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Foreword

Until recently, finance theory appeared to be reaching a triumphant climax. Many
years ago, Harry Markowitz and William Sharpe had shown how diversification
could reduce risk. In 1973, Fischer Black, Myron Scholes and Robert C. Merton
went further by conjuring away risk completely, using the magic trick of dynamic
replication. Twenty-five years later, a multi-trillion dollar derivatives industry had
grown up around these insights. And of these five founding fathers, only Black
missed out on a Nobel prize due to his tragic early death. Black, Scholes and
Merton’s option pricing breakthrough depended on the idea that hungry arbitrage
traders were constantly prowling the markets, forcing prices to match theoretical
predictions. The hedge fund Long-Term Capital Management—which included
Scholes and Merton as partners —was founded with this principle at its core. So
strong was LTCM’s faith in these theories that it used leverage to make enormous
bets on small discrepancies from the predictions of finance theory. We all know
what happened next. In August and September 1998, the fund lost $4.5 billion,
roughly 90% of its value, and had to be bailed out by its 14 biggest counterparties.
Global markets were severely disrupted for several months. All the shibboleths of
finance theory, in particular diversification and replication, proved to be false gods,
and the reputation of quants suffered badly as a result. Traditionally, finance texts
take these shibboleths as a starting point, and build on them. Empirical verification
is given scant attention, and the consequences of violating the key assumptions
are often ignored completely. The result is a culture where markets get blamed
if the theory breaks down, rather than vice versa, as it should be. Unsurprisingly,
traders accuse some quants of having an ivory-tower mentality. Now, here come
Bouchaud and Potters. Without eschewing rigour, they approach finance theory
with a sceptical eye. All the familiar results —efficient portfolios, Black—Scholes
and so on—are here, but with a strongly empirical flavour. There are also some
useful additions to the existing toolkit, such as random matrix theory. Perhaps
one day, theorists will show that the exact Black—Scholes regime is an unstable,
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X Foreword

pathological state rather than the utopia it was formerly thought to be. Until then,
quants will find this book a useful survival guide in the real world.

Nick Dunbar
Technical Editor, Risk Magazine
Author of Inventing Money (John Wiley and Sons, 2000)
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Preface

Finance is a rapidly expanding field of science, with a rather unique link to
applications. Correspondingly, recent years have witnessed the growing role of
financial engineering in market rooms. The possibility of easily accessing and
processing huge quantities of data on financial markets opens the path to new
methodologies, where systematic comparison between theories and real data not
only becomes possible, but mandatory. This perspective has spurred the interest of
the statistical physics community, with the hope that methods and ideas developed
in the past decades to deal with complex systems could also be relevant in finance.
Correspondingly, many holders of PhDs in physics are now taking jobs in banks or
other financial institutions.

However, the existing literature roughly falls into two categories: either rather
abstract books from the mathematical finance community, which are very difficult
for people trained in natural sciences to read, or more professional books, where the
scientific level is usually quite poor.! In particular, there is in this context no book
discussing the physicists’ way of approaching scientific problems, in particular a
systematic comparison between ‘theory” and ‘experiments’ (i.e. empirical results),
the art of approximations and the use of intuition.> Moreover, even in excellent
books on the subject, such as the one by J. C. Hull, the point of view on derivatives
is the traditional one of Black and Scholes, where the whole pricing methodology
is based on the construction of riskless strategies. The idea of zero risk is counter-
intuitive and the reason for the existence of these riskless strategies in the Black—
Scholes theory is buried in the premises of Ito’s stochastic differential rules.

It is our belief that a more intuitive understanding of these theories is needed
for a better overall control of financial risks. The models discussed in Theory of

! There are notable exceptions, such as the remarkable book by J. C. Hull, Futures, Options and Other
Derivatives, Prentice Hall, 1997.

2 See however: L. Kondor, 1. Kertesz (Eds): Econophysics, an Emerging Science, Kluwer, Dordrecht (1999); R.
Mantegna and H. E. Stanley, An Introduction to Econophysics, Cambridge University Press (1999).

xi
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xii Preface

Financial Risk are devised to account for real markets’ statistics where the con-
struction of riskless hedges is in general impossible. The mathematical framework
required to deal with these cases is however not more complicated, and has the
advantage of making the issues at stake, in particular the problem of risk, more
transparent.

Finally, commercial software packages are being developed to measure and
control financial risks (some following the ideas developed in this book).> We hope
that this book can be useful to all people concerned with financial risk control, by
discussing at length the advantages and limitations of various statistical models.

