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Abstract. This article focuses on the analysis of financial time series
and their correlations. A method is used for quantifying pattern based
correlations of a time series. With this methodology, evidence is found
that typical behavioral patterns of financial market participants man-
ifest over short time scales, i.e., that reactions to given price patterns
are not entirely random, but that similar price patterns also cause sim-
ilar reactions. Based on the investigation of the complex correlations
in financial time series, the question arises, which properties change
when switching from a positive trend to a negative trend. An empirical
quantification by rescaling provides the result that new price extrema
coincide with a significant increase in transaction volume and a sig-
nificant decrease in the length of corresponding time intervals between
transactions. These findings are independent of the time scale over 9 or-
ders of magnitude, and they exhibit characteristics which one can also
find in other complex systems in nature (and in physical systems in
particular). These properties are independent of the markets analyzed.
Trends that exist only for a few seconds show the same characteris-
tics as trends on time scales of several months. Thus, it is possible
to study financial bubbles and their collapses in more detail, because
trend switching processes occur with higher frequency on small time
scales. In addition, a Monte Carlo based simulation of financial markets
is analyzed and extended in order to reproduce empirical features and
to gain insight into their causes. These causes include both financial
market microstructure and the risk aversion of market participants.

1 Introduction

This article focuses on the analysis of financial market data and the modeling of
these markets from a physical point of view. Thus, the main issues addressed lie
within the interdisciplinary research field econophysics. The first section provides
insight into this field. Subsection 1.2 motivates the questions which will be covered by
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this article. Included in these introductory sections, selected models and concepts of
econophysics are introduced in a nutshell. The underlying methodology of this acticle
is affected by research at the Boston University. However, there are several schools
of thought in econophysics. A recent overview can be found, e.g., in the proceedings
of the Applications of Physics in Financial Analysis (APFA) conference in Tokyo in
2007 [1].

1.1 Econophysics – economy and physics

As a result of the current financial crisis, which is still persisting, researchers have
been further motivated to achieve an understanding of the formation of economic
bubbles. The consequences of such a global crisis, which exceeds in intensity all reces-
sions of recent decades, are not limited to privately held companies and individuals
– members of the international community of nations have also struggled for their
survival. For example, in the first quarter of 2010, it was revealed that Greece is one
prominent example of the group of financially tarnished nations.
However, the real economy is also still suffering the consequences of this interna-

tional financial crisis, which started as a real estate and mortgage market crisis in
the United States of America in 2007. Originally focused on credit defaults in the
U.S. housing market – the so-called sub-prime market – the crisis spread out, influ-
encing the liquidity of interbank lending and thus affecting the money market. The
high degree of propagation was caused by the fact that credit derivatives – intro-
duced by banking institutions in order to manage and distribute credit risk – created
a non-transparent world-wide inter-connected credit network. All phases of the crisis
coincided with sometimes dramatic reactions of stock markets.
Thus, it is not very difficult to motivate the need for realistic financial market

models. In the current crisis, the climax was reached with the falling out of five major
U.S. investment banks in the third week of September 2008. Facing such structural
changes, anyone can perceive intuitively that coinciding movements of stocks in finan-
cial markets were definitely not solely the result of random fluctuations. For example,
it is obvious that the strength of price fluctuations are clustered in time which is
known as volatility clustering: Trading days with large price fluctuations are followed
by days displaying again increased price changes. This dramatic effect could be ob-
served in the impressive movements of international stock indices at the end of 2008.
Nevertheless, it has been traditionally assumed in economics that price dynamics

in financial markets provide random walk statistics, which means that prices evolve
completely randomly. Economists relegate impact events such as the current financial
market crisis to the dustbin category of outliers.
Physicists do not like to do things this way. Physicists do not take Newton’s

law seriously part of the time, and then – if we suddenly see an example of what
appears to be levitation – simply call it an outlier. They like to find laws that de-
scribe all examples of a phenomenon. Economists themselves, in a journal called The
Economist, have admitted failure. This is a strong motivation for physicists to step
in and to meet this scientific challenge. Also, practically speaking, catastrophic eco-
nomic events have extreme social impacts. Widespread suffering is the usual outcome,
especially among the poor. The ability to understand economic crashes and other
large-scale risks would be of obvious utility to policy and research.
An additional reason why the economy is of interest to statistical physicists is

that – like an Ising model, a model of ferromagnetism – it is a system made up of
many subunits. The subunits in an Ising model are the interacting spins, and the
subunits in the economy are market participants – buyers and sellers. During any
time interval these subunits of the economy may be either positive or negative with
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Fig. 1. (Color online) Keyword related search volume illustrates a behavior similar to a Herd
effect : (a) Google Trends analyzes a portion of web searches to compute how many searches
have been done for specified keyword terms [3,4]. The relative number of searches can be
plotted over time–here, the keyword terms “Subprime”, “Lehman Brothers”, and “Financial
Crisis” are plotted for the time period from 2004 to 2009. The peak of “Lehman Brothers”
coincide with the bankruptcy of this institution when the investment bank Lehman Brothers
filed for Chapter 11 bankruptcy protection. (b) The U.S. stock index S&P 500 is shown for
the same period of time.

respect to perceived market opportunities. People interact with each other, and this
fact often produces what economists call the herd effect. The orientation of whether
they buy or sell is influenced not only by neighbors but also by news. If we hear bad
news, we may be tempted to sell. So the state of any subunit is a function of the
states of all the other subunits and of a field parameter [2].
One very illustrative example of the herd effect is shown in Fig. 1. The search

engine Google offers the possibility of accessing information on how popular spe-
cific search terms are1. Thus, one can compare the interest in financial crisis related
keywords such as “Subprime”, “Lehman Brothers”, and “Financial Crisis” with the
fluctuations of the S&P 500 index which is an international benchmark index. It
is easy to see that peaks in the search volume for the term “Subprime” coincide
with dips in the S&P 500 time series. At the climax of the crisis, the collapse of
“Lehman Brothers” caused the sellout of stocks and the public was talking about the
“Financial Crisis” afterwards. Figure 1 documents this over the course of time and
shows that these activities steadily increased. The search volume profiles track the
levels of escalation which can be seen as a prominent example of the herd effect.
These introductory words show that it is justified to address econophysics in the

framework of a research stream in physics. Econophysics or “physics of financial mar-
kets” forms the interdisciplinary interface between the two disciplines economics and
physics. The term econophysics was coined by H.E. Stanley in the 1990s.

1 More details can be found on http://www.google.com/trends and http://www.
tobiaspreis.de.
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In order to provide further justify a work in the field of econophysics – which
should be more elaborate than G.M. Obermair’s statement that physics is defined by
that what physicists do – we sketch an overview of the history of econophysics and
present overlaps between physics and economics.
The “experimental basis” of this interdisciplinary science econophysics is given

by time series which can be used in their raw form or from which one can derive
observables. Time series can be considered to be a link between economic and finan-
cial processes on the one hand and empirical analysis and physics based modeling
on the other hand. Such historical price curves can be understood as a macroscopic
variable for underlying microscopic processes. The price fluctuations are produced by
the superposition of individual actions of market participants, thereby generating cu-
mulative supply and demand for a traded asset – e.g. a stock. The analog in statistical
physics is the emergence of macroscopic properties, which are caused by microscopic
interactions among involved subunits as described earlier in this section.
A few decades ago, M.F.M. Osborne [5,6] and B.B. Mandelbrot [7] analyzed

time series related to financial markets realizing the non-Gaussian shape of the price
change distributions [8] – a Gaussian distribution is still an often used assumption
for economic models. With these pioneering findings, they became early fathers of
econophysics. Mandelbrot used for his analysis historical cotton times and sales
records dating back to the beginning of the 20th century. His findings indicated that
financial market time series obey a complex statistical behavior which has similari-
ties with the non-Gaussian properties of critical fluctuations in physics [9–11]. The
studies of Mandelbrot were based on data sets of very limited length. Alongside
technological progress in information technology, trading processes in international
financial markets adapted and fully electronic trading platforms have been estab-
lished. Thus, a gargantuan amount of historical financial time series are available for
researchers and practitioners with an extremely high time resolution2. A century ago,
only daily data were accessible, whereby the situation today is such that transac-
tion records are available on time scales of milliseconds. The continuously increasing
number of transaction records confirms the results obtained by Mandelbrot. Further-
more, the use of Gaussian approximations in finance has become more and more
questionable.
However, the first work in this area which can be related to current econophysics

was performed much earlier as reported for example in [11]. In 1900, a young PhD stu-
dent of H. Poincaré finished his thesis. His name was L. Bachelier. On the one hand,
Poincaré lauded the brilliant way in which the Gaussian distribution was derived.
On the other hand, he pointed out that the subject of his thesis entitled “Théorie
de la spéculation” [13] was completely different from subjects of other theses. Bache-
lier proposed the random walk as model for price fluctuations in his PhD thesis.
Thus, he developed the mathematics of Brownian motion with his description of fi-
nancial market processes – five years before the famous publication of A. Einstein
on Brownian motion appeared in 1905 [14]. Until the early 1940s Bachelier’s work
tended to be sidelined. But living in the shadows is not exceptional for revolution-
ary scientific contributions as exemplified by the famous publication by E. Ising [15]
about a model which has become a standard model in statistical physics today – the
Ising model. W. Heisenberg cited this work in 1928. The breakthrough of the Ising
model coincided with the exact solution for the Ising model on a two-dimensional
square lattice achieved by L. Onsager in 1944 [16]. The Ising model can not only be
used to describe ferromagnetism as originally intended; it can be extended to also
describe more complex magnetic systems, such as spin glasses, in which competing

2 In August 2009, the Deutsche Börse Group reduced the network latency between
Frankfurt and London to below 5 milliseconds, setting new standards in the industry [12].
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interactions between various spins lead to frustration effects and slow (“glassy”) dy-
namics. The energy landscapes of such systems exhibit a vast amount of local minima.
The task is to find those spin configurations for which the energy is minimal. The
inverse problem, namely the calculation of interactions for the proposed spin configu-
rations which should form local minima in the energy landscape, is known as the Hop-
field model for neural networks3. Today, the Ising model is used for various–ordered
and disordered–complex systems in many areas of science. The various applications
also include the interdisciplinary field of sociophysics [18] in which social interactions
are treated by a modification of the Ising model – the Sznajd model [19]. Many fur-
ther interdisciplinary streams of research in which physics’ concepts and methods are
used have appeared. One example is the physics of transport and pedestrians. An
often asked question is how spontaneous traffic jams occur [20,21]. Beside D. Hel-
bing, who is one of the leading researchers in this field, one prominent scientist in this
field of research is D. Brockmann. His research on complex systems spans from trans-
portation networks to infectious diseases. He has developed computational models,
new analytic and numerical techniques, and large-scale quantitative and predictive
computer simulations for studying various aspects of the dynamics of epidemics. For
example, he has used data from http://www.wheresgeorge.com – a website where
users enter the serial numbers of their dollar bills – in order to track their travels [22].
In this way, patterns and laws of human mobility could be identified. From that in-
formation, Brockmann was able to reconstruct a multi-scale human mobility network
of the U.S. including small scale daily commuter traffic, intermediate traffic, and long
distance air travel. Based on this mobility network, Brockmann has modeled how dis-
eases spread throughout the country. He and his research group have also created a
map of large scale community boundaries in the United States, which sometimes dif-
fers from administrative boundaries. These effective maps show that some states, like
Missouri or Pennsylvania, are essentially cut into halves. Other boundaries coincide
with geographic features, such as the Appalachian Mountains. Brockmann also de-
velops models for disease spreading via transportation networks, in order to quantify
the susceptibility of various regions to epidemic threats and to develop more efficient
containment strategies.
Bachelier did not gain publicity in the first years after his work was published.

Applying his ideas to describe French bonds took significant time. At that time, his
interdisciplinary work was not popular in the scientific community at all – today,
there actually exists a “Bachelier Finance Society”4. However, in the meantime it
turned out that the work of A. Kolmogorov was inspired by Bachelier’s results as can
be retraced in [23]. In 1944 – almost half a century later – Itô used Bachelier’s PhD
thesis as motivation for his famous calculus, now called Itô calculus. Later, Osborne
introduced geometric Brownian motion which is an extension of Brownian motion.
It is a continuous-time stochastic process in which the logarithm of the randomly
varying quantity follows a Brownian motion. This is advantageous in financial mar-
ket modeling in that it can only take positive values – a meaningful assumption for
the prices of stocks. This compatibility with the axioms of economics was shown by
P.A. Samuelson for which he obtained the 1970 Nobel Prize in Economics. Asset prices
could be assumed to be log-normally distributed. This implied normally distributed
returns.
Based on that, F. Black and M. Scholes [24] – as well as R. Merton [25] inde-

pendently of both of them – developed a theory for evaluating stock options using

3 In a spin glass, the interactions between individual spins are fixed. It is the aim–and
sometimes a challenge–to find the ground state in the energy landscape. In a Hopfield network
the configurations, which correspond to the ground states, are given and one has to find the
interactions [17].
4 More information can be found on http://www.bachelierfinance.org.
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geometric Brownian motion. This theory had a huge impact on financial markets. Up
to that time, it had not been possible to obtain an “objective” valuation of options.
Thus, the transaction numbers and transaction volumes of option contracts increased
rapidly after the introduction of this theory. Today, modern risk management is in-
conceivable without options. In 1997, the Nobel Prize in Economics was awarded to
Scholes and Merton for their work. However, it must also be mentioned that this the-
ory, now known as the Black Scholes model, is accompanied by problematic aspects.
Continuous time trading is a first assumption which is matched most closely by foreign
exchange markets5 but which is not fulfilled by other exchange platforms. The second
requirement is a continuous price path which is unrealistic – this is already contra-
dicted by the existence of opening gaps. An opening gap is a direct consequence of
non-continuous trading. At the beginning of an exchange trading day a stock does not
necessarily start being traded at the same price level as the day before. The difference
between opening price and closing price one day before is known as the opening gap. If
there is for example an important news release in the period of time without trading,
larger opening gaps occur. In addition to these two assumptions, it is critical to note
that the important input variable, the volatility (annualized standard deviation) of
future stock returns, is not known in advance. Furthermore, the Black Scholes model
is based on normally distributed asset returns. This aspect contradicts earlier findings
mentioned in this section: thus, economics uses simplifying assumptions which were
already falsified by Mandelbrot in 1963. Several papers confirm his findings and, most
importantly, Stanley et al. were able to quantify the tails of the return distributions.
They found that the tails are consistent with cubic power laws [10].
In this context, physicists used a wide range of methods in trying to examine the

discrepancy between theory and the reality of economic and financial markets. They
applied physical methods to the “many particle system” made up by financial mar-
kets. Non-trivial features of financial market time series are called empirical stylized
facts. The focus lies on these facts, and they are shortly mentioned in [27] as well.
Furthermore, the coverage of additional empirical stylized facts is one main aspect
of this article. It is on the basis of commonly accepted facts that physicists started
to model financial markets. Simple models were proposed as a result, for example at
the end of the last century [10,28]. A simple agent-based model6 [28] uses imitation
and feedback. It is able to reproduce simple examples of the group of empirical styl-
ized facts. In recent years, physicists started to investigate and understand the price
formation process in detail on a microscopic level as simple models were not able to
completely reproduce the behavior of financial markets. In this context, the statisti-
cal model of the continuous double auction [36,37] stand out. The continuous double
auction is used for organizing trading processes at electronic financial exchanges and
will be described in detail in Sec. 2.

5 The foreign exchange market (FOREX ) is a worldwide decentralized over-the-counter
financial market for the trading of currency pairs. There is a continuous trading established–
an exception marks the weekend. The average daily trading volume of this non-regulated,
global market was, e.g., roughly USD 1.9 trillion in April 2004 [26].
6 This early contribution of physicists of modeling financial markets using agent based
models is based on a reaction diffusion process [28], A+B → 0. It is able to reproduce some
empirical stylized facts–e.g., non-trivial Hurst exponents and non-Gaussian price change
distributions. Large price changes occur more frequently than predicted by the Gaussian
distribution. A few years later, a model was published [29,30] incorporating two different
order types–limit orders and market orders (see section 2). A model with an additional rule
set was developed in 2003 [31]. There, a Poisson process is applied for the cancellation of
submitted limit orders. In recent years, further agent based market models [31–35] have been
proposed in order to reproduce further empirical stylized facts.
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1.2 Motivation for research in econophysics

In physics and in other natural sciences, it is often a successful strategy to analyze
the behavior of a system by studying the smallest components of that system. For
example, the molecule is composed of atoms, the atom consists of a nucleus and elec-
trons, the nucleus consists of protons and neutrons, and so on. The fascinating point
about analyses on steadily decreasing time and length scales is that one often finds
that the composite system exhibits properties which cannot solely be explained by the
properties of its components alone. Instead, a complex behavior can emerge due to
the interactions among these components [38]. In financial markets, these components
are comprised of the market participants who buy and sell assets – as emphasized in
the previous section – in order to realize their trading and investment decisions. The
superimposed flow of all individual orders submitted to the exchange trading system
by market participants, and, of course, its change in time generate a complex system
with fascinating properties, similar to physical systems.
One of the key conceptual elements in modern statistical physics is the concept

of scale invariance, codified in the scaling hypothesis that functions obey specific
functional equations whose solutions are power-laws [39]. The scaling hypothesis has
two categories of predictions, both of which have been remarkably well verified by a
wealth of experimental data on diverse systems. The first category is a set of relations,
called scaling laws, that relate the various critical-point exponents characterizing the
singular behavior of functions such as thermodynamic functions. The second category
is a sort of data collapse, where under appropriate axis normalization, diverse data
“collapse” onto a single curve called a scaling function.
Econophysics research has been addressing a key question of interest: quantifying

and understanding large stock market fluctuations. Previous work has focused on the
challenge of quantifying the behavior of the probability distributions of large fluctua-
tions of relevant variables such as returns, volumes, and the number of transactions.
Sampling the far tails of such distributions require a large amount of data. A very
large amount of precise historical financial market data has already been collected,
many orders of magnitude more than for other complex systems. Accordingly, increas-
ing numbers of scientists have been analyzing financial market data [8,34,40–50].
The increasing interest of the physics community in topics related to financial

markets caused an increasing number of publications in physics journals which are
related to econophysics as shown in Fig. 2. The results were limited to journals be-
longing to the areas of physics, computer science, and mathematics. The data were
extracted from the ISI Web of Knowledge database. The number of publications for
2010 – which is italicized – is estimated based on the number of publications for the
first quarter of 2010. The increasing number of econophysics publication in the last
two decades is linked to the increase in value of international benchmark indices –
here, the S&P 500 is shown. The downfall of the New Economy after the year 2000
and the recent international financial market crisis had no dramatic impact on the
number of publications.
Empirical analyses have focused on quantifying and testing the robustness of

power-law distributions that characterize large movements in stock market activity.
Using estimators that are designed for serially and cross-sectionally independent data,
findings thus far support the hypothesis that the power-law exponents that character-
ize fluctuations in stock price, trading volume, and the number of trades [51–54] are
seemingly “universal” in the sense that they do not change their values significantly
for different markets, different time periods, or different market conditions.
In contrast to these analyses of global financial market distributions, we focus on

the temporal sequence of fluctuations in transaction volume and inter-trade times
before and after a trend switching point. Our analysis can provide insight into
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Fig. 2. (Color online) Number of publications related to econophysics: (a) Number of publi-
cations which fit the topics econophysics, financial markets, or economy in scientific journals
aggregated yearly. (b) U.S. benchmark index S&P 500 plotted for the same period of time.

switching processes in complex systems in general and financial systems in partic-
ular. The study of dramatic crash events is limited by the fortunately small number
of such events. Currently, one may seek to better understand the current financial
crisis by comparing it with the depression of the 1930’s. Here we ask if the smaller
financial crises – trend switching processes on all time scales – also provide informa-
tion of relevance for large crises. If this is the case, then the large abundance of data
on smaller crises should provide quantifiable statistical laws for bubbles on all scales.
This fact alone provides the greatest motivation for work in the interdisciplinary field
of econophysics in seeking to contribute to a better understanding of financial mar-
kets and to financial market crises in particular.
This article covers and continues a work which was started as a diploma thesis [55]

in 2005. There, the starting point was the microscopic statistical model [36,37] of the
continuous double auction. In this model, transaction orders – limit orders and mar-
ket orders (see section 2 for a detailed explanation of the market structure)–enter
the system with constant rates uniformly distributed over an infinite price range.
The simplified assumptions of the model are not realistic but necessary for solving
the system in special cases. Based on this mechanism of order submission, a simple
multi-agent based system was defined in the aforementioned diploma thesis [55] which
led to a publication in Europhysics Letters in 2006 [56]. Here, two different types of
agents interact with each other. These agents can be identified as liquidity providers
and liquidity takers. The aim of the agent-based Monte Carlo simulation7 of financial
markets is to analyze the properties of such a system in order to obtain a deeper and
better understanding of the pricing processes in financial markets.

