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 SELECTION, GROWTH, AND THE SIZE DISTRIBUTION
 OF FIRMS*

 Erzo G. J. Luttmer

 This paper describes an analytically tractable model of balanced growth that
 is consistent with the observed size distribution of firms. Growth is the result of
 idiosyncratic firm productivity improvements, selection of successful firms, and
 imitation by entrants. Selection tends to improve aggregate productivity at a fast
 rate if entry and imitation are easy. The empirical phenomenon of Zipf's law can
 be interpreted to mean that entry costs are high or that imitation is difficult, or
 both. The small size of entrants indicates that imitation must be difficult. A
 calibration based on U. S. data suggests that about half of output growth can be
 attributed to selection. But the implied variance of the combined preference and
 technology shocks is puzzlingly high.

 I. Introduction

 This paper presents an analytically tractable model of
 growth resulting from firm-specific preference and technology
 shocks, selective survival of successful firms, and imitation by
 entering firms. The model generates balanced growth and is
 consistent with salient features of the firm size distribution. As
 many have noted, the size distribution of firms exhibits a striking
 pattern. Using 1997 data from the U. S. Census, Axtell [2001]
 finds that the log right tail probabilities of this distribution, with
 firm size measured by the log of employment, are on a virtual
 straight line with a slope of -1.06. Figure I shows the data for
 2002, together with a curve generated by a version of the model
 presented in this paper, as well as the maximum likelihood esti
 mate of a lognormal distribution. A straight line fitted using all
 size categories with at least five employees has a slope of -1.06.
 This evidence suggests that the firm size distribution, with firm
 size measured by employment S, is well approximated over much
 of its range by a Pareto distribution with right tail probabilities of
 the form 1/S^, with a tail index ? around 1.06.1

 * The views expressed herein are those of the author and not necessarily
 those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
 I thank Michele Boldrin, Jonathan Eaton, Xavier Gabaix, Thomas J. Holmes,
 Samuel S. Kortum, and Robert E. Lucas, Jr., for helpful discussions based on
 earlier versions of this paper. Two referees provided valuable input. The usual
 disclaimer applies. A technical appendix is available at www.luttmer.org.

 1. The data shown in Figure I summarize a population of 5,697,759 U. S.
 firms in 2002. The largest size category, that of 10,000 employees and over, still
 contains 913 firms. There is a size category of zero employees (in March of 2002),

 ? 2007 by the President and Fellows of Harvard College and the Massachusetts Institute of
 Technology.
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 Size Distribution of U. S. Firms in 2002

 The remarkable fit of this distribution has been documented
 and interpreted before, perhaps most notably by Simon and Bo
 nini [1958], Steindl [1965], and Ijiri and Simon [1964]. As far back
 as Gibrat [1931], researchers have related the shape of the ob
 served size distribution to models of firm entry, random growth,
 and exit. The mechanism described in this paper is most like the
 one proposed for the city size distribution by Gabaix [1999].2 In
 contrast to this literature, this paper explains the observed firm
 size distributions in terms of primitives such as entry and fixed

 accounting for 770,041 firms, that is not shown. The data are originally from the
 U. S. Census Bureau and were obtained from the Small Business Administration
 Internet site and from the Statistics of U. S. Businesses site of the U. S. Census
 Bureau (the size categories 5,000-9,999 and 10,000 and over). The fitted curve
 represents a mixture of gamma distributions, as discussed in Section VI.C.
 2. Sutton [19971 surveys the literature on firm size and Gibrat's law: firm

 growth is independent of size. Gabaix [19991 contains extensive discussions of the
 literature on probability models that give rise to Pareto distributions and their
 application in economics. Gabaix and Ioannides [2003] survey the literature on
 Zipfs law for cities.
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 SELECTION, GROWTH, AND THE SIZE DISTRIBUTION OF FIRMS 1105

 costs, and the ease with which firms can imitate. The explanation
 is set in the context of a general equilibrium model, and this
 allows one to predict the effects of changes in various barriers to
 entry on the level and the growth rate of aggregate output. The
 model can also be extended in a tractable way to accommodate
 more extensive forms of heterogeneity [Luttmer 2004], making it
 a potentially useful tool for empirical research on the relation
 between firm heterogeneity and aggregate productivity.

 Firms in this paper are monopolistic competitors producing
 differentiated goods, as in Dixit and Stiglitz [1977], using a linear
 technology. There is an entry cost for new firms, and it takes a
 fixed cost per unit of time to continue an existing firm. A typical
 firm is subject to shocks to both productivity and the demand for
 its differentiated good. These shocks are firm-specific and perma
 nent.3 A stationary firm size distribution arises if the average
 rate at which these shocks improve the profitability of incumbent
 firms is not too high relative to the rate at which the technology
 available to potential entrants improves over time.

 One version of this economy is a model of technology adoption
 in which the technologies available to potential entrants improve
 at an exogenous rate. This rate determines the growth rate of the
 economy. If there is not too much heterogeneity among entrants,
 then the equilibrium size distribution is well approximated, over
 much of its range, by a Pareto distribution. A tail index ? slightly
 above 1 arises if the technologies available to entrants improve at
 a rate that is only slightly above the rate at which the technolo
 gies of incumbents improve. In this economy, a proportional in
 crease in entry and fixed costs lowers the level of aggregate
 output by reducing the number of firms and thereby the variety of
 goods produced. This is analogous to results for static economies
 in Krugman [1979]. The shape of the size distribution is not
 affected by proportional changes in entry and fixed costs. A re
 duction in the entry cost alone does change the shape of the size
 distribution, although not its tail index. Lower entry costs lead to

 3. See Melitz [2003] for a related model that features firm heterogeneity,
 monopolistic competition, together with entry and fixed costs. Much of what
 follows can be shown also in an economy with perfectly competitive final goods
 markets, decreasing returns at the firm level and firm-specific technology shocks.
 This would give rise to an economy similar to Lucas [1978], Hopenhayn [1992],
 Atkeson and Kehoe [2005], and Hellwig and Irmen [2001]. Most data sets show a
 lot of heterogeneity across firms, even within narrowly defined industries. An
 advantage of the monopolistic competition formulation is that shocks to the
 demands for differentiated goods can be a source of firm heterogeneity, above and
 beyond firm-specific technology shocks.
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 1106 QUARTERLY JOURNAL OF ECONOMICS

 more firms and more variety, but the positive effect of this on the
 level of output is weakened by the fact that more inefficient firms
 will enter and survive.4

 A second version of this economy is a model of endogenous
 growth in which entering firms can imperfectly imitate incum
 bent firms. This makes the tail index ? endogenous. A potential
 entrant can pay an entry cost to sample at random from the
 population of incumbent firms. The entrant can then attempt to
 imitate the incumbent drawn from the population by introducing
 a new good with an initial productivity and market size that are
 scaled down relative to the productivity and market size of the
 incumbent. This spillover ensures that the technologies available
 to potential entrants are never so far behind those of incumbent
 firms that entry of new firms is not feasible. The economy has a
 continuum of stationary size distributions that are consistent
 with balanced growth. One possibility is that the log of firm size
 follows a gamma distribution. All possible size distributions have
 a tail similar to that of a Pareto distribution, with an analogous
 tail index ? that must be slightly above 1 to fit the data shown in
 Figure I. The main result for this economy is that ? converges to
 1 from above as the cost of entry becomes large relative to the
 fixed cost of operating a firm, and as the extent to which new
 entrants lag behind incumbents in terms of productivity and
 market size, becomes large.

 To see why the asymptote ? = 1 arises, note that the mean of
 a distribution with right tail probabilities of the order 1/S^ grows
 without bound as ? approaches 1 from above. Firm profitability is
 tied to size, and the fact that potential entrants attempt to imi
 tate a randomly sampled incumbent ties the expected gains from
 entry to the average size of incumbents. In equilibrium, high
 entry costs must be compensated for by high expected gains from
 entry. Thus, the average incumbent must be large, and especially
 so if entrants lag far behind incumbents in terms of productivity
 and market size.

 As in the version with exogenous growth, a proportional
 reduction in entry and fixed costs increases the level of output in
 this economy. The effect of lowering entry costs alone is to lower
 the average size and profitability of firms. This is achieved in

 4. See Parente and Prescott [1999] for an alternative model of technology
 adoption in which lowering barriers to entry can have large positive effects on the
 level of output.
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 equilibrium by an increase in the turnover rate of firms. In turn,
 this speeds up the selection mechanism by which aggregate pro
 ductivity improves over time. As a result, the growth rate of the
 economy increases. A reduction in barriers to entry will, over
 time, have large effects on output when entrants can imitate
 incumbents. This is in sharp contrast to the level effect that
 arises when the technologies available to entrants are exogenous.

 The firm size distribution, together with data on the size of
 entering firms and the rate at which new firms enter can be used
 to infer the parameters of the firm growth process. These param
 eters imply a decomposition of output growth into components
 due to within-firm technological progress and selection. U. S. data
 suggest that about half of output growth can be attributed to
 selection. The parameter estimates also produce predictions for
 the hazard rate with which firms exit, and these are in line with
 observed survivor functions. However, the variance of firm
 growth rates is higher than suggested by the return variance of
 the typical firm traded in U. S. stock markets.

 LA. Related Literature

 Incumbent firms in this paper are engaged in a form of
 learning-by-doing, and imitation by entering firms creates an
 externality, two features of growth emphasized by Arrow [1962] .5
 Following Romer [1990], Grossman and Helpman [1991], and
 Aghion and Howitt [1992], technological progress is embodied in
 firms, and firms have some market power. As in Romer [1990],
 this takes the form of monopolistic competition.6 The current
 paper differs in two important respects from Romer [1990]. First,
 firms experience idiosyncratic permanent shocks to their technol
 ogies and to the demands for their differentiated commodities.
 This introduces selection as a mechanism by which the economy
 wide distribution of productivity improves over time. Random
 growth and selection are crucial for matching the observed firm
 size distribution. Second, the mechanism that allows potential
 entrants to make use of the existing stock of ideas is made
 explicit. This yields an economic interpretation of the size distri

 5. The more recent literature making use of these features includes Boldrin
 and Scheinkman [1988], Lucas [1988], Stokey [1988], and Young [1991].