Despite our efforts to remain simple, certain sections are still quite technical.
We have used a smaller font to develop more advanced ideas, which are not crucial
to understanding of the main ideas. Whole sections, marked by a star (*), contain
rather specialized material and can be skipped at first reading. We have tried to be as
precise as possible, but have sometimes been somewhat sloppy and non-rigorous.
For example, the idea of probability is not axiomatized: its intuitive meaning is
more than enough for the purpose of this book. The notation P(-) means the
probability distribution for the variable which appears between the parentheses, and
not a well-determined function of a dummy variable. The notation x — oo does
not necessarily mean that x tends to infinity in a mathematical sense, but rather that
x is large. Instead of trying to derive results which hold true in any circumstances,
we often compare order of magnitudes of the different effects: small effects are
neglected, or included perturbatively.*

Finally, we have not tried to be comprehensive, and have left out a number of
important aspects of theoretical finance. For example, the problem of interest rate
derivatives (swaps, caps, swaptions...) is not addressed — we feel that the present
models of interest rate dynamics are not satisfactory (see the discussion in Section
2.6). Correspondingly, we have not tried to give an exhaustive list of references, but
rather to present our own way of understanding the subject. A certain number of
important references are given at the end of each chapter, while more specialized
papers are given as footnotes where we have found it necessary.

This book is divided into five chapters. Chapter 1 deals with important results
in probability theory (the Central Limit Theorem and its limitations, the theory of
extreme value statistics, etc.). The statistical analysis of real data, and the empirical
determination of the statistical laws, are discussed in Chapter 2. Chapter 3 is
concerned with the definition of risk, value-at-risk, and the theory of optimal

3 For example, the software Profiler, commercialized by the company ATSM. heavily relies on the concepts
introduced in Chapter 3.

a == b means that a is of order b, @ < b means that a is smaller than, say, b/10. A computation neglecting
terms of order (a fb)2 is therefore accurate to 19. Such a precision is usually enough in the financial context,
where the uncertainty on the value of the parameters (such as the average return, the volatility, etc.), is often
larger than 1%.

4
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Preface xiii

portfolio, in particular in the case where the probability of extreme risks has to be
minimized. The problem of forward contracts and options, their optimal hedge and
the residual risk is discussed in detail in Chapter 4. Finally, some more advanced
topics on options are introduced in Chapter 5 (such as exotic options, or the role of
transaction costs). Finally, a short glossary of financial terms, an index and a list of
symbols are given at the end of the book, allowing one to find easily where each
symbol or word was used and defined for the first time.

This book appeared in its first edition in French, under the title: Théorie des
Risques Financiers, Aléa-Saclay-Eyrolles, Paris (1997). Compared to this first
edition, the present version has been substantially improved and augmented. For
example, we discuss the theory of random matrices and the problem of the interest
rate curve, which were absent from the first edition. Furthermore, several points
have been corrected or clarified.
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3 With whom we discussed Eq. (1.24), which appears in his Diplomarbeit.
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1

Probability theory: basic notions

All epistemologic value of the theory of probability is based on this: that large scale
random phenomena in their collective action create strict, non random regularity.

(Gnedenko and Kolmogorov, Limit Distributions for Sums of Independent Random
Variables.)

1.1 Introduction

Randomness stems from our incomplete knowledge of reality, from the lack of
information which forbids a perfect prediction of the future. Randomness arises
trom complexity, from the fact that causes are diverse, that tiny perturbations
may result in large effects. For over a century now, Science has abandoned
Laplace’s deterministic vision, and has fully accepted the task of deciphering
randomness and inventing adequate tools for its description. The surprise is that,
after all, randomness has many facets and that there are many levels to uncertainty,
but, above all, that a new form of predictability appears, which is no longer
deterministic but statistical.

Financial markets offer an ideal testing ground for these statistical ideas.
The fact that a large number of participants, with divergent anticipations and
conflicting interests, are simultaneously present in these markets, leads to an
unpredictable behaviour. Moreover, financial markets are (sometimes strongly)
affected by external news —which are, both in date and in nature, to a large degree
unexpected. The statistical approach consists in drawing from past observations
some information on the frequency of possible price changes. If one then assumes
that these frequencies reflect some intimate mechanism of the markets themselves,
then one may hope that these frequencies will remain stable in the course of
time. For example, the mechanism underlying the roulette or the game of dice
is obviously always the same, and one expects that the frequency of all possible
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2 Probability theory: basic notions

outcomes will be invariant in time — although of course each individual outcome is
random.