7 A Monte Carlo method is an algorithm that uses random numbers.
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Certain aspects should not be neglected, however, concerning the general motiva-
tion for developing models for financial markets and for analyzing the corresponding
data at this point. Therefore, it is necessary to introduce the fundamental concept
of an efficient market which is an idealization. This means that the price process of
financial assets can be modeled by a Markov chain stochastic process [11]. A Markov
process is characterized by the property that the probability of reaching an arbitrary
state at time t + 1 depends only on the state of the system at time t. The state or
states in which the system was in before time t are not relevant [57]. A market is
called effective if various criteria are fulfilled. Another important aspect is informa-
tion. Market participants have to have instantaneous access to related information.
The market has to provide a certain amount of liquidity, so that trading positions
can be opened or closed at any time. Furthermore, the assumption of a liquid mar-
ket includes the assumption that no price impact can be induced by a single order.
A further criterion for an efficient market is low market friction. Market friction is a
collective term for the effective trading costs arising from exchange rates, transaction
costs, taxes, and the bid ask spread8. If the sum of all costs is negligibly small com-
pared to the transaction volume then the market provides low friction. In the case
that a market exhibits these properties then the efficient market hypothesis states
that new information is efficiently incorporated into the market. This means that all
relevant information is included in the current market price at any time. Assuming
that this hypothesis is valid, it makes no sense to analyze historical time series in
order to extract probabilities for future market movements.
This aspect can also be address though a brief excursion to the topic of statistical

arbitrage. Let us assume that there is a significant correlation between the current
market behavior and historical time series associated with the market9. This can
lead to a trading strategy with positive expected value. If a market participant is
aware of this pattern then it is possible to exploit the statistical pattern by statis-
tical arbitrage. The term arbitrage in its strict sense can be described as follows:
“Pure arbitrage is defined as generating risk-less profit today by statically or dy-
namically matching current and future obligations to exactly offset each, inclusive
of incurring known financing cost” [58]. A simple and often used example is a stock
which is traded at two exchanges located in different places. If the bid price p1 for
selling at one exchange is higher than the ask price p2 for buying at another ex-
change then one can realize a risk-less profit buying at p2 and selling at p1. However,
statistical arbitrage is focused on profitable exploitation of correlations, i.e., there is
a statistical mispricing of one or more assets based on the expected value of these
assets. This kind of correlation disappears when market participants start to use
this information and as this information spreads towards an increasing number of
market participants. In an almost efficient market, such correlations do not occur,
or they disappear instantaneously through an adaption of demand and offer price.
In less efficient markets, in which the adaptation time to new information is finite
and different from zero, correlations can be reduced or eliminated as they are ex-
ploited. The more liquid a market is, the less correlation can be observed. However,
as there is a certain amount of market friction, correlations do not disappear com-
pletely. If the advantage is comparable to the level of market friction, then no positive
expected value can be realized. This fact explains the autocorrelation coefficients of

8 The bid ask spread is the non-zero gap between the lowest offering price and the highest
demanding price in an order book, which stores all orders submitted by market participants.
If a liquidity taker would like to sell using a market order, then an execution price at the
highest demanding price is realized. Thus, the effective transaction fees are increased by the
bid ask spread.
9 This kind of pattern based correlations will be analyzed in detail in section 3.
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financial market time series on very small time scales which are significantly different
from zero [59].
This brief discussion of efficient markets – on which financial valuation models

rely – makes clear the motivation (and fascination) in dealing with financial market
topics from a physicist’s point of view. One must be careful, however, not to succumb
to the misconception that econophysics research can predict future market prices.
Even a reasonable quantification of future risk is a major challenge as one can see in
the current international financial market crisis.

2 Financial markets

This section covers general topics related to financial markets. Their historical devel-
opment is shown along with an overview of how financial markets work, including how
they are structured, how the various market participants can interact by this means
in order to exchange assets and realize a very diverse variety of trading strategies.
These aspects are covered in general with specific emphasis on the context provided
by the remaining sections in which financial market fluctuations are analyzed and
modeled in detail10.

2.1 Historical development of financial markets

Looking at the historical development of public financial markets, for which a term
was only recently created as a collective term for capital and money markets, it is
necessary to distinguish between spot markets (or cash markets) and futures markets
(or derivatives markets).
Futures contracts which are traded on derivatives markets differ from contracts

exchanged on cash markets. The major difference is the time of fulfillment. Spot
market contracts – one example for spot market contracts are stocks – have to be ful-
filled immediately after a contract between two parties is established11. On the other
hand, futures contracts are fulfilled at a future date. One can additionally distinguish
whether an instrument is a conditional or unconditional derivative instrument. This
differentiation is made in order to present a complete overview of possible transaction
types which should result in an overall deeper understanding of the inter-connectivity
of financial markets. As mentioned in the general introduction, credit derivatives
caused the high degree of propagation during the recent financial market crisis which
started in 2007. Banking institutions created and distributed such credit derivatives
in order to manage credit based risks. As a consequence the real estate market, for
example in the U.S., which can be seen as a spot market was tradable and became
in some sense liquid. The risk of credit defaults within the real estate market was
distributed globally.
We return to the two types of derivative instruments: An option as a conditional

derivative instrument is a contract between a buying and a selling exchange member
that gives the buyer the right, but not the obligation, to buy or to sell a speci-
fied asset – which is called the underlying asset – on (European option) or before
(American option) the option’s expiration time, at an agreed price. This price is

10 An overview in German is provided in [60].
11 In the Federal Republic of Germany, a spot market contract has to be fulfilled within a
maximum time period of two exchange trading days. Fulfillment means that the underlying
asset will be delivered, accepted, and paid for (Clearing). The same delivery time is valid
for spot transactions of currencies on foreign exchange markets, originally due to the time
it would take to transfer cash positions from one bank to another bank.
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called the strike price. In the opposite case, the seller of an option collects a payment
– which is called the premium – from the buyer. Granting the option is also referred
to as selling or writing the option. A call option gives the buyer of the option the
right to buy the underlying at the strike price. A put option gives the buyer of the
option the right to sell the underlying at the strike price. In the case that the buyer
chooses to exercise this right, the seller is obliged to sell or buy the asset at the agreed
price level [58,61]. The buyer may choose not to exercise the right and let it expire.
The underlying asset can be a piece of property, a security (e.g., a stock or a bond),
or a derivative instrument, such as a futures contract.
Unconditional contracts such as futures contracts secure for the buyer and for the

seller the right and the obligation (in contrast to the previous paragraph) to buy or
to sell a specified underlying on the future’s expiration date, at an agreed upon price.
Based on this overview which contrasts the various types of exchange based trans-

actions, for which the main differences can be found in the settlement date, we present
in the main part of this historical outline a collection of important historical milestones
of exchange based trading, covering also the Tulip Mania in the United Provinces and
the Gold Fixing procedure in London. Additionally, we refer to commodity markets
which can also be split into spot and derivative markets and which were already men-
tioned in Sec. 1.1.
The historical development is also important for covering another aspect. From

a physicist’s point of view, financial markets exhibit behavior very much like a com-
plex system in physics with non-Gaussian price increments. The price process of an
exchange traded asset can be seen as the result of superimposed trading decisions of
market participants. When modeling a financial market as a “complex particle sys-
tem” with agent-based models using Monte Carlo techniques, market microstructure
plays a huge role. “Market micro structure is the study of the process and outcomes
of exchanging assets under explicit trading rules”, as can be found in [48]. However,
these trading rules have changed throughout history. Thus, a historical outline is nec-
essary in order to highlight the dramatic transformation from the beginning of floor
trading to full electronic marketplaces in recent years.

2.1.1 Tulip mania in the United Provinces

A classic example for exchange based trading can be found in the famous tulip ma-
nia [62–64], which took place in the first part of the 17th century, in which tulips
became a subject of speculation. This tulip mania had a serious impact on social
life in the area now known as the Netherlands and is considered to be the first
speculation bubble in history. Tulips, which were originally only located in Asian
countries, were introduced in Europe in the middle of the 16th century. In 1560, first
tulips were transported from Istanbul, the court of the Ottoman Empire, to Vienna.
There, botanist Carolus Clusius was responsible for the imperial botanical garden of
Emperor Maximilian II, where he cultivated these plants in 1573 after importing 1,500
seeds. The tulip cultivation in the United Provinces, which are today known as the
Netherlands, started then in 1593 after Carolus Clusius had come from Vienna and
when he was able to breed tulips under the particular, not ideal climate conditions
in the Netherlands. This exotic flower began to enjoy great popularity and tulips
subsequently came to be increasingly seen as a status symbol.
This triggered an avalanche and started a competition for possession of the rarest

tulips. In the beginning the largest proportion of market participants in this “tulip
market” was the upper class of society. Tulips with lines and flames on the petals
were particularly popular. However, this effect was often caused by a special virus,
which infects only tulips and is known as the Tulip Breaking potyvirus.
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This development can be seen as the starting point of a speculation bubble. In the
following time, the competition for possession of tulips escalated and very high price
levels were reached when the demands for tulip bulbs exceeded the offers. In 1623,
a bulb of a very rare and preferred tulip could change hands for a thousand Dutch
florins. This has to be seen in relation to the general financial setting, in which the
average income per year was only about 150 Dutch florins. In the beginning, bulbs
were only traded during the planting season. Later with increasing demand, bulbs
could change hands during the whole year with the consequence that bulbs were sold
without the knowledge by the buyer of the exact tulip appearance. So, tulip trading
became a speculation business. This aspect operated as a catalyst for paintings in
order to give impressions of the probable future appearance of a tulip to interested
clients.
In the 1630s, the situation had reached a turning point. One reason was, that cash

settlement transactions were no longer the only type being recorded. Tulips were also
traded via option contracts. In this case the specified underlyings were tulip bulbs.
These financial instruments made it feasible to hedge risks due to price changes and
allowed tulip producers to sell future crops. On the other hand, consumers were able
to lock-in cheap buying prices for the future. As an instrument of speculation, option
contracts, which are tradable in very different forms on today’s derivatives markets,
can exhibit a enormously high risk profile, as a large leverage effect is attainable with
comparatively small trading accounts. These Dutch option contracts were the first
derivative instruments in history, and the increased use of option contracts in Dutch
tulip bulb trading can be regarded as the first evidence for the beginning of a crisis.
Additionally, a high degree of debt for some market participants could be observed,
which is one important ingredient for the formation of a speculation bubble. The
prices of bulbs escalated by a factor of 50 in the years from 1634 to 1637 [64]. In
Amsterdam, for example, a mansion was sold for three tulip bulbs. And a transaction
of 40 bulbs for 100,000 Dutch florins was observed and documented in 1635. Also a
sale of a very rare tulip bulb – the Semper Augustus – was recorded with a price
of 6,000 Dutch florins. These transactions have to be seen in comparison with the
prevailing consumer price structure in the United Provinces in this time. A ton of
butter cost roughly 100 Dutch florins. This example clearly illustrates the speculative
nature of tulip bulb trading at the time.
In modern risk management, financial derivatives can be very efficient instruments

for controlling the risk measures of a portfolio, which is a collection of various assets.
In the Dutch tulip bulb crisis, however, option contracts were used in order to clear
bottlenecks. This can also be seen in the context of the recent financial market crisis
and its starting point which goes back to the U.S. housing market. In order to ex-
tend credit to future home owners, and to clear the associated bottleneck, existing
credits were securitized and sold to international banks and institutions. It is pos-
sible to claim that the flourishing business of securitizations which were organized
by investment banks caused more and more people to become borrowers in order
to realize their plans for owning their own home. There was, however, as a result
a larger portion of people who were not able to service their debts. Later the ris-
ing defaults on these sub-prime mortgages in the U.S. triggered the global crisis in
the money markets. Of course, it must be added that an important ingredient in
this was the policy of the Federal Reserve: increasing interest rates had a fatal effect
on those debts, most of which had variable interest rates. Nevertheless, the securi-
tization of debts before the beginning of the U.S. sub-prime crisis can also be seen
as a clearing of bottlenecks similar, though not identical, to the Dutch tulip bulb
crisis.
In the United Provinces, the speculation bubble boosted trading in various parts

of Dutch society. In order to speculate in these rapidly developing markets, Dutch
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citizens of all social standings invested large parts of their wealth in tulips. As a re-
sult, some speculators made very large profits during this period of time while others
lost their entire wealth or even more. The speculative bubble burst in 1637. The in-
flated prices for tulip bulbs could no longer be obtained by the tulip traders. Demand
began falling and this caused a panic. Everybody wished to sell, and nobody bought
tulip bulbs. The prices had rebounded in January, and in February a maximum was
reached. As in every bubble, there were also here winners and losers. Some people
were holding open option contracts for selling tulips at prices exorbitantly high in
relation to current market values. The counterpart, who had the opposite position,
was obliged to buy these bulbs for unrealistic prices. Thousands of Dutch people were
financially ruined as a result.

2.1.2 History of public exchange based trading

Considering this short outline of history’s first speculative bubble, it must be noted
that trading in the Dutch tulip mania was unorganized and a kind of an over-the-
counter market (OTC)12. Contracts were concluded individually by the parties. We
now consider the historical development of public exchange based trading which itself
goes back to the tulip bubble.
First evidence for exchange based trading structures can indeed be found in the

tulip bulb bubble. At this time, options became important for economic processes
for the first time. It was not only options on tulip bulbs, however, that were traded.
Contracts of the East India Company, which was founded in 1602, also changed
hands [65]. In Germany, options became tradable for the first time in 1970. However,
in the United Kingdom and in the United States of America (USA), options were
already being traded in the 18th century. Despite the fact that the following outline is
not exhaustive, the beginning of standardized futures trading should be mentioned,
which occurred on the Chicago Board of Trade (CBOT) in 1865. In addition to the
availability of an established OTC market, the trading of exchange based stock op-
tions in the USA was possible on the Chicago Board Options Exchange (CBOE)
beginning in 1973. In Europe, the European Options Exchange (EOE) was founded
in Amsterdam in the year 1978, and after difficulties getting started, the EOE was
established as the primary market for options in Europe in the early 1980s. This
remained so until the Deutsche Terminbörse (DTB)was created in 1990 inGermany.
In 1998, then the merger of DTB and the Swiss Options and Futures Exchange
(SOFFEX) led to a leader among international derivatives markets [66], the European
Exchange (EUREX), which was a purely electronic trading platform in contrast to
established exchanges in the USA, which were based on floor trading. There, traders
physically exchange assets on the floor. EUREX additionally bought the International
Securities Exchange (ISE) in 2007, in order to play a pioneering role in the upcoming
exchange consolidation process. However, this step also has to be seen in the context
of power shifts among large exchange companies all over the world. In addition, the
well-organized activities of hedge funds influenced this evolution, as they held large
stock positions in the Deutsche Börse AG13 and the London Stock Exchange (LSE).
However, the initial intention of forcing a merger between both exchanges misfired.
Instead, a merger between two spot markets, the New York Stock Exchange (NYSE)

12 Over-the-counter markets (OTC) differ from public exchange based trading, as they are
not regulated. Furthermore, the fulfilling of OTC market contracts is not guaranteed by a
central clearing house and so the additional risk that the contract counterpart is not able to
fulfill an arranged contract exists.
13 EUREX is a joint venture of Deutsche Börse AG and Swiss Exchange (SWX).
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and Euronext was realized creating NYSE Euronext – a large competitor of Deutsche
Börse AG and LSE14.
International stock markets have a longer history. The NYSE is a large spot mar-

ket player with a long tradition having been founded in 179215. Up to March 2006,
almost all trading on NYSE was handled on the floor. Then, with the acquisition of the
electronic trading platform Archipelago, the electronic era was ushered in at NYSE.
This process was enforced after the merger with Euronext. Today, a clear tendency to
electronic market places with the highest possible transparency can be observed. As
could be read in September 2007 [67], the NYSE intended to close two more trading
rooms on the floor. In addition, roughly one-third of the trading volume at NYSE
is now generated by algorithmic trading16. Algorithmic trading or program trading,
which means the execution of automatic trading decisions generated by computer
algorithms, can only be realized in a meaningful way on full-electronic trading plat-
forms due to transparent rule sets and execution times. In addition to the NYSE, the
XETRA system (the electronic spot market platform of Deutsche Börse AG, which
replaced the old IBIS system in 1997) should be mentioned as well, and started in the
same way as a great success story, and is now being exported to exchange institutions
in Asia.
A very impressive example of the change from floor trading to electronic trading

can be found in trading of the Euro-Bund future17 (FGBL), which is a fixed income
derivative. In the beginning of the 1990s, the FGBL contract was traded at the newly
established DTB and also at the London International Financial Futures Exchange
(LIFFE), which was founded in 1982 and which is today part of NYSE Euronext. At
that time, LIFFE was purely a floor trading exchange, and the FGBL was favorably
traded at LIFFE. However, an empirical comparison between these two exchanges re-
veals the advantage of the DTB, even though the transaction volume there was lower
than that observed at LIFFE. One reason for the success of DTB was the higher
level of transparency. The DTB’s order book, which stores offers and demands of all
market participants and matches orders against each other, was provided in parts
to the market members. Thus, each market participant was able to use and observe
market depth. In addition, the change to more anonymity boosted electronic trading.
With an increasing liquidity, which is a function of market depth and the difference
between best bid and best ask, the DTB was able to consolidate the entire trading
volume of the Euro-Bund future (FGBL) into their own trading system. This was one
milestone for the triumph of full-electronic exchange trading over floor based trading.

2.1.3 The gold fixing in london

Even if electronic trading has mostly displaced floor trading and manual trading
processes, however, some relics can still be observed today. Naturally, some exchanges
indulge in floor trading for public relation reasons. The Deutsche Börse AG has

14 Founded in 1801, the London Stock Exchange (LSE) is one of the largest stock ex-
changes in the world. The NASDAQ was interested in a takeover of LSE, but this offer was
roundly rejected by LSE shareholders. The acronym NASDAQ originally stood for National
Association of Securities Dealers Automated Quotations.
15 The Philadelphia Stock Exchange is the oldest stock exchange in the United States of
America which was founded in 1790 and has been owned by NASDAQ since 2007.
16 Detailed information can be found in the news releases of NYSE Euronext on the website
http://www.nyse.com.
17 The underlying of the Euro-Bund future contract is a certain debt security issued by the
Federal Republic of Germany with a remaining term of 8.5 to 10.5 years.
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also hung onto floor trading. Recently, the furniture on the floor was even mod-
ernized, in order to present to the general public a physical manifestation of financial
markets.
A completely different trading process, which can be classified as a traditional in-

stitution, is the Gold Fixing in London [48] which is a reference price for gold. The first
Gold Fixing took place on September 12th, 1919 at 11.00 a.m. in London in physical
presence of the original five founding members N. M. Rothschild & Sons, Mocatta &
Goldschmid, Samuel Montagu & Co., Pixley & Abell, and Sharps & Wilkins18. Gold
fixing is executed twice a day. At this time, the five members come together. Since
2004, a dedicated conference call has been used19. At the beginning of each fixing,
the chairman of the meeting, who is one of the members, announces an opening price.
The other four members then have the possibility of contacting their customers and
including their orders into their decision. Then, each member has to declare if the
member institution is a buyer or a seller at the announced price level. In the case,
that there are buyers and sellers, also the quantity offered and demanded at this price
is asked in units of bars. If only buyers or only seller exist at the announced price,
or if the difference between offered and demanded gold bars at a price level is larger
than 50 bars, then the procedure starts again and the price is moved. If a price finally
fulfills the requirements, the chairman announces that the price is fixed. In order to
be able to contact clients, each member has a verbal flag. As long as a flag is raised,
a price cannot be declared fixed. However, this verbal flag has physical roots. Before
the dedicated conference call was established, each member had a small Union Flag
on their desk for this purpose.
Since 1919, gold price fixing has provided market participants with the oppor-

tunity to buy and sell gold at a specific price. Today the London Gold Fixing is
still a benchmark for trading with gold. However, as seen above, former procedures
were adapted to the progress achieved in information technology. Additionally, there
exists a full electronic based marketplace for trading gold today. On the New York
Mercantile Exchange (NYMEX), founded in 1882, and on the New York Commodities
Exchange (COMEX), which is a sub division of NYMEX today, gold can be traded
continuously. Recently, NYMEX became part of the Chicago Mercantile Exchange
(CME).

2.2 Continuous double auction

The historical milestones and facts covered in the previous sections document the
significant movement away from well-established floor trading toward fully electronic
trading systems in the last two decades. There were various reasons for this devel-
opment. On the one hand, there was the tendency toward more efficiency and trans-
parency in trading processes. On the other hand, the potential of the technology for
cost cutting acted as a catalyst.
In this section, we explain the underlying structures of electronic trading systems

which are important for the analysis of high frequency financial market data sets. In
addition, these structures are crucial ingredients for realistic financial market models20

as they incorporate financial market micro structures.

18 At the moment, the following institutions are members: The Bank of Nova Scotia–Scotia
Mocatta, HSBC, Deutsche Bank AG London, Societe Generale Corporate & Investment
Banking, and Barclays Capital.
19 More information can be found on the website http://www.goldfixing.com.
20 The author of this article passed the trader exam (“Complete Exam”) of the European
Exchange EUREX. The overview of financial market structures in this section is based on
this knowledge. More information can be found on http://www.eurexchange.com.
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On financial markets, a central order book stores offer and demand of all market
participants. This process is called continuous double auction. A double auction is
a process of buying and selling assets in which potential buyers submit their bids
and potential sellers simultaneously submit their ask prices to a central auctioneer
(in this case the central order book). Then the exchange system chooses some price
p that clears the market. The word continuous indicates that during this period all
submitted orders will be executed immediately against offer and demand stored in
the order book if they fit the price constraints of an exiting order. If they do not fit
the given price constraint then they can be also stored in the order book for a later
execution. Continuous trading is the main part of trading. Beside continuous trading,
one can also find opening and closing auctions as well as underlying auctions during
the trading day. However, this depends on whether the traded product is supervised
by a market maker. If a market maker agrees to continuously quote bid and ask
prices for an underlying then the market maker will obtain reduced trading fees for
this product.
In this context, the market determined observable “price”, which represents the

time dependent value of the underlying financial instrument in monetary units, is
not given as a continuous variable. Instead, it is given as a discreet multiple of a
product-specific minimum price change, which is called tick size, ptick.
Economic reasoning tells us that the price of an asset cannot become negative if

it secures a right and not an obligation (e.g., a stock). Thus, the price is given at any
time t by

p (t) = n (t) · ptick (1)

with n(t) ∈ N0. The highest price level, at which market participants are demanding
(i.e., a demanding order exists at this price level) is called the best bid, pb. Analogously,
the best ask pa defines the lowest price, at which a sell offer is available. The non-zero
gap between best bid and best ask is called the spread which is given by

s = pa − pb (2)

as shown in Fig. 3. During market phases in which no trading activity is detectable,
the spread is always larger than zero. In the case s = 0 (i.e., pb = pa) executable buy
and sell orders are inserted in the order book. This results in an “immediate” matching
procedure and a spread of s = 0 is thus not possible in practice. Nevertheless, time is
also discretized. In the case of EUREX, the clock cycle of the order book was recently
reduced to 10 milliseconds.
Let us assume – without loss of generality – that a buyer would like to buy one

unit of the underlying asset and that a seller would like to sell one unit. According
to the given matching algorithm (which will be described in detail in section 2.4) the
buyer obtains the asset traded in the order book from the seller. The seller receives
the execution price pe = pb = pa in monetary units from the buyer.