 6. Jones and Manuelli [1990] and Boldrin and Levine [2000] construct models
 of endogenous growth that do not rely on imperfect competition or externalities.
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 1108 QUARTERLY JOURNAL OF ECONOMICS

 bution shown in Figure I: imitation is imperfect and entry must
 be costly.7

 In Jovanovic [1982], the effects of selection on the evolution of
 an industry eventually die out because firms are not subject to
 ongoing technology shocks. In Hopenhayn [1992], the industry
 equilibrium is stationary, but there is no reason for the implied
 size distribution to look like the one displayed in Figure I. In this
 paper, all shocks to preferences and technology are permanent.
 Stationarity of the cross-sectional size distribution is a conse
 quence of the spillover that relates the productivity of entrants to
 the distribution of productivity among incumbents.

 Gabaix [1999] shows how a geometric Brownian motion with
 a reflecting barrier gives rise to a power law and shows the
 precise circumstances under which this will lead to Zipf s law. He
 uses this to construct a model of cities that can account for the
 heavy right tail of the city size distribution. In the presence of
 entry and fixed costs, the process of firm entry and exit does not
 lead to a reflecting barrier, but to a "return process" according to

 which firms exit below some barrier and enter at a point above
 this barrier. The two processes are closely related, and the lim
 iting argument used by Gabaix [1999] will be discussed later.
 Essentially the same return process as used in the technology
 adoption part of this paper also arises in Miao [2005], who con
 siders a model of industry equilibrium and debt-financing in
 which default triggers exit.

 Based on a data set that includes not only large cities, Eeck
 hout [2004] has argued that the size distribution of cities or
 "places" is approximately lognormal rather than Pareto. The

 maximum-likelihood estimate shown in Figure I shows that the
 lognormal distribution is greatly at odds with the observed size
 distribution of firms. Just like the lognormal distribution, the
 gamma distributions generated in this paper have a mode that
 exceeds the minimum firm size. In contrast to the lognormal,
 these gamma distributions can also match the heavy right tail of
 the firm size distribution.

 The economy described here has many elements in common

 7. Jovanovic [1982] emphasizes the role of selection in the evolution of an
 industry. Nelson and Winter [1982] relate selection, imitation, and growth, but
 their model is not analytically tractable. Jovanovic and MacDonald [1994] con
 sider industry growth with very general forms of imitation. Other models of
 imitation and growth include Segerstrom [1991], Aghion, Harris, Howitt, and
 Vickers [2001], and Eeckhout and Jovanovic [2002]. Barro and Sala-i-Martin
 [2004] present models of growth that rely on cross-country imitation.
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 with Klette and Kortum [2004], who build on Grossman and
 Helpman [1991] to construct a quality ladder model in which firm
 growth is the result of research and development choices made by
 firms. Every good produced by a firm can give rise to a new good
 or can be lost to a competitor following exponentially distributed
 waiting times. As a result, the underlying building block of the
 model is a birth and death process for the number of goods
 produced by a firm. In this paper it is a geometric Brownian
 motion that represents the state of consumer tastes and firm
 productivity. For both processes, mean growth rates are indepen
 dent of size. In the case of the geometric Brownian motion, the
 same is true for the variance of firm growth rates. In the case of
 the birth and death process, averaging across goods implies that
 the variance is inversely proportional to size. The resulting size
 distribution is the logarithmic series distribution. This distribu
 tion is highly skewed, but a plot as in Figure I generates a curve
 that is concave and does not asymptote to a straight line for large
 firm sizes. The right tail of the distribution is too thin.

 Rossi-Hansberg and Wright [2004] solve for the firm size
 distribution in an economy with many industries and many iden
 tical firms in each industry. Firms face a fixed cost in every period
 and operate Cobb-Douglas technologies that exhibit decreasing
 returns. Human capital is industry specific, and the number and
 size of firms in a particular industry at a point in time is deter
 mined by a static free-entry condition. Because of this static
 free-entry condition, it does not matter which of the infinitesimal
 firms in an industry exit when net exit from a particular industry
 is required. As a result, the model has no determinate implica
 tions for the dependence of firm exit rates on age, or for the joint
 age-size distribution of firms. In equilibrium, the industry-spe
 cific human capital stock exhibits mean reversion, and this gen
 erates a stationary firm size distribution. If shocks to the human
 capital accumulation technology are lognormal, then the size
 distribution is lognormal. As shown in Figure I, the lognormal
 distribution has many fewer large firms than are observed in the
 data.

 LB. Outline of the Paper
 The model of technology adoption is set up in Section II. The

 size distribution is characterized in Section III and the balanced
 growth path is determined in Section IV. Imitation is introduced
 in Section V, and the relations between entry costs, the size
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 1110 QUARTERLY JOURNAL OF ECONOMICS

 distribution, and the growth rate of the economy are described.
 Section VI presents calibrations, allowing for multiple industries
 with different cost structures and growth rates. Concluding re
 marks are in Section VII.

 II. Technology Adoption

 II.A. Consumers

 Time is continuous and indexed by t. There is a continuum of
 consumers alive at any point in time. The population size at time
 t is He^, and the population growth rate i\ is nonnegative.
 During their lifetimes, consumers supply one unit of labor at
 every point in time. There is a representative consumer with
 preferences over rates of dynastic consumption {Ct}t>0 of a com
 posite good, defined by the utility function,

 / r r?? -I v I/a?y)

 (e pe-nCte-*]1-" dt

 The discount rate p and the intertemporal elasticity of substitu
 tion I/7 are positive. The composite good is made up of a contin
 uum of differentiated commodities. Preferences over these com
 modities are additively separable with weights that define the
 type of a commodity. This implies that all commodities of the
 same type and trading at the same price are consumed at the
 same rate. Let ct(u,p) be consumption at time t of a commodity of
 type u that trades at a price p. In equilibrium, there will be a

 measure Mt of commodities that are available at time t, defined
 on the set of commodity types and prices. The composite good is a
 version of the one specified in Dixit and Stiglitz [1977]. For some
 P G (0,1),

 f l1/p
 (1) Ct= u^cfiuj)) dMt(u,p) .

 The type u of a commodity can be viewed as measure of its
 quality. The level of ct(u,p) is chosen to minimize the cost of
 acquiring Ct. This implies that

 (2) pct(u,p)=Pt(uCt)1-*c?(u,p),

 where Pt is the price index:
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 - r -]-d-P)/p
 (3) Pt= up- -? dMt(u,p)

 The price elasticity of the demand for commodity (u,p) is -1/(1 -
 0), and the implied expenditure share is u(p/Pt)~^/a~^\

 The representative consumer faces a standard present-value
 budget constraint. The consumer's wealth consists of claims to
 firms and labor income. Along the balanced growth path con
 structed below, per capita consumption and real wages grow at a
 common rate k. The paths of per capita consumption and real
 wages are denoted by C^e-^ = CeKt and wt = weKt. When the
 composite good is used as the numeraire, the interest rate is
 constant and given by r = p + 7K. The following assumption
 ensures that the present value of aggregate consumption and
 labor income is finite.

 Assumption 1. The growth rates r| and k satisfy i\ > 0 and p +
 7K > K + T|.

 This assumption implies that p > (1 ? 7)k, and thus utility is
 finite.

 II.B. Firms

 A firm is defined by its unique access to a technology for
 producing a particular differentiated commodity. At age a, a firm
 that was set up at time t uses Lta units of labor to produce ztaLta
 units of a differentiated commodity of quality uta. Given a price
 ptta, the revenues of the firm are given by Rta = pttazttaLt9JPt9 in
 units of the composite good. The demand function for type-z^ a
 commodities implies that these revenues can be written as

 (4) Rt,a = c};Z(zt,aLt,ar,

 where Zta ? (uj'^zf^)1^ combines the state of preferences and
 technology. Firm revenues vary with aggregate consumption, the

 weight uta of its output in the utility function, and its productiv
 ity level zta. With some abuse of terminology, the combination of
 quality and quantity measured by Zt>a will be referred to simply
 as productivity. The productivities Zt a are assumed to evolve
 independently across firms, according to

 (5) ZtA = Z exp(dEt + 97a + azWM),

 where {Wt?a}a>0 is a standard Brownian motion and Z is an
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 1112 QUARTERLY JOURNAL OF ECONOMICS

 initial condition.8 Note that Zt0 = ZeQst is the initial productivity
 of a new firm at time t. Thus 8^ is the rate at which the produc
 tivity of entering firms grows over time. The trend of log produc
 tivity for incumbent firms is determined by 0/. The difference
 between QE and 07 is a key determinant of the firm size distribu
 tion. In Section V, 6? will be made endogenous.

 An existing firm can be continued only at a cost equal to kF
 units of labor per unit of time. The firm must exit if this fixed cost
 is not paid, and exit is irreversible. One interpretation is that it is
 costly to preserve the information accumulated as a result of past
 firm-specific shocks to preferences and technology, and that this
 information is lost as soon as the required costs are not incurred.9

 Measured in units of the composite good, the value Vt[Z] at time
 t of a firm with initial productivity ZedEt is given by

 VIZ] = maxEt <Tm(i?,,a - wt+a[Lt^a + \F\) da .
 L ?

 The maximization is subject to (4) and (5) and subject to the
 restriction that production and exit decisions only depend on the
 available information.