This ‘bet’ that probabilities are stable (or better, stationary) is very reasonable
in the case of roulette or dice:' it is nevertheless much less justified in the case
of financial markets —despite the large number of participants which confer to the
system a certain regularity, at least in the sense of Gnedenko and Kolmogorov.
It is clear, for example, that financial markets do not behave now as they did 30
years ago: many factors contribute to the evolution of the way markets behave
(development of derivative markets, world-wide and computer-aided trading, etc.).
As will be mentioned in the following, ‘young’ markets (such as emergent
countries markets) and more mature markets (exchange rate markets, interest rate
markets, etc.) behave quite differently. The statistical approach to financial markets
is based on the idea that whatever evolution takes place, this happens sufficiently
slowly (on the scale of several years) so that the observation of the recent past
is useful to describe a not too distant future. However, even this ‘weak stability’
hypothesis is sometimes badly in error, in particular in the case of a crisis, which
marks a sudden change of market behaviour. The recent example of some Asian
currencies indexed to the dollar (such as the Korean won or the Thai baht) is
interesting, since the observation of past fluctuations is clearly of no help to predict
the amplitude of the sudden turmoil of 1997, see Figure 1.1.

Hence, the statistical description of financial fluctuations is certainly imperfect.
It is nevertheless extremely helpful: in practice, the ‘weak stability’ hypothesis is
in most cases reasonable, at least to describe risks.?

In other words, the amplitude of the possible price changes (but not their sign!)
is, to a certain extent, predictable. It is thus rather important to devise adequate
tools, in order to control (if at all possible) financial risks. The goal of this first
chapter is to present a certain number of basic notions in probability theory, which
we shall find useful in the following. Our presentation does not aim at mathematical
rigour, but rather tries to present the key concepts in an intuitive way, in order to
ease their empirical use in practical applications.

1.2 Probabilities
1.2.1 Probability distributions

Contrarily to the throw of a dice, which can only return an integer between |
and 6, the variation of price of a financial asset® can be arbitrary (we disregard
1 The idea that science ultimately amounts to making the best possible guess of reality is due to R. P. Feynman
(Seeking New Laws, in The Character of Physical Laws, MIT Press, Cambridge, MA, 1965).
2 The prediction of future refurns on the basis of past returns is however much less justified.
3 Asset is the generic name for a financial instrument which can be bought or sold, like stocks, currencies, gold,
bonds, etc.
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Fig. 1.1. Three examples of statistically unforeseen crashes: the Korean won against the
dollar in 1997 (top), the British 3-month short-term interest rates futures in 1992 (middle),
and the S&P 500 in 1987 (bottom). In the example of the Korean won, it is particularly
clear that the distribution of price changes before the crisis was extremely narrow, and
could not be extrapolated to anticipate what happened in the crisis period.

the fact that price changes cannot actually be smaller than a certain quantity —a
‘tick”). In order to describe a random process X for which the result is a real
number, one uses a probability density P(x), such that the probability that X is
within a small interval of width dx around X = x is equal to P(x)dx. In the
following, we shall denote as P (-) the probability density for the variable appearing
as the argument of the function. This is a potentially ambiguous, but very useful
notation.
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4 Probability theory: basic notions

The probability that X is between a and b is given by the integral of P(x)
between a and b,

b
Pla<X<bh :/ P(x)dx. (1.1)

i

In the following, the notation 7P(-) means the probability of a given event, defined
by the content of the parentheses (-).

The function P(x) is a density; in this sense it depends on the units used to
measure X. For example, if X is a length measured in centimetres, P(x) is a
probability density per unit length, i.e. per centimetre. The numerical value of P(x)
changes if X is measured in inches, but the probability that X lies between two
specific values [} and [ is of course independent of the chosen unit. P(x) dx is thus
invariant upon a change of unit, i.e. under the change of variable x — yx. More
generally, P(x)dx is invariant upon any (monotonic) change of variable x — y(x):
in this case, one has P(x)dx = P(y)dy.