2.3 Types of orders

The variety of order types available is huge. The term order is used as a synonym for
a transaction order. Trivially, one can distinguish between buy orders and sell orders.
Additionally, this distinction can be combined with the order volume – the number
of assets to be exchanged with a given order. Therefore, the volume ki of an order
i is positive if i is a buy order. Analogously, the volume ki is negative if i is a sell
order.
Furthermore, the group of order types can be executed in various ways which have

to be taken into account. In the remainder of this section, we present limit orders
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Fig. 3. (Color online) Structure of an order book: The buy (blue) and sell orders (red) are
added chronologically at the corresponding discrete price level p. In this way, an allocation
algorithm realized fulfilling price-time priority. The two orders at price level for the price
p0 are on the demand and offer side of the order book. Thus, they can be matched against
each other. A transaction at price p0 is thus established (p0 is also known as last traded
price or last price). This transaction causes an increase in the spread s = pa − pb. Before
the arrival of the sell order at price level p0, the spread was two ticks. After the execution,
the spread is three ticks. In accordance with technical exchange settings, executable orders
will be matched by the order book “immediately” – thus, a spread s = 0 is not possible in
practice. Nevertheless, time is also discrete in this setting. In the case of EUREX, the clock
cycle of the order book is currently 10 milliseconds.

in subsection 2.3.1 and then market orders in subsection 2.3.2 which are the two
most important order types in real order books. Finally, subsection 2.3.3 documents
a selection of important examples covering special order types.
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2.3.1 Limit orders

In addition to the volume kli ∈ Z\{0}, a limit order i is also specified by a limit price
pli = n · ptick with n ∈ N0. Whether an order is a buy or a sell order can be identified
using the expression

sgn
(
kli
)
=

{
1, i is a buy order
−1, i is a sell order

}
, (3)

as already mentioned. Limit orders are executed at the limit price pli or at a better
price level:

pei ≤ pli (4)

can be applied for the execution price of a limit buy order i. Analogously, a limit sell
order j leads to the expression

pej ≥ plj . (5)

If |kli| > 1 it is possible that order i is executed in many partial executions. Here,
a maximum of |kli| partial executions are possible. This can also lead to a variety of
partial execution prices. Each of them has to fulfill Eqs. (4) and (5), respectively.
There is also the possibility that a limit order includes restrictions. Here it is

necessary to mention the possible options immediate or cancel (IOC) and fill or kill
(FOK). IOC orders are executed instantaneously, either completely or as completely
as possible. The volume fraction of order i which cannot be executed at price pli or
better is deleted immediately. A FOK order also has the property that it is executed
immediately. This is, however, only the case if the entire volume kli is executable. In
EUREX order books, the FOK restriction is only used for option contracts.
Limit orders without restrictions persist if there is no matchable limit order from

a counterpart directly after submission. This persistence can be tuned by the submit-
ting market participants. They have access to limit order properties. Unless specified
otherwise, a limit order has a validity of one day, good for day (GFD). An unexecuted
GFD order is removed from the order book at the close of the exchange.
The temporal settings good till canceled (GTC) and good till date (GTD) are also

available. In the case of a GTC order, the time scale of order validity is not defined
from the beginning. A GTC order is valid until execution or until the market par-
ticipant decides to cancel the order. In the case of a derivatives exchange such as
EUREX, there is an additional scenario in which a GTC order could be removed
from the market: If the underlying contract passes the expiration date the limit order
is also canceled. Also, limit orders stored for one day will be canceled at the close of
the exchange. A GTD order is canceled if a specified date is reached.

2.3.2 Market orders

A market order (for which volume can analogously be defined by kmi ) has, in contrast
to limit orders, no limit price. A market order will immediately be executed at the best
available market price. This scenario guarantees to the market participant that market
orders are executed (neglecting from the special case in which there are no limit orders
stored in the order book). However, the market participant has no guarantee with
respect to the realized execution price pei .
The cumulative order volume at a given price level p is defined by

S (p) =
∑

{j∈N0:plj=p}
klj . (6)
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This expression calculates the summation over all limit orders j whose limit price plj
is equal to price level p. In the case that kmi > 0 and |kmi | ≤ |S (pa) | are fulfilled at the
same time, then the execution price of the market buy order is pei = pa. Analogously,
the execution price pei of a market sell order i is pb if k

m
i < 0 and |kmi | ≤ |S (pb) |.

Given an empty order book, a market order which cannot be executed against
limit orders will be stored in the order book until a corresponding order becomes
available. Such a procedure is accompanied by the inherent risk that it might lead
to an execution far from the fair value level of the underlying asset. Thus, it is not
recommendable to use market orders in more illiquid order books.
It should be pointed out here, however, that it is also possible to simulate a market

order using a limit order. Such an approach can also be practical, as some financial
market trading systems do not natively support market orders. If the limit price pli
of a limit buy order i is larger than the current best ask then the market participant
obtains an execution at best ask. Additionally, |kli| ≤ |S (pa) | should be fulfilled. In
order to reduce the probability that order i does not result in execution, one can adapt
the limit price using a shift Δpli

(
kli, σimp

)
= pli − pa depending on kli and taking the

prevailing implied volatility σimp into account. For a simulated market sell order, it
is necessary to choose a limit price for the limit order pli which must be below pb.

2.3.3 Special types of orders

Besides limit orders and market orders, which are the most important order types,
other order types in real exchange trading systems exists. Although not a compre-
hensive list, three other types of orders are mentioned here. Well-known is the stop
order, which is supported only for futures contracts on the EUREX platform. The
stop order can be understood as an emergency brake for a trading position, whose
loss has grown. A stop order has a limit price, but this is not comparable with the
limit price of limit orders. A stop order is triggered when the market price reaches
its limit price. Then, the stop order becomes a market order, and this results in an
execution at the best available market price. Thus, one obtains guaranteed execution
and the level of loss can be defined more or less exactly. In more volatile markets,
the guarantee of an execution comes with the risk that execution is performed farther
from the triggering limit price. There are two trivial variants of stop orders, namely
the stop buy order and the stop sell order. For a stop buy order, the limit price is
located above the current market price (e.g., in order to close a short position). It
will be triggered if the market moves up. A stop buy order then becomes a market
buy order. Analogously, the limit price of a stop sell order is below the current best
bid (e.g, in order to close a long position).
Far less known is the market to limit order, which is used in the XETRA trading

system21. The market to limit order combines the positive properties of a market
order (high probability of execution) with the advantage of a limit order with respect
to the execution price. A market to limit is executed against the best limit price on
the opposite side of the order book – either best bid or best ask. In the case that the
order cannot be executed completely, the remaining volume of this order becomes a
new limit order with a limit price which is identical to the already executed part.
At first sight, the benefits of this type of order are not obvious compared to a limit
order whose limit price is set to the best bid or the best ask. In volatile phases of mar-
ket movement, however, orders are submitted in beats of milliseconds to the central

21 More information can be found, e.g., at http://www.wienerboerse.at. The Vienna stock
exchange uses the XETRA system (eXchange Electronic TRAding) of the Deutsche Börse
for the trading of Austrian shares, other equities and bonds since 1999.
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order book. Thus, the current best bid and best ask at the time of order submission
do not necessarily have to correspond to the situation when the order arrives at the
order book after multiple milliseconds. The limit order thus remains unexecuted in
the order book, while a limit to market order adjusts to the market situation. The
market participant obtains the immediately executable portion of the total volume.
Another type of order, the iceberg order, is characterized by a certain degree of

discretion and is particularly suitable for the placement of large order volumes. It of-
fers the possibility of putting a large order volume in the order book, and it’s primary
advantage is that the market is not able to obtain knowledge of the total volume. Such
a mechanism is realized by specifying a limit price, the total volume and the so-called
peak volume. The peak volume is the visible part of an iceberg order in the order book.
During continuous trading, completely executed peak volume is replaced by a new
peak volume order if there is still hidden volume in the iceberg order available. This
procedure is carried out until the entire iceberg order is processed. Due to the nature
of its construction, an iceberg order can be used for the discrete placement of large
stock positions. If one were to instead use a limit order, which reveals to the market
the total volume, then this limit order would have a lower execution probability due
to legal versions of illegal front running22.

2.4 Matching algorithms

In electronic trading systems several processes of order allocation (matching) can be
distinguished. The following subsections describe the two allocation algorithms that
are most frequently encountered. However, combinations of thesematching algorithms
are also possible as will be mentioned in Sec. 2.4.2. The allocation or matching algo-
rithm answers the question of which owner of a limit order stored in the order book
at a given price level (e.g., the best bid or best ask) will become the counterpart of a
submitted market order or a submitted limit order which is immediately executable.
Of course, this question is only non-trivial if there is more than one order at that
price level.

2.4.1 Price time priority allocation

The price time matching algorithm provides an order allocation which is firstly based
on a price and secondly based on a time priority rule. If a new order is submitted
to the electronic order book of the exchange, all stored limit orders will be examined
in the order book. Limit orders with a better limit price are executed before limit
orders with a worse limit price (i.e., price priority). It is worthwhile to mention here
that the highest allocation priority is given for market orders and that a market

22 Front running is banned in most countries. It describes a trading strategy which is based
on insider knowledge about upcoming large orders initialized by customers. The trader takes
a position that corresponds to the customer’s order. When the customer’s order is executed
the trader can benefit from the change of the market price. In this context, one has to mention
the controversial practice of using flash orders which is still legal in U.S. Nevertheless,
they are the subject of significant debate: Some customers are allowed to see the incoming
order flow slightly earlier than general market participants–typically 30 milliseconds. For this
advantage, they have to pay a fee. However, market participants with access to extremely
powerful computing resources can conduct rapid statistical analysis of the changing market
state using this information. They then carry out high-frequency trading a few milliseconds
before “normal” market participants can react [68]. Several U.S. exchanges banned this
practice in August 2009.
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Fig. 4. (Color online) Order allocation: A market order of volume km > 0 meets i+1 limit
orders with klj < 0 ∀j ∈ {0, 1, . . . , i− 1}. If |km| <

∑i−1
j=0 |klj | is valid, the best ask price pa

remains unchanged after the transaction. As all i+1 limit orders were inserted into the order
book at price pa, it is trivially fulfilled that p

l
j = pa ∀j ∈ {0, 1, . . . , i− 1}. The chronology

of order submission implies tlj < t
l
j+1 ∀j ∈ {0, 1, . . . , i− 2}.

order is matched before an executable limit order. In order to track the chronological
order – for the purposes of achieving chronologically prioritized allocation – every
order receives a time stamp when it is inserted into the central order book. If a
market order of volume km meets i+ 1 limit orders at price level p0 + 1, all of which
have identical limit prices, price priority is not longer effective. If |km| ≤ |S (p0 + 1) |
is satisfied then the i+1 limit orders will be matched chronologically with the market
order (see Fig. 4).
This means that firstly, the order with the highest time priority is allocated to the

market order. This is the limit order with time stamp tl0. If |km| = |kl0| is valid then
the market order and limit order 0 annihilate each other, and limit order 1 obtains
the highest time priority for the ongoing trading process. In the case, however, that
|km| < |kl0| is fulfilled, the unexecuted part of order 0 remains in the order book with
highest time priority. If the market order has a larger volume than the volume of the
first limit order, that is |km| > |kl0|, then the chronologically next order in the order
book is used for allocation to the extent necessary. This process continues until the
entire volume of the market order is processed. If |km| ≤ |S (p+ 1) | holds, the market
order can be carried out with a uniform execution price pe = p0+1. If this is not the
case, one has to use for the matching procedure all i + 1 limit orders at price level
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Table 1. Price time priority: In this first example, a market buy order with volume 1 is
submitted to the central order book. As there are two limit sell orders sharing the price level
p0 + 1 with volumes 1 and 3, chronology is of critical importance. Since the limit sell order
with volume 1 has a higher priority in time, this order is the corresponding order for the
allocation of a market buy order. The limit sell order with volume 3 enters the market and,
after the transaction, has the highest time priority at this price level.

Bids Price p Asks
p0 + 3 1 3 3 1
p0 + 2 2 4
p0 + 1 1 3

2 p0
1 1 p0 − 1

2 1 4 1 p0 − 2
2 3 p0 − 3

Bids Price p Asks
p0 + 3 1 3 3 1
p0 + 2 2 4
p0 + 1 3

2 p0
1 1 1 p0 − 1

2 1 4 1 p0 − 2
2 3 p0 − 3

Table 2. Price time priority: In this second example, a market buy order with volume 5 is
submitted for execution in the central order book. Analogous to the example in Table 1, the
market participant’s order is partially executed at p0 + 1 with volume 1. Furthermore, as
there are still 4 units which have to be executed on the market, this leads to a second partial
execution of 3 volume units at the same price level. After the second partial execution, the
best ask is changed to pa = p0 + 2. The remaining volume unit of the market buy order is
executed against the limit sell order providing 2 volume units at p0 + 2. The extra volume
unit of the limit sell order remains in the order book with the highest time priority at this
price level.

Bids Price p Asks
p0 + 3 1 3 3 1
p0 + 2 2 4
p0 + 1 1 3

2 p0
1 1 1 p0 − 1

2 1 4 1 p0 − 2
2 3 p0 − 3

Bids Price p Asks
p0 + 3 1 3 3 1
p0 + 2 1 4
p0 + 1

2 p0
1 1 1 p0 − 1

2 1 4 1 p0 − 2
2 3 p0 − 3

p0+1 and in the end, unexecuted volume remains. Then, the matching principles are
iteratively applied to higher price levels due to the price priority rule, first at price
level p0 + 2.
We sketch the principle of order allocation based on price time priority in two

simple examples. The left sides of tables 1 and 2 each show the relevant part of the
order book before the incoming order; on the right sides the situation in the order
book after the matching has occurred is shown. The initial situation is in both cases
the same – only the volume of the incoming market order varies. The red numbers
indicate volume of limit sell orders, while the blue marked numbers indicate the
volume of limit buy orders. We use the convention that an order which is closer to
the price column p has a higher time priority than an order which is further away.
The field of limit orders which are used for matching are shaded.

2.4.2 Pro rata allocation

If an exchange traded asset is driven by only relatively small price fluctuations within
a trading day – intraday, then the situation is such that limit orders stored behind
the limit order with the highest time priority at the best bid or best ask suffer from a
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low execution probability. Those orders are waiting in the order book until the first
order or first orders with higher priority are processed and removed from the order
book. Sometimes, such priority orders can be very huge. Thus, it can be possible in
some contracts that all other limit orders on the same side of the order book are
blocked by a dominant order for the whole day. In order to address this problem
many exchanges instead use the pro rata23 matching algorithm for products with
small price changes. Pro rata matching is wide-spread in U.S. derivatives markets.
All STIR24 futures are also handled with pro rata matching as they show a very low
levels of daily fluctuation.
If a pro rata based allocation is used, then the corresponding time stamps of limit

orders lose their meaning. Limit orders are then no longer distinguishable in terms of
time priority. Only price priority is applied in this case. A limit order with a better
price limit is carried out before an order with a worse price limit.
In order to illustrate the differences to a price time priority we refer to Fig. 4

again. One can no longer expect a temporal priority based allocation if a market buy
order of volume km reaches the order book and i + 1 limit orders are logged at the
best ask. For each limit order j, the relative share in the aggregated volume of all
limit orders at this price level is calculated. This is given by

rj =
klj

S
(
plj
) (7)

with S
(
plj
)
as defined in Eq. (6). The share rj in the volume of the market order will

be allocated to limit order j. Because assets can only be exchanged in discrete units,
the executed volume kej of limit order j is given by

kej = �−km · rj� (8)

at the arrival of a market order with volume km. The residual volume of the market
order is matched against the limit order with the largest volume.
In Table 3, a detailed example of pro rata allocation is provided. In order to

highlight the differences in matching algorithms, it uses the same initial configuration
as in the example shown in Table 2 for the price time matching algorithm.
In practice, it is not possible to find pure forms of the pro rata allocation in most

order books. In general, stock exchanges link the rules set out with the possibility to
submit an order with a priority flag. Such an order is executed before other orders
at the corresponding price level. A limit order qualifies for a priority flag if the
submission of this order reduces the spread s = pa − pb.
In this way, the stock exchange offers an incentive for market participants to

improve offer and demand prices. Usually, priority flags are coupled with a specific
minimum volume or a volume ceiling of price improving limit orders. The other limit
orders remaining in the order book are unaffected and are treated according to pro
rata allocation.

2.5 Order book depth

If a market participant is able to track the best bid and best ask price and additionally,
the cumulative volumes at both price levels, then the market participant has access

23 Latin: pro rata – proportional, relative
24 STIR (Short-Term Interest Rates) denotes short-term money market interest rates. In
Europe the EURIBOR (European Interbank Offered Rate) also belongs to this group.
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Table 3. Pro rata allocation: Identical to the situation in Table 2, a market buy order with
a volume of 5 units is submitted to the central order book. As in the previous example,
the corresponding market participant who submitted the market order obtains a partial
execution of 4 volume units at price level p0 + 1. The remaining part of the market order
is executed at price level p0 + 2. It is necessary, however, to consider which of the two limit
orders will be used for matching the remaining volume unit. If we calculate for each limit
order its relative share in the total volume at this price level and multiply these relative
shares with the volume which should be executed, then the execution volumes for both limit
orders have to be rounded to zero. Thus, in contrast to the example presented in Table 2,
the market order’s remaining volume of 1 unit is matched with the larger limit order.

Bids Price p Asks
p0 + 3 1 3 3 1
p0 + 2 2 4
p0 + 1 1 3

2 p0
1 1 1 p0 − 1

2 1 4 1 p0 − 2
2 3 p0 − 3

Bids Price p Asks
p0 + 3 1 3 3 1
p0 + 2 2 3
p0 + 1

2 p0
1 1 1 p0 − 1

2 1 4 1 p0 − 2
2 3 p0 − 3

to the so-called level 1 data. Furthermore, it is possible that the cumulative volumes
of further price levels are available, i.e., price levels higher than the best ask and lower
than the best bid. This is known as order book depth or market depth. It is common in
retail markets for users to be able to see the best five or best ten bid and ask levels.
Full exchange members have, in general, no access limitations. Thus, they are able to
access the whole order book. The depth of the order book n (p) can be described by

n (p) = |S (p) | (9)

with S (p) as defined in Eq. (6). The cumulative order book depth N (p) for the
offering side of the order book is given by

NAsk (p) =

p∑

p̂=pa

n (p̂) (10)

for p ≥ pa and analogously, for the demand side of the order book given by

NBid (p) =

pb∑

p̂=p

n (p̂) (11)

for p ≤ pb. The depth of the order book directly affects the price impact function,
which is a measure of the liquidity provided by the execution of a market order. The
price impact function gives the instantaneous price change relative to the best ask or
best bid depending on the market order volume. It is straightforward to see that the
price impact function is given by the inverse function of the cumulative order book
depth [37].

2.6 Market participants

The term financial market participant, stock market participant or trader character-
izes individuals or groups who are active in financial markets. Banks, investment and
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hedge funds25 as well as intermediates and individuals who act on their own account
are all examples of traders.
Exchange members which can be identified as major banks and proprietary

trading firms usually have access to the central order book via a fast direct link.
They combine this speed advantage with high-end technologies – also supported by
Graphics Processing Units (GPU)26 – in order to run high-frequency trading strate-
gies. Outside of this group, it is difficult to classify other market participants in terms
of extent of their access to exchange systems in the internet age and fully electronic
order book – especially as contrasted with historic floor trading and exchange quotes
on a more or less daily basis during that time.
Due to the internet revolution, a private investor can now place a limit or market

order within few seconds today just as the manager of an investment fund can. How-
ever, it is possible to distinguish among market participants on the basis of volume
and strategies they apply. Of course, a huge variety of trading strategies exists. We
would like to, therefore, limit ourselves to two main categories of trading strategies,
market making strategies on the one hand and trend following strategies on the other
hand. The main difference is that market making strategies provide liquidity and that
trend following strategies consume liquidity.
This distinction aims for making a rough allocation of preferred order types. This

is important in order to motivate the simplified assumptions used for the order book
model in Sec. 5. There, liquidity providers can submit market orders, and liquidity
takers are able to submit market orders.

2.6.1 Liquidity providers

A market maker provides liquidity for the market. The market maker agrees to buy
and sell assets at any time, but not at identical prices. The selling price – the price of
a limit sell order – is higher than the buying price – the price of a limit buy order. The
continuous willingness to buy and sell makes continuous trading possible, especially
in more illiquid products. The profit realized by a market maker is the difference
between buying and selling prices which can be quantified on average by orders of
the spread.
However, it is necessary to distinguish between a “pure” market maker who has

taken the responsibility for quoting products in exchange trading systems and mar-
ket participants who use strategies related to market making. A pure market maker
obtains reduced transaction fees or has to pay no transaction fees at all. Such a con-
cept is used for low liquidity products as one can find, for example, for options or
for stocks of companies with low shareholder capital. For such small companies, the
exchange has an interest in creating liquidity in order to attract investors and to earn
transaction fees. Market maker adapted strategies are, however, also used by market
participants. This means that these traders try to earn the spread (also in very liq-
uid products such as futures contracts). This behavior does not, however, need to be
subsidized by the exchange.

25 Hedge funds are less-regulated investment vehicles for institutional market participants
and high net worth individuals. Their investment strategies strongly vary and range from
classical arbitrage – the risk-less exploiting of market inefficiencies – to huge takeovers cov-
ered intensely by media companies. Hedge funds try to realize a large leverage effect on
equity capital. This can be achieved by additional credits.
26 Bloomberg uses GPUs to speed up bond pricing. The two-factor model for calculating
hard-to-price asset-backed securities runs on graphics processing units paired with Linux
servers. More information can be found on http://www.bloomberg.com/.
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All participants have to accept risk – even if the risk is smaller in liquid products.
It sounds tempting to be able to earn the spread. But it should also be clear that
such an approach can only work perfectly, when the market price is mean reverting
or hardly moving. If a trend is established, all market maker strategies suffer losses.
Given a trend, a limit order by the market maker is executed which has the “wrong”
sign. The order profits from counter-movements. Thus, a persisting trend causes more
and more losses for such a market making strategy. Therefore, a market maker has to
place limit orders with a larger distance from the best bid and best ask, respectively.
The alternative is to close positions with loss or to hedge risks using other derivative
products.
Nevertheless, these risks are not unmanageable. Therefore, one aspect should be

repeated which was already discussed in the motivation subsection in section 1. There
we described one motivation – and also fascination – in financial market related
science is to implement findings in order to perform profit-maximizing strategies. It
is tempting to think that one can apply a strategy which was declared to be successful
more than once, and in the best case permanently. Then, it would be possible to reuse
profits in order to increase leverage from time to time. Why does this strategy not
work out? Let us consider market making which is evidentially a successful strategy –
the profit is based on the spread. This is due to the fact that a market maker requires
market participants that submit market orders and are willing to spend the spread. In
this context,market making strategies are passive strategies, and the profit is linked to
transaction volumes. Thus, it is not possible to realize unlimited gains from a market
making strategy, nor is it possible for other strategies. This could be described as a
lack of scale freeness of a market making strategy.