 The aggregate supply of labor grows at a rate tj, and every
 firm must use at least XF units of labor to stay in business. Along
 the balanced growth path, the number of firms grows at the rate
 i). Entry and exit generates time-? cross-sectional distributions
 of labor inputs Lt_aa and productivities relative to trend
 Zt_aae~*Et that are time invariant. Since the number of firms
 grows at a rate t\, the growth rate k of per capita consumption
 must also be the growth rate of average revenues per firm. To
 gether with (4) this gives

 (6) K = e*+(n^H
 Population growth implies growth in the number of differentiated
 commodities. This adds to the growth rate dE of productivity, with

 8. This productivity process will result, for example, if both uta and zta are
 geometric Brownian motions.

 9. Atkeson and Kehoe [2005] assume perfect competition together with de
 creasing returns to variable inputs and interpret \F as the cost of a managerial
 fixed factor, along the lines of Lucas [1978]. Much of what follows continues to
 hold for such an alternative model.
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 SELECTION, GROWTH, AND THE SIZE DISTRIBUTION OF FIRMS 1113

 a slope that is large when substitution between these commodi
 ties is difficult.

 Production Decisions. Firms choose variable labor to maxi
 mize variable profits Rta - u)t+aLta, subject to (4). The optimal
 choice is

 (V [ wt+aLt,a\-[ 0 \[WtJ C^'
 Together with (5) and (6) this implies that, along the balanced
 growth path, labor and revenues measured in units of labor do not
 depend on calendar time. In particular, the revenues net of fixed
 and variable costs can be written as

 Rt,a ~ wt+a(Ltya + XF) = wt+akF(eSa - 1),

 where sa equals

 (8) sa = S[Z] + ^-p ln(|^) - QEa ,
 and where S[Z] is defined by

 \F w \ w I

 Both revenues and variable labor inputs are proportional to
 wt+a\peSa. The variable sa can thus be viewed as a measure of
 firm size relative to fixed costs. If sa = 0, then variable revenues
 just cover fixed costs. It follows from (5) and (8) that firm size
 evolves with age according to dsa = |x da + a dWt a, where

 (io) [ *i _p_r 6,-e, L o" J 1 - P L ?z _'
 Firm size has a negative drift when productivity inside the firm is
 expected to grow more slowly than the productivity of new en
 trants. Note that the differences in these growth rates and the
 variance of productivity shocks are greatly magnified when the
 differentiated goods are close substitutes.

 The function S [Z] defined in (9) plays an important role in
 the rest of the paper. Along the balanced growth path, where (6)
 holds, it relates the de-trended productivity of any firm to its size.
 More precisely, eS[Z] is the size of any firm with productivity ZeQEt
 at time t, relative to its fixed costs at time t. In particular, it is the
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 1114 QUARTERLY JOURNAL OF ECONOMICS

 size relative to fixed costs of a new firm entering with a de
 trended initial productivity Z.

 The Exit Decision. The presence of fixed costs implies a min
 imum size. Firms with very low productivity choose to exit since
 they face only a small probability of ever recovering the fixed
 costs required to continue the firm. The value of a firm of size s
 relative to its current fixed costs is

 V(s) = maxEl e-(r-K)a(eSa - 1) da\sQ = s \.
 l/? \

 The value of a firm entering at time t with initial productivity Z
 is equal to Vt[Z] = wtXFV(S[Z]). This depends on the level of

 wages directly via wt and indirectly via S[Z].

 Assumption 2. Preference and technology parameters satisfy p +
 7K > K + JUL + V2a2.

 Assumption 1 implies that r > k, and, thus, the fixed cost of
 operating a firm forever is finite. Assumption 2 means that r >
 k + jjl + a2/2, and this implies that the revenues of such a policy
 are also finite. Together, these assumptions are sufficient to en
 sure that the value of a firm is finite. The value function V(s)

 must satisfy the following Bellman equation in the range of s
 where a firm is not shut down:

 rV(s) = kV(s) + ^V(s) + es - 1,

 where ^V(s) = |xDV(s) + a2D2V(s)/2 is the drift of V(s). The
 return to owning a firm consists of a capital gain k + ^W(s)IV(s)
 and a dividend yield (es - 1)/V(s). It is optimal to shut down a
 firm when its size s falls below some threshold b. Given that the
 firm is shut down at b, it must be that the value of a firm is zero
 at that point. This implies the boundary condition V(b) = 0. The
 optimal threshold must be such that V is differentiable at 6, and
 so DV(b) = 0. A further boundary condition follows from the fact
 that the value function cannot exceed the value of a firm that
 operates without fixed costs. This implies that V(s) must lie below
 es/(r - [k + jjl + a2/2]).
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 SELECTION, GROWTH, AND THE SIZE DISTRIBUTION OF FIRMS 1115

 With these boundary conditions, the Bellman equation has
 only one solution10:

 (ID V(s) = ? (itj)^ - l-?),
 for s > 6 and V(s) = 0 otherwise. The exit barrier b is determined
 by
 (12)

 Assumptions 1 and 2 imply that ? > 0, and that 6 is well defined.
 As expected, V(s) is strictly increasing on (6,o?). It will be useful
 to note that, for any fixed x, V(x + 6) is increasing in ? and V(x +
 6) goes to zero as ? goes to zero. The latter will happen when p,
 becomes large and negative. If the productivity of new entrants
 grows very quickly, then the value of being an incumbent at any
 given distance x away from the exit barrier will be very small.

 Entry. New firms can be set up at a cost that is linear in the
 entry rate. Entry at a rate of I firms per unit of time costs XEl
 units of labor per unit of time. Entry results in a draw of Z from
 a distribution J. At time t, a draw Z yields an initial productivity
 Ze%Et and thus an initial size S[Z]. Along the balanced growth
 path, entry takes place at all times. This means that the profits
 from entry must be zero:

 (13) Xje=XF V(S[Z])dJ(Z).

 The distribution J is taken to be exogenous until imitation is
 introduced in Section V. The only assumption needed here is that
 the implied value of entry is finite.

 Assumption 3. The initial productivity distribution J satisfies
 J Zp/(1~p) dJ(Z) < oo.

 The value of entry depends on steady-state wages and aggregate
 consumption via S [Z]. Recall from (9) that S [Z] is proportional to
 (C/w)/w?/(1~P\ The returns to entry can therefore be made arbi

 10. See Dixit and Pindyck [1994] for a detailed treatment of closely related
 stopping problems.
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 trarily small or large by taking (C/w)/w^/(1~^ to be small or
 large, respectively. Thus, the zero-profit condition (13) implies a
 unique equilibrium value for (C/w)/w^/(1~^\ and therefore also
 for S[Z]. It is not difficult to see that S[Z] is increasing in \E. In
 equilibrium, the initial size and productivity of firms must be
 high when entry is costly.

 III. The Distribution of Firm Characteristics

 There is a continuum of infinitesimal firms. The underlying
 stochastic structure is assumed to be such that probability dis
 tributions for individual firm size can be interpreted as cross
 sectional size distributions for the whole continuum of firms.

 Along the balanced growth path to be constructed, there is a
 time-invariant cross-sectional distribution of firm size. Firms en
 ter and exit at constant aggregate rates in such a way that the
 aggregate measure of firms expands at the rate t]. A time-invari
 ant size distribution will result if r\ is positive, or if t\ is zero and
 |x is negative. In any equilibrium, the distribution of firm size,

 measured by es, must also have a finite mean. The following
 assumption will turn out to be necessary and sufficient for this to
 be the case, given that ti is nonnegative.

 Assumption 4. The productivity parameters satisfy i) > pi + V2 a2.

 Note that jul + a2/2 is the drift of the size variable eSa. Thus,
 Assumption 4 means that the size of a typical incumbent firm is
 not expected to grow faster than the population growth rate. If ti
 is zero, then (x must be negative, but otherwise it can be positive.

 Although age does not directly affect firm behavior, it will be
 useful to include age with size as a state variable. Age increases
 deterministically with a unit drift, and size has drift jx and
 diffusion coefficient a. The measure of firms, defined on the set of
 possible ages a and firm sizes s, grows at a rate j\. The density of
 this measure at date t can be written as mia^Ie^, where Ie^ is
 the number of new firms attempting to enter per unit of time. The
 market clearing conditions that will determine the balanced
 growth path are linear in m, and this makes it convenient not to
 normalize m to be a probability density. The density mia^Ie^,
 viewed as a function of the state (a,s) and time t, must satisfy the
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 Kolmogorov forward equation.11 The resulting partial differential
 equation for m is given by

 (14) Dam(a,s) = -r\m(a,s) - pDsra(a,s) + V2 a2Dssm(a,s)

 for all a > 0 and s > b. The first term on the right-hand side of
 (14) reflects the fact that the measure of firms grows over time.
 The remaining two terms describe how m(a,s) evolves as a result
 of stochastic changes in the sizes of individual firms.

 Firms use at least XF units of labor, and so the measure of
 firms has to be finite in any equilibrium. As age goes to zero, the
 size distribution implied by m must approach the size distribu
 tion among entrants. This distribution, denoted by G, follows
 from the productivity distribution J among firms attempting
 entry via J(Z) = G(S[Z]). This implies the boundary condition

 (15) lim m(a,x) dx = G(s) - G(b)
 aiO Jb

 for all s > b. An additional boundary condition is given by the
 requirement that

 (16) m(a, b) = 0
 for all a > 0. This condition arises from the fact that firms exit at
 b while none enter starting with a size below b.

