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Abstract

We analyzed a network structure formed by monetary transactions between 2nancial institu-
tions. We present a procedure to extract a network structure from a set of records of transactions.
The extracted network has self-similarity described by a power-law degree distribution. We also
introduce a propagation function to describe the self-similarity. A model of network formation
based on a mean-2eld type interaction is proposed to reproduce the self-similarity of the network.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical physics is a 2eld that concerns behaviors of systems composed of many
elements interacting each other. The economic system is one of such systems. But
physicists started to study economic phenomena only very recently in terms of the
statistical physics. Though the history of “econophysics” is shorter than those of other
traditional 2elds, the study of economic phenomena has been already one of the central
issues of the statistical physics [1,2].

The economic system is composed of individuals and organizations, and the in-
teraction between them is transactions of properties. Since transactions in the modern
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economic society is based on transactions of money in many cases, the role of
2nancial institutions is especially important, for 2nancial institutions provide means
of monetary transactions for individuals and other organizations. The 2nancial insti-
tutions such as banks themselves perform monetary transactions each other forming a
network of monetary transactions, which we call a banking network.

Recently, structure of networks formed in the natural world is one of hot issues
in the 2eld of the statistical physics. To make the de2nition clear, a network is a
structure formed by nodes connected by links. It has been recognized that many network
structures formed in nature, such as the structures of the Internet [3], the world-wide
web [4], and metabolic networks [5], present a power-law degree distributions. That
is, the number k of the links connected to a node, which is called a degree, follows a
power-law distribution

N (¿ k) ˙ k−� ; (1)

where N (¿ k) is the number of nodes with k or more links. The value of the exponent
� ranges from 1 to 2 in many cases. Note that, in our paper, the distribution is presented
by the cumulative form, thus the values of the exponent � diEer by 1 from those of the
probability density function. A power-law distribution is often related to the concept
of fractals [6] and describes geometrical or statistical self-similarity.

The structure of the banking network is also an intriguing problem of the statistical
physics. Also, it is useful to know about the structure and the nature of the network
because the knowledge may be applicable to a 2nancial policy to keep the eFciency
and the stability of the economic systems.

In this paper, we investigate the structure of the banking network. The banking
network is extracted from records of real monetary transactions between 2nancial
institutions. The procedure for the extraction is discussed in the following section.
We show that the network has self-similarity described by a power-law degree distri-
bution. In Section 3, we propose a model of network formation based on a mean-2eld
type interaction. The model proves that the scale-free network by the model is at a
critical point of a phase transition. In Section 4, we discuss the structure of the banking
network comparing it with those of the networks by the network formation models. In
the discussion, we introduce a propagation function to describe the global self-similarity
of the banking network. A summary is attached as the last section.

2. The self-similarity of the banking network

2.1. Observation of monetary transactions

The observation of the network structure of monetary transactions between 2nancial
institutions has not been performed so far, presumably, because there has been no means
to record individual transactions in detail. The recent development of the computer
technology has made the observation possible.

In the following analysis, we use the records of monetary transactions provided
by the Bank of Japan. The Bank of Japan is the Japanese central bank and provides
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several means of monetary transactions for the 2nancial institutions in the country. One
of them is the transaction through current accounts. Each 2nancial institution has its
own current account at the Bank of Japan, and performs its transactions by transferring
money from the account to the others. The Bank of Japan has established an online
system to maintain the eFciency of the transactions, and now all the transactions
between 2nancial institutions through the current accounts are performed on the online
system. This means that the electrical records of all the transactions between 2nancial
institutions through the current accounts are left on the computer system of the Bank
of Japan. This is the data we analyze in this paper. 1

The observation period of the analyzed records is 1 month period of June 2001.
About 150 thousand transactions were performed within the period, and the total amount
of the transacted money was about 730 trillion yen. The bank of Japan provides the
online system not only for banks but also for other kinds of 2nancial institutions
such as securities 2rms and call loan corporations. In this paper, however, we call
all kinds of 2nancial institutions collectively “banks” for simplicity. A record of a
transaction in the analyzed data provides information of the origin and the destina-
tion of the transaction, the amount of the transferred money, the time the transaction
performed, and so on. The origin and the destination of a transaction in the data are
described by bank codes and branch codes. But, in the following analysis, we neglect
branches of banks. That is, for example, when a branch a of a bank A performs a
transaction to a branch b of a bank B, it is simply interpreted as a transaction from
the bank A to the bank B. The transactions between the bank A and the bank B
are collected regardless of the directions of the transactions, and the total amount of
the transferred money, QAB, and the number of the transactions, WAB, are calculated,
respectively. We extract a network structure of monetary transactions from the data of
Q and W .