2.6.2 Liquidity takers

The opposite of amarket making strategy is trend following. It is impossible to provide
a list of all possible strategies which consume liquidity. One can, however, distinguish
between trading approaches which are triggered by systematic or discretionary deci-
sions. Trading decisions are thus based on a defined set of rules. Such rules can be
executed by algorithmic trading systems – or based merely upon intuition. A huge
variety of trend following approaches, ranging from approaches that are focused on
dividend yields to strategies based on simple or complex market indicators (e.g., us-
ing moving averages which smooth historic price movements can be used). Strategies
based on the current weather or the phases of the moon are examples of more exotic,
questionable approaches.
Even though trend following strategies can be very multifarious, all of these strate-

gies have one aspect in common. They are consumers of the liquidity provided by
market makers because they operate via market orders. But one has to keep in mind
that liquidity takers are “paying” for this service. They have to deal with a systematic
disadvantage. Each market order transaction initiated by a liquidity taker has to face
market frictions which mainly consist of the spread which is paid to market makers.
Thus, a profitable trend following strategy has to overcome this market friction27 on
average.
Finally, it has to be mentioned that this coarse point of view is true on an average

level. Trading strategies can also be mixtures of both liquidity taking and liquidity
providing strategies. This is also a result of the drastic reduction of entry barri-
ers in electronic trading systems. Financial markets are very easily accessible on a

27 Other important components of market friction are exchange fees for transactions and
clearing.
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retail level. Thus, all market participants are able to perform all possible types of
orders. Only the market making in terms of exchanges’ rule sets is associated with
institutions.

3 Pattern in financial market data

As seen already, often the assumption is made that the price dynamics of finan-
cial markets obey random walk statistics. However, real financial time series show
deviations from this assumption [9–11,47,69], such as fat-tailed price change distri-
butions [7,8]. Scaling behavior, short-time negatively correlated price changes and
volatility clustering [34,70] are also well known and can be reproduced, e.g., by a
statistical model of a continuous double auction [36,37] or by various agent-based
models [28–33,56,71,72].
Both price formation processes and cross correlations [54,73] between different

stocks and indices have been studied with the intention to optimizing asset alloca-
tion and portfolios. The analysis of market reactions to specific price movements can
be regarded as a first step in investigating their conditional probability distribution
functions. Such studies have already been undertaken in the field of stock markets,
which display a reversion tendency after large price movements [74,75]. The rise of
the hedge fund industry in recent years and their interest in taking advantage of short
time correlations has also boosted interest in the analysis of market microstructure,
the study of the process of exchanging assets under explicit trading rules [48], which
is studied and modeled intensely by the financial community [26,76–79] in order to
minimize order execution costs. Market movements and complex correlations on short
time scales are highly relevant to the financial industry. Each significant, exploitable
correlation can be a focus of leveraged trading strategies.
In this section28, we study autocorrelations of financial market time series in the

anti-persistent short-time regime. For this purpose, we analyze the randomness of
financial markets employing specific conditional probability distribution functions,
which reflect the primary market response to given price impacts. It is commonly
accepted that the anti-persistence on short time scales is due to the bid ask bounce.
In order to account for this effect, we introduce a simple stochastic model in which
the price is the sum of a random walk part and a second part specifically describ-
ing the bid ask bounce. We show that beyond the correlations which are due to
the bid ask bounce there are correlations in the fluctuation patterns, which we call
“complex correlations”. In order to identify such complex correlations, we introduce
a new method for quantifying pattern-based correlations of a time series on short
time scales. Finally, in subsection 3.4, a GPU accelerated version of the fluctuation
pattern formation determination is designed which leads to a significant reduction in
computing time.

3.1 Reproduction of the scaling behavior on short time scales

Scientific market modeling can only be based on price time series, which are the
outcome of the trading decisions of market participants comprising the “many particle
system” of a financial market. The following analysis is based on historic price time
series of the German DAX future contract (FDAX) traded at the European Exchange
(EUREX), which is one of the world’s largest derivatives exchanges. The time series,
which is displayed in the inset of Fig. 29, contains 2,709,952 trades recorded from 2
January 2007 to 16 March 2007.

28 Partial results of this section are published in [44,80].
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Fig. 5. (Color online) Hurst exponentH(Δt) [81–84] in dependence of time lag Δt calculated
by the relationship 〈|p (t+Δt)−p (t) |q〉1/q ∝ ΔtHq(Δt) with q = 2 for the FDAX time series.
Also shown is the Hurst exponent for a synthetic anti-correlated random walk p∗φ(t) (ACRW)
for various values of the random walk control parameter φ. The optimal value φ = 0.16 is
found by fitting the Δt = 1 anti-correlation of the price time series to the one of the ACRW.
Then also the time lag dependence of the Hurst exponent is reasonably approximated. The
FDAX time series is shown in the inset.

A futures contract is a contract to buy or sell a proposed underlying asset – in
this case the German DAX index – at a specific date in the future at a specified price.
The analysis of futures time series has the advantage that the prices are created
by trading decisions alone. Stock index data, on the contrary, are derived from a
weighted summation of stock prices. With a large liquidity and inter-trade waiting
times as short as 10−2 seconds, an impressive data base is available which contains
the transaction prices, the volumes, and the appropriate time stamps. Let p(t) be
the transaction price at time t, which is a discrete variable t = 1, 2, . . . , T . As shown
in Fig. 5, the time-lag–dependent Hurst exponent H(Δt) indicates an anti-persistent
behavior of financial data sets on short time scales. As in [27], the Hurst exponent is
calculated by a local derivative of the mean-square displacement, i.e., the relationship

〈|p (t+Δt)− p (t) |q〉1/q ∝ ΔtHq(Δt) (12)

is used with q = 2. The anti-persistent behavior on short time scales is is a trivial
consequence of the negative autocorrelation of price time series at time lag 1, caused
by the non-zero bid-ask spread – the gap between the best available offer and the
best available demand in an order book, which stores offers and demands during the
trading process [72]. These jumps around the spread can be added synthetically to
a random walk. Let p∗φ(t) be the time series of the synthetic negatively correlated
random walk created in a Monte-Carlo simulation through

p∗φ(t) = aφ(t) + b(t). (13)
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With probability φ ∈ [0; 1/2] the expression
aφ(t+ 1)− aφ(t) = +1 (14)

is applied and with probability φ a decrement

aφ(t+ 1)− aφ(t) = −1 (15)

occurs. With probability 1− 2φ the expression
aφ(t+ 1) = aφ(t) (16)

is used. The stochastic variable b(t) models the bid-ask-spread and can take the
value 0 or 1 in each time step, each with probability 1/2. Thus, by changing φ the
characteristic time scale of the process aφ can be modified as compared to process b. As
shown in Fig. 5, the strength of the anti-persistence is controllable. For φ = 0.16, the
anti-persistence of the FDAX data is reproduced also showing reasonable agreement
with the observed time dependence of the Hurst exponent.

3.2 Probability distribution function

A fat-tailed overall probability distribution function (PDF) of price changes is shown
as an example for the time interval Δt− = 10 in the upper part of Fig. 6, for the time
interval Δt− = 45 in the upper part of Fig. 7, and for the time interval Δt− = 80
in the upper part of Fig. 8. In order to examine the randomness of future price
movements in the time interval Δt+ dependent on previous price changes Δp in the
time interval Δt−, one can examine the conditional probability distribution functions
(CPDF).
In the lower part of Fig. 6, this conditional expectation value

〈p(t+Δt+)− p(t)|p(t)− p(t−Δt−)〉t (17)

is presented as a function of the time interval Δt+ and the price jumps Δp(Δt−) for
Δt− = 10. A tendency to counterbalance jumps can be clearly identified. On average,
a price reduction of for example 10 price ticks is counteracted by about 5 price ticks
within 10 transactions. These results can only be reproduced qualitatively by the
trivial random walk model with φ = 0.16 which was introduced before. Trivially,
process b can counteract maximally 1 tick. Qualitatively, the counteracting tendency
is the same and is due to the anti-correlation of the time series for lag 1. However, the
modified random walk has no fat tails by construction, reducing the counteracting
effect. Also for other values Δt− ∈ [1; 100] the most significant counter-movements
are present in the non-Gaussian tails. However, as the number of these events is very
small despite the huge length of the considered time series, we introduce a limiting
value λ, such that we only consider events occurring with reasonable probabilities.

3.3 Pattern conformity

This investigation supports the assumption that the CPDF profile of financial market
data on short time scales is influenced, but not completely determined, by the nega-
tive correlation at time lag one. If complex correlations exist on these time scales, one
has to find a sophisticated observable to quantify them. The existence of such correla-
tions implies that market participants – human traders and most notably automated
trading algorithms – react to a given time series pattern comparable to patterns in
the past (see Fig. 9). On medium and long time scales, this is the basic assumption
of the controversially discussed technical analysis. However, on tick by tick basis, the
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Fig. 6. (Color online) Probability distribution function (PDF) and conditional probability
distribution function (CPDF) profile for FDAX time series: In the upper part, the PDF
P (Δp(Δt−)) is shown semi-logarithmically for Δt− = 10. Additionally, a Gaussian least
mean square fit φ(Δp(Δt−)) = u exp(−vΔp2) is provided in order to exhibit the fat-tailed
nature of the price change distributions. In the bottom part, the price changes are analyzed
conditionally. The CPDF is only presented for price movements Δp, whose occurrence in the
underlying data set is larger than a threshold value λ. The color code gives the conditional
expectation value 〈p(t+Δt+)− p(t)|Δp(Δt−)〉t in dependence of Δt+ and Δp(Δt−).

effect of algorithmic trading is larger. To quantify the additional correlations, we will
define a general pattern conformity observable, which is not limited to the application
to financial market time series.
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Fig. 7. (Color online) Probability distribution function (PDF) and conditional probability
distribution function (CPDF) profile for FDAX time series for Δt− = 45. In contrast to
Fig. 6 with Δt− = 10, the PDF is broader and also the corresponding CPDF in the lower
part shows more details. A smaller counteracting tendency can be observed for this time
interval.

The aim is to compare the current reference pattern of time interval length Δt−
with all previous patterns in the time series p(t). The current observation time shall
be denoted by t̂, and the reference interval is then given by [t̂−Δt−; t̂). The forward
evolution after this current reference interval – the distance to t̂ is expressed by Δt+ –
is compared with the prediction derived from historical patterns. As the volatility is
not constant, all comparison patterns have to be normalized with respect to the
current reference pattern. For this reason, we use the true range – the difference
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Fig. 8. (Color online) Probability distribution function (PDF) and conditional probability
distribution function (CPDF) profile for FDAX time series for Δt− = 80. In contrast to
Fig. 7 with Δt− = 45, the PDF is again broader and also the corresponding CPDF in the
lower part shows more details.

between high and low. Let ph(t̂,Δt
−) be the maximum value of a pattern of length

Δt− at time t̂ and analogously pl(t̂,Δt−) be the minimum value. We construct a
modified time series, which is true range adapted in the appropriate time interval,
through

p̃Δt
−

t̂
(t) =

p(t)− pl(t̂,Δt−)
ph(t̂,Δt−)− pl(t̂,Δt−)

(18)
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(a) Pattern conformity analysis of financial market fluctuations
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Fig. 9. (Color online) The aim is to compare a current pattern of a specific time interval
length Δt− (a) with all possible previous patterns of the time series (b).

with p̃Δt
−

t̂
(t) ∈ [0; 1] ∀ t ∈ [t̂−Δt−; t̂), as illustrated in Fig. 10. At this point, the fit

quality QΔt
−

t̂
(τ) between the current reference sequence p̃Δt

−
t̂
(t) and a comparison

sequence p̃Δt
−

t̂−τ (t− τ) for t ∈ [t̂−Δt−; t̂) has to be determined by a least mean square
fit through

QΔt
−

t̂
(τ) =

Δt−∑

θ=1

(
p̃Δt

−
t̂
(t̂− θ)− p̃Δt−

t̂−τ (t̂− τ − θ)
)2

Δt−
(19)

with QΔt
−

t̂
(τ) ∈ [0, 1] as a result of the true range adaption. With these elements, one

can define an observable for the pattern conformity (PC), which is not yet normalized
by

ξχ
(
Δt+,Δt−

)
=
T−Δt+∑

t̂=Δt−

t̂∑

τ=τ∗

sgn
(
ωΔt

−
t̂
(τ,Δt+)

)

exp
(
χQΔt

−
t̂
(τ)
) , (20)

as motivated in Fig. 10, with

τ∗ =

{
t̂− τ̂ if t̂− τ̂ −Δt− ≥ 0
Δt− otherwise

. (21)

Thus, we limit the evaluation for each pattern to the maximum of τ̂ historical patterns
in order to save computing time. Furthermore, we use the standard definition:

sgn (x) =

⎧
⎪⎨

⎪⎩

1 for x > 0

0 for x = 0

−1 for x < 0

. (22)
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Fig. 10. (Color online) Schematic visualization of the pattern conformity calculation mech-

anism. The normalized reference pattern p̃Δt
−

t̂
(t) and the by τ shifted comparison pattern

p̃Δt
−

t̂−τ (t−τ) have the maximum value 1 and the minimum value 0 in [t̂−Δt−; t̂), as illustrated
by the filled rectangle. For the pattern conformity calculation, it will be checked for each
time interval Δt+ starting at t̂ whether reference and comparison pattern are above or below

the last value of the reference pattern p̃Δt
−

t̂
(t̂−1). If both are above or below this level, then

+1 is added to the non-normalized pattern conformity. If one is above and the other below,
then −1 is added.

The parameter χ weights terms according to their qualities. The larger χ, the stricter
the pattern weighting in order to use only sequences with good agreement to the

reference pattern. The expression ωΔt
−

t̂
(τ,Δt+) in Eq. (20), which takes into account

the value of reference and comparison pattern after t̂ for a proposed Δt+ relative to

p̃Δt
−

t̂
(t̂− 1), is given by the expression

ωΔt
−

t̂
(τ,Δt+) =

(
p̃Δt

−
t̂
(t̂− 1 + Δt+)− p̃Δt−

t̂
(t̂− 1)

)

×
(
p̃Δt

−
t̂−τ (t̂− τ − 1 + Δt+)− p̃Δt

−
t̂
(t̂− 1)

)
. (23)

We normalize the observable for pattern conformity by

Ξχ
(
Δt+,Δt−

)
=

ξχ
(
Δt+,Δt−

)

∑T−Δt+

t̂=Δt−

∑t̂

τ=τ∗

|sgn
(
ωΔt

−
t̂

(τ,Δt+)
)
|

exp(χQΔt
−

t̂
(τ))

. (24)

In Fig. 11, the pattern conformity for a standard random walk time series is shown
(which exhibits no correlations by construction). The pattern conformity for a per-
fectly correlated time series – a straight line – is in Fig. 12. With this method, it is
possible to search for complex correlations in financial market data quantified through
pattern conformity. In Fig. 13(a), Ξχ(Δt

−,Δt+) is shown for the FDAX time series, in
which a significant pattern conformity can be detected. Parts of the correlations stem
from the trivial negative autocorrelation for Δt = 1 caused by the jumps around the
non-zero spread. In order to try to correct for this, in Fig. 13(b), the pattern confor-
mity of the ACRW with φ = 0.16 is subtracted from the data of Fig. 13(a). Obviously,
the autocorrelation for Δt = 1 which is known from the order book structure is not
the sole reason for the pattern conformity shown in Fig. 13(a). Thus, impressive evi-
dence is obtained that financial market data show pattern correlation on very short
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Fig. 11. (Color online) Pattern conformity Ξχ=10(Δt
−,Δt+) for a random walk time series

with 3× 106 time steps and τ̂ = 104. It is close to 0 for all combinations of Δt+ and Δt−.
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Fig. 12. (Color online) Pattern conformity with the same parameter settings for a time
series of a straight line, which is exactly 1 for all parameter combinations. This reflects the
perfect correlation of the underlying process.

time scales beyond the simple negative correlation due to the non-zero gap between
bid and ask prices in the order book.
So far, the comparison between reference and historic patterns was based on the

price time series, QΔt
−

t̂
(τ) = Qp,Δt

−

t̂
(τ). Now, we also incorporate the time series of

transaction volumes v(t), i.e., QΔt
−

t̂
(τ) = Qp,Δt

−

t̂
(τ)+Qv,Δt

−

t̂
(τ), to improve the pat-

tern selection. As a result, the pattern conformity is increased as shown in Fig. 13c. In

contrast, using the inter-trade waiting time ι(t)–QΔt
−

t̂
(τ) = Qp,Δt

−

t̂
(τ) +Qι,Δt

−

t̂
(τ)–

decreases the pattern conformity for small values of Δt− as one can see in Fig. 13d.
These results are qualitatively independent of the applied weighting method. If the
exponential weighing of terms in Eq. (20) is replaced, for example by a cutoff rule for
choosing terms, comparable results are achieved. It is only important that patterns
with better agreement to historical patterns have a higher weight.

3.4 GPU accelerated pattern conformity

As the determination of the fluctuation of patterns in a time series is very time
consuming, relegating the calculation to a GPU is investigated in this section—for
an overview of GPU computing see [27]. GPU computing offers incredible resources
for high performance computing which can be used for problems in physics and
finance – as well as for Monte Carlo simulations in particular [85,86]. Details and
other applications of GPU computing can be found, e.g., in [80,87,88].
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Fig. 13. (Color online) (a) Pattern conformity ΞFDAXχ=100(Δt
−,Δt+) of FDAX time series with

τ̂ = 104 (b) FDAX pattern conformity corrected by the ACRW with φ = 0.16 and with
3 × 106 time steps. Thus, Ξ∗ = ΞFDAXχ=100 − ΞACRWχ=100 is shown. (c) Identical to (b), but the fit
quality of a pattern is not only calculated based on prices. Appropriate transaction volumes
are incorporated, too (see text). (d) Same as (b), but inter-trade waiting times are used in
combination with prices to calculate the fit quality.

Again, pattern conformity is the most accurate measure for characterizing the
short-term correlations of a general time series. It is essentially given by the compari-
son of subsequences of the time series. Subsequences of various lengths are compared
with historical sequences in order to identify and extract similar reactions to similar
patterns.
In order to implement a GPU implementation of the pattern conformity described

in (Eq. (24)), one has to allocate memory as in the Hurst exponent and for the au-
tocorrelation function implementations in [27]. The allocation is needed for the array
containing the time series, which has to be transferred to the global memory of the
GPU, and for further processing arrays. The main processing GPU function is invoked
with a proposed Δt− and a given t̂. In the kernel function, shared memory arrays for
comparison and current pattern sequences are allocated and loaded from the global
memory of the GPU. In the main calculation part, each thread handles one specific
comparison pattern, i.e., each thread is responsible for one value of τ and so, τ̂ = γ×σ
is applied with γ denoting the scan interval parameter and σ denoting the number of
threads per block. Thus, γ corresponds to the number of blocks. The partial results of
ξχ (Δt

+,Δt−) are stored in a global memory based array of dimension τ̂×Δt+. These
partial results have to be reduced in a further processing step, which uses the same
binary tree structure as applied in [27] for the determination of the Hurst exponent.
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Fig. 14. (Color online) Processing times for the calculation of the pattern conformity on
GPU and CPU for Δt−max = Δt

+
max = 20. The consumer graphics card NVIDIA GeForce

GTX 280 is used as GPU device. The total processing time on GPU is split into allocation
time, time for memory transfer, and time for main processing. The acceleration factor β is
shown as inset. A maximum acceleration factor of roughly 19 can be obtained.

The pattern conformity for a random walk time series, which exhibits no corre-
lation by construction, is 0. The pattern conformity for a perfectly correlated time
series is 1 [44]. A maximum speed-up factor of roughly 10 can be obtained for the
calculation of the pattern conformity on the GPU and CPU for Δt−max = Δt+max = 20,
T = 25000, χ = 100, and σ = 256 using the 8800 GT. In figure 14, corresponding
results for using the GTX 280 are shown as a function of the scan interval parameter
γ. Here, a maximum acceleration factor of roughly 19 was realized.
With this method, which is able to detect complex correlations in a time series,

it is also possible to search for pattern conformity based complex correlations in
financial market data, as shown in Fig. 15 for the FGBL time series. In Fig. 15, the
results for the pattern conformity ΞGPUχ=100(Δt

−,Δt+) are presented with τ̂ = 16384
calculated on the GTX 280. For small values of Δt− and Δt+, large values of ΞGPUχ=100
are obtained with a maximum value of roughly 0.8.
For the results shown in Fig. 16, the relative absolute error

εΞ = 10
2 ×

∣
∣
∣
∣
∣
ΞGPUχ=100 − ΞCPUχ=100

ΞCPUχ=100

∣
∣
∣
∣
∣

(25)

between GPU results and CPU results is shown, which is smaller than two-tenths of
a percent. This small error arises because the GPU device summarizes only a large
number of the weighted values +1 and −1. Thus, the limitation to single precision
has no significant negative effect on the result.
This raw pattern conformity is dominated by trivial pattern correlation caused

by the jumps of the price process between best bid and best ask prices – the best
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Fig. 15. (Color online) Pattern conformity ΞGPUχ=100(Δt
−,Δt+) of FGBL time series with

τ̂ = 16384 calculated on the consumer graphics card GTX 280.
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Fig. 16. (Color online) Relative error εΞ (in %) between calculation on GPU and CPU
(ΞCPUχ=100(Δt

−,Δt+), with the same parameter settings). The processing time on GPU was
5.8 hours; the results on CPU were obtained after 137.2 hours, which corresponds to roughly
5.7 days. Thus, for these parameters an acceleration factor of roughly 24 is obtained.

bid price is given by the highest limit order price of all buy orders in an order book
and analogously the best ask price is given by the lowest limit order price of all sell
orders in an order book. As shown already, there are possibilities for reducing the
influence of these trivial pattern conformity parts. For example, it is possible to add
such jumps around the spread synthetically to a random walk. Let again p∗φ be the
time series of the synthetically anti-correlated random walk created in a Monte Carlo
simulation through p∗φ = aφ(t) + b(t). With probability φ ∈ [0; 0.5], the expression
aφ(t + 1) − aφ(t) = +1 is applied and a decrement aφ(t + 1) − aφ(t) = −1 occurs
with probability φ. With probability 1− 2φ the expression aφ(t+ 1) = aφ(t) is used.
The stochastic variable b(t) models the bid-ask spread and can take the value 0 or 1
in each time step, each with probability 0.5. Thus, by changing φ, the characteristic
time scale of the process aφ can be modified as compared to the process b.
Parts of the pattern based correlations in Fig. 15 are caused by this trivial negative

autocorrelation for Δt = 1. In order to try to correct for this, the pattern conformity
of the ACRW with φ = 0.044, which reproduces the negative correlation of the FGBL
time series at time lag Δt = 1, is subtracted from the data of Fig. 15 and shown in
Fig. 17. Obviously, the autocorrelation for the time lag Δt = 1 is not the sole reason
for the pattern formation conformity shown in Fig. 15. Thus, evidence is obtained
also in this example that financial market time series show pattern correlation on
very short time scales beyond the simple anti-persistence due to the gap between bid
and ask prices.