 Lemma 1. The solution to (14) subject to the boundary conditions
 (15) and (16) is

 f" m(a,s) = e ^a\\f(a,s\x) dG(x)
 J b

 for all a > 0 and all s > b where

 1 [ (s ? x ? p,a\ \\f(a,s\x) = ?7= 4> -7= CTVa L \ via I
 ( UM( 2/0^ lS + X ~ 2? ~ lJLa\ "

 - e^(*~6)/(a2/2)4> -r-? , \ <r Va /J
 and where $ is the standard normal density.

 11. See Feller [1971] and Dixit and Pindyck [1994] for applications to indus
 try equilibrium.
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 This solution can be found in Harrison [1985, p. 46] for the case
 of no population growth and G equal to a point mass. The two
 terms that define e~^aty(a,s\x) both satisfy (14). For small values
 of a, the first term approximates a normal probability density
 that puts almost all probability close to s = x. The second term
 converges to zero as a goes to zero, since s + x > 26. This implies
 the boundary condition (15). The fact that \\t(a,b\x) = 0 for a > 0
 implies (16). Together with ti > 0, Assumption 4 suffices to ensure
 that e~y]a\\f(a,s\x) can be integrated over all a > 0 and s > b so
 that the overall measure of firms is finite. The following remark
 will be used to further characterize m.

 Remark. The roots of the characteristic polynomial -i) + y^z +
 z2d2/2 of (14) are a and ? a*, where

 (17)

 Since t] > 0, both roots are real, and Assumption 4 is equiv
 alent to a > 1. If t] = 0, then a simplifies to a = ? |x/(a2/2). The
 root a* is nonnegative and positive if and only if tj > 0. If |x <
 0, then a*/i) converges to l/(?jjl) as T| goes to zero.

 Observe that m(a,s) reduces to e~y]a\\f(a,s\x) if G is replaced by a
 distribution concentrated at x. This means that e"T]a^(a,s\x) is
 the density of firm age and size among all firms with the same
 initial size x. Let ir(a9s\x) denote the associated probability den
 sity. Integrating e~y]a\\s(a,s\x) to obtain the normalizing constant
 yields

 /l_c-?,(*-A)\-l
 Tr(a,s\x) = I-1 e ^(a^lx).

 Combining this with the solution for m{a,s) gives

 foe (l-e-^X-b)\ (18) m(a,s) = Tr(a,s\x)\-1 dG{x).
 Jb

 Thus, m(a,s) is a weighted sum of the densities 7r(a,s\x) dG(x),
 with weights that are increasing in the distance of the initial size
 x from the exit barrier 6. In the special case of t) = 0, these
 weights reduce to (x - b)/(-\x), which is the expected life span of
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 a new firm entering with size x. Relatively large entering firms
 stay around longer and appear more often in the population than
 suggested by the size distribution of entrants.

 III.A. The Age Distribution
 If heterogeneity among entrants is small relative to hetero

 geneity in the overall population, then the age distribution will
 look much like the one obtained by conditioning on a typical x >
 b. Integrating ir(a,s\x) over s gives the age density among firms
 with the same size at entry. The result is

 /l-e-?.(*-6)\-l
 ir(a\x) = I-1 e~"r]aA(a\x)

 where
 (19)

 (x - b + aa\ , ,,? 9/0. //xa-(x?b)\
 A(a\x) = <D - *-\-e-rtx-b)/W2) qI*- ?\

 and where <& is the standard normal distribution function. The
 function A( \x) is the survivor function of a cohort of firms with
 the same initial size x.12 If there is no population growth, then
 7r(a|x) is simply the survivor function scaled by the average life
 span of a firm. Note that A(a|x) converges to max{0,l - e-^*-^0" /2>}

 when age grows without bound. If p, < 0, then all firms with a
 given entry size eventually exit, while a positive fraction survives
 forever if p, > 0.

 III.B. The Size Distribution

 The firm size density is a weighted average of the densities
 tt(s|x) of size conditional on initial size. For any x > b, integrat
 ing ir(a,s\x) over all ages gives

 (20)

 tt(s\x) =-mini-,-1 1 a^ a / | a 4- a^ a + a* j
 for all s > b. This is a well-defined density for any a > 0 and a*

 12. The size density at age a of firms of the same cohort and initial size x then
 satisfies (14) with ^ set equal to zero, and the age-zero boundary condition is a
 point mass at x. From this the result follows.
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 Figure II
 Size Density Conditional on Initial Size

 > 0. The mean of firm size, when size is measured by es, is finite
 if and only if a > 1. As noted earlier, this is guaranteed by
 Assumption 4. An example of tt(s|x) is given in Figure II. The
 kink at s = x is a result of the entry that takes place at x.
 Conditional on s > x, the density of es implied by (20) is a Pareto
 density with tail probabilities of the form e ~ct(s~x\ The parameter
 a is the tail index of the conditional size distribution tt(s\x).1s
 If all new firms enter with the same initial productivity, then

 G is a point mass at some initial size x. In that case, (18) implies

 13. Suppose population growth rates are zero. Consider the limiting distri
 bution obtained by letting x go to b. This turns the profitability process of a
 dynasty of firms into a Brownian motion with a negative drift and a reflecting
 barrier at b. The resulting distribution for es is a Pareto distribution on es > eb with
 mean e6a/(a - 1). In Gabaix [1999], es is the size of a city relative to the average
 city size. This must have mean 1, and so a = 1/(1 - eh). The explanation given
 in Gabaix [1999] for Zipf s law for relative city sizes is that b must be very small.
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 that tt(s|x) is the firm size density. This density closely matches
 the data presented in Figure I if x ? b is small and a ? 1.06. More
 generally, suppose that G is a distribution with few firms that are
 much larger than the exit barrier. Then the size marginal m(s)
 will inherit the exponentially declining tail common to all tt(s\x)
 over most of the support (6,00). The deviations from linearity seen
 in Figure I occur for small firms: there are fewer of them than

 would be the case if the size distribution was Pareto. Since ir(s|je)
 is upward sloping on the interval (b,x), this is exactly what is
 predicted when G tends to have most of its mass close to the exit
 barrier.

 To emphasize the importance of randomness in shaping the
 firm size distribution, it is instructive to consider what happens
 as the variance of productivity shocks goes to zero. For simplicity,
 suppose that t\ = 0. Assumption 4 then requires p, < 0, and at
 a2 = 0, one obtains ? = (r - k)/||x| and 6 = 0. Firms exit
 immediately when they no longer break even. There is no option
 value that would justify continuing to operate a loss-making firm.
 An entering firm starts with size x, and this size will then decline
 linearly to 0, at which point the firm exits. One can verify that the
 size distribution converges to a uniform distribution on (0, x) as
 a2 goes to 0. For very small a2, most firms are less profitable and
 smaller than the most recent entrant. This is in sharp contrast to
 what is found in the data [Dunne, Roberts, and Samuelson 1988,
 1989; Caves 1998]. The randomness in productivity growth gen
 erates a selection mechanism by which the typical firm can be
 much larger and productive than recent entrants.

 IV. The Balanced Growth Path

 Per capita consumption and wages grow at the rate k given
 by (6). The resulting interest rate is r = p + 7K, and together
 with k this pins down the value function V(s). The zero-profit
 condition then determines (C/w)/w^/a~?) and thereby the func
 tion S[Z] that relates size to productivity. The resulting size
 distribution of firms was described in the preceding section.

 It remains to determine the levels of per capita consumption
 and wages as well as the rate / at which firms attempt to enter.
 These variables are implied by market clearing conditions in the
 goods and labor markets. Let LEe^\ Lpe^\ and Le^ denote the
 amounts of labor assigned to, respectively, setting up new firms,
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 fixed costs to operate existing firms, and production. It follows
 from the firm decision rules (7)-(9) that

 (21) \LE LF L]
 f- / P \ f" 1

 = XE XF \ m(s) ds M i _ q esm(s) ds I.

 Together with the labor market clearing condition LE + LF +
 L = H, this determines the attempted entry rate /. Aggregate
 output is the sum of firm revenues. The decision rules (7)-(9)
 imply that aggregate output Ye(K+Ti)t satisfies

 Y XFI f00
 (22) w=T^J esm(s)ds. * b

 In combination with the goods market clearing condition C = Y,
 this determines the ratio C/w. Since (C/o;)/k;p/(1~p) is deter

 mined by the zero-profit condition, this pins down C and w. This
 leads to the first part of the following proposition.

 Proposition 1. If Assumptions 1-4 hold, then there exists a bal
 anced growth path. A proportional reduction in the entry and
 fixed cost parameters (XE,XF) raises the level of output with
 an elasticity (1 - p)/p.

 At t = 0, the distribution of productivities available to potential
 entrants is J(Z). At that same time, there will be some measure
 of incumbent firms with given levels of productivity. The balanced
 growth path of Proposition 1 will be an equilibrium if at t = 0
 the density of productivity among incumbent firms is

 m(S[Z])|DS[Z]|. What happens for different initial conditions is
 not known.

 To see the second part of Proposition 1, observe that a pro
 portional reduction in (XE,XF) does not affect the zero-profit con
 dition. The function S[Z] and the size density m(s) therefore do
 not change. It follows from (21) and the labor market clearing
 condition that / increases in such a way that (XE,XF)I remains
 constant. Together with (22) and C = Y this implies that C/w
 remains unchanged. Since S[Z] is proportional to (l/XF)(C/w)/
 wp/(1-p), it follows that IIw must increase with an elasticity (1 -
 p)/p. This is also the effect on consumption. Lower setup and fixed
 costs imply a larger number of firms. Since firms are identified
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 with distinct differentiated goods, this means a larger number of
 goods. The elasticity (1 - p)/(3 measures the increase in composite
 consumption arising from this increase in variety.