2.2. The structure of the banking network

First of all, we have to de2ne nodes and links of the banking network. In the
case of the structure of computer networks such as the Internet, the de2nition of the
networks is obvious. Each computer or hub forms a node, and a cable connecting
any pair of them is interpreted as a link. In the case of the banking network, though
individual banks naturally de2ne the nodes, there is no explicit de2nition of the links.
In a sense, all pairs of banks in the economic system are connected to each other
because each bank can perform a transaction with any other bank through the online
system. However, an intimate pair of banks may perform more intensive transactions
than other pairs. Here, we consider such a network structure formed by inhomogeneity
of transactions. Thus, we have to somehow de2ne the links between banks from the
intensity of transactions. The easiest way to de2ne links in this direction may be to

1 Though the Bank of Japan records all the transactions through the current accounts, a part of transactions,
such as payment for a purchase of national bonds, is not included in the analyzed data.
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Fig. 1. The cumulative distributions of (a) the transacted money Q and (b) the transaction number W
between pairs of banks, respectively. The graph of W shows an apparent kink at about W = 20, while the
graph of Q is smooth in all the range. The dashed line shows a power-law relation N (¿W ) ˙ W−1:3.

introduce a threshold for the intensity of transactions and to de2ne a link when the
intensity exceeds the threshold. For this purpose, we check the statistics of Q and W .

Fig. 1 shows the cumulative distributions of Q and W . As in Fig. 1(a), the
distribution of Q has a smooth curve in all the observational rage without a spe-
ci2c kink. Though we can set a threshold for Q at, for example, the average value
of Q, it is rather arti2cial and its physical meaning is ambiguous. On the other hand,
the graph of W in Fig. 1(b) has a clear kink at about W = 20. Since the number of
the weekdays in the observation period is 21, the transaction number W = 20 roughly
means the frequency of one transaction a weekday. Moreover, the graph above the
kink 2ts well by a power-law function

N (¿W ) ˙ W−1:3 ; (2)

which implies statistical self-similarity of the transactions.
Because of the clear physical meaning of the kink and the self-similarity implied by

the power law, we set the threshold for W at Wt =20 and de2ne a link between a pair
of banks when W between them is larger or equal to Wt regardless of the value of Q.

Fig. 2 shows the network structure extracted by the above de2nition. In the 2gure
a bank with the larger number of links is placed the closer to the center aside from
several exceptions. As in the 2gure, a bank placed close to the edge has only a couple
of links directed toward the center. In fact, of 63,903 pairs formed by 358 nodes in
the network, only 1785 pairs are connected by links. This means that most part of the
banking network is composed of pairs without links.

Fig. 3 is the cumulative degree distribution of the network in log–log scale. The
straight part of the graph shows a power-law distribution Eq. (1) with the exponent
� = 1:1. This result proves that the banking network, in fact, has a self-similarity
described by Eq. (1).
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Fig. 2. The 2gure of the banking network. The banks are arranged so that a bank with the larger number of
links is placed the closer to the center of the 2gure with a few exceptions. The colors of the nodes show
the kinds of the 2nancial institutions. The darkness of the lines shows the frequency of transactions.

Fig. 3. The cumulative degree distribution of the banking network. The dashed line shows a power-law
relation N (¿ k) ˙ k−1:1.

3. A mean-�eld model of scale-free networks

BarabKasi and Albert proposed a stochastic model of network formation which pro-
duces a scale-free network [7]. However, when we compare the network by the model
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with the banking network, we notice that there are a few signi2cant diEerences between
them.

An important point of the diEerences is that the banking network is not based on
static links like the case of the Internet. In the case of the Internet, the network is
composed of cables as links which connect individual computers or hubs as nodes.
When a new computer is introduced to the network, it is connected to the existing
network by a cable. Once a cable is connected to the network, disconnection or recon-
nection rarely occurs unless it is really necessary. The model by BarabKasi and Albert,
which we call a growth model hereafter, simulates this situation, and is based on the
idea of the growth of network, in which new nodes are connected one by one by
links to the existing network. And once a node is connected to the network, the links
are not rearranged. In the case of the banking network, however, the idea of static
links is unsuitable. Each bank in the network can easily perform a transaction to an-
other at any moment. When some deformation of the network, such as establishment
or collapse of a bank, occurs, the network can reform its structure and adapt to the
deformation.