Progress in Econophysics 43

0
5

10
15

20
25

0
5

10
15

20
25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Δt− Δt+

Ξ*

Fig. 17. (Color online) FGBL pattern conformity corrected by the anti-correlated random
walk (ACRW) with φ = 0.044 and with 1.5× 106 time steps. Thus, Ξ∗ = ΞFGBLχ=100 − ΞACRWχ=100

is shown (see the text).

4 Switching processes in financial markets

In a variety of switching processes in nature, the underlying complex system abruptly
changes from one state to another in a highly discontinuous fashion. Financial market
fluctuations are characterized by many abrupt switchings creating upward trends and
downward trends on time scales ranging from the macroscopic, persisting for hundreds
of days, to microscopic trends lasting no more than a few minutes. An important ques-
tion is whether or not these ubiquitous switching processes have quantifiable features
independent of the time horizon studied. We find striking scale-independent behavior
of the transaction volume after each switching event. Our findings can be interpreted
as being consistent with the time-dependent collective behavior of financial market
participants. We test the possible universality of our result by performing a paral-
lel analysis of fluctuations in time intervals between transactions, and suggest that
the well-known catastrophic bubbles that occur on large time scales – such as the
most recent financial crisis – may not be outliers but rather single dramatic examples
caused by the formation of increasing and decreasing trends on time scales varying
over 9 orders of magnitude from very large down to very small.
The study of dramatic crash events is limited by the fortunately rare number of

such events. The large amount of available data on financial markets, however, has
allowed them to become a prime example for complex systems [40], and increasing
numbers of scientists are analyzing market data [8,34,41–43,45–47] and modeling fi-
nancial markets [33,37,48,70,89–93]. The probability distribution function and the
time autocorrelation function reveal interesting features, such as long-range power-
law correlations in volatility and fat tails in the price change probability distribution
function [49,50].
Increasingly, understanding of the current financial crisis has been pursued

through comparisons with the depression of the 1930’s. Here we pose the question
of whether the smaller financial crises also provide information of relevance to large
crises. If this is the case, then the larger abundance of data on smaller crises should
provide quantifiable statistical laws for bubble formation and financial collapse on var-
ious scales. In answering this question, we perform parallel analyses of trend switch-
ing on two quite different time scales: (i) from ≈ 10 ms to ≈ 106 ms, and (ii) from
≈ 108 ms to ≈ 1010ms.
(i) German market: For the first analysis, we use a price time series of the German

DAX Future (FDAX) traded on the Eurex. The time series is composed of T1 =
13, 991, 275 trades in three disjoint three-month periods. The data base contains the
transaction prices, the volumes, and the corresponding time stamps [94–97], with a
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large liquidity and inter-trade times as low as 10ms, which allows for the analysis of
microtrends (see Fig. 18(a)).
(ii) US market: For the second analysis, which focuses on macrotrends, we use

price time series of daily closing prices for all stocks included in the S&P500 index.
The time series is composed of overall T2 = 2, 592, 531 closing prices. The earliest
closing prices in the dataset date back to 2 January 1962. The database contains the
daily closing prices and the daily cumulative trading volumes.
To analyze the switching processes of financial fluctuations, we first lay out a

framework within which such an analysis can be carried out. Let p(t) be the transac-
tion price of trade t, which is a discrete variable t = 1, . . . , T . A transaction price p(t)
is defined to be a local maximum of order Δt if there is no higher transaction price
in the interval t−Δt ≤ t ≤ t+Δt, and is defined to be a local minimum of order Δt
if there is no lower transaction price in this interval (Fig. 18(b)).
Here, we perform an analysis of the volume fluctuations v(t) from one price ex-

tremum to the next. The volume is the number of contracts traded in each individual
transaction for microtrends in the German market and the number of traded stocks
per day for macrotrends in the US market. For the analysis, we introduce a renor-
malized time scale ε between successive extrema. Thus, ε = 0 corresponds to the
beginning of a trend and ε = 1 indicates the end of a trend (Fig. 18(c)). We analyze
a range of ε for the interval 0 ≤ ε ≤ 2, in order to consider analyze trend switching
processes both before as well as after the critical value ε = 1 (Fig. 18). The renor-
malization is essential to assure that trends of various lengths can be aggregated and
that all switching points have a common position in the renormalized time.
Figure 19(a) displays the volume v∗(ε) averaged over all increasing and decreas-

ing microtrends in the entire set of T1 = 13, 991, 275 records and normalized by the
average volume of all microtrends studied. In order to remove outliers (e.g., overnight
gaps) only those microtrends are collected in which the time intervals between suc-
cessive trades τ(t) [98] do not last longer than 1 minute, which is roughly 60 times
longer than the average inter-trade time (≈ 0.94 s). Furthermore, transaction volumes
do not have to be larger than 100 contracts (the average transaction volume is 2.55
contracts). As expected, new price extrema are linked with peaks in the volume time
series but, surprisingly, we find that the usual cross-correlation between price changes
and volumes is very small. In Fig. 19d, we show the averaged volume v∗(ε) versus
|ε−1| as a log–log histogram. Surprisingly, average volume decreases on straight lines
and thus indicates a power-law scaling behavior of the form

v∗(|ε− 1|) ∼ |ε− 1|βv (26)

with scaling parameters β−v = −0.068 ± 0.001 (t-test, p-value < 2 × 10−16) before,
and β+v = −0.155± 0.004 (t-test, p-value = 9.2× 10−16) after price extremum. Such
an extraction of slopes by performing least-squares linear regressions is not sufficient
for the claim that the averaged volume follows a power-law distribution. However,
additionally performed statistical tests enable us to conclude that our observations
are indeed consistent with this hypothesis.
Next we test the possible universality of our result by performing a parallel analy-

sis for trends on long time scales using the daily S&P500 closing price data. Note that
for our parallel analysis on macroscopic time scales, the order of an extremum Δt is
measured in units of days, and that v∗(ε) is averaged over all trends and all closing
price time series of all S&P500 components. In order to avoid biased contributions
to the rescaled averaging caused by inflation based drifts over more than 47 years,
the analyzed price time series p(t) contains the logarithm of the daily closing prices.
A log–log histogram of our parallel analysis for the US market on large time scales
(Figs. 19(b) and 19(e)) provides evidence for similar behavior with scaling parameters
β−v = −0.052± 0.001 (t-test, p-value = 1.7× 10−9) before, and β+v = −0.109± 0.003
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Fig. 18. (Color online) Segregation and rescaling of trend sequences in a multivariate time
series in order to analyze financial market quantities on the path from one price extremum
to the next. (a) Small subset comprising 121,400 transactions of the full data set (13,991,275
transactions) analyzed, extracted from the German DAX future (FDAX) time series which
provides transaction prices, transaction volumes, and time intervals between transaction–
inter-transaction times (ITT). This subset recorded on September 29, 2008 documents the
volatile reaction of stock markets as the US government’s $700 billion financial bailout plan
was rejected by the House of Representatives on that day. (b) Schematic visualization of
trend segregation for Δt = 3. Positive trends start at local price minima (red circles) and
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(t-test, p-value < 2 × 10−16) after a price extremum. Statistical tests confirm the
consistency with a power-law distribution.
In order to verify a possible universality, we analyze the behavior of the inter-

trade times τ(t) of the German market during the short time interval from one
price extremum to the next. The cross-correlation function between price changes
and inter-trade times exhibits no reasonable correlation values as well. Thus, it is
conceivable that the tendency to decreased inter-trade times at the end of positive
microtrends is counteracted by the tendency for decreasing inter-trade times at the
end of negative microtrends. The crucial issue is to distinguish between positive and
negative microtrends realized by the renormalized time ε between successive extrema.
In Fig. 19c, the averaged inter-trade times τ∗(ε) reflect the link between inter-trade
times and price extrema. Figure 19f shows τ∗(ε) versus |ε− 1| as a log–log histogram
providing support for power-law behavior of the form

τ∗(|ε− 1|) ∼ |ε− 1|βτ (27)

with scaling parameters β−τ = 0.092 ± 0.002 (t-test, p-value = 1.8 × 10−15) before,
and β+τ = 0.118 ± 0.002 (t-test, p-value < 2 × 10−16) after a price extremum.
Statistical tests confirm consistency with a power-law distribution in this case
as well.
The straight lines in Figs. 19(d), 19(e), and 19(f) offer insight into financial mar-

ket fluctuations: (i) a clear connection between volumes, inter-trade times, and price
fluctuations on the path from one extremum to the next extremum seems to ex-
ist, and (ii) the underlying law, which describes the volumes and inter-trade times
around extrema varying over 9 orders of magnitude starting from the smallest pos-
sible time scale, is a power-law with scaling parameters which quantitatively charac-
terize the region around the trend switching point. As a direct consequence of the
consistency with power-law distributions, the observed behavior does not depend on
the time scale considered. Thus, we find identical behavior for other sub-intervals of
50 ≤ Δt ≤ 1000.
In summary, we can see that each type of trend – micro and macro – in a fi-

nancial market starts and ends with a unique switching process, and each extremum
shares properties of macroscopic cooperative behavior [99–102]. We have seen that the
switching mechanism has no scale, for time scales varying over 9 orders of magnitude
down to the smallest possible time scale (the scale of single transactions measured in

Fig. 18. (Continued) end at local maxima (blue circle)–and vice versa. A transaction price
p(t) is a local maximum if there is no lower transaction price in the interval t−Δt ≤ t ≤ t+Δ.
(c) Segregated sequences of transaction volumes belonging to the three trends identified in
(b). We assign ε = 0 to the start of each trend, and ε = 1 to the end of each trend.
In order to study trend switching processes – both before as well as after the end of
a trend – we consider additionally the subsequent volume sequences of identical length.
(d) Visualization of the volume sequences in the renormalized time scale. The renormal-
ization assures that trends of various lengths can be aggregated as all switching points
have a common position in this renormalized scale. (e) Averaged volume sequence de-
rived from the summation of the three trend sequences. (f) Average volume sequence
v∗(ε) for all trends in the full FDAX time series derived from summation over various
values of Δt. Extreme values of the price coincide with peaks in the time series of the
volumes.
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Fig. 19. (Color online) Renormalization time analysis and log–log plots of quantities with
scale-free properties. (a) Averaged volume sequence v∗(ε) of the German DAX Future time
series. Δt ranges from 50 to 100 transactions (ticks). Extreme values of the price coincide
with sharp peaks in the volume time series. (b) A very similar behavior is obtained for
the averaged volume sequence v∗(ε) of S&P500 stocks. Here, Δt ranges from 10 days to
100 days. (c) Averaged inter-trade time sequence τ∗(ε) of the German DAX Future time
series. Extreme values of the price time series are reached with a significant decay of inter-
trade times (50 ticks ≤ Δt ≤ 100 ticks). (d) Log–log plot of the FDAX transaction volumes
(50 ticks ≤ Δt ≤ 1000 ticks) before reaching an extreme price value (ε < 1, circles) and
after reaching an extreme price value (ε > 1, triangles). The straight lines correspond to
power-law scaling with exponents β+v = −0.155 ± 0.004 (t-test, p-value = 9.2× 10−16) and
β−v = −0.068 ± 0.001 (t-test, p-value < 2 × 10−16). The shaded intervals mark the region
in which the empirical data are consistent with a power-law behavior. The left border of
the shaded regions is given by the first measuring point closest to the switching point.
The right borders stem from statistical tests of the power-law hypothesis (see section 4.3).
(e) Log–log plot of the transaction volumes shown in (b) indicates a power-law behavior
with exponents β+v = −0.109 ± 0.003 (t-test, p-value < 2 × 10−16) and β−v = −0.052 ±
0.001 (t-test, p-value = 1.7 × 10−9) which are similar to our results on short time scales.
(f) Log–log plot of the inter-trade times on short time scales (50 ticks ≤ Δt ≤ 100 ticks)
exhibits a power-law behavior with exponents β+τ = 0.118 ± 0.002 (t-test, p-value < 2 ×
10−16) and β−τ = 0.092 ± 0.002 (t-test, p-value = 1.8 × 10−15). An equivalent analysis on
long time scales is not possible as daily closing prices are recorded with equidistant time
steps.

units of 10ms). Thus, the well-known catastrophic bubbles occurring on large time
scales – such as the most recent financial crisis – may not be outliers but in fact single
dramatic events caused by the inherent, scale-free behavior related to the formation
of increasing and decreasing trends on time scales from the very large down to the
very small.
The findings which were briefly covered in this overview are documented in de-

tail in the following subsections as well as in [2,103]. The remainder of this sec-
tion is organized as follows: Subsection 4.1 describes the underlying data sets used
for the analyses of switching processes in financial markets. Subsection 4.2 docu-
ments the renormalization method in detail. Statistical tests confirming our results
are found in subsection 4.3. As an additional test, we reshuffle the inter-trade time
series and the volume time series in Subsec. 4.4 in order to destroy their link to
the price development observable through the power-law behavior covered in this
overview.
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Table 4. Three disjoint three-month periods of the German DAX Future contract (FDAX)
which we analyze. Additionally, the mean volume per transaction v̄ and the mean inter-trade
time τ̄ are shown.

Contract Records Time Period v̄ τ̄ [s]

JUN 2007 3, 205, 353 16 Mar 2007–15 Jun 2007 3.628a 2.485b

SEP 2008 4, 357, 876 20 Jun 2008–19 Sep 2008 2.558a 1.828b

DEC 2008 6, 428, 046 19 Sep 2008–19 Dec 2008 2.011a 1.253b

a Measured in units of contract.
b Including overnight gaps.

4.1 Financial market data

To address the question of whether smaller financial crises also provide information
of relevance to large crises, we perform parallel analyses of bubble formation and
bursting using two different datasets on two quite different time scales: (i) from ≈
101ms to ≈ 106ms, and (ii) from ≈ 108ms to ≈ 1010ms.

4.1.1 German market – DAX future

For the first analysis, we use a multivariate time series of the German DAX Futures
contract (FDAX) traded on the European Exchange (Eurex). A “futures” exchange
or derivatives exchange is a central financial exchange where people can trade stan-
dardized “futures contracts”. A “future” is a contract to buy or sell an underlying
asset at a specified price at a specific future date – in this case the German DAX
index, which measures the performance of the 30 largest German companies in terms
of order book volume and market capitalization29.
The time series contains T1 = 13, 991, 275 transactions of three disjoint three-

month periods (see Table 4). Each end of the three disjoint periods corresponds to
a last trading day of the FDAX contract, which is fixed at the third Friday of the
months March, June, September, and December, except for exceptions due to na-
tional holidays. The data set we analyze contains the transaction prices, the volumes,
and the corresponding time stamps [94–97], with large liquidity and inter-trade times
as small as 10ms, allowing for the analysis of microtrends.
Time series analysis of futures contracts has the advantage that prices are created

by trading decisions alone. Stock index data, on the other hand, are derived from a
weighted sum of a large number of stock prices. Furthermore, systematic drifts due
to inflation are eliminated by construction. The theory of futures pricing based on
arbitrage states that for an asset that can be stored at no cost and which does not
yield any cash flows, the futures price F has to be equal to the spot price S plus the
cost of financing the purchase of the underlying between the spot date and the expiry
date [58,61]. This theoretical futures price can be referred to as fair value. In the case
of the German DAX index, the underlying purchase can be financed until expiry at a
standard loan rate. Using a continuously compounded rate r, the fair value equation
can be written as

F (t) = S(t)ert, (28)

where t denotes the remaining time until expiration. The expression for the theoretical
futures price – see Eq. (28) – which simply reflects the cost of carry, compensates

29 More detailed information about German DAX index constituents and calculation
principles can be found on http://www.deutsche-boerse.com.
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Fig. 20. (Color online) Cross correlation analysis of the quantities analyzed. (a) Time-lag
dependent correlation between price changes and inter-trade times analyzed for the FDAX
JUN 2007 contract. (b) Correlation between price changes and inter-trade times analyzed for
the FDAX SEP 2008 contract. (c) Correlation between price changes and inter-trade times
analyzed for the FDAX DEC 2008 contract. (d) Time-lag dependent correlation between
price changes and volume changes analyzed for the FDAX JUN 2007 contract. (e) Parallel
analysis for the FDAX SEP 2008 contract. (f) Parallel analysis for the FDAX DEC 2008
contract.

for interest rate related effects. At the time of expiry t = 0, the future’s price and
underlying price are identical.

4.1.2 Cross correlations

Cross-correlation is a measure of similarity of two time series as a function of a time-
lag applied to one of them. For the analysis of trend switching points, we are interested
in the question of to what extent the time series of price changes depends on the time
series of inter-trade times, and vice versa. Figures 20(a), 20(b), and 20(c) provide
evidence that only very small but at least a few significant correlation coefficients can
be found for the DAX future time series. However, the small correlation coefficients
for small time-lags differ strongly between the three disjoint data sets. Thus, one can
conjecture that they are influenced by the randomly occurring over-night gaps which
can be dramatically larger than price differences between two successive transactions
during regular trading hours.
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Fig. 21. (Color online) Visualization of amicrotrend in the price movement p(t). (a) Positive
microtrend starting at a local price minimum pmin of order Δt and ending at a local price
maximum pmax of order Δt. The hatched region around pmax indicates the interval in which
we find scale-free behavior. This behavior is consistent with “self-organized” [99] macroscopic
interactions among many traders [100], not unlike “tension” in a pedestrian crowd [101,102].
The reason for tension among financial traders may be found in the risk aversions and profit
targets of financial market participants. (b) Renormalized time scale ε between successive
extrema, where ε = 0 corresponds to the start of a microtrend, and ε = 1 corresponds to
the end. The hatched region is surprisingly large, starting at ε = 0.6 and ending at ε = 1.4.

A parallel analysis of the cross-correlation functions (see Figs. 20(d), 20(e),
and 20(f)) for price changes and transaction volumes uncovers absolute coefficients
smaller than 0.017.

4.1.3 US market – S&P500 stocks

For the second analysis, which focuses on macrotrends, we use price time series of the
daily closing prices of all stocks included in the S&P500 index. This index consists of
500 large-cap common stocks actively traded in the United States of America30.
This time series includes T2 = 2, 592, 531 closing prices of all US stocks which

were included in the S&P500 on June 16, 2009. Our oldest closing prices date back
to January 2, 1962. The data base of closing prices we analyzed contains the daily
closing prices and the daily cumulative trading volume.

4.2 Renormalization method

The various jagged functions of time characterizing complex financial fluctuations
on time scales as short as a few milliseconds are much less studied than the large
fluctuations of major national stock indices such as the S&P500 and their constituents.
These functions also do not yield themselves to mathematical analysis at first sight,
because they are characterized by sudden reversals between up and down microtrends
(see Fig. 21 and Fig. 22(a)), which can also be referred to as microscopic bubbles on
small time scales. On these small time scales, evidence can be found [44] that the three
major financial market quantities of interest – price, volume, and inter-trade times –
are connected in a complex way, and thus overwhelming the standard tools of time
series analysis such as linear cross-correlation analyses. More sophisticated methods

30 More detailed information about S&P500 calculation principles can be found on
http://www.standardandpoors.com.
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Fig. 22. (Color online) Visualization of the quantities analyzed. (a) A small subset com-
prising 5000 trades (0.04%) of the full T1 = 13, 991, 275 trade data set analyzed, extracted
from the German DAX future time series during part of one day. The extrema of order Δt
are shown as circles, defined to be the extremum in the interval t − Δt ≤ t ≤ t + Δt. We
performed our analysis for Δt = 1, 2, . . . , 1000 ticks; in this example, Δt = 75 ticks. Positive
microtrends are indicated by blue bars, which start at a Δt-minimum and end at the next
Δt-maximum. A negative microtrend (red bars) starts at a Δt-maximum and ends at the
consecutive Δt-minimum. (b) Time series of the corresponding inter-trade times τ(t) reflect-
ing the natural time between consecutive trades in units of 10ms, where t = 1, 2, . . . , 5000
is the transactions index. (c) The volume v(t) of each trade t in units of contracts.

are thus necessary for analyzing these complex financial fluctuations responsible for
such complex financial market patterns.
In order to study the switching processes in price movements on microscopic

time scales, we first lay out a framework in which such a switching process can be
quantitatively analyzed. Let p(t) be the transaction price of trade t, which will be
treated as a discrete variable t = 1, . . . , T . Each transaction price p(t) is defined to
be a local maximum pmax(Δt) of order Δt, if there is no higher transaction price in
the interval t−Δt ≤ t ≤ t+Δt. Thus, if p(t) = pmax(t,Δt), p(t) is a local maximum,
where

pmax(t,Δt) = max{p(t)|t−Δt ≤ t ≤ t+Δt}. (29)

Analogously, a transaction price p(t) is defined to be a local minimum of order Δt, if
there is no lower transaction price in this interval. With

pmin(t,Δt) = min{p(t)|t−Δt ≤ t ≤ t+Δt}, (30)

it follows that p(t) is a local minimum if p(t) = pmin(t,Δt). In this sense, the two
points in the time series in Fig. 21 marked by circles are a local minimum and a local
maximum, respectively.
For the analysis of financial market quantities and their dependence on trends,

we introduce a renormalized time scale ε between successive extrema as follows: Let
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tmin and tmax be the time (measured in units of ticks) at which the corresponding
transactions take place for a successive pair of local minimum and local maximum
(see Fig. 21). For a positive microtrend, the renormalized time scale is given by

ε(t) ≡ t− tmin
tmax − tmin , (31)

with t ≥ tmin, and for a negative microtrend by

ε(t) ≡ t− tmax
tmin − tmax , (32)

with t ≥ tmax. Thus, ε = 0 corresponds to the beginning of the microtrend and ε = 1
indicates the end of the microtrend. We analyze a range of ε within the interval 0 ≤
ε ≤ 2, so we can analyze trend switching processes both before and after the critical
value ε = 1 (Fig. 21). The renormalization is essential to assure that microtrends
of various lengths can be aggregated and that all switching points have a common
position on the renormalized time scale.