 Note that (21) and (22) depend on (XE,XF)/H when labor and
 output are expressed in per capita terms. Also, the function S[Z]
 can be written in terms ofC/H and XFIH. Thus, an increase in the
 size of the population is equivalent to a proportional reduction in
 the setup and fixed costs. The resulting elasticity (1 ? p)/p of per
 capita consumption with respect to H corresponds to the one
 obtained for the growth rate k in (6). The benefits of lower setup
 and fixed costs and larger population sizes derived here replicate
 those obtained for a static economy by Krugman [1979].

 V. Imperfect Imitation?Endogenizing the Tail Index

 The equilibrium constructed in Proposition 1 relies on the
 assumption that the tail index a of the conditional size distribu
 tion ir(s\x) is greater than one. The data in Figure I suggest that
 a should be close to one. The parameter a is a function of the
 population growth rate t|, the curvature parameter (3 of the utility
 function, and the technology parameters [0^,0z,az]. So far, these
 parameters have been taken as exogenous, and the model can
 explain Figure I only if these parameters happen to be of just the
 right magnitude to imply a *** 1.06. This section makes the trend
 parameter dE of the distribution of entry productivity endogenous
 and gives conditions under which the resulting equilibrium tail
 index will be only slightly above one.

 By paying fixed costs, incumbent firms can continue to pro
 duce and generate stochastic productivity improvements. The
 productivity of surviving firms will tend to grow forever as long as
 the within-firm growth rate of productivity 67 is not too small. If
 new firms had to start from the same level of productivity as
 existing firms entered with in the past, then the value of entry
 would eventually become too small to justify the cost of entry. The
 high productivity of successful survivors would drive up wages
 beyond the level at which it would be profitable for new firms to
 enter. The size distribution of firms would be nonstationary.

 To avoid this outcome, some mechanism is needed that al
 lows potential entrants to benefit from the productivity improve

 ments obtained by incumbents. The mechanism proposed here is
 imitation. Suppose potential entrants can pay the entry cost XE to
 select a random incumbent firm and then adopt a scaled-down
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 version of its technology. More precisely, if the randomly selected
 firm at time t has a productivity XeQEt, then the potential entrant
 obtains a technology capable of producing a new good with pro
 ductivity Ze*Et = XeQst~ul~^w. The parameter 8 measures how
 much the productivity of the potential entrant will be below that
 of the incumbent. It is taken to be nonnegative so that imitation
 is imperfect. Imitation is difficult if 8 is large. The implied initial
 size of the potential entrant is S[Z] = S[X] ? 8, and the entry
 attempt is successful if this exceeds b.

 In this mechanism, random sampling and imitation tie the
 expected size and profitability of a potential entrant to the aver
 age size and profitability of incumbents. This sets up strong
 incentives for entry when the average incumbent becomes large
 and profitable. The result is a stationary size distribution with a
 well defined and finite average firm size.14

 V.A. The Stationary Size Distribution
 Suppose the cross-sectional distribution of productivity is

 stationary when productivity is de-trended by some growth rate
 6#, to be determined in Section V.B. Suppose further that the
 resulting size distribution has a probability density f(s). The
 mechanism by which potential entrants obtain a new technology
 implies a size density for firms attempting entry equal to
 DG(x) = f(x + 8), x > b ? 8. Integrating (14) over all ages and
 using the boundary condition (15) gives, for all s > b,

 (23) lifts) = -?jlD/W + V2 o*D2/W + eJ{8 + 8),

 where eA = 1/'f% m(x) dx is the rate at which new firms attempt
 to enter, as a fraction of the number of existing firms. Note that
 eA must exceed t] if the number of firms is to grow at a rate j).

 Lemma 2. Suppose |x < 8t], and let eA > ti be the unique entry rate
 for which the characteristic equation t] = y,z + a2z2/2 +
 ?Ae~bx has only one solution. This solution is given by z = ?,
 where

 14. In Eaton and Eckstein [1997], knowledge spillovers across existing cities
 provide the mechanism by which the size distribution of cities is prevented from
 spreading out. Jovanovic and MacDonald [1994] and Eeckhout and Jovanovic
 [2002] allow all firms to copy, imperfectly, from the whole population of firms.

 Here, the spillover is only from incumbents to potential entrants. Incumbents are
 locked into their idiosyncratic productivity processes and are not assumed to be
 able to imitate the successes of other incumbent firms.
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 (24) ^-{^ + l)+i^f+?+im
 Then the stationary density that solves (23) together with the
 boundary condition f(b) = 0 is the gamma density

 (25) f(s) = ?2(s - b)e-?s~b).

 For 8 = 0, (24) is understood to represent the limiting value ? =
 ? p/cr2. One can derive (24) by minimizing the right-hand side of
 the characteristic equation. The condition p, < 8t| is necessary
 and sufficient to ensure that ? > 0. The tail probabilities of f(s)
 behave like e ~is for large s, and so ? does indeed represent the tail
 index of the size distribution. For large 8 entrants tend to be small
 and the tail index ? is essentially the same as the tail index a of
 the conditional size distribution tt(s\x). The right-hand side of
 (24) is decreasing in p, and thus increasing in the growth rate 0^.
 The higher the average growth rate QE of productivity in the
 population relative to the drift 67 of surviving incumbents, the
 more aggregate productivity growth must be due to selection, and
 this implies a size distribution with a thinner tail. The mean of es
 implied by f(s) is finite if and only if ? > 1.

 Lemma 2 defines a particular entry rate eA and solves (23).
 For any other eA > r\, the differential equation (23) is solved,
 subject to the boundary condition f(b) = 0, by zz*[e~z(s~b) -
 e~z*(s-b)]/(z* ? z), where z G C and z* E C solve the charac
 teristic equation defined in Lemma 2. Proper densities arise when
 eA is such that z and z* are real. To motivate focusing on the z =
 z* = ? solution shown in (24) and (25), consider a new "industry"
 of many firms that all start out with the same initial size x > b.
 Suppose that over time new firms attempt to enter this industry
 at some rate eA by imitating incumbents in the industry, as
 described above. Let n(a,s) be the size density of firms in this
 industry at age a. Then n(a,s) satisfies Ban(a,s) =
 ? p,Ds7i(a,s) + d2Dssn(a,s)/2 + eAn(a,s + 8) and n(a,b) = 0.
 Consider the special case 8 = 0 and take the initial measure of
 firms to be one. The solution for n(a,s) is then given by n(a,s) =
 eeACt\\f(a,s\x). Normalizing this solution by the number of firms
 yields a distribution that converges to the gamma distribution
 (24) and (25) as the industry ages. This is also true when entry
 rates vary over time and when firms at the initial date differ in
 size, as long as the initial size distribution has a support that is
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 compact and contained in (6, oo). Thus, compactly supported
 initial size distributions converge to (24) and (25) and not to the
 other solutions of (23). Given the limiting distribution (24) and
 (25) generated by the process of selection and imitation, the entry
 rate ?A defined in Lemma 2 is simply the rate required to make
 the number of firms grow at a rate ti.15

 V.B. The Balanced Growth Path and Zipfs Law
 The size density/"(s) constructed in Lemma 2 is a function of

 the assumed productivity growth rate QE through its dependence
 on the drift parameter jul. The value function V(s) is also a func
 tion of QE, via |x, as well as via the equilibrium interest rate r and
 the growth rate k of per capita consumption and wages. Taken
 together, this means that the expected profits from entry are a
 function of QE. The only values of 0# that are consistent with
 balanced growth are those for which these profits are zero:

 (26) XE = XF \ V(x)f(x + 8) dx.
 J b

 Together with (24) and (25), this zero-profit condition determines
 QE and f(s). Taking DGix) = fix + 8) in Lemma 1 gives the
 density mis) of firms per entry attempt, and inserting fis) into
 the differential equation (23) yields the equilibrium attempted
 entry rate eA. To complete the construction of a balanced growth
 path, recall that the relation between firm size s and productivity
 ZedEt is determined by s = S[Z\. From the definition (9), eS[z] is
 proportional to iC/w)/w^/a~^\ The location of the productivity
 density fiS[Z])\DSiZ)\ is therefore determined by the log of
 iC/w)/w^/(1~^\ On a balanced growth path, the density
 fiS[Z])\DSiZ)\ must correspond to the density of productivity
 among incumbent firms at the initial date, which is an initial
 condition for the economy. Assuming that the productivity distri
 bution at the initial date is consistent with balanced growth, this

 15. With perfect imitation, the density n(a,s) has a spectral representation
 [Karlin and Taylor 1981, p. 393] consisting of eigenfunctions of the right-hand side
 of (23). The underlying reason for the convergence to (24) and (25) is that this
 density is the eigenfunction associated with the supremum of the eigenvalues that
 appear in this representation. The technical appendix available at www.luttmer.
 org proves the convergence to (24) and (25) and this interpretation. The stability
 argument described here covers only the case 8 = 0 and does not explain why |x
 and b are constant parameters. A more complete analysis of stability awaits
 further research.
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 requirement determines the equilibrium value of iC/w)/w^/a~^\
 As in the case of exogenous growth, (21) and (22) together with
 goods and labor market clearing conditions determine the ratio
 C/w and the rate / at which firms attempt to enter. Together with
 iC/w)/w^/(1~^ this yields C and w separately, and the economy

 will be on a balanced growth path if the number of firms at the
 initial date equals / /? mis) ds = //eA.

 The following proposition shows that this construction works
 if consumers discount the future at a high enough rate. Precise
 conditions and a proof are in Appendix I.

 Proposition 2. Suppose the population growth rate y\ and the drift
 07 of within-firm technological progress are nonnegative. If
 the discount rate p is large enough, then there exists a
 balanced growth path with a size distribution defined by (24)
 and (25). The tail index ? of the size distribution converges to
 one?Zipf s Law?as the ratio XE/XF of entry over fixed costs
 grows without bound.