Another point of the diEerences between the banking network and the growth model
is that the links in the banking network have weight. The links of the banking net-
work represent the heavy transactions between pairs of banks, and involve the infor-
mation of the frequency of transactions. In the case of the growth model, however,
links are binary and have only two state between a pair of nodes, connected and
unconnected.

The most remarkable fact of the banking network is that it organizes itself into
a scale-free network only by the dynamics of links without addition of nodes, for
establishment of a new bank occurs rarely. In other words, the banking network has
dynamic link and nearly constant number of nodes, while the growth model is com-
posed of static links and growing nodes. Though some models are proposed to include
dynamics or weight of links [8], their dynamics of links is not similar to that of the
banking network.

We propose a model of network formation based on a mean-2eld interaction between
nodes as a model of the banking network.

3.1. The description of the model

The model is composed of N nodes, and the number N of the nodes are unchanged
during the time evolution of the system. Each node is assigned weight m. The nodes
are sorted by the order of the weight m and numbered so that the node with the largest
m is numbered one and that the node with the smallest m is numbered N . At time
t, the ith and the jth nodes in the system with weight mi(t) and mj(t), respectively,
interact each other with weight w = wij. We assume a mean-2eld type interaction and
the weight wij of the interaction is de2ned by the weight of the nodes as

wij(t) = mi(t) × mj(t) : (3)



H. Inaoka et al. / Physica A 339 (2004) 621–634 627

Tentative weight of the nodes at time t + 1, m′
i(t + 1), is determined by the weight of

the interaction as

m′
i(t + 1) =

N∑
j=i+1

wij(t) +
m0

N
; (4)

where m0 is a positive constant. This means that the new weight of the ith node is
determined by the sum of the constant m0=N and the weight of the interactions to the
ith node from the nodes with smaller weight than mi(t). Finally, the tentative node
weight m′

i(t + 1) is normalized and the new node weight mi(t + 1) is calculated by

mi(t + 1) =
m′
i(t + 1)∑N

j=1 m
′
j(t + 1)

: (5)

The time evolution of the system is performed by repeating the procedures Eqs. (3)–(5).
The order of the nodes is unchanged during the time evolution. Thus, the model is
deterministic. The randomness in the model comes only from the initial state and the
model expands the initial randomness.

The model includes several concepts that are not obvious. Especially, the procedure
Eq. (4) may look odd because it sums up only the weight of the interactions from the
nodes with smaller weight, not from the nodes with larger weight. We interpret above
procedures in terms of the banking network as follows.

The weight of a node is interpreted as a credit of a bank. A bank performs trans-
actions with another with the credit of the origin and the destination. The procedure
Eq. (3) describes the situation, and the weight of a link w represents the frequency of
the transactions.

The credit of a bank is determined by the transactions it has performed. However,
not all the transactions of the bank contribute to the credit of the bank. We generally
think that a large bank is more reliable than a small bank. When a bank performs a
transaction to a bank larger than itself, the transaction is performed because the bank
credits the larger bank. Thus, the transaction contributes to the credit of the larger bank.
On the other hand, when a bank performs a transaction to a bank smaller than itself,
it is performed only because of necessity. Thus, the transaction does not contribute to
the credit of the smaller bank. Summarizing the above situation, new credit of a bank
is determined by the sum of transactions from the banks smaller than itself. A bank
also performs transactions with its customers such as depositors in addition to other
banks. This also contributes to the credit of the bank. Background transactions of this
kind are represented by m0 in the model. The procedure Eq. (4) describes these in a
simpli2ed way.

The procedure Eq. (5) describes time decay of the credit. That is, credit earned by
a bank does not have an eternal eEect, and the eEect decreases with time exponen-
tially. We introduce the normalization of the credit instead of the time decay of the
credit. Since the total credit in the system is prone to increase by the injection of the
background transaction m0, the normalization has the same eEect to that of the time
decay.
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Fig. 4. The cumulative distributions of the node weight obtained by the mean-2eld model for various values
of m0. The distribution follows a power law N (¿m) ˙ m−� with the exponent � = 2 when m0 is tuned
to the critical value m0 = 0:52. When m0 is smaller than the critical value, the system is composed of one
node with large weight and others with small weight, while, when m0 is larger than the critical value, all
the nodes in the system have similar weight each other.