4.2.1 Volume analysis

First the volume fluctuations v(t) during the time interval of increasing microtrends
from one price minimum to the next price maximum and decreasing microtrends from
one price maximum to the next price minimum are analyzed. The quantity studied is
the number of contracts traded in each individual transaction (see Fig. 22(c)) in the
case of microtrends for the German market. For the US market, it is the cumulative
number of traded stocks per day. For the analysis of v(t) and its dependence on trend
fraction, we use the renormalization time scale ε. In Fig. 23, the color key represents
the mean volume 〈v〉(ε,Δt) depending on ε and Δt, normalized by average volume
v̄, where the brackets 〈. . .〉 denote the average over all increasing microtrends and all
decreasing microtrends in the entire time series of T1 = 13, 991, 275 records. If there
are Npos(Δt) positive microtrends and Nneg(Δt) negative microtrends, each of order
Δt in the time series, letting vi(ε) denote the local volume at position ε in the i-th
positive or i-th negative microtrend, then the mean volume is given by

〈v〉(ε,Δt) = 1

Npos(Δt) +Nneg(Δt)

Npos(Δt)+Nneg(Δt)∑

i=1

vi(ε) (33)

for positive and negative microtrends. This mean volume has to be normalized by the
average volume v̄, which is determined by

v̄ =
εbin

εmaxΔtmax

εmax/εbin∑

ε=0

(
Δtmax∑

Δt=0

〈v〉(ε,Δt)
)

, (34)

where εmax is the maximum value of the renormalization time scale ε studied (fixed to
εmax = 2) and εbin denotes the bin size of the renormalized time scale. The maximum
value of Δt analyzed is given by Δtmax. For convenience, we relate the bin size to
Δtmax through

εbin =
2

Δtmax
. (35)

As the absence of significant changes of the colored volume profiles in Fig. 23(a) is
consistent with a data collapse for Δt values larger than a specific cut-off value Δtcut,
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Fig. 23. (Color online) Renormalization time analysis of transaction volumes v, and inter-
trade times τ for all microtrends – increasing and decreasing microtrends. (a) Volume profile,
averaged over all microtrends in the German FDAX time series and normalized by the aver-
age volume of all microtrends studied. We analyze both positive and negative microtrends.
The color code represents the normalized mean volume 〈v〉(ε,Δt)/v̄. The color profile reflects
the link between mean volume and price evolution. The volume is connected to the price
evolution: new extreme values of the price coincide with peaks in the volume time series, as
indicated by the vertical blue regions close to ε = 1. The top panel shows the volume aggre-
gation v∗(ε), where v∗(ε) is the average over layers with 50 ≤ Δt ≤ 100 (Δtcut = 50). The
sharp maximum in v∗(ε) is shown in the top panel. (b) The colored inter-trade time profile
– averaged over all microtrends in the time series and normalized by the average inter-trade
times of all microtrends studied – is performed analogously to our study of volume. New
extreme values of the price time series are reached with a significant decay of the inter-trade
times.

we calculate a volume aggregation v∗(ε). This volume aggregation v∗(ε) is the average
of the mean volume 〈v〉(ε,Δt), averaged only for Δt-layers with Δtcut ≤ Δt ≤ Δtmax.
It is given by

v∗(ε) =
1

Δtmax −Δtcut
Δtmax∑

Δt=Δtcut

〈v〉(ε,Δt)
v̄

. (36)

The colored volume profile (see Fig. 23(a)) shows the mean volume 〈v〉(ε,Δt) averaged
over all increasing and all decreasing microtrends. The color profiles exhibit a link
between volume and price evolution. In Fig. 19(d), we show the averaged volume
v∗(ε) versus |ε−1| in a log–log histogram. Surprisingly, the average volume decreases
on straight lines and indicating a power-law scaling behavior of the form

v∗(|ε− 1|) ∼ |ε− 1|βv (37)

with scaling parameters β−v = −0.068±0.001 (t-test, p-value < 2×10−16) before, and
β+v = −0.155± 0.004 (t-test, p-value = 9.2× 10−16) after a price extremum. Such an
extraction of slopes by performing least-squares linear regressions is not sufficient for
supporting the claim that the averaged volume consistent with a power-law behavior.
However, additional performed statistical tests (see Sec. 4.3) enable us to conclude
that our observations are indeed consistent with this hypothesis.
We test the possible universality of our result by performing a parallel analysis

for trends on long time scales using the daily closing price dataset of S&P500 stocks.
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Note that for our parallel analysis on macroscopic time scales, Δt is measured in
units of days, and that v∗(ε) is averaged over all trends and all the closing price
time series of all S&P500 individual stocks. In order to avoid biased contributions
to the rescaled averaging caused by inflation based drifts over more than 47 years,
the analyzed price time series p(t) contains the logarithm of the daily closing prices.
A log–log histogram of our parallel analysis for the US market on large time scales
(Figs. 19(b) and 19(e)) provides evidence for similar behavior with scaling parameters
β−v = −0.052± 0.001 (t-test, p-value = 1.7× 10−9) before, and β+v = −0.109± 0.003
(t-test, p-value < 2× 10−16) after a price extremum. Statistical tests confirm, also in
this case, consistency with a power-law distribution.

4.2.2 Inter-trade time analysis

In order to verify a possible universality, we further analyze the behavior of the
inter-trade times τ(t) on the German market during the short time interval from one
price extremum to the next (see Fig. 22(b)). In Fig. 23(b), the mean inter-trade time
〈τ〉(ε,Δt)/τ̄ is shown for positive and negative microtrends reflecting the link between
inter-trade times and price extrema. The mean inter-trade time begins decreasing far
from the switching point ε = 1. After the formation of a new local price maximum, the
mean inter-trade times increase and return to the average value in a very symmetric
way.
In the top panel of Fig. 23(b), the aggregation of the inter-trade time profile τ∗(ε)

is calculated and shown for all values of Δt between Δtcut = 50 and Δtmax = 100.
Figure 19(f) shows τ∗(ε) versus |ε − 1| as a log–log histogram further supporting a
power-law behavior of the form

τ∗(|ε− 1|) ∼ |ε− 1|βτ (38)

with scaling parameters β−τ = 0.092±0.002 (t-test, p-value = 1.8×10−15) before, and
β+τ = 0.118 ± 0.002 (t-test, p-value < 2 × 10−16) after a price extremum. Statistical
tests confirm consistency with a power-law distribution here as well. A log–log his-
togram of a parallel analysis for the US market on large time scales is not obtainable
as the inter-trade times between successive closing prices are given by the constant
value of one day (exceptions are weekends and holidays).

4.3 Test of the power-law hypothesis

Using linear regressions, we are able to fit power-law curves to empirical data sets, and
obtain thus an estimate of the scaling parameter β. However, this procedure does not
prove that there is indeed a power-law underlying. Irrespective of the true functional
law, underlying the process generating the empirical data, it is often possible to fit
them in seemingly good agreement to a power-law graph. We need to find out whether
the fit is a good match to the data. To achieve this, we test the power-law hypothesis
quantitatively [104]. The fact that distributions seem to be roughly straight on the
log-log plot is a necessary but not sufficient condition for power-law behavior of the
data. Unfortunately, there is no straightforward way to prove whether the underlying
law is indeed a power-law. Even if data are sampled from a power-law distribution,
their observed distribution is unlikely to exactly follow the power-law form. There
will always be some small deviations caused by the random nature of the sampling
process. As described in [104], the challenge is to distinguish between deviations of
this type and those that arise because the data are drawn from a non-power-law dis-
tribution.
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For the test of the power-law hypothesis, we use the following approach: a large
number of synthetic data sets are sampled from a true power-law distribution. The
extent to which these synthetic data sets deviate from the power-law form is then
measured, and these distances are compared to the results of the same measurement
for the empirical price time series. If the deviation of the empirical data set from the
power-law is larger than corresponding deviations of a specific fraction of syntheti-
cally created data sets, then the power-law is not a plausible fit to the data set. As
a measure for the distance between distributions, we use the Kolmogorov-Smirnov
(KS) statistic [105], which is simply the maximum distance between the cumulative
distribution functions (CDFs) of the empirical data v∗(x) (or τ∗(x)) and the fitted
model q(x) = Cxβ :

D = maxx0≤x≤xcut |V ∗(x)−Q(x)|. (39)

Here, C is a constant, V ∗(x) is the cumulative distribution function (CDF) of the
empirical data v∗(x) for the observations with values on the interval [x0, xcut], and
Q(x) is the CDF of the power-law model q(x) that provides the best fit to the data
in this region. The variable x represents |ε− 1|.
First, we fit our empirical data v∗(x) to the power-law model using linear regres-

sion, determining the value of the scaling parameter β. For this fit, we calculate the
KS statistic. Next, we generate a large number of power-law distributed synthetic
data sets with scaling parameter β as follows: a power-law distribution q(x) is gen-
erated from a uniform distribution q(y) with q(x) = Cxβ for x ∈ [x0, xcut]. Then,
normalization requires

∫ xcut

x0

q(x)dx = C

[
xβ+1

]xcut
x0

β + 1
= 1. (40)

Thus, the constant C is given by

C =
β + 1

xβ+1cut − xβ+10

. (41)

Let Y be a uniformly distributed variate on the interval [0, 1]. Then,

∫ x

x0

q(x′)dx′ = C
∫ x

x0

x′βdx′ =
C

β + 1

(
xβ+1 − xβ+10

)
≡ y, (42)

and the variate given by

x =

(
β + 1

C
y + xβ+10

)1/(β+1)
=
[(
xβ+1cut − xβ+10

)
y + xβ+10

]1/(β+1)
(43)

is distributed as q(x) [105,106]. Using Eq. (43), we generate 1000 synthetic data sets
and fit each data set individually to its own power-law with its own values for C
and β. Then, the KS statistic is calculated for each one. The parameter x0 is the
first measuring point closest to the switching point at ε = 1. The right border of
the fitting region is xcut ≡ |ε− 1|cut. As a conservative approach, one synthetic data
set contains Ti(xcut − x0) power-law distributed data points, where Ti denotes the
number of empirical observations. The number of effectively used empirical transac-
tions is marginally smaller, as microtrends have to fulfill the requirements that time
intervals between successive trades not be longer than one minute and transaction
volumes not be larger than 100 contracts.
After the generation of 1000 synthetic data sets, we simply determine the frac-

tion of time for which the resulting statistic is larger than the same value for the
empirical data. This fraction is our p-value. It is of crucial importance that for each
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synthetic data set we compute the KS statistic relative to the best power-law fit for
that data set. Thus, we ensure that we are performing for each synthetic data set the
same calculation that we performed for the empirical data set. Once the p-value is
calculated, a decision must be made concerning whether it is small enough to rule out
the power-law hypothesis or whether the hypothesis is a plausible one for the data in
question. If the p-value is close to 1, then the difference between the empirical data
and the model can be attributed to statistical fluctuations alone. If the p-value is
small, the model is not a plausible fit to the data.
In our calculations, the relatively conservative choice was made that the power-law

is ruled out if the p-value is smaller than 0.1. Tables 5, 6, and 7 provide the p-values
for the empirical data shown in Figs. 19(d), 19(e), and 19(f) as a function of |ε−1|cut.
The second largest value of |ε− 1|cut, for which the power-law hypothesis cannot be
ruled out, is used as a limit for the fitting intervals in Fig. 19.
The results of the statistical test shown in Tables 5, 6, and 7 confirm consistency

with power-law distributions.

4.4 Random reshuffling

To confirm that our results are a consequence of the exact time series sequence and
thus sensitive to the temporal ordering of the original time series of volumes and inter-
trade times, we randomly reshuffle γT pairs of data points in both the volume time
series and the inter-trade time series in order to weaken their connection with the price
evolution. We find that the clear link between volume fluctuations and price evolution
(see Fig. 24(a)) and between inter-trade times and price evolution (see Fig. 24(b))
disappears with increasing γ and entirely vanishes for microtrends for γ ≥ 1. The
dip of the inter-trade times at ε = 1 becomes less pronounced with increasing γ and,
correspondingly, the peak of the volume maximum decreases. For the S&P500 data
set (Fig. 24(c)), the volume peak disappears with increasing γ, following the same
pattern. These shuffling induced processes may be characterized by power-law rela-
tionships as well, which support our finding that a fluctuating price time series passes
through a sequence of switching points with scale-free properties. This disappearance
phenomenon is consistent with a power-law behavior. The maximum value of v∗(ε)γ
at ε = 1 scales with the exponent βsv = −0.12 for microtrends (Fig. 24(d)). The
minimum value of τ∗(ε)γ at ε = 1 scales with the exponent βsv = 0.09 as shown in
Fig. 24(e). In the case of the maximum of v∗(ε)γ at ε = 1 on large time scales, the
log-log plot can be fit with a straight line with a power-law exponent βsv = −0.10
for the S&P500 stocks (Fig. 24(f)). However, some deviations can be observed for
macrotrends, which are caused by the limited number of closing prices in the S&P500
data set (T2 � T1).

5 Order book model

As seen in the previous sections, financial market time series exhibit a very large
number of complex statistical properties. In this section31, we analyze and extend
an agent-based Order Book Model which can be used to obtain a “mechanistic un-
derstanding” of the price formation process and which leads to the so-called stylized
facts observed in financial market data. This section provides a detailed analysis of
this model and covers the components which lead to important properties such as
non-Gaussian price change distributions and the fact that persistent price dynamics

31 Partial results of this section are published in [56,72].
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Table 5. Statistical test of power-law hypothesis for the FDAX volume time series: Scaling
parameters of the hypothesized power-law model are shown for both v∗(ε) before (β−v ) and
v∗(ε) after (β+v ) the trend switching point ε = 1 in dependence of |ε−1|cut. Additionally, the
corresponding values of the KS statistic, D−v and D

+
v , are given. The power-law hypothesis

is supported if the p-value is larger than 0.1.

|ε− 1|cut β+v D+v p-value β−v D−v p-value
0.004 −0.161 0 0.568 −0.062 0 1
0.006 −0.162 0.0001 0.98 −0.07 0.0014 0.609
0.008 −0.165 0.0007 0.934 −0.071 0.0011 0.837
0.01 −0.169 0.0017 0.722 −0.074 0.0014 0.773
0.012 −0.172 0.0021 0.637 −0.075 0.0016 0.707
0.014 −0.173 0.002 0.679 −0.074 0.0012 0.873
0.016 −0.17 0.0015 0.873 −0.074 0.001 0.934
0.018 −0.168 0.0012 0.942 −0.073 0.0008 0.965
0.02 −0.167 0.0014 0.893 −0.073 0.0008 0.981
0.022 −0.165 0.0018 0.822 −0.073 0.0007 0.977
0.024 −0.162 0.0021 0.696 −0.073 0.0006 0.992
0.026 −0.16 0.0027 0.465 −0.073 0.0006 0.992
0.028 −0.159 0.0031 0.28 −0.074 0.0006 0.998
0.03 −0.157 0.0034 0.181 −0.073 0.0005 1
0.032 −0.155 0.0038 0.065 −0.073 0.0005 0.998
0.034 −0.152 0.0042 0.019 −0.072 0.0007 0.98
0.036 −0.15 0.0046 0.004 −0.072 0.0006 0.996
0.038 −0.148 0.0051 0.002 −0.072 0.0006 0.99
0.04 −0.146 0.0055 0 −0.072 0.0007 0.974
0.042 −0.145 0.0059 0 −0.071 0.0008 0.928
0.044 −0.143 0.0061 0 −0.071 0.0008 0.936
0.046 −0.142 0.0062 0 −0.071 0.0009 0.921
0.048 −0.14 0.0064 0 −0.071 0.0008 0.911
0.05 −0.138 0.0066 0 −0.071 0.0008 0.925
0.052 −0.136 0.0068 0 −0.071 0.0008 0.935
0.054 −0.134 0.007 0 −0.07 0.0008 0.911
0.056 −0.132 0.0074 0 −0.07 0.0008 0.902
0.058 −0.131 0.0076 0 −0.07 0.0008 0.922
0.06 −0.129 0.0079 0 −0.07 0.0008 0.936
0.062 −0.127 0.0084 0 −0.07 0.0009 0.881
0.064 −0.125 0.0088 0 −0.07 0.0008 0.876
0.066 −0.124 0.009 0 −0.069 0.0009 0.847
0.068 −0.122 0.0092 0 −0.069 0.0009 0.827
0.07 −0.121 0.0095 0 −0.069 0.001 0.734
0.072 −0.119 0.0098 0 −0.068 0.0011 0.624
0.074 −0.118 0.01 0 −0.068 0.0012 0.562
0.076 −0.116 0.0101 0 −0.068 0.0013 0.518

on intermediate time scales (Hurst exponent H > 1/2) can be identified and realized
individually.
Subsection 5.1 presents the definition of the basic model. In Subsec. 5.2 the pa-

rameter space of this model is analyzed to identify meaningful regions of this space.
In Subsec. 5.3 we then discuss several augmentations of the model leading to a non-
trivial Hurst exponent and a non-Gaussian return distribution. Subsection 5.4 studies
switching processes in the Order Book Model in the context of the previous section.
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Table 6. Statistical test of power-law hypothesis for the volume time series of S&P500
stocks: Scaling parameters of the hypothesized power-law model are shown for both v∗(ε)
before (β−v ) and v

∗(ε) after (β+v ) the trend switching point ε = 1 in dependence of |ε−1|cut.
Additionally, the corresponding values of the KS statistic, D−v and D

+
v , are given. The

power-law hypothesis is supported if the p-value is larger than 0.1.

|ε− 1|cut β+v D+v p-value β−v D−v p-value
0.04 −0.084 0 1 −0.055 0 1
0.06 −0.098 0.0023 0.272 −0.052 0.0005 0.792
0.08 −0.111 0.0042 0.032 −0.053 0.0003 0.981
0.1 −0.113 0.0038 0.046 −0.053 0.0002 0.997
0.12 −0.115 0.0034 0.061 −0.054 0.0003 0.999
0.14 −0.116 0.003 0.134 −0.054 0.0003 0.999
0.16 −0.114 0.0026 0.208 −0.053 0.0007 0.917
0.18 −0.113 0.0023 0.288 −0.052 0.0008 0.927
0.2 −0.115 0.0021 0.384 −0.05 0.0015 0.413
0.22 −0.115 0.002 0.435 −0.048 0.0022 0.087
0.24 −0.115 0.0018 0.516 −0.047 0.0024 0.047
0.26 −0.114 0.0017 0.618 −0.047 0.0023 0.047
0.28 −0.113 0.0016 0.625 −0.046 0.0023 0.038
0.3 −0.112 0.0016 0.651 −0.045 0.0023 0.027
0.32 −0.11 0.0016 0.66 −0.044 0.0024 0.024
0.34 −0.109 0.0018 0.463 −0.044 0.0023 0.033
0.36 −0.107 0.0023 0.151 −0.043 0.0022 0.019
0.38 −0.106 0.0026 0.062 −0.042 0.0023 0.012
0.4 −0.105 0.003 0.01 −0.041 0.0025 0.001
0.42 −0.103 0.0035 0 −0.04 0.0027 0.001
0.44 −0.101 0.0038 0 −0.04 0.0027 0
0.46 −0.1 0.004 0 −0.04 0.0026 0.001

5.1 Definition of the order book model

In this subsection, the Order Book Model is defined in its basic form. Its development
was inspired by the model for the continuous double auction introduced in [36,37].
Our aim is to accurately reproduce the structure and the mechanisms of an order
book for real financial markets, as shown in Fig. 25 (which is similar to the one
already provided in Sec. 2). In our simulations, we limit ourselves to only one order
book in which one individual asset is traded. This asset can be, e.g., a share, a loan,
or a derivative product. Of the various types of orders which can be found on real
financial markets we use only the two most important types, namely limit orders and
market orders. The Order Book Model contains two different types of agents, liquidity
providers and liquidity takers, which differ in the types of orders they are permitted
to submit.
On the one hand, NA liquidity providers only submit limit orders. In the case of

a limit sell order, an agent offers an asset for sale at a given limit price (or any better
price). Analogously, a limit buy order indicates demand for buying a traded asset and
will be executed at a given limit price or a lower price. Let pa be the so-called best
ask, which is the lowest price level at which at least one limit sell order in the order
book exists, and analogously pb the so-called best bid, being the highest price level
for which at least one limit buy order is stored in the order book. In our model, limit



Progress in Econophysics 59

Table 7. Statistical test of power-law hypothesis for the FDAX inter-trade time series:
Scaling parameters of the hypothesized power-law model are shown for both τ∗(ε) before
(β−τ ) and τ

∗(ε) after (β+τ ) the trend switching point ε = 1 in dependence of |ε − 1|cut.
Additionally, the corresponding values of the KS statistic, D−v and D

+
v , are given. The

power-law hypothesis is supported if the p-value is larger than 0.1.

|ε− 1|cut β+τ D+τ p-value β−τ D−τ p-value
0.04 0.089 0 1 0.097 0 1
0.06 0.096 0.0013 0.21 0.089 0.0013 0.195
0.08 0.105 0.0028 0.002 0.095 0.0013 0.24
0.1 0.112 0.0034 0 0.098 0.0016 0.166
0.12 0.115 0.0034 0 0.095 0.001 0.538
0.14 0.116 0.0031 0 0.096 0.0009 0.708
0.16 0.114 0.0025 0.01 0.096 0.0008 0.837
0.18 0.116 0.0023 0.023 0.095 0.0007 0.928
0.2 0.118 0.0025 0.006 0.094 0.0008 0.885
0.22 0.119 0.0025 0.008 0.094 0.001 0.762
0.24 0.12 0.0027 0.001 0.093 0.0011 0.632
0.26 0.121 0.0025 0 0.093 0.001 0.749
0.28 0.121 0.0025 0.002 0.092 0.0011 0.714
0.3 0.121 0.0023 0.008 0.091 0.0013 0.435
0.32 0.121 0.0021 0.042 0.089 0.0022 0
0.34 0.121 0.0019 0.114 0.089 0.0021 0.003
0.36 0.12 0.0017 0.192 0.088 0.0023 0
0.38 0.12 0.0016 0.331 0.087 0.0025 0
0.4 0.12 0.0015 0.447 0.087 0.0024 0
0.42 0.119 0.0014 0.585 0.087 0.0024 0
0.44 0.118 0.0013 0.67 0.086 0.0025 0
0.46 0.117 0.0014 0.526 0.085 0.0026 0

orders are placed around the midpoint

pm =
pa + pb
2

(44)

with a rate α. That is, α ·NA new limit orders are inserted into the order book per
time step. We denote qprovider to be the probability with which a limit order to be
placed is a limit buy order. Thus, with probability 1− qprovider, the limit order to be
placed is a limit sell order. The liquidity provider (market maker) supplies the order
book with liquidity in this way. The aim of these market participants is to use the
non-zero spread s = pa − pb to earn money: they intend to sell an asset at price pa
or higher and then to buy it back at price pb or lower, thus having earned at least
the spread s (if it has remained constant between the sale and the purchase of the
asset). Of course, they can analogously try to make money the other way around by
first buying at price pb or lower and then selling at price pa or higher. Like in real
financial markets, we allow agents to sell assets even if they do not possess them and
thus to perform short sales.
On the other hand, NA liquidity takers only submit market orders at a rate μ.