 The existence of a balanced growth path and the circumstances in
 which Zipf s law arises are most transparent in the special case of
 logarithmic utility. This case implies that r = p + k, simplifying
 the dependence of the value of a firm on dE. For fixed u = x ? b,
 the value Viu + b) is then unambiguously decreasing in 0#.
 Higher productivity growth in the population drives incumbents
 at a given distance from the exit barrier out of business more
 quickly, and this implies a low firm value. As noted earlier, a
 higher dE generates a size distribution with a thinner tail, or a
 higher ?. High-? gamma densities (25) are stochastically domi
 nated by low-? gamma densities in a first-order sense. Since
 Viu + b) is an increasing function of u, it follows that the
 right-hand side of the zero-profit condition (26) is decreasing in
 QE.16 Equivalently, the expected value of entry is decreasing in
 the tail index ?. It is not difficult to show that the value of entry
 goes to zero for very large ?. Finally, the dominant term in the
 value function Vix) is the firm size variable ex, and this implies
 that the expected value of entry grows without bound as the tail
 index ? approaches 1 from above. The right-hand side of the
 zero-profit condition is therefore as shown in Figure III, with a

 16. Faster growth increases the exit barrier b, and this tends to shift the size
 distribution to the right. But, because entrants sample from the population of
 incumbents, what matters for the value of entry is the distribution of size relative
 to the exit barrier.
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 Figure III
 Entry Costs, Fixed Costs, and the Tail Index

 vertical asymptote at ? = 1 and a horizontal asymptote at 0. From
 this the results of Proposition 2 follow.17

 If the utility function exhibits more curvature than logarith
 mic utility, then the value function continues to be monotone in ?
 for high enough discount rates. But if 7 < 1, then the discount
 factor l/(r - k) is increasing in k and thus also in dE and ?. This
 can outweigh the negative effect on the value function of a larger
 gap QE - 07 between productivity growth in the population and
 the drift of incumbent productivity. The value of a firm may, over
 some range, increase with the growth rate of productivity in the
 population. This can make the expected value of entry nonmono
 tone in 9# and ?. The proof given in Appendix I shows that a
 balanced growth path does nevertheless exist for high enough
 discount rates p.

 17. The parameters for Figure III are taken from the calibration in Section
 VI.A, assuming 7 = 1 and using an interest rate of 4 percent per annum.
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 V.C. Barriers to Entry and Growth

 The equilibrium conditions (23) and (26) and, therefore, the
 growth rate 6^ are independent of the scale of the entry and fixed
 costs (XE,XF). As in the case of exogenous growth, lowering both
 costs at the same time increases the level of output with an
 elasticity (1 - p)/0. The effects of changing only barriers to
 entry?the entry cost XE or the difficulty of imitation 8?are
 described in the following corollary of Proposition 2.

 Corollary. Suppose the conditions of Proposition 2 hold. The
 growth rate 8# of productivity in the population is decreasing
 in the entry cost parameter XE and the imitation parameter
 8 when 7 > 1 and for sufficiently large entry costs when
 7 < 1.

 For 7^1, this result follows from the fact that the value of entry,
 as illustrated in Figure III, is decreasing in the tail index ?. A
 higher entry cost X^ implies a higher equilibrium value of entry
 and, thus, a lower equilibrium value of ? and a lower QE. Simi
 larly, a larger 8 implies a lower equilibrium value of ? since the
 expected value of entry is lower when imitation is more difficult.
 Given that the right-hand side of (24) is increasing in 8 and
 decreasing in p,, this implies a lower growth rate 6#. For 7 < 1,
 these conclusions continue to hold provided entry costs are high.
 High entry costs imply that ? must be close to 1 and the expected
 value of entry can be shown to be monotone for all ? close enough
 to the asymptote ? = 1.

 If imitation is difficult and population growth is small, then
 (24) implies that ? ~ -p/(a2/2). Together with the definitions (10)
 of p, and a2, this yields a simple expression relating the equilib
 rium productivity growth rate 6# and the equilibrium tail index ?:

 (27) 6jr~e/ + I^.
 The drift of incumbent productivity is 67, and the second term in
 (27) captures the effect of selection on productivity growth in the
 population of firms. Lower barriers to entry imply smaller firms,
 and this corresponds to higher values of ?. By (27), this means
 faster productivity growth in the population. Incumbent produc
 tivity drifts up at a rate 67 in any case, but the lower barriers to
 entry generate more firm turnover, and this increases the effect of
 selection.
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 V.D. Firm Exit Rates by Age

 The specific size distribution for entering firms implied by
 imitation generates a precise prediction about the dependence of
 firm exit rates on age. The main properties of the hazard rate are
 summarized in the following proposition. Explicit formulas and a
 sketch of the proof are given in Appendix II.

 Proposition 3. If 8 = 0, then firms exit from a given age cohort
 with a hazard rate that is independent of age. If 8 > 0, then
 the hazard rate hia) is strictly decreasing and satisfies

 lim hia) = oo? lim hia) = ~ -

 For given x > b, the hazard rate of the conditional survivor
 function A(a|x) defined in (19) is a hump-shaped function of age
 and zero at age zero. Firms entering with a productivity that
 exceeds the exit barrier by a certain amount do not exit initially.
 As these firms are subjected to productivity shocks, some start to
 exit, and the hazard rate increases. Eventually, sufficiently many
 surviving firms will have moved away from the exit barrier as a
 result of favorable productivity shocks, and the hazard rate de
 clines again. In contrast, firms in a cohort of imitating entrants
 come with initial sizes x that are arbitrarily close to the exit
 barrier b, and so significant exit will take place right from the
 start. If new entrants can perfectly copy a randomly selected
 incumbent, then the rate at which firms exit is not hump-shaped
 but constant. If imitation is imperfect, then entrants tend to be
 smaller than incumbents. The probability of exit decreases with
 size, and it takes time for firms to grow. The result is an exit rate
 that declines with age.18

 VI. Calibrations

 Growth is due to increased variety, within-firm technological
 progress, and selection. This section describes how the observed
 size distribution together with entry or exit data can be used to

 18. Caves [1998] discusses the literature on firm exit rates and cites studies
 documenting hazard rates that decline with age. Based on monthly observations
 of a cohort of new firms in the Munich (Germany) area, Bruderl, Preisendbrfer,
 and Ziegler [1992] report a hump-shaped hazard function. Nucci [1998] finds a
 hump-shaped hazard function for establishments that peaks around an age of one
 year.
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 infer the magnitude of these different sources of growth under the
 assumption that preferences are described by (3 = 0.9. This
 benchmark value implies that the differentiated goods produced
 by different firms are close substitutes and that variable profits
 are relatively small. Data on revenues and variable costs could be
 used to determine p. Alternatively, p could be identified from the
 demand curves (2) using price and quantity observations on the
 composite goods sold by individual firms, and instruments corre
 lated with technology shocks but not taste shocks. A careful
 investigation along these lines is beyond the scope of this paper.

 VI.A. Inferring the Contribution of Selection to Growth

 The regression line through all the data points in Figure I
 that represent five or more employees has a slope of -1.06,
 suggesting that ? ? 1.06. A comparison of the size distributions of
 incumbents and entrants can be used to infer the imitation pa
 rameter 8. The statistics reported in Figure I imply that 87.7
 percent of all firms with at least one employee had fewer than
 twenty employees in 2002. For new employer firms, this fraction
 was 95.0 percent.19 These two fractions together with ? ?* 1.06
 imply that 8 ?* 3.20 This estimate means that the size of an
 imitating entrant is less than 5 percent of the size of the incum
 bent being imitated.

 To decompose the economy-wide rate of technological
 progress 9# into a within-firm growth rate 87 and a selection
 component 6^ - 67 requires an estimate of p,. When r\ is small and
 8 is large, the definition (24) of ? implies ? p, *** ?a2/2. The variance
 a2 of firm growth can be identified from the rate es at which new
 firms succeed to enter per unit of time, relative to the total
 number of firms. This entry rate equals the population growth
 rate plus the exit rate. The rate at which firms cross the exit
 barrier b is given by Df(b)a2/2,21 and, therefore, es = t] +

 19. See Table 743 of the 2006 edition of the Statistical Abstract of the United
 States.

 20. Among entrants, the fraction of firms of size at least s is [1 + ?(s -
 fe)/(l + 8?)]e s~6). Setting 8 equal to zero in this expression gives the corre
 sponding fraction for incumbent firms. Equating these fractions to the respective
 empirical fractions 0.050 and 0.123 gives s - b = 3.42 and 8 = 3.04. If the
 employment statistics represent variable labor, then the minimum firm size is
 20e"3-42 = 0.65 employees.

 21. The size density of an age cohort of firms satisfies (14) with r\ set equal to
 zero. Integrating this equation over size shows that the rate at which a particular
 age cohort shrinks over time is proportional to the slope of the cohort size density
 at b. Adding up over all age cohorts then gives the result.
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 ?2a2/2. The U. S. Small Business Administration reports an
 entry rate of 11.6 percent per annum for the year 2002. Postwar
 U. S. population growth is about 1 percent per annum. Together,
 the estimates of ?, es, and t| imply

 ?<? ~ ti ?<? ? n

 (28) -p, ?-?_! = o.l, o* = -^ = (0.43)2.
 Solving (24) exactly with t] = 0.01 and 8 = 3 gives the slightly
 more negative drift estimate of |ul = -0.12.