In order to be a probability density in the usual sense, P (x) must be non-negative
(P(x) = 0 for all x) and must be normalized, that is that the integral of P(x) over
the whole range of possible values for X must be equal to one:

/ " Ploydr = 1. (1.2)

Xm
where x,, (resp. x,/) is the smallest value (resp. largest) which X can take. In the
case where the possible values of X are not bounded from below, one takes x,, =
—o0, and similarly for x;. One can actually always assume the bounds to be +00
by setting to zero P(x) in the intervals ]—o0, x,;] and [xy, oo[. Later in the text,
we shall often use the symbol [ as a shorthand for fj;lc
An equivalent way of describing the distribution of X is to consider its cumula-
tive distribution P_(x), defined as:

X

P.x)=P(X <x) :f P(x")ydx'. (1.3)
P.(x) takes values between zero and one, and is monotonically increasing with
x. Obviously, P.(—00) = 0 and P_(+o0) = 1. Similarly, one defines P. (x) =
l - P{ (x)

1.2.2 Typical values and deviations

It is quite natural to speak about ‘typical’ values of X. There are at least three
mathematical definitions of this intuitive notion: the most probable value, the
median and the mean. The most probable value x* corresponds to the maximum of
the function P(x); x* needs not be unique if P(x) has several equivalent maxima.
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1.2 Probabilities 5
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Fig. 1.2. The ‘typical value’ of a random variable X drawn according to a distribution
density P(x) can be defined in at least three different ways: through its mean value (x},
its most probable value x* or its median xXpeq. In the general case these three values are

distinct.

The median xneq 1s such that the probabilities that X be greater or less than this
particular value are equal. In other words, P.(Xmed) = P- (Xmed) = % The mean,
or expected value of X, which we shall note as m or {x) in the following, is the
average of all possible values of X, weighted by their corresponding probability:

m=(x)= /xP(x)dx. (1.4)

For a unimodal distribution (unique maximum), symmetrical around this max-
imum, these three definitions coincide. However, they are in general different,
although often rather close to one another. Figure 1.2 shows an example of a
non-symmetric distribution, and the relative position of the most probable value,
the median and the mean.

One can then describe the fluctuations of the random variable X: if the random
process is repeated several times, one expects the results to be scattered in a cloud
of a certain ‘width’ in the region of typical values of X. This width can be described
by the mean absolute deviation (MAD) E,u, by the root mean square (RMS)
o (or, in financial terms, the volatility ), or by the ‘full width at half maximum’

wism.
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6 Probability theory: basic notions

The mean absolute deviation from a given reference value is the average of the
distance between the possible values of X and this reference value,*

Eab:; = /

Similarly, the variance (o%) is the mean distance squared to the reference value m,

x_xmed‘P(x}dx- {15)

o= ((x —m)?) =j(x—m)3P(x}dx. (1.6)

Since the variance has the dimension of x squared, its square root (the RMS, o)
gives the order of magnitude of the fluctuations around m.

Finally, the full width at half maximum w; ; is defined (for a distribution which
is symmetrical around its unique maximum x*) such that P(x* & (w;;2)/2) =
P(x*)/2, which corresponds to the points where the probability density has
dropped by a factor of two compared to its maximum value. One could actually
define this width slightly differently, for example such that the total probability to
find an event outside the interval [(x* — w/2), (x* + w/2)] is equal to, say, 0.1.

The pair mean—variance is actually much more popular than the pair median—
MAD. This comes from the fact that the absolute value is not an analytic function
of its argument, and thus does not possess the nice properties of the variance, such
as additivity under convolution, which we shall discuss below. However, for the
empirical study of fluctuations, it is sometimes preferable to use the MAD; it is
more robust than the variance, that is, less sensitive to rare extreme events, which
may be the source of large statistical errors.

1.2.3 Moments and characteristic function

More generally, one can define higher-order moments of the distribution P(x) as
the average of powers of X:

m, = (x") = j x"P(x)dx. (1.7)

Accordingly, the mean m is the first moment (n = 1), and the variance is related
to the second moment (62 = m, — m?). The above definition, Eq. (1.7), is
only meaningful if the integral converges, which requires that P(x) decreases
sufficiently rapidly for large |x| (see below).

From a theoretical point of view, the moments are interesting: if they exist, their
knowledge is often equivalent to the knowledge of the distribution P (x) itself.> In

4 One chooses as a reference value the median for the MAD and the mean for the RMS, because for a fixed
distribution P(x), these two quantities minimize, respectively, the MAD and the RMS.

5 This is not rigorously correct, since one can exhibit examples of different distribution densities which possess
exactly the same moments, see Section 1.3.2 below.
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1.2 Probabilities 7

practice however, the high order moments are very hard to determine satisfactorily:
as n grows, longer and longer time series are needed to keep a certain level of
precision on m,; these high moments are thus in general not adapted to describe
empirical data.