That is, μ · NA market orders are inserted per time step. (There are, thus, a total
of 2NA agents in the system.) A market order is immediately executed after arriving
in the order book: a market sell order is executed at price pb, a market buy order at
price pa. The market order of a liquidity taker is a market buy order with probability
qtaker and a market sell order with probability 1 − qtaker. In the first version of our
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Fig. 24. (Color online) Stability test of the power-law dependence. (a) If randomly reshuf-
fling γT pairs of volume entries in the multivariate time series, the significant link between
volume and price evolution starts to disappear as γ increases. (b) If γT pairs of inter-trade
time entries are randomly reshuffled, the inter-trade time dip starts to disappear. (c) We
find an identical behavior for the volume peak on long time scales, using daily closing prices
of S&P500 stocks. (d) The disappearance phenomenon also appears to follow a power-law
behavior. The maximum value of v∗(ε)γ at ε = 1 scales with exponent βsv = −0.115± 0.005.
(e) The minimum value of τ∗(ε)γ at ε = 1 scales with exponent βsv = 0.094 ± 0.004. (f) In
the case of the maximum of v∗(ε)γ at ε = 1 for the S&P500 stocks, the plot may be fitted
by a power-law with exponent βsv = −0.095± 0.008.

Order Book Model, we simply use

qprovider = qtaker =
1
2 . (45)

Thus, limit orders and market orders are produced symmetrically around the mid-
point. Limit orders stored in the order book can expire or can be deleted. The removal
of each limit order occurs with probability δ per time unit.
As there are overall 2NA agents in the system, each Monte Carlo step (MCS)

consists of 2NA moves, in which one agent is randomly selected and can perform one
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Fig. 25. (Color online) Structure of the order book: The limit buy (blue, p ≤ p0) and limit
sell orders (red, p > p0) are added chronologically to the appropriate discrete price level p.
Here a matching algorithm with price time priority is implemented. In this example, a new
sell order is placed at price p0, at which there is already a buy order stored in the order
book. The two orders at price p0, which are on the demand and offer side of the order book,
are executed against each other. Thus, a trade is performed at price p0, which is then called
last traded price. The spread s, which is the difference between the best ask and the best
bid price, was two ticks before the arrival of the executable sell order at price level p0 and
increases to three ticks after this trade.

action. If the agent is a liquidity provider, then this agent submits a limit order with
probability α. Subsequently, independent of whether it came to an order placement
or not, each limit order of this liquidity provider is deleted with probability δ. On the
other hand, if the randomly selected agent is a liquidity taker, then this agent places
a market order with probability μ which is immediately executed.
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In the investigations of the Order Book Model provided here, we only consider
order volumes of 1 i.e., only one asset can be offered or demanded with a single
order). The matching algorithm works according to price-time priority (as described
in Sec. 2). That is, first those limit orders at the best ask and the best bid are executed.
If there is more than one order at a given price level, then the orders are executed in
the same chronology as they were inserted into the order book.

5.1.1 Liquidity providers and liquidity takers

Based on this model definition, first an unrealistic independent, identically distributed
(iid) order placement is assumed within two intervals (for the buy and for the sell
orders), both of which having width pint. Accordingly, every liquidity provider enters
his/her limit buy orders to each price level within the interval [pa−1−pint; pa−1] with
the same probability. Also, limit sell orders are submitted as uniformly distributed on
the interval [pb+1; pb+1+ pint]. With these assumptions, we were able to reproduce
the results of [36,37]. In [36,37], an appropriate microscopic-dynamic-statistical model
for the continuous double auction is examined with analytic approximations under
the assumption of an iid order flow and the limit pint →∞.
Even with this comparatively simple realization of the Order Book Model, the

profit loss distribution of the agents can be analyzed. In the Order Book Model,
the main distinction between the agents is that they are either liquidity providers or
liquidity takers, which is reflected in the types of orders they are permitted to submit.
We first thus intend to investigate how the type of a trader influences the temporal
development of his/her account balance.
Let κi(t) be the account balance of agent i at time t. Each agent i possesses no

money at the beginning of the simulation at t = t0, such that κi(t0) = 0 applies to
i = 1, 2, . . . , 2NA. In order not to restrict their trades, we provide an unlimited credit
line to each agent, free of charge. Furthermore, each agent buys and sells assets over
time. The number of assets which agent i possesses at time t is given by πi(t). Here
we also set πi(t0) = 0 for all 1 ≤ i ≤ 2NA, such that each agent possesses zero assets
at the beginning of the simulation. Note that we do allow negative values of πi(t), as
an agent can sell an asset he/she does not possess.
Of course, when buying an asset, agent i has to pay the price of this asset, such

that πi(t) is incremented by 1 with this trade at time t, but κi(t) is decreased by
p(t), with p(t) being the transaction price of this trade, which then becomes the last
traded price. Analogously, when selling an asset, πi(t) is decremented by 1 and κi(t)
is increased by p(t).
The overall wealth γi(t) of agent i at time t thus consists both of the account

balance κi(t) and the number of assets πi(t):

γi(t) = κi(t) + πi(t)p(t). (46)

The change of the wealth of agent i between time t0 and t is given by

Δγi = γi(t)− γi(t0) = γi(t) (47)

as γi(t0) = 0.
When simulating this Order Book Model with Monte Carlo techniques, we al-

ways observe significant difference between the wealth distributions of the liquidity
providers and of the liquidity takers. The liquidity takers are systematically disad-
vantaged. Although it is possible that some liquidity takers obtain a positive trading
result, a separation of the two groups nonetheless arises, because liquidity takers have
to pay the spread s = pa − pb to liquidity providers if opening or closing a position
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Fig. 26. (Color online) Liquidity providers vs. liquidity takers: Averaged wealth shift of the
liquidity providers and the liquidity takers, rsp., as a function of t for α = 0.15, μ = 0.1,
δ = 0.025, and NA = 250. These dependencies can be fitted with the functions fT(t) = aT · t
and fP(t) = aP · t with the parameters aT ≈ −29.45 and aP ≈ 29.75. The difference between
the absolute values of these two gradients is due to statistical inaccuracies occurring during
the determination of the averages of the distributions.

in the traded asset (i.e., if either first buying and then reselling or if first selling and
then re-buying an asset).
The wealth values for liquidity takers and liquidity providers drift apart linearly

in time as shown in Fig. 26. The identical absolute values of the gradients aP and aT
are related to the spread s: an individual liquidity taker loses on average |aT| ticks
per MCS. This is the average gain achieved by a liquidity provider per MCS, whose
wealth is increased on average by |aP| ticks per MCS. Thus, on average NA · |aT| ticks
are transferred from liquidity takers to liquidity providers per MCS. Since NA · μ
market orders are submitted to the order book and therefore NA ·μ trades take place,
the average wealth transfer per transaction is given by

Γ =
NA · 〈|ai|〉
NA · μ =

〈|ai|〉
μ

(48)

with 〈|ai|〉 = (|aP| + |aT|)/2 being the averaged absolute value of the gradients. For
the parameters α = 0.15, μ = 0.1, δ = 0.025, pint = 2000, and NA = 250 used in
the simulations for the results shown in Fig. 26, the averaged wealth transfer per
transaction can be determined to Γ = 296 ticks. This is approximately half of the
averaged spread s, which was determined in the simulation to be 〈s〉 = 606 ticks:

Γ =
〈s〉
2

(49)

The factor 1/2 is to be attributed to the fact that a liquidity provider needs two
transactions to earn the complete spread s – the liquidity provider has to buy once
and sell once. Therefore the agent earns only 〈s〉/2 per transaction on average.
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Fig. 27. (Color online) Exponential order placement depth: With the parameter selection
α = 0.15, μ = 0.025, δ = 0.025, λ0 = 100, NA = 250, and qprovider = qtaker = 0.5, one gets
the order book depth shown here. The results were averaged over 104 MCS. A fit to the
log-normal distribution function φLN(p− pm) = a/x · exp{−[ln(p− pm)− b]2/c} leads to the
parameters a = 527± 1, b = 4.483± 0.004, and c = 1.79± 0.01.

If comparing these results with the situation in real markets, it must be mentioned
that liquidity takers are in fact disadvantaged financially as compared to the group
of liquidity providers. Our distinction in the order book model between liquidity
providers and liquidity takers reflects the two different types of orders which are used
– limit orders and market orders. In real financial markets, there is no strict distinction
between these two groups of traders. In general, each market participant can submit
both types of orders to the electronic order book, so that the idealized situation of
Fig. 26 would be difficult to verify in real markets by looking at the wealth evolution
of individuals.

5.1.2 Exponential order placement depth

An iid order placement depth, such as that considered in the previous section, is not
in agreement with the conditions found in real financial markets. In contrast to the
uniform cumulative order volume generated by the iid order flow of [36,37], the order
book depth of real markets can be described by a log-normal distribution [30].
To take this finding into account, we replace the iid limit order placement on the

fixed interval pint around the midpoint pm with an exponentially distributed order
placement depth. For placing a limit order i, the limit price pli is determined for a
limit buy order by

pli = pa − 1− η (50)

and for a limit sell order according to

pli = pb + 1 + η (51)
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Fig. 28. (Color online) Exponential order placement depth: For α = 0.15, μ = 0.025,
δ = 0.025, λ0 = 100, NA = 250, and qprovider = qtaker = 0.5, exemplary price subsequences
of 50, 000 MCS are shown.

whereby η is an exponentially distributed integer random number created by

η = �−λ0 · ln(x)� (52)

with x a uniformly distributed random number on the interval [0; 1) and �z� denote
the integer part of z. Thus, the submission of limit orders minimizes a potentially
existing spread. Also the situation in which a limit order becomes instantaneously
executable at pa or pb is avoided, because such a limit order degenerates into market
order.

Using this exponentially distributed order placement depth, a log-normally dis-
tributed order book depth is achieved, an example of which is shown in Fig. 27. This
implementation of the Order Book Model is from now on referred to as the basic
version of the Order Book Model, for which we will show the most important time
series characteristics. In Fig. 28, first exemplary price subsequences are shown. The
autocorrelation of the corresponding time series δp(t) = p(t + 1) − p(t) of the price
changes shows the same behavior as can be observed in real financial market data.
A significant negative autocorrelation exists for a time lag Δt = 1. Thus, a positive
price change is followed by a negative price change with large probability and vice
versa. This autocorrelation vanishes for Δt > 1 [56].
Figure 29 shows the Hurst exponent H(Δt) for various agent numbers NA. In

general, the Hurst exponent H(q) is calculated via the relationship

〈|p (t+Δt)− p (t) |q〉1/q ∝ ΔtH(q), (53)

as defined in [27] and for example in [82]. Unless mentioned otherwise, we use
H(Δt) ≡ H(Δt, q = 2) in this section. For comparison, the constant Hurst expo-
nent H = 1/2 of the random walk is given in Fig. 29. On short time scales, the price
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Fig. 29. (Color online) Exponential order placement depth: For the same parameters as in
Fig. 28, the Hurst exponent is shown here for different numbers of agents NA, averaged over
50 simulation runs each.
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Fig. 30. (Color online) Exponential order placement depth: distributions of price changes
for various Δt for the same parameter values as in Fig. 28. Again the results were averaged
over 50 simulation runs each. For Δt = 200, the fit parameters for the Gaussian distribution
function φ(Δp) = a · exp(−b · Δp2) are given by a = 2.122 × 10−2 ± 4 × 10−5 and b =
1.388× 10−3 ± 10−6.



Progress in Econophysics 67

process indicates an anti-persistent behavior, which is due to the order book struc-
ture. On long time scales, the process converges towards a diffusive regime.
This anti-persistent price behavior on short time scales can be found in actual

financial time series [72] and is a consequence of the “mechanics” of the order book.
Given a constant order influx, an executed market order of any kind automatically
increases the probability that the next transaction price will be negatively correlated
with the previous one.
The price change distributions shown in Fig. 30 exhibit no fat tails, but can be

rather well approximated by a Gaussian distribution. Deviations from the Gaussian
distribution are found for large price changes, where the Gaussian distribution over-
estimates the probability for these price changes. Note that the introduction of the
exponentially distributed order placement depth influences only the order book depth,
but the Hurst exponent and the price change distributions are not qualitatively in-
fluenced in comparison with the results for the iid order placement approach.

5.2 Parameter space

In order to obtain reasonable information concerning the parameter selection for
future extensions of this Order Book Model, the parameter space of this basic version
of the Order Book Model has to be analyzed in detail. As the order book depth has to
be considered a vital criterion for the stability of the order book in the Monte Carlo
simulations, it is quantitatively examined as a function of the two most important
parameters λ0 and μ. For the other parameters, we use the valuesNA = 500, α = 0.15,
and δ = 0.025 within this section. After a transient time of a few thousand MCS, the
order book depth is stationary and log-normally distributed according to

PLN (x) = A
1

Sx
√
2π
exp

(

− (lnx−M)
2

2S2

)

(54)

with the parameters A, S2, and M . In our simulation runs, we wait 22,500 MCS, as
the order book reaches equilibrium within a few thousand MCS, and then take the
average over the subsequent 2,500 MCS.
In Fig. 31, the influence of the parameter μ on the scaling factor A is illustrated

for various values of λ0. A is the factor in Eq. (54) which determines the size of the
area under the curve of the log-normal distribution, as the integral over Eq. (54)
gives the value A. We find that A decreases linearly for medium and large values of
μ independent of the value of λ0. Only for small values of μ can deviations from this
linear behavior be found. This result can be analytically explained if we consider the
order book having already reached its equilibrium: in its stationary state, the order
book depths on the bid and on the ask side are identical. Thus, the scaling factor A,
as it is the area under the curve of the log-normal distribution, corresponds to half
the total number of orders stored in the order book. The total number of limit orders
at time t + 1 can be described recursively by the order rates α, δ, μ, the number of
agents NA, and the number N(t) of limit orders at time t by

N(t+ 1) = N(t) + αNA − (N(t) + αNA) δ − μNA. (55)

In equilibrium we have

Neq

NA
= α

(
1

δ
− 1
)
− μ
δ

(56)
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Fig. 31. (Color online) Parameter space: Fit parameter A as a function of the market order
rate μ for different values of the order placement depth λ0.

for the number of limit orders per liquidity provider. Defining an effective limit order
rate α∗ = α (1− δ), this relation results in

Neq

NA
δ = α∗ − μ. (57)

A stable order book is therefore achieved on average if the conditions α∗ > μ and
δ > 0 are fulfilled.
Inserting the values we used in the simulations in this equation, we obtain

Neq/2 = 1462.5 − 104μ. This relation is drawn as a dashed line in Fig. 31. We find
that the theoretical conclusions and the simulation results coincide for medium and
large values of μ. The deviations for small μ result from the fact that the order book
depth no longer approaches a log-normal distribution in this case, such that a fit to
the log-normal distribution function is no longer valid.
As shown in Fig. 32, the center point M of the log-normal distribution is also

affected by a modification of the parameters λ0 and μ. The larger the market order
rate μ, the more limit orders are removed from the bid and the ask side of the or-
der book by transactions. The more limit orders are removed from the inside of the
distributions at the bid and the ask side, however, the more M deviates from the
midpoint pm. As can be clearly seen in Fig. 32, this behavior only occurs for market
order rates μ � 10−2. An increase in the exponentially distributed order placement
depth leads to a larger value of M .
For completeness, the squared variance S2 of the log-normal distribution is shown

in Fig. 33 as a function of μ for different values of λ0. The parameter S
2 decreases

with increasing μ, this decrease is rather independent of the value of λ0 for large
values of μ.
Significant deviations from the log-normal behavior discussed so far are found for

parameter combinations with small values for either λ0 or μ: for very small μ, the
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Fig. 32. (Color online) Parameter space: Fit parameterM as a function of the market order
rate μ for different values of the order placement depth λ0.

distribution of the order book depth resembles the exponentially distributed order
placement depth, as the market orders are not sufficient to remove the limit orders
at the bounded random walk and again keep qprovider = 1/2 constant best ask and
best bid. For small λ0, limit orders are placed closely around the midpoint, and there
are therefore such a large number of limit orders at the best bid and best ask that
there is a limiting value for μ (depending on λ0) under which the market orders are
not able to shift pb and pa anymore. In both cases, when considering the extreme
situations of vanishing μ and λ0, the order book freezes in a way such that pa and pb
become constant and s = pa − pb = 1. The price then jumps between pa and pb.
Another limiting situation is given by large market order rates μ. The more mar-

ket orders are submitted, the larger becomes the probability that one side of the order
book is completely cleared and trading stops. The total number of limit orders N(t),
which are stored in the order book at time t, is crucial for the stability of the simu-
lation. Independent of the value chosen for μ, fluctuations in the selection of agents
can empty the bid or ask side of the order book, if the order book depth is too small.
This can result in a price crash or a price explosion. Especially, at the beginning of
the simulation, limit orders have to be placed in a pre-opening phase which we choose
to last 10 MCS.

5.3 Augmentation of the model

5.3.1 Deterministic perturbation

Following investigation of the parameter space of the basic version of the Order Book
Model, extensions of this model are now considered. The basic model is only able
to reproduce the anti-persistent price behavior on short time scales as well as the
diffusive price behavior on long time scales, both of which are also found on real
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Fig. 33. (Color online) Parameter space: Fit parameter S2 as a function of the market order
rate μ for different values of the order placement depth λ0.

financial markets. However, the persistent behavior on medium time scales is not
reproduced in this basic version which models a stationary market. Moreover, there
are no fat tailed price change distributions found in the basic variant. So far, we have
always considered symmetric buy and the sell probabilities, both for the group of
liquidity providers and for the group of liquidity takers, as qprovider = qtaker ≡ 1/2.
This is an appropriate assumption for presuming a stationary behavior of a financial
market. Such stationary behavior is, however, not compatible with financial-economic
conditions. Real order rates exhibit asymmetries. In a bull market, an increased buy
probability can be found and one can measure an increased sell probability in a bear
market. This applies not only for long time movements, but also for short time trends
on intraday time scales. Therefore, the symmetry qprovider = 1 − qprovider = 1/2 and
qtaker = 1 − qtaker = 1/2 used so far will now be broken such that qprovider stays at
its constant value of 1/2, whereas qtaker now changes with time while still having an
average value of 1/2. One could say that the market is oscillates around its stationary
state through the modulation of qtaker.
For the practical realization of such a market oscillation, a deterministic symmetry

disturbance is first investigated. As a simple ansatz, qtaker shall be varied via a saw
tooth modulation

qtaker =

⎧
⎪⎨

⎪⎩

1
2 + tΔS for 0 ≤ t ≤ S/ΔS
1
2 + 2S − tΔS for S/ΔS ≤ t ≤ 3S/ΔS
1
2 − 4S + tΔS for 3S/ΔS ≤ t ≤ 4S/ΔS

, (58)

which is periodically repeated (with amplitude value S = 1/20 and the step size
ΔS = 1/1000)and by which the variable qtaker is changed after each MCS time step
denoted by t. This saw tooth modulation has a period of 4S/ΔS and thus qtaker re-
turns to the value of 1/2 after every tr = 2S/ΔS = 100 MCS. We choose a saw tooth
modulation because it exhibits a constant residence distribution.
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Fig. 34. (Color online) Deterministic perturbation realized by a sawtooth modulation of
qtaker: Hurst exponent H(Δt) for various agent numbers NA as a function of Δt. The para-
meter values used are α = 0.15, μ = 0.025, δ = 0.025, and λ0 = 100.

Using such a saw tooth modulation for the implementation of an asymmetry
in the order flow, price time series with new properties are produced. An averaged
Hurst exponent is shown for example in Fig. 34. Each simulation lasted 106 MCS,
and the average was taken of 50 simulation runs. The deterministic modulation of
qtaker with a period of 200 MCS is reflected in the mean square displacement, leading
to quasi-periodic oscillations of the Hurst exponent H(Δt) at medium time scales.
The Hurst exponent oscillates a few times with a period of approximately 200 MCS,
before showing a diffusive behavior for the price development on long time scales.
The more agents are trading in the order book, the larger are the amplitudes of the
oscillations. Such periodic oscillations of the Hurst exponent have nothing in common
with the behavior the Hurst exponent displays for data from real financial markets.
Figure 35 shows the corresponding distributions of the price changes. As in the

basic version of the Order Book Model with symmetric order flow, no fat tailed price
change distributions are found here. A fit to a Gaussian distribution is appropriate
here as well, except that it again overestimates the probability of large price changes.
In conclusion, we can state that using a deterministic perturbation was not successful
in producing a more realistic price behavior, but we were able to change the be-
havior of the Hurst exponent, especially on medium time scales with this periodic
modulation.

5.3.2 Stochastic perturbations

As any deterministic perturbation with a discrete return time spectrum will be re-
flected in oscillations of the Hurst exponent, we focus now on stochastic perturbations
with continuous return time distributions. As a straightforward approach, we make
the value of qtaker follow a bounded random walk with average value 1/2 and again
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Fig. 35. (Color online) Deterministic perturbation realized by a sawtooth modulation of
qtaker: Price change distributions for various values of Δt and forNA = 500. For Δt = 200, the
function φ(Δp) = a ·exp(−b ·Δp2) can be numerically fitted with a = 2.251×10−2±3×10−5
and b = 1.573× 10−3 ± 5× 10−6.

keep qprovider = 1/2 constant. This approach was already introduced in [56]. In this
case, one obtains an anti-persistent price behavior on short time scales, a persistent
price behavior on medium time scales, and a diffusive behavior on long time scales.
However, the maximum values of H (Δt) found for the medium time scales are too
large (up to 0.9) but according to [7], only a maximum value of ≈ 0.6 may be found.
This is also the case for other financial time series, see for example, the results in [83]
for foreign exchange time series. The price change distributions of the bounded ran-
dom walk approach exhibit a bimodal shape, which is in contrast to the behavior of
price changes in time series of real financial markets. This wrong behavior is caused
by the constant residence distribution of a bounded random walk. As qtaker returns
slowly from the extreme areas of the modulation to the mean value of 1/2, strong
trend phases are created, which lead in turn to the bimodal shape.
Based on these insights, applying a feedback random walk (i.e., a random walk

with increased probability for returning to the mean value) is a straightforward next
step. This approach is able to produce a nontrivial Hurst exponent, which is compa-
rable to those of time series found in real financial markets. This approach generates
an almost Gaussian price change distribution.