 Combined with the benchmark parameter p = 0.9 and the
 definitions of |x and a, these estimates imply QE ? 07 = ? pu(l ?
 p)/p - 0.013, dz = ail - p)/p = 0.048. In postwar U. S. data,
 the growth rate of per capita GDP is a little over 2 percent. From
 (6), this gives rise to the decomposition

 k= 0/jh QE - 6/# + I?g? U = 0.02.
 0.006 -,x(l - p)/p = 0.013 v-v-' 0.001

 Since goods are assumed to be close substitutes and population
 growth is only about 1 percent per annum, the contribution to
 growth of increases in variety is small. In contrast, the fact that
 the tail index ? is only marginally above 1 while the entry rate es
 is as large as 11.6 percent per annum implies that ? |ul and cr must
 be large, by (28). Selection must then play an important role, even
 when the differentiated commodities produced by different firms
 are close substitutes.

 VLB. Some Empirical Caveats
 Although the gamma distribution has a right tail that can

 match the data, it does not quite fit the empirical size distribution
 shown in Figure I. If employment statistics are interpreted as
 variable labor, then the tail index ? = 1.06 and the observed
 fraction of firms with no more than twenty employees imply a
 minimum firm size of 0.65 employees. The resulting gamma den
 sity has too few small firms, and the implied number of firms with
 at least a thousand employees is more than twice as large as in
 the data. Alternatively, the maximum likelihood estimator based
 on the data shown in Figure I gives ? = 1.30 and a minimum firm
 size of 1.22 employees. For size categories below a thousand
 employees, this gamma distribution matches the data extremely
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 well. But because the estimate of ? is now well above 1, this
 distribution does not predict enough large firms.

 The hazard rate implications described in Proposition 3 and
 Appendix II provide a further set of over-identifying restrictions.
 Figure IV shows the survivor function implied by p, = ?0.12, a =
 0.43, and 8 = 3, together with a number of empirical survivor
 functions. Included are data on the 1963 and 1976 cohorts of U. S.
 manufacturing firms obtained from, respectively, Dunne, Rob
 erts, and Samuelson [1988] and Audretsch [1991]; a cohort of
 Portuguese manufacturing firms set up in 1983 and studied by
 Mata and Portugal [1994]; and a cohort of new U. S. employer
 firms set up in the early 1990s described in Headd [2003]. Also
 shown for comparison are the survivor functions that correspond
 to 8 = 0 and 8 = oo? holding fixed p, = -0.12 and a = 0.43.
 Although there is variation in empirical survival rates that is not
 accounted for, the observed survival rates are in the range pre
 dicted by the model.

 The estimated standard deviation of firm growth, a = 0.43, is
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 surprisingly large. For small fixed costs, this standard deviation
 is also, approximately, the standard deviation of the stock return
 of a typical firm. Campbell et al. [2001] find that the annual
 standard deviation of the stock return is about 0.3 for the typical
 NYSE or NASDAQ listed firm, and most of the standard devia
 tion is due to idiosyncratic shocks. At the cost of underpredicting
 the number of large firms, the maximum likelihood estimate of ?
 provides a partial remedy. Given ? = 1.30, the empirical fractions
 of incumbent and entering firms with fewer than twenty employ
 ees imply 8 = 2.5, and the resulting standard deviation of firm
 growth shrinks to a = 0.35. This is noticeably closer to the stock
 market proxy of 0.3. But leverage considerations suggest that
 even this proxy is only an upper bound on the standard deviation
 of firm growth rates. An alternative remedy is to allow for random
 exit by firms that are not at the exit barrier b as in Luttmer
 [2004]. Observed entry rates are then consistent with lower exit
 rates at the exit barrier, and this implies a lower variance of firm
 growth rates. Random exit would also imply a smaller role for
 selection.22

 VI. C. Heterogeneity Across Industries
 In the economy described so far, all firms face the same

 demand curves, and all experience changes in demand and pro
 ductivity described by the same drift and diffusion parameters.
 No doubt, the degree to which the differentiated commodities
 produced in an industry are substitutable differs across indus
 tries as do the typical rates of technological progress. Nor are
 entry and fixed costs or the difficulty of imitation likely to be the
 same across industries. It is therefore perhaps not surprising that
 the gamma density implied by a one-industry economy does not
 quite match the data in Figure I. This section shows that even a
 limited amount of heterogeneity across industries can be used to
 produce the remarkable fit shown in Figure I.23

 Consider an economy with N different goods, each of which is
 a composite of a continuum of differentiated commodities. Indus
 tries are identified with different composite goods. As before,

 22. Evidence presented in Cabral and Mata [2003] suggests that up to 1991
 exit from the 1984 cohort of new Portuguese manufacturing firms was unrelated
 to size. Substantial heterogeneity in fixed costs could give rise to this.

 23. Luttmer [2004] allows for additional sources of within-industry hetero
 geneity by incorporating within-industry variation in fixed and entry costs as well
 as in technologies used to combine physical capital and labor to produce differen
 tiated goods.
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 different firms in an industry produce distinct differentiated com
 modities. Consumption is given by the Cobb-Douglas aggregate
 Ct = n^=1 Cvnnt, where Cnt satisfies (1) with p replaced by an
 industry-specific curvature parameter p?. The share parameters
 vn are between zero and one and add up to one. Idiosyncratic firm
 productivity in industry n is assumed to follow (5), with
 [0#,07,o-z] replaced by [6^n,e/fn,aZfJ.

 Along any balanced growth path, aggregate consumption of
 the composite good produced by industry n will be Cnt =
 Cne(Kn+r])t, where Kn is defined in terms of 0# n and p? as in (6).
 Aggregate consumption equals Ct = Ce(K+T1 , and the growth
 rate k of per capita consumption is simply 2^=1 vnKn, the average
 of the industry growth rates weighted by expenditure shares.
 Wages also grow at this rate. The price index for aggregate
 consumption is Pt = U^=1 iPnJvnYn, where Pnt is the price
 index for the composite good of industry n, defined as in (3). The
 relative prices PntIPt must be given by iPn/P)eiK~Kn)t, since ex
 penditure shares are constant. Let XF n be the fixed cost required
 to continue a firm in industry n. A calculation along the lines of
 (7)-(9) implies that the relation between productivity and size in
 industry n is given by

 eSn[Z] = VniX - Pn) /PnZPJPy^-^ C XF,n \ w ) w'
 where P = U? = 1 iPJvn)Vn. The gross revenues at time t of a firm
 in industry n with a productivity ZedE-nt are equal to XFneSn{z]
 units of labor. The (logarithmic) size of such a firm follows a
 Brownian motion with drift juin and diffusion coefficient an de
 fined as in (10), using the industry-specific parameters P? and
 ^E,n->^i,n^z,n\- Firms choose to follow the same stopping rule as
 before, exiting when size falls below an industry-specific barrier
 bn defined as in (12). The size distributions in all industries are
 therefore of the form derived in Section III.

 Suppose firms can choose which industry to enter, and then,
 at a cost of XE n units of labor, attempt to imitate incumbents in
 that industry along the lines of Section V. The extent to which
 entrants lag behind incumbents in industry n is measured by 8^.
 Potential entrants can direct their entry attempts to a specific
 industry, but imitation of firms in the chosen industry is imper
 fect, as before.

 This setup leads to equilibrium conditions for the industry
 growth rate dEn and size density fn that are exactly analogous to
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 (23)-(26). The value functions Vn appearing in equilibrium con
 ditions analogous to (26) depend on \x,n and the difference r ? k
 between the interest rate and the aggregate growth rate k. Since
 k depends on an expenditure-weighted average of the industry
 growth rates 0# ?, this gives a system of N equilibrium conditions
 in N unknown growth rates 6# n. For general 7, the analysis of
 this system is more complicated than the analysis that led to
 Proposition 2. But logarithmic utility implies r ? k = p, and then
 the equations uncouple: the zero-profit condition for industry n
 only depends on the growth rate QEn of industry productivity and
 the size density/^. As a result, the proof of Proposition 2 applies.
 In particular, industries with high ratios XEn/XF n or large 8? will
 have tail indices ?n close to 1, and, ceteris paribus, growth rates
 ?E,n that are not far above 07 n.

 The overall size density will be a weighted average of the
 industry size densities fn. The log of variable labor I used by a
 firm of size s in industry n is determined by el = esXF n$n/(l ?
 0n). The economy-wide density of log variable labor is therefore

 for weights qn that add up to one. These weights are proportional
 to the numbers of firms in each industry. The number of firms in
 industry n times the average revenues in that industry should
 equal the value of aggregate consumption of the composite good
 produced in the industry, or vn times the value of aggregate
 consumption. It follows that the number of firms in industry n is
 proportional to

 Qn a vj 1 *'" esfn(s) ds .

 In other words, the number of firms in an industry is proportional
 to the expenditure share of that industry and inversely propor
 tional to average gross revenues in the industry.

 The curve shown in Figure I represents the size distribution
 of an economy with N = 20 and imitation parameters 8? = n/4.
 The imitation parameter in the most difficult industry to enter is
 8^ = 5, and, thus, 8^(1 - $N)/fiN = %. New firms in this
 industry are only about 57 percent as productive as the incum
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 bents they try to imitate, and their size is less than 1 percent of
 the size of these incumbents. All industries have preference and
 technology shocks parameterized by the same [07n, vz n] and
 entry and fixed costs given by the same XE n and XF n. Population
 growth is r\ = 0.01, utility is logarithmic, p = 0.02, and p? = 0.9
 as before. The values of the common XE n/(XF n/p) and crz n are
 chosen to ensure a tail index of 1.04 and an economy-wide entry
 rate of 11.6 percent per annum. This yields XE J(XF n/p) = 0.81
 and uZn = 0.041. The implied standard deviation of firm growth
 is 0.37, down somewhat from its puzzlingly high value of 0.43 in
 the one-industry economy.

