,
like the explosion of citations to Erdős and Rényi’s
work 4 decades after their publication, following
the emergence of network science (3, 20, 21, 23).

Our findings have policy implications, because
current measures of citation-based impact, from
IF to Hirsch index (4, 17), are frequently integrated
in reward procedures, the assignment of research
grants, awards, and even salaries and bonuses
(30), despite their well-known lack of predictive
power. In contrast with the IF and short-term ci-
tations that lack predictive power, we find that c∞

offers a journal-independent assessment of a pa-
per’s long term impact, with a meaningful inter-
pretation: It captures the total number of citations
a paper will ever acquire or the discovery’s ulti-
mate impact. Although additional variables com-
bined with data mining could further enhance the
demonstrated predictive power, an ultimate under-
standing of long-term impact will benefit from
a mechanistic understanding of the factors that
govern the research community’s response to a
discovery.
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