For many computational purposes, it is convenient to introduce the characteristic
function of P(x), defined as its Fourier transform:

P(z) Ejei:"'P(x)d.r. (1.8)

The function P(x) is itself related to its characteristic function through an inverse
Fourier transform:

P(x) = j e ¥ P(z)dz. (1.9)

27
Since P(x) is normalized, one always has P(0) = 1. The moments of P(x) can be
obtained through successive derivatives of the characteristic function at 7 = 0,

n

Nl dr -
m, = (—i) FP(z)

-
L

(1.10)

=0
One finally defines the cumulants c, of a distribution as the successive derivatives
of the logarithm of its characteristic function:

cn = (—i)" — log P(2)

1.11
i (1.11)

The cumulant ¢, is a polynomial combination of the moments m, with p < n.
For example ¢; = m, — m? = ¢2. 1t is often useful to normalize the cumulants
by an appropriate power of the variance, such that the resulting quantities are
dimensionless. One thus defines the normalized cumulants i,

oy = €y /0" (1.12)

One often uses the third and fourth normalized cumulants, called the skewness and
kurtosis (k).°

N3 —m)*
_fammny 2D (1.13)

A3
- o ot

The above definition of cumulants may look arbitrary, but these quantities have
remarkable properties. For example, as we shall show in Section 1.5, the cumulants
simply add when one sums independent random variables. Moreover a Gaussian
distribution (or the normal law of Laplace and Gauss) is characterized by the
fact that all cumulants of order larger than two are identically zero. Hence the

% Note that it is sometimes & =+ 3, rather than « itself, which is called the kurtosis.
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8 Probability theory: basic notions

cumulants, in particular «, can be interpreted as a measure of the distance between
a given distribution P (x) and a Gaussian.

1.2.4 Divergence of momenis —asymptotic behaviour

The moments (or cumulants) of a given distribution do not always exist. A
necessary condition for the nth moment (im,,) to exist is that the distribution density
P(x) should decay faster than 1/|x|"T! for |x| going towards infinity, or else the
integral, Eq. (1.7), would diverge for |x| large. If one only considers distribution
densities that are behaving asymptotically as a power-law, with an exponent 1 + 1,

i
AL
|x|l+h

P(x) ~ for x — oo, (1.14)

then all the moments such that n > & are infinite. For example, such a distribution
has no finite variance whenever ;& < 2. [Note that, for P(x) to be a normalizable
probability distribution, the integral, Eq. (1.2), must converge, which requires
pn = 0.]

The characteristic function of a distribution having an asymptotic power-law behaviour
given by Eq. (1.14) is non-analytic around z = 0. The small 7 expansion contains regular
terms of the form 7" for n < p followed by a non-analytic term |z|"* (possibly with
logarithmic corrections such as |z7|" log z for integer ). The derivatives of order larger
or equal to p of the characteristic function thus do not exist at the origin (z = 0).

1.3 Some useful distributions
1.3.1 Gaussian distribution

The most commonly encountered distributions are the ‘normal” laws of Laplace
and Gauss, which we shall simply call Gaussian in the following. Gaussians are
ubiquitous: for example, the number of heads in a sequence of a thousand coin
tosses, the exact number of oxygen molecules in the room, the height (in inches)
of a randomly selected individual, are all approximately described by a Gaussian
distribution.” The ubiquity of the Gaussian can be in part traced to the Central
Limit Theorem (CLT) discussed at length below, which states that a phenomenon
resulting from a large number of small independent causes is Gaussian. There
exists however a large number of cases where the distribution describing a complex
phenomenon is not Gaussian: for example, the amplitude of earthquakes, the
velocity differences in a turbulent fluid, the stresses in granular materials, etc.,
and, as we shall discuss in the next chapter, the price fluctuations of most financial
assets.

7 Although, in the above three examples, the random variable cannot be negative. As we shall discuss below, the
Gaussian description is generally only valid in a certain neighbourhood of the maximum of the distribution.
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1.3 Some useful distributions 9

A Gaussian of mean m and root mean square o is defined as:

1 (x —m)?
Poy = === ) (11

The median and most probable value are in this case equal to m, whereas the MAD
(or any other definition of the width) is proportional to the RMS (for example,
E.w = 04/2/m). For m = 0, all the odd moments are zero and the even moments
are given by my, = (2n — 1)(2n — 3) .. 0 =(2n—Dite™,

All the cumulants of order greater than two are zero for a Gaussian. This can be
realized by examining its characteristic function:

. o272
Ps(z) =exp (— 5 + imz) . (1.16)