3.2. Results

The numerical simulation of the model was performed on a system with N = 1000
nodes. At the initial stage t=0 of the system, the weight of the nodes mi(0) is given by
a uniform random number ranging [0; 1) and normalized by the procedure Eq. (5). The
iteration of the above procedure is performed up to t = 100. We observe the behavior
of the model with various values of the parameter m0.

After suFcient number of the iteration, the system reaches to a steady state, where
the distribution of the node weight mi is unchanged by the iteration any more. The
iteration number t=100 is suFcient to get the steady state. We present the cumulative
distributions of mi for 3 values of m0 at the steady states in Fig. 4. When the value of
the parameter m0 is somewhat small, there appears one node with large weight in the
system. On the other hand, when the value of the parameter m0 is large, the system
reaches a state where all the nodes has similar values of mi. And between these two
states, when the parameter is tuned to the proper value m0 = 0:52, the system reaches
to a state where the cumulative distribution of mi follows a power law

N (¿m) ˙ m−� (6)

with the value of � close to 2. This situation is similar to that occurs in second-order
phase transition [9], and indicates that the power-law distribution Eq. (6) is a result of
a critical phenomenon.

The self-similarity of the banking network was observed by a power-law degree
distribution. We observe the self-similarity of the model in the same way. As in the
case of the banking network, the nodes in the model are not explicitly connected by
links. Thus, we set a threshold wt for the weight of the interaction w, and de2ne a
link between a pair of nodes with weight larger or equal to wt .
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Fig. 5. The cumulative degree distributions of the network by the mean-2eld model for various values of
the threshold wt . The threshold wt = c × mmax × mmin is presented by the values of c in the 2gure. The
dashed line shows a power-law relation N (¿ k) ˙ k−1.

Fig. 5 shows cumulative degree distributions for various values of the threshold. The
values of the threshold are set by

wt = c × mmax × mmin ; (7)

where c is a positive parameter and mmax and mmin are the maximum and the minimum
values of mi in the system, respectively. The values of the threshold are presented by the
values of c in the 2gure. As in the 2gure, the degree distributions follow power-laws.
The exponents of the power-laws are always close to � = −1, which is also close to
that of banking network �=−1:1, regardless of the value of the threshold. This proves
that our model successfully reproduces the self-similarity of the banking network.

A power-law distribution with exponent � = 1 is often confused to be unphysical
because the average of the distribution diverges. A power-law distribution observed in
a system with a 2nite size inevitably has a cutoE. The position of the cutoE increases
with the system size, and the average of the distribution is comparable to the value of
the cutoE. Namely, the divergence of the average simply means that the average of the
distribution depends on the system size. Thus, a power-law distribution with exponent
�= 1 is not unphysical.

When the distribution of the node weight m follows a power-law Eq. (6) and the
mean-2eld interaction Eq. (3) is assumed, it is easy to show by a scaling relation that
the link-number distribution of the model always follows a power-law Eq. (1) with an
exponent �= 1.

The distribution of the weight of the interactions w on a node with weight mc is

N (¿w) = N (¿mc × m) ˙ m−� =
(mc
w

)�
(8)

by Eqs. (3) and (6). When the threshold of w is set at wt and links are de2ned by
the interactions larger or equal to the threshold, the number k of the links connected
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to the node is calculated by Eq. (8) as

k = N (¿wt) ˙
(
mc
wt

)�
: (9)

This means that the number of the links connected to the node is an increasing function
of the weight mc. The number of the nodes with weight larger or equal to mc in the
system is, of course, by Eq. (6),

N (¿mc) ˙ m−�
c : (10)

Since k is an increasing function of mc, a relation N (¿mc) = N (¿ k) holds. Substi-
tuting this relation and Eq. (9) into Eq. (10), we get

N (¿ k) ˙ k−1 : (11)

This means that the exponent � of the power-law degree distribution Eq. (1) of the
network by the mean-2eld model is �= 1.