The feedback random walk, which is again only applied to qtaker, whereas qprovider
stays constant at 1/2, functions as follows: at the beginning of the Monte Carlo
simulation, qtaker starts at the mean value of 1/2. The variable qtaker is incremented
and decremented by a value of ΔS after each MCS. But in contrast to a standard
random walk, the probability for returning to the average value of 1/2 is given by
1/2 + |qtaker(t) − 1/2| and thus the probability for departing from the mean value
is given by 1/2 − |qtaker(t) − 1/2|. This feedback random walk tends to return to its
average value 〈qtaker〉 = 1/2 more often compared to the bounded random walk: the
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Fig. 36. (Color online) Stochastic perturbation realized by the feedback random walk mod-
ulation of qtaker: Hurst exponent H(Δt) for various agent numbers NA as a function of Δt.
The parameters used are α = 0.15, μ = 0.025, δ = 0.025, and λ0 = 100.

expectation value of qtaker(t+ 1) is given by

〈qtaker(t+ 1)〉 = (qtaker(t)−ΔS)qtaker(t) + (qtaker(t) + ΔS)(1− qtaker(t)) (59)

both for qtaker(t) ≥ 1/2 and for qtaker(t) ≤ 1/2. Thus, we generally have

〈qtaker(t+ 1)〉 − qtaker(t) = ΔS(1− 2qtaker(t))
{
> 0 if qtaker(t) < 1/2

< 0 if qtaker(t) > 1/2
(60)

such that this feedback random walk on average approaches its expectation value of
1/2. The stochastic process of the feedback random walk is characterized by a contin-
uous return time spectrum, qualitatively comparable to that of the bounded random
walk. However, the residence distribution of the probability qtaker exhibits an almost
Gaussian shape in contrast to the bounded random walk, for which it is uniform. For
the simulation results shown here, we again use ΔS = 1/1000.
Figure 36 shows the behavior of the Hurst exponent H (Δt), which was averaged

over 50 simulation runs lasting 106 MCS each. Again one finds an anti-persistent
behavior on short time scales, a persistent behavior on medium time scales, and a
diffusive regime on long time scales. The maximum of the Hurst exponent increases
with increasing agent number NA. When comparing the results shown here with
measurements of the Hurst exponent of financial time series achieved in real financial
markets, we find that agent numbers in the range 150 ≤ NA ≤ 500 are best able to
reproduce a realistic maximum value of the Hurst exponent.
In Fig. 37, price change distributions for this approach are shown. In contrast to

the bounded random walk approach, here more reasonable, almost Gaussian shaped
price change distributions are obtained.
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Fig. 37. (Color online) Stochastic perturbation realized by the feedback random walk mod-
ulation of qtaker: price change distributions for various values of Δt and for NA = 500. The
other parameters are the same as in Fig. 36. Fitting the function φ(Δp) = a · exp(−b ·Δp2)
to the data for Δt = 200, one gets a = 1.79× 10−2 ± 10−4 and b = 9.9× 10−4 ± 10−5.

This extension to the Order Book Model also fails, however, to produce fat tailed
price change distributions. Note that identical results can be achieved for a tempo-
ral modulation of qprovider and a constant qtaker = 1/2 and if qprovider and qtaker are
changed in time independently of each other through feedback random walks. After
the next section, in which the relationship between the Hurst exponent and the au-
tocorrelation is analyzed, a further extension will be introduced that results in fat
tails.

5.3.3 Hurst exponent and autocorrelation

The Hurst exponent is often used for the characterization of stochastic processes.
Often a connection to autocorrelations is drawn, which describe memory effects within
stochastic processes. In the literature, it is widely assumed that a Hurst exponent of
H �= 1/2 implies long-time correlations, but recent theoretical work [107,108] shows
that this is not necessarily true. A persistent behavior with H = 1/2 also occurs
for Markov processes (i.e., processes without memory) in the case of non-stationary
increments. How to reproduce this behavior was shown in the previous section. This
result also affects the interpretation of the Hurst exponent of financial market time
series. In this context, the Hurst exponent is used in order to measure the efficiency of
a market. The Hurst exponentH = 1/2 of the random walk corresponds to an efficient
market. However, this criterion alone is not sufficient for determination of efficiency
according to the results of [107,108]. From a measurement of the Hurst exponent only,
the existence of a long memory cannot be derived nor can the existence of an efficient
financial market be deduced. Instead, an additional investigation of autocorrelations
is necessary.
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Fig. 38. (Color online) Autocorrelation �(δp(t),Δt) of price changes, autocorrelation
�(|δp(t)|,Δt) of absolute price changes, and autocorrelation �(δp(t)2,Δt) of squared price
changes with δp(t) = p(t+1)−p(t). The parameters are the same as for the results in Fig. 36
with NA = 125.

Figure 38 shows the autocorrelation of the price change, of the absolute price
change, and of the quadratic price change time series created by the same parameter
set as was used for the corresponding Hurst exponent shown in Fig. 36 for NA = 125,
but instead of averaging over 50 simulations, here only one simulation was performed
whose calculation time was increased to 107 MCS in order to improve the statistics
of autocorrelation coefficients. The autocorrelation �(ω(t),Δt) of a time-dependent
function ω(t) is given by

�(ω(t),Δt) =
〈ω(t+Δt)ω(t)〉 − 〈ω(t)〉2
〈ω(t)2〉 − 〈ω(t)〉2 (61)

in the stationary case. We find that a nontrivial Hurst exponent does not coincide
with long-time correlations, as the autocorrelation functions quickly converge to zero.
Although the price time series show anti-persistence on short time scales and per-
sistence on medium time scales, no non-vanishing autocorrelation �(δp(t),Δt) with
δp(t) = p(t+1)−p(t) can be observed for Δt > 10. The autocorrelation functions for
the quadratic price change and for the absolute price change, also shown in Fig. 38,
are positive and converge roughly exponentially to zero. This result can be inter-
preted as volatility clustering on short time scales, which is also a stylized empirical
fact of financial data and have been analyzed in detail in [59,109,110]. The analysis
in [109], for example, shows that for data sets from the New York Stock Exchange
the volatility correlations are given by power-laws on time scales from one day to one
year and that the exponent is not unique.
These results of the Order Book Model are in good agreement with the results

in [107,108], showing that a Hurst exponent H > 1/2 does not necessarily imply
long-time correlations.
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Fig. 39. (Color online) Dynamic order placement depth: Hurst exponent H(Δt) for various
values of NA with λ0 = 100, Cλ = 10, α = 0.15, μ = 0.025, δ = 0.025, and ΔS = 0.001.

5.3.4 Dynamic order placement depth

In the previous approaches, a constant order placement depth λ0 was used. Accord-
ing to the remarks in [111], one can expect an equilibrium on real markets between
the effective costs of a market order and of a limit order. If the spread is large, it is
advantageous to submit a limit order. In this case, the execution of a limit sell order
at best ask or the execution of a limit buy order at best bid is connected with a
smaller risk than in the case of a small spread. The risk consists of the establishment
of a market trend, which is directed against the position entered by the limit order,
leading to a loss. However, if a small risk exists, other liquidity providers are also
ready to place orders around a smaller spread. The spread thus decreases down to a
level, at which the risk and thus the effective costs of a market order and of a limit
order are comparable [111].

From the above discussion it follows that the liquidity providers can reduce their
risk exposure by adapting their limit order placement depth to the prevailing market
conditions. In trend-less market phases, in which no large price fluctuations are to be
expected, liquidity providers place their limit orders close to the midpoint, in order
to be able to participate in small price movements. But if the volatility increases,
which can be recognized for example, in strong trend phases, the risk of the liquidity
providers to hold positions orientated against the prevailing market trend increases.
In these market phases, the probability of closing such a position on the opposite side
of the order book by a limit order without loss also deceases. Therefore, it is an ob-
vious consequence that liquidity providers adapt their characteristic order placement
depth to changing conditions. The market risk is reduced by an enlargement of this
characteristic order placement depth in times of a trend. In the Order Book Model,
the strength of a trend is given by the deviation of the market order influx from the
symmetric case qtaker = 1/2. We therefore replace the constant order placement depth
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Fig. 40. (Color online) Dynamic order placement depth: Hurst exponentH(Δt, q) for various
values of q with λ0 = 100, Cλ = 10, α = 0.15, μ = 0.025, δ = 0.025, ΔS = 0.001, and
N = 125 for one simulation lasting 5× 107 MCS.
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Fig. 41. (Color online) Dynamic order placement depth: Distributions of price changes for
the same parameter values as in Fig. 39. One clearly finds fat tails. A Gaussian approximation
φ(Δp) = a · exp(−b · Δp2) for Δt = 200 with the parameters a = 2.54 × 10−3 ± 10−5 and
b = (2.80± 0.02)× 10−5 strongly underestimates the probability for large price changes.
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λ0 by:

λ (t) = λ0

⎛

⎝1 +

∣
∣qtaker (t)− 12

∣
∣

√
〈(qtaker (t)− 12

)2〉
· Cλ

⎞

⎠ . (62)

For Cλ = 0, this further extension of the Order Book model corresponds to the vari-
ant of the Order Book Model with static order placement parameter. The average
value 〈(qtaker(t) − 1

2 )
2〉 is determined in a separate Monte Carlo simulation lasting

106 MCS before the main simulation starts.
The results of coupling the order placement depth λ to the prevailing trend are

shown in Figs. 39–41. The average was taken of 50 simulation runs lasting 106 MCS
each. With this additional extension of our Order Book Model, which already includes
the feedback random walk approach from the first extension, it is now possible to pro-
duce not only a persistent Hurst exponent for medium time scales but also fat-tailed
price change distributions.
In Fig. 40, the Hurst exponent H(Δt) ≡ H(Δt, q = 2) is shown in comparison

with H(Δt, q = 1), as defined in Eq. (53). The scaling exponent for absolute price
changes H(Δt, q = 1) exhibits a larger persistent behavior on medium time scales
and the anti-persistence on short time scales is smaller, consistent with earlier find-
ings [109,110].
A widely discussed problem in physics is the origin of the fat-tailed price distribu-

tions generated by complex system financial markets. Often the truncated Lévy distri-
bution [10,11,112] is considered as an approximation to fat-tailed price change distrib-
utions found on real financial markets. A Lévy stable distribution is scale invariant and
exhibits an infinite variance [10]. The truncated Lévy distribution (TLD) [113,114]
has finite variance and shows scaling behavior in a large, but finite interval. How-
ever, the possibility of power law tails have also been discussed at great length in
the physics community [10]. In [69] it is shown for the S&P 500 index that the price
change distributions for time lags of Δt ≤ 4 days are consistent with a power-law
behavior with an exponent α ≈ 3, outside the stable Lévy regime (0 < αL < 2). For
larger time lags a slow convergence to Gaussian behavior was found.
One possibility for determining if a process generates true Lévy distributions or

not, is to shuffle the short term returns of the time series [69,115]. If after shuffling,
the longer term returns maintain the same power law exponent, then the stochastic
process generates true Lévy distributions, as a stable Lévy process is invariant under
folding. However, if after shuffling of the short term returns, the longer term returns
appear to be Gaussian then the distributional tails are not as “fat” as Lévy fat-tails as
a result of the central limit theorem. However, this argument assumes that the return
distributions on short time scales are independent of each other. In our case, one finds
the results shown in Fig. 41 after shuffling returns on the time horizon of one MCS
in Fig. 42. It is obvious that the return distributions exhibit convergence to Gaussian
behavior. This shows that the fat tails are indeed a result of the dynamic order entry
depth, which is coupled with the strength of the prevailing market trend. So we find
a qualitatively similar result for data shuffling as that found for independent returns,
for different reasons however.
A TLD as described by Koponen [114] shall be used to fit the fat-tailed price

changing distributions of Fig. 41. It features a smooth exponential cutoff and its
characteristic function is given by

ΛαL,c1,l (fn) = exp
(
c0 − c1 (f

2
n + 1/l

2)αL/2

cos(παL/2)
cos
(
αL arctan(l|fn|)

))
(63)
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Fig. 42. (Color online) Dynamic order placement depth: Distributions of shuffled price
changes for the same parameter values as in Fig. 41. After shuffling the returns on the
time horizon of one MCS, the longer term aggregate returns appear to be Gaussian. For
Δt = 200, the function φ(Δp) = a · exp(−b · Δp2) can be numerically fitted with a =
2.9505× 10−4 ± 4× 10−8 and b = 2.7419× 10−7 ± 9× 10−11.

Table 8. Fit parameters αL, c1, and l of the TLF distribution for Cλ = 1 in dependence on
Δt: the errors given originate only from the process of fitting.

Δt αL c1 l

200 1.606± 0.002 4271± 40 3635± 52
400 1.477± 0.003 3799± 52 5433± 72
800 1.426± 0.004 5542± 113 8510± 124
1600 1.490± 0.005 16901± 460 12073± 210

with the scaling factors

c0 =
l−αL

cos(παL/2)
(64)

and c1. As only the characteristic function of the TLD is given in analytic form, a
discrete Fourier transform of the price change distributions of our Order Book Model
is necessary in order to fit ΛαL,c1,l (fn) to the simulation data.
The values of the fit parameters are given in Tab. 8, 9, and 10 for selected example

values of Cλ. Compared to the Lévy exponent αL measured for real financial data
time series (which takes values in the range of ≈ 1.4–1.5 [113,116]) Cλ = 1 seems to
be the best approximation to real market behavior. In Fig. 43, the Lévy exponent αL
is shown as a function of Δt for various values of Cλ. Again one clearly finds that αL
stays in the correct interval for Cλ ≈ 1, whereas a larger value of Cλ leads to values
too small and a smaller one to values that are too large.
Looking closely at Fig. 43, we furthermore find an interesting relation between the

Lévy exponent αL and the parameter Cλ for not too long time lags Δt: αL depends on
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Table 9. Corresponding to Table 8, the fit parameters are given for Cλ = 5.

Δt αL c1 l

200 1.232± 0.002 1872± 23 20903± 252
400 1.181± 0.002 2209± 32 39040± 497
800 1.148± 0.003 3215± 73 70650± 1293
1600 1.223± 0.005 11058± 398 75158± 1559

Table 10. Corresponding to Table 8, the fit parameters are given for Cλ = 10.

Δt αL c1 l

200 1.101± 0.002 1427± 20 83954± 1376
400 1.046± 0.003 1583± 29 298864± 14000
800 1.039± 0.004 2773± 83 591232± 52480
1600 1.143± 0.006 12696± 642 265875± 10860
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Fig. 43. (Color online) Dynamic order placement depth λ: Lévy exponent αL as a function
of Δτ for various Cλ.

Cλ via a power law according to αL = ξ ·C−0.15λ , with the pre-factor ξ only depending
on the time lag.
The coupling of the order placement depth to the prevailing trend thus leads to

fat-tailed price change distributions. This property is, however, independent of the
persistence of the price time series on medium time scales, as we already obtained
this persistence by imposing non-stationary increments in the price process. On the
other hand, one can also produce fat tails without H > 1/2 for medium time scales.
We achieved this scenario by determining λ(t) according to a mean reverting random
walk as in Eq. (62), but always assuming symmetric order placement behavior.
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Fig. 44. (Color online) Switching analysis of the basic Order Book Model – left : aggregated
volume v∗(ε). right : v∗(ε) versus |ε− 1| as a log–log histogram.
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Fig. 45. (Color online) Switching analysis of the augmented Order Book Model – left :
aggregated volume v∗(ε). right : v∗(ε) versus |ε− 1| as a log–log histogram.

5.4 Switching phenomena in the order book model

In this section, we analyze switching processes in times series generated by the Order
Book Model. As seen in Sec. 4, the distinct link between price changes and volume
fluctuations, as well as between price changes and inter-trade times, vanishes when
the sub time series of volumes or inter-trade times are randomly re-shuffled. Thus,
a randomly constructed price development with a random volume time series – or
random inter-trade time series – is not able to reproduce the switching phenomena
shown in Sec. 4. In the Order Book Model, it is possible to extract the number
of traded contracts per MCS. In contrast, it is not trivial to determine the time
intervals between single transactions in the Order Book Model as each agent has one
chance to buy or to sell per MCS. Thus, a time resolution smaller than one MCS is
not meaningful (i.e.,we limit ourselves to the analysis of volume fluctuations on the
path from a locally extreme value to the next locally extreme value in the price).
Here, we perform a parallel analysis of the volume fluctuations in the renormalized
time ε.
Figure 44 shows the aggregated volume v∗(ε) (left) and v∗(ε) versus |ε − 1| in

a log–log histogram (right) for a price volume time series of the basic version of the
Order Book Model with exponential order placement depth (50×106 MCS). The same
parameters are used as in subsection 5.1.2. As shown in Fig. 44, the basic version of
the Order Book Model is able to reproduce the link between price fluctuations and
volume fluctuations with similar power-law exponents (β+v ≈ −0.11 and β−v ≈ −0.04).
The advanced version of the Order Book Model with dynamic order placement

depth and feedback random walk leads to almost the same exponents (see Fig. 45,
50× 106 MCS). In this case, we also use the same parameters as in subsection 5.3.4.
Power-law exponents β+v ≈ −0.09 and β−v ≈ −0.04 are obtained.
Thus, we conclude that a completely random process is not suitable for modeling

the empirical stylized facts of switching phenomena. However, realistic rule sets and
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a realistic microstructure, which is implemented in the Order Book Model, are able
to qualitatively reproduce the link between volume and price changes.

6 Summary

This article covers concepts arising in the interdisciplinary research field between
physics and economics known as econophysics. In addition to the quantification and
modeling of financial market time series, new general concepts are applied which con-
tribute to time series analysis in general.
First of all, market impacts were investigated systematically by using conditional

probability distribution functions (CPDF). The negative autocorrelation of the re-
turn time series for consecutive ticks results in a reversion tendency after a price shift
on short time scales. Thus, the CPDF behavior can be reproduced qualitatively by a
synthetically negatively correlated random walk, which in turn reflects the short-time
anti-persistence of the Hurst exponent. Furthermore, we have introduced a method of
measuring complex correlations within a time series by pattern conformity. Checking
the pattern conformity of financial data sets, we find that there is a small tendency
to follow historic patterns on very short time scales. An increase of observed correla-
tions occurs if the trading volume is included in the measure of agreement between
the current part of the time series and the part to which it is compared.
Subsequently, the pattern formation conformity algorithm was ported to a GPU.

For this application the GPU was up to 24 times faster than the CPU, and the values
provided by the GPU and CPU implementations differ only by a maximum relative
error of two-tenths of a percent.
The pattern conformity which is used is the most accurate measure for charac-

terizing the short-term correlations of a general time series. It is essentially given by
the comparison of subsequences of the time series. Subsequences of various lengths
are compared with historical sequences in order to extract similar reactions to similar
patterns. The pattern conformity of the FGBL contract exhibits large values of up to
0.8. However, these values also include the trivial auto-correlation property occurring
at time lag one, which can be removed by the pattern conformity of a synthetic neg-
atively correlated random walk. However, significant pattern based correlations are
still exhibited after correction. Thus, evidence is obtained that financial market time
series show pattern correlation on very short time scales beyond that of the simple
anti-persistence which is due to the gap between bid and ask prices.
Based on the analysis of financial market time series – in particular high-frequency

time series – the question arose as to whether or not the tendency to react in a similar
way to given historic price paths can be uncovered in a time series on the way from
a local maximum to a local minimum and vice versa. Furthermore, one has to add
that econophysics’ research undertaken formerly was mainly focused on average cor-
relations and distributions. This means, that global properties of the time series are
analyzed with histogram methods. Thus, non-trivial correlations among components
of a multivariate time series consisting of prices, transaction volumes, and inter-trade
times cannot be detected. We were able to show that there is a clear connection be-
tween transaction volumes, inter-trade times, and price fluctuations on the path from
one extremum to the next extremum. In addition, the underlying law describing the
volumes and inter-trade times in the renormalized time ε is a power-law with unique
exponents which quantitatively characterize the region around the trend switching
point at ε = 1. We find identical behavior for all sub-intervals studied. With a de-
creasing value of Δt, the number of local minima and maxima increases, around which
we find scale-free behavior for exactly the same ε interval 0.6 ≤ ε ≤ 1.4. The char-
acterization of volume and inter-trade times by power-law relationships in the time
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domain supports the hypothesis that a fluctuating price time series passes through a
sequence of switching points.
We observed that each type of trend – micro and macro – in a financial market

starts and ends with a unique switching process, and each extremum shares proper-
ties of macroscopic cooperative behavior. The mechanism of bubble formation and
bubble bursting has no scale for time scales varying over 9 orders of magnitude down
to the smallest possible time scale (the scale of individual transactions measured in
units of 10ms). For large time scales, histograms of price returns provide the same
scale-free behavior. Thus, the formation of positive and negative trends on all scales is
a fundamental principle of trading, starting on the smallest possible time scale, which
leads to the non-stationary nature of financial markets as well as to crash events on
large time scales. Thus, the well-known catastrophic bubbles occurring on large time
scales – such as the most recent financial crisis – may not be outliers but in fact
single dramatic representatives caused by the scale-free behavior of the forming of
increasing and decreasing trends on time scales from the very large down to the very
small.
It is noteworthy that these findings can contribute to the understanding of mecha-

nisms causing catastrophic events. However, one should be aware of that our findings
cannot directly be used for predicting individual transaction sequences due to their
level of noise. All results were obtained by averaging over a large time series.
In order to model the empirical stylized facts of financial markets we analyze and

extend the Order Book Model, which we originally introduced in [56,72,117]. Fol-
lowing a bottom-up-approach, we began with a simple variant of the model, whose
key feature is the distinction between liquidity providers and liquidity takers. We
showed that liquidity providers have a systematic advantage through their ability to
submit limit orders. The introduction of an exponentially distributed order placement
depth of limit orders creates a log-normally distributed depth of the order book. This
model variant is regarded as the basic version of the Order Book Model. Its price time
series possesses an anti-persistent price behavior on short time scales which is due
to the order book structure. On medium and long time scales, the Hurst exponent
converges to a diffusive regime, and the price change distributions exhibit an almost
Gaussian shape. This basic version of the Order Book Model, which is characterized
by a symmetry created by identical buy and sell probabilities, describes a station-
ary market. However, when additionally introducing a symmetry disturbance, the
Order Book Model is shifted from its stationary state. This extension is implemented
using a temporal modulation of the buy probability qtaker of the liquidity takers. Em-
ploying a feedback random walk to introduce micro market trends, one additionally
obtains a persistent price behavior on medium time scales. However, no fat tails can
be reproduced with such an asymmetric extension of the Order Book Model. When
the characteristic order placement depth is further coupled to the prevailing market
trend, widened price change distributions are achieved.
In addition, the link between price changes and volume fluctuations uncovered for

real financial market datasets could also be reproduced by the Order Book Model.
In contrast to random processes for price changes and transaction volumes, the
underlying order book structure seems to cause the link between the two quantities
through trading rules. Thus, no dynamic order placement depth is necessary in order
to cause these switching properties. This structure is able to qualitatively reproduce
the volume profile in the renormalized time ε [118].
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