Its logarithm is a second-order polynomial, for which all derivatives of order larger
than two are zero. In particular, the kurtosis of a Gaussian variable is zero. As
mentioned above, the kurtosis is often taken as a measure of the distance from a
Gaussian distribution. When « > 0 (lepfokurtic distributions), the corresponding
distribution density has a marked peak around the mean, and rather ‘thick’ tails.
Conversely, when « < 0, the distribution density has a flat top and very thin tails.
For example, the uniform distribution over a certain interval (for which tails are
absent) has a kurtosis ¥k = —%v

A Gaussian variable is peculiar because ‘large deviations’ are extremely rare.
The quantity exp(—x2/20?) decays so fast for large x that deviations of a few times
o are nearly impossible. For example, a Gaussian variable departs from its most
probable value by more than 20 only 5% of the times, of more than 3¢ in 0.2% of
the times, whereas a fluctuation of 100 has a probability of less than 2 x 1073 in
other words, it never happens.

1.3.2 Log-normal distribution

Another very popular distribution in mathematical finance is the so-called ‘log-
normal’ law. That X is a log-normal random variable simply means that log X
is normal, or Gaussian. Its use in finance comes from the assumption that the
rate of returns, rather than the absolute change of prices, are independent random
variables. The increments of the logarithm of the price thus asymptotically sum
to a Gaussian, according to the CLT detailed below. The log-normal distribution
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10 Probability theory: basic notions
density is thus defined as:®

_ log® (x/x)

Pinx) = =
- x+/2mo? 20

, (1.17)

the moments of which being: m,, = .rge"z"zﬂ.

In the context of mathematical finance, one often prefers log-normal to Gaussian
distributions for several reasons. As mentioned above, the existence of a random
rate of return, or random interest rate, naturally leads to log-normal statistics.
Furthermore, log-normals account for the following symmetry in the problem
of exchange rates:” if x is the rate of currency A in terms of currency B, then
obviously, 1/x is the rate of currency B in terms of A. Under this transformation,
log x becomes —logx and the description in terms of a log-normal distribution
(or in terms of any other even function of log x) is independent of the reference
currency. One often hears the following argument in favour of log-normals: since
the price of an asset cannot be negative, its statistics cannot be Gaussian since the
latter admits in principle negative values, whereas a log-normal excludes them by
construction. This is however a red-herring argument, since the description of the
fluctuations of the price of a financial asset in terms of Gaussian or log-normal
statistics is in any case an approximation which is only valid in a certain range.
As we shall discuss at length below, these approximations are totally unadapted
to describe extreme risks. Furthermore, even if a price drop of more than 100%
is in principle possible for a Gaussian process,'” the error caused by neglecting
such an event is much smaller than that induced by the use of either of these two
distributions (Gaussian or log-normal). In order to illustrate this point more clearly,
consider the probability of observing n times ‘heads’ in a series of N coin tosses,
which is exactly equal to 2~ ¥ C},. It is also well known that in the neighbourhood
of N/2,2-NC}; is very accurately approximated by a Gaussian of variance N /4;
this is however not contradictory with the fact that n > 0 by construction!

Finally, let us note that for moderate volatilities (up to say 20%), the two
distributions (Gaussian and log-normal) look rather alike, especially in the ‘body’
of the distribution (Fig. 1.3). As for the tails, we shall see below that Gaussians
substantially underestimate their weight, whereas the log-normal predicts that large

5 A log-normal distribution has the remarkable property that the knowledge of all its moments is not sufficient
to characterize the corresponding distribution. It is indeed easy to show that the following distribution:

%.r_] exp [—%(Iogx)z} [1 + asin(27 log x)], for |a| = 1. has moments which are independent of the
BV o

value of a, and thus coincide with those of a log-normal distribution, which corresponds to a = 0 ([Feller]
p. 227).

9 This symmetry is however not always obvious. The dollar, for example. plays a special role. This symmetry
can only be expected between currencies of similar strength.

19 In the rather extreme case of a 20% annual volatility and a zero annual return, the probability for the price to
become negative after a year in a Gaussian description is less than one out of 3 million.
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1.3 Some useful distributions 11
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Fig. 1.3. Comparison between a Gaussian (thick line) and a log-normal (dashed line), with
m = xg = 100 and o equal to 15 and 15% respectively. The difference between the two
curves shows up in the tails.

positive jumps are more frequent than large negative jumps. This is at variance with
empirical observation: the distributions of absolute stock price changes are rather
symmetrical; if anything, large negative draw-downs are more frequent than large
positive draw-ups.