4. Discussion

In this section, we discuss the structure of the banking network by comparing it
to those of the networks obtained by the mean-2eld model and the growth model.
The structure of the banking network is directly related to the stability and the eF-
ciency of the network. Albert, Jeong, and BarabKasi studied tolerance of networks against
removal of nodes [10]. They reported that a scale-free network is vulnerable to attacks
on hub-like nodes. However, this does not necessarily mean that a hub in a network
is a harm for the network. A hub in a network generally makes accesses between
nodes in the network eFcient. Thus, the eFciency and the safety of a network are in
a relation of a trade-oE. Here, we discuss the structure of scale-free networks in views
of the eFciency and the safety by means of a power-law degree distribution and a
propagation function of the network.

4.1. The comparison by the degree distribution

The local structure of the banking network, which concerns connectivity of links
around a single node, is described by the degree distribution Eq. (1). The distribution
follows a power-law with the exponent �= 1:1. The mean-2eld model reproduces the
power-law degree distribution with the exponent � = 1, which shows good agreement
with that of the banking network. The growth model also reproduces a power-law
degree distribution. However, the exponent � = 2 is a little bit larger than that of the
banking network.

The smaller power exponent of the degree distribution of the banking network com-
pared to that of the growth model is interpreted that the banking network is more
eFcient than the network by the growth model.

Consider two networks which have the same number of nodes and the same number
of links but diEerent values of the exponent �. A small value of � means that the
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degree distribution has a long tail in a graph. This again means that the network has
large number of hub-like nodes with relatively large number of links.

Generally speaking, when a network has many hubs, it is more eFcient than a
network with small number of hubs. When a node tries to access to another node in a
network, if there is a hub connecting both the origin and the destination, it takes only
two steps to access to the destination: from the origin to the hub and from the hub
to the destination. If there is no hub connecting the origin and the destination in the
network, the access has to take a detour.

Thus, the banking network has more eFcient structure than that of the network
formed by the growth model.

4.2. The comparison by a propagation function

Though the relative number of hubs in a network is described by the exponent � of
the degree distribution Eq. (1), it does not describe the connectivity of hubs. When a
node which is connected to a hub try to access to another node that is connected to
another hub, if the two hubs are connected directly aEects the global eFciency of the
network. To describe the global connectivity of a network, we introduce a propagation
function of a network, which is similar to a number-radius relation [11].

We consider a network composed of nodes and weighted links like the banking
network. Length of a link with weight w is de2ned by the reciprocal of w. In the case
of the banking network, the length of a link is proportional to the average time interval
of transactions on the link since the weight of links in this case is the frequency of
transactions. Based on the length of links, the “distance” rij between the ith node
and the jth node is measured along the path between the two nodes. More precisely,
the distance rij is the sum of the length of the links along the path connecting the
ith node and the jth node. When there are more than one paths between the two
nodes, the shortest path is chosen and the distance rij is de2ned to be the length of the
shortest path. Note that the “distance” de2ned here does not always mean a geometrical
distance, because it does not necessarily ful2ll a triangle inequality. However, the
distance between a pair of nodes on the banking network has a clear physical meaning,
for it is roughly proportional to the time for the eEect of a transaction to propagate
between the pair.

The propagation function for the ith node, ni(r), is de2ned by the number of nodes
placed within distance r from the ith node. And the propagation function for the
network, n(r), is de2ned by the sum of ni(r) for all nodes, that is,

n(r) =
∑
i

ni(r) : (12)

The propagation function for the banking network is presented in Fig. 6 in log–log
scale. The graph shows a power-law relation

n(r) ˙ rD ; (13)

where the value of the exponent D is close to 2.
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Fig. 6. The propagation function of the banking network. The dashed line shows a power-law relation
n(r) ˙ r2:0.

As we mentioned before, the concept of the propagation function is similar to that
of the number-radius relation. The number-radius relation is related to the concept of
self-similarity when it follows a power law [11]. Though the “distance” between two
banks on the banking network cannot be strictly interpreted as a geometrical distance,
the propagation function describes how the eEect of a transaction propagates on the
network. The propagation function is a representation of the structure of the network.
The relation Eq. (13) indicates that the banking network has a self-similarity and
it is described by the exponent D. Though there has been an attempt to describe
self-similarity of a network by a spectral dimension [12], our method is far easier.

The self-similarity of the banking network may be interpreted in terms of the con-
nectivity of hubs. That is, nodes are connected to a node forming a hub, and hubs are
again connected to a node forming a superhub.