 Figure V shows the implied industry-specific tail indices ?n,
 entry rate zSn, and productivity growth rates 6^ ny as well as the
 fraction of firms qn in industry n. As expected, industries in
 which it is easier to imitate have more entry, more rapid produc
 tivity growth through selection, and a size distribution with a
 thinner tail. The tail index of the overall distribution is deter
 mined by ?iV = 1.04, even though the fraction of firms in industry
 N is less than 1 percent. The entry rate is highest in industry 1.
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 Selection contributes 1.82 percent to an output growth rate of
 2.72 percent in this industry, while the corresponding numbers
 are only 0.82 and 1.73 percent in industry N. The average con
 tribution of selection to growth across industries is 1.09 percent,
 essentially the same as in the one-industry economy as is the
 aggregate survivor function shown in Figure IV.

 The only heterogeneity across industries assumed in Figures
 I and V is in the imitation parameter 8?. Because of this, larger
 firms tend to be in industries with low productivity growth. If,
 instead, industries only differ in terms of the standard deviation
 dz n of productivity shocks, then large firms would tend to be in
 the high-az n industries where selection produces high produc
 tivity growth. Other possible sources of variation are the drift of
 incumbent productivity growth, within-industry substitutability
 of the differentiated commodities, and fixed and entry costs.
 Rossi-Hansberg and Wright [2004] document how size distribu
 tions vary across industries. Further research is needed to see if
 and how this variation can be accounted for using the model
 economy described here, augmented with the additional sources
 of within-industry heterogeneity described in Luttmer [2004].

 VII. Concluding Remarks

 If new entrants can imitate incumbents, then growth is rapid
 when barriers to entry are low. The engine of growth is experi
 mentation by firms combined with selection. Lucky firms receive
 another draw, and unlucky ones exit and are replaced by more
 productive firms. Firms are experiments that can be cut short and
 replaced by new ones when they do not perform well. Reducing
 the cost of entry speeds up the rate of economy-wide experimen
 tation and raises the growth rate of the economy. The resulting
 size distribution is stationary because potential entrants can
 learn from successes achieved by incumbents. It has a very thick
 tail when entry is difficult, nevertheless.

 This model is consistent with three first-order features of the
 data. The economy grows at a steady rate. Firm exit rates are
 high for young firms and low for firms that have survived for some
 time. The predicted size distribution of firms closely approxi

 mates Zipf s law if entry is difficult. This tends to be true even if
 entry is easy in some industries.

 The closed-form solutions derived in this paper rely heavily
 on the absence of aggregate uncertainty and on the use of steady
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 states. This precludes an analytical treatment of transitions and
 of the possible role of selection and imitation in speeding up
 transitions. An important abstraction also is that every firm is
 identified with a technology to produce a single differentiated
 good. In contrast, the empirical definition of a firm is based on the
 legal criterion of ownership. Building models of firm dynamics in

 which the definition of a firm corresponds more closely to the
 empirical definition remains an important task for further
 research.

 In this paper, the variance of firm growth rates over small
 intervals of time is the same for firms of all sizes. Many studies
 have found larger variances for small firms than for large firms.
 One possible explanation for this phenomenon is the presence of
 unobservable fixed effects about which young firms learn, as
 proposed by Jovanovic [1982].24 This can be combined with the
 permanent shocks emphasized in this paper, although the result
 ing hybrid model does not appear to be analytically tractable.
 Pakes and Ericson [1998] derive observable implications for such
 a hybrid model and present evidence that the importance of
 learning varies across industries.

 Appendix I

 Proof of Proposition 2. The following assumptions are main
 tained throughout:

 (29) ti>0, e7=>0, a2>0, 8^0.
 A. Existence

 It is convenient to solve for the equilibrium value of p,. The
 growth rates k and 6# and the parameter ? then follow from (6),
 (10), and (12). The interest rate is given by r = p + 7K. The
 present value of the aggregate labor endowment must be finite in
 any equilibrium. Along a balanced growth path, this requires that
 r > k + T).

 Lemma Al. If r > k + in, then ? > 1 implies r - k > p, + a2/2.

 This lemma ensures that the value function V(s) given in (11) is
 well defined whenever the present value of the aggregate labor

 24. The fact that the variance of firm growth rates is decreasing in size is
 emphasized in Sutton [2002] and Klette and Kortum [2004], who provide alter
 native interpretations.
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 endowment is finite and ? > 1. Under these conditions, the zero
 profit condition (26) can be written as

 (30) ^=
 a - mn + m + m + & + &- ixc + & + a- m

 a- mi + h?
 If ? > 0, r > k, and ? > 1, then the right-hand side of (30) is
 increasing in ? and decreasing in r - k and ?.

 The definition (24) implies that ? is strictly decreasing in pi,
 with a horizontal asymptote at -1/8 for large |x. Furthermore, ?
 can be made arbitrarily large by taking jul small enough. The
 condition ? > 1 corresponds to jul < jul* where

 8ti - (1 + 8/2)a2
 ** =-IT8-'

 The parameter ? defined in (12) depends on |x, both directly and
 via

 r - k = p + (7 - 1) 67 + (?p?J On ~ |x) .
 The overall dependence of ? on jx is characterized in the following
 lemma.

 Lemma A2. If r > k, then ? is strictly increasing in jx for all 7 G
 (0,1], and for all 7 G (l,00) such that

 (3D P > (l - 7) e7 + (^y^)*i + ^ (i - 7)2*i.
 Existence of an equilibrium will now be shown separately for 7 =
 1, 7 > 1, and 7 < 1.

 Suppose 7 = 1. This implies r ? k = p, and a necessary
 condition for a balanced growth path to exist is p > r\. This
 condition is also sufficient. To see this, first recall from (12) and
 (24) that ? is decreasing and ? is increasing in |x. Furthermore, ?
 grows without bound and ? goes to zero as |x goes to -??. It follows
 that the right-hand side of (30) is an increasing function of jx, with
 a vertical asymptote at jul* and a horizontal asymptote at 0.

 Next suppose 7 > 1. Note that r - k is decreasing in jul.
 Assume that (31) holds. Then the right-hand side of (30) is in
 creasing in jul as long as r > k. As jul goes to -00, r - k will become
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 large, and the right-hand side of (30) goes to zero. As p, ap
 proaches p,*, the right-hand side will increase without bound as
 long as r > k. It follows that the zero-profit condition will have a
 unique solution if p, < p,* also guarantees r > k + y\. This is the
 case if

 / 1 - 0 Tl + (1 + 8/2)(T2\
 (32) P > i) + (l - 7)[e, + -p^ J?nrg-)
 There is an equilibrium if p is large enough to satisfy both (31)
 and (32).

 Finally, suppose 7 G (0,1). Now there is a lower bound p,* so
 that r > k + v) if and only if p, > p,*. A necessary condition for the
 existence of an equilibrium is therefore p,* < p,*. This is guaran
 teed if (32) holds. As p, approaches p,* from below, ? approaches 1
 from above, and the right-hand side of (30) will grow without
 bound. This means that there exists an equilibrium for large
 values of XE/XF. The right-hand side of (30) converges to zero as
 p grows without bound. Thus, an equilibrium exists for all large
 enough p.

 B. The Large XE/XF Asymptote

 The right-hand side of the zero-profit condition can only grow
 without bound if r ? k approaches zero or ? approaches 1. If m, >
 0, then r ? k must be positive and bounded away from zero since
 r > k + T| in any equilibrium. If t| = 0, then ? > 1 implies that p,
 is negative and bounded away from zero. In that case, ?/(r - k)
 converges to l/|p,| < 0? if r ? k approaches zero from above. This
 means that the right-hand side of (30) can only grow without
 bound as ? approaches 1 from above.

 Appendix II

 Proof of Proposition 3. The survivor function of a cohort of
 firms entering at the same time is the average of the conditional
 survivor function A(a\x) based on the size distribution of success
 ful entrants. The density of this distribution is proportional to
 f(x + 8) and can be written as a weighted average of the expo
 nential density feix) = ge~?(*~6) and the gamma density fgix) =
 ?2(x - b)e~^(x~b\ Calculating the appropriate weights gives

 A(a)=(r^y A*(a)+(rTsc)A?'
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 where Aeia) is the survivor function based on initial conditions
 drawn from feix), and Agia) is the survivor function based on
 initial conditions drawn from fgix). The resulting hazard rate
 hia) = -DA(a)/A(a) is a weighted average of the hazard rates
 heia) = -BAeia)/Aeia) and hgia) = -DA^(a)/A^(a).

 Define Vix) = x<$>i-x)/$ix) and write u = (-jx/o-)Va and
 v = ([|x 4- ?or2]/a)Va. The survivor functions for exponential and
 gamma initial conditions are

 A'(a) = ,x + (1/2) a'{ mu) ~ *(V)] I *{U)>
 and

 jx(|x + ?ct2)

 A^ = (? + (1/2) tay [*<"> ~ *<">
 u2 - v2 ? 1 6(a)
 -^-^(l-U + u2)[l-*(i;)]) ^p,

 respectively. The resulting hazard rates can be written as

 _ u2-v2 1-Viv)
 h^a) " 2a Viu) - V(v)'

 and

 _u2-v2 r ^(u)-^(^) i-1
 ^(a) " 2a L1 + (1 - (1 + ^2)[1 - ^(u)])(a2 - u2)/(2*;2) *
 If 8 > 0, then both heia) and hgia) are decreasing, and this
 implies that hia) is decreasing. To prove that heia) and hgia) are
 decreasing, one can use continued-fraction upper and lower
 bounds for the Mill's ratio $>i?x)l$ix) reported in Lee [1992].
 These bounds can also be used to establish the asymptote re
 ported in Proposition 3. A lengthy proof is available at www.lutt
 mer.org. At 8 = 0, the hazard rate is constant because (23) implies
 that the stationary density is an eigenfunction of the operator
 -\x?)fix) + d2D2fix)/2.

 University of Minnesota
 Federal Reserve Bank of Minneapolis
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