1.3.3 Lévy distributions and Paretian tails

Lévy distributions (noted L, (x) below) appear naturally in the context of the CLT
(see below), because of their stability property under addition (a property shared
by Gaussians). The tails of Lévy distributions are however much ‘fatter’ than those
of Gaussians, and are thus useful to describe multiscale phenomena (i.e. when both
very large and very small values of a quantity can commonly be observed —such
as personal income, size of pension funds, amplitude of earthquakes or other
natural catastrophes, etc.). These distributions were introduced in the 1950s and
1960s by Mandelbrot (following Pareto) to describe personal income and the price
changes of some financial assets, in particular the price of cotton [Mandelbrot].
An important constitutive property of these Lévy distributions is their power-law
behaviour for large arguments, often called ‘Pareto tails’:

n
+

Ly(x) ~ x| i

for x — +oo, (1.18)

where 0 < ;o < 2 is a certain exponent (often called «), and A'{ two constants
which we call tail amplitudes, or scale parameters: A indeed gives the order of
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12 Probability theory: basic notions

magnitude of the large (positive or negative) fluctuations of x. For instance, the
probability to draw a number larger than x decreases as P-(x) = (A4 /x)* for
large positive x.

One can of course in principle observe Pareto tails with 1 = 2; but, those tails
do not correspond to the asymptotic behaviour of a Lévy distribution.

In full generality, Lévy distributions are characterized by an asymmetry param-
eter defined as B = (Af_'; — Af)/(Ai + A"), which measures the relative weight
of the positive and negative tails. We shall mostly focus in the following on the
symmetric case f = 0. The fully asymmetric case (8 = 1) is also useful to describe
strictly positive random variables, such as, for example, the time during which the
price of an asset remains below a certain value, etc.

An important consequence of Eq. (1.14) with ;¢ < 2 is that the variance of a
Lévy distribution is formally infinite: the probability density does not decay fast
enough for the integral, Eq. (1.6), to converge. In the case i < 1, the distribution
density decays so slowly that even the mean, or the MAD, fail to exist.'' The
scale of the fluctuations, defined by the width of the distribution, is always set by
A=A, =A_.

There is unfortunately no simple analytical expression for symmetric Lévy
distributions L, (x), except for i = 1, which corresponds to a Cauchy distribution
(or ‘Lorentzian’):

Ll(.‘f) = (].19)

X2+ w2A%
However, the characteristic function of a symmetric Lévy distribution is rather
simple, and reads:

L,(2) = exp (—aylz|") (1.20)

where a,, is a certain constant, proportional to the tail parameter A*.'? Tt is thus
clear that in the limit ;& = 2, one recovers the definition of a Gaussian. When
i decreases from 2, the distribution becomes more and more sharply peaked
around the origin and fatter in its tails, while ‘intermediate’ events lose weight
(Fig. 1.4). These distributions thus describe ‘intermittent’ phenomena, very often
small, sometimes gigantic.

Note finally that Eq. (1.20) does not define a probability distribution when ¢ >
2, because its inverse Fourier transform is not everywhere positive.

In the case B # 0, one would have:

L (z) = exp [faj_{|3|ﬂ (1 +ip tan(m,fz)i)] (1 # 1). (1.21)

4
Z

" The median and the most probable value however still exist. For a symmetric Lévy distribution, the most
probable value defines the so-called ‘localization” parameter m.

2 ) . . ;

12 For example, when | < p < 2, A" = pl(pe — Dysin(mp/2)ay /.

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 26

http://site.ebrary.com/id/10014876?ppg=26

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



1.3 Some useful distributions 13
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Fig. 1.4. Shape of the symmetric Lévy distributions with & = 0.8, 1.2, 1.6 and 2 (this
last value actually corresponds to a Gaussian). The smaller ¢, the sharper the *body’ of the
distribution, and the fatter the tails, as illustrated in the inset.

It is important to notice that while the leading asymptotic term for large x is
given by Eq. (1.18), there are subleading terms which can be important for finite x.
The full asymptotic series actually reads:

o ()" a .
L,(x)= Z Wx“:"“ I (1 4+ np)sin(run/2). (1.22)

n=I

The presence of the subleading terms may lead to a bad empirical estimate of
the exponent pt based on a fit of the tail of the distribution. In particular, the
‘apparent’ exponent which describes the function L, for finite x is larger than
i, and decreases towards p for x — oo, but more and more slowly as j gets
nearer to the Gaussian value ;1 = 2, for which the power-law tails no longer exist.
Note however that one also often observes empirically the opposite behaviour, i.e.
an apparent Pareto exponent which grows with x. This arises when the Pareto
distribution, Eq. (1.18), is only valid in an intermediate regime x < 1/, beyond
which the distribution decays exponentially, say as exp(—ax). The Pareto tail is
then ‘truncated’ for large values of x, and this leads to an effective p« which grows
with x.