We also plot the propagation function of the networks by the growth model and the
mean-2eld model in Fig. 7. To calculate the length of the links properly, the links of
the network by the growth model is weighted by uniform random numbers. The graphs
show steep slopes in log–log scale. The exponents of the best-2t power-law relations
are D= 4:0 for the mean-2eld model and D= 5:1 for the growth model, respectively,
though the graphs are so steep that both of them may describe exponential relations.

The smaller exponent of the banking network compared to that of the simulated
networks may be related to the safety of the network. Suppose a bank is collapsed in
the banking network. Since the propagation function of the banking network describes
the average number of banks within a radius from a bank, and the radius is roughly
proportional to the time for a transaction from the bank to propagate, the exponent D=2
of the propagation function means that the eEect of the collapse reaches increasing
number of banks only with square of time. In the cases of the simulated networks,
however, the eEect reaches banks with the fourth or the 2fth power of time. Thus, the
banking network has a safer structure against collapse of a node compared to those of
the networks by the models.
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Fig. 7. The propagation functions of the networks by the growth model (above) and the mean-2eld model
(below), respectively. The dashed lines show power-law relations n(r) ˙ r5:1 and n(r) ˙ r4:0, respectively.

5. Summary

In this paper, we studied the structure of the banking network.
The most signi2cant feature of the banking network is its dynamic, weighted links.

Our procedure discussed in Section 2 is a way to extract a “binary network” from the
network with dynamic, weighted links. The extracted binary network, in fact, shows
self-similarity consistent with that of the binary networks studied so far.

Though we analyzed the banking network in terms of a degree distribution according
to the tradition in this 2eld, it may not be suitable to see the banking system as a binary
network. Rather, it may be more natural to see it as an ensemble of nodes interacting
each other with various intensity. In this case, of course, the nodes are banks and
the interaction is monetary transactions. The binary banking network is only a way to
observe the complex interactions of the banking system.

In the procedure to extract the banking network in Section 2, we de2ned links by
setting a threshold for the frequency of transactions between pairs of banks. On the
other hand, it may seem more natural to de2ne links by setting a threshold for the total
amounts of transacted money between pairs of banks. In our scheme, the frequency
of transactions plays more important role than the amount of transacted money. The
reason we think is that a transaction of money directly aEects credit of a bank. When
a bank trades money, the transaction should follow the conditions imposed by the
contract such as the deadline for the payment. However small the payment is, the bank
loses its credit when it commits the default. Thus, banks tend to perform necessary
number of transactions regardless of the amounts of money.

The credit of a bank may play more important role than we recognized so far in
the banking system. In Section 4 we discussed the structure of the banking network by
means of the degree distribution and the propagation function. In the discussion, we
implicitly assumed that a pair of banks unconnected by a direct link had to perform the
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transactions through a common hub. However, a direct transaction between the pair is
always possible in the case of the banking network. The existence of hub-like banks in
the system suggests that a bank prefers to transact with a familiar, 2xed partner rather
than to transact directly with an unfamiliar partner. In this situation, it is obvious that
the credit of the partners aEects the behavior of the bank.

The concept of the credit of a bank also played an important role in the mean-2eld
model of a scale-free network. In the model, the weight of a bank is determined by
the sum of the credit to the bank, not by the sum of the weight of all the interactions
to the bank.

The mean-2eld model proved that a scale-free network can be formed by a simple
mean-2eld interaction between nodes without addition of nodes. It also suggests that a
cause of a scale-free network may be a self-organized criticality [13].

It has been unraveled that a system of self-organized criticality is somehow related
to a second-order phase transition with its control parameter 2xed at the critical con-
dition. In the case of the sand-pile model, for example, only when the number of sand
grains is conserved, the system shows the critical behavior [14]. Generalizing the model
so that the increasing rate of sand grains is the control parameter of the system, the
system shows non-critical behavior when the number of sand grains is unconserved.
In other words, the critical point of the model is at the point where the increasing rate
is exactly zero. The sand-pile model is 2xed at the critical point of the generalized
model because the conservation of sand grains is naturally realized in the model.

The mean-2eld model proposed in this paper shows a phase transition, and, only
with the 2ne tuning of the control parameter to the critical point, the model produces
a scale-free network. In the case of banking network, however, the network seems
to show the criticality without apparent tuning of parameters. This implies that the
mean-2eld model is a generalized model of the banking network and that the banking
network has a condition to 2x the control parameter at the critical point. The critical
condition is still to be unraveled.
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