An interesting generalization of the Lévy distributions which accounts for this
exponential cut-off is given by the ‘truncated Lévy distributions’ (TLD), which will
be of much use in the following. A simple way to alter the characteristic function
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14 Probability theory: basic notions
Eq. (1.20) to account for an exponential cut-off for large arguments is to set:!?

M N
£0(2) = exp | —a, ()7 cos (uarctan(izlfa)) — e | (1.23)
cos(m/2)

for | < p < 2. The above form reduces to Eq. (1.20) for « = 0. Note that the
argument in the exponential can also be written as:

_ -\ IR
2cos(n11/2) [( +i2)" + (@ —i2)" —20"]. (1.24)

Exponential tail: a limiting case

Very often in the following, we shall notice that in the formal limit @ — oo, the power-
law tail becomes an exponential tail, if the tail parameter is simultaneously scaled as
Al = (/o). Qualitatively, this can be understood as follows: consider a probability
distribution restricted to positive x, which decays as a power-law for large x, defined as:

i
(AL x)n

This shape is obviously compatible with Eq. (1.18), and is such that P~(x = 0) = 1. If
A = (u/a), one then finds:

P (x) = (1.25)

1
Po(x) = mﬁ:& exp(—ax). (1.26)

1.3.4 Other distributions (*)

There are obviously a very large number of other statistical distributions useful to
describe random phenomena. Let us cite a few, which often appear in a financial
context:

¢ The discrete Poisson distribution: consider a set of points randomly scattered
on the real axis, with a certain density w (e.g. the times when the price of an
asset changes). The number of points n in an arbitrary interval of length £ is
distributed according to the Poisson distribution:

()"

n!

P(n) = exp(—wf). (1.27)

e The hyperbolic distribution, which interpolates between a Gaussian ‘body’ and
exponential tails:

l b
— _ . 2
Py(x) = 2):071?1(0'370} exp [af\/,xu + x+], (1.28)

where the normalization K(axg) is a modified Bessel function of the second

See 1. Koponen, Analytic approach to the problem of convergence to truncated Lévy flights towards the
Gaussian stochastic process, Physical Review E, 52, 1197 (1995).
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1.4 Maximum of random variables 15

kind. For x small compared to xp, Py(x) behaves as a Gaussian although its
asymptotic behaviour for x > x is fatter and reads exp(—«/|x|).
From the characteristic function
- axoK(xp/1 +a2)

Py(z) = , 1.2
(@) K (axo)v/1+az (129)

we can compute the variance

5 XoKa(axg)
= 1.30
aK(axy) ( )
and kurtosis
Kztaxu)): 12 K>(axp)
= —_— _ — 3. 1.31
(K1 (crxo) axo Ki(axo) (13D

Note that the kurtosis of the hyperbolic distribution is always between zero and
three. In the case xy = 0, one finds the symmetric exponential distribution:

Pe(x) = %exp(—a|x|), (1.32)

with even moments my, = (2n)!a 2", which gives 02 = 2o and k = 3. Its
characteristic function reads: Pg(z) = (XE/(OL’: + 7%,
e The Student distribution, which also has power-law tails:

Po(x) = 11+ w)/2) aﬂ“ - (1.33)
ﬁ F(;L/Q) (az + x_)(l-i-.u};z

which coincides with the Cauchy distribution for 4 = 1, and tends towards a
Gaussian in the limit ;# — oo, provided that a” is scaled as . The even moments
of the Student distribution read: ma, = 2n — DU (/2 —n) /T (/2) (02/2)”,
provided 2n < w; and are infinite otherwise. One can check that in the limit
i — oo, the above expression gives back the moments of a Gaussian: my, =
(2n — 1)!1o?". Figure 1.5 shows a plot of the Student distribution with x = 1,

corresponding to i = 10.

1.4 Maximum of random variables — statistics of extremes

If one observes a series of N independent realizations of the same random
phenomenon, a question which naturally arises, in particular when one is concerned
about risk control, is to determine the order of magnitude of the maximum observed
value of the random variable (which can be the price drop of a financial asset, or
the water level of a flooding river, etc.). For example, in Chapter 3, the so-called
‘value-at-risk” (VaR) on a typical time horizon will be defined as the possible
maximum loss over that period (within a certain confidence level).
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16 Probability theory: basic notions
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Fig. 1.5. Probability density for the truncated Lévy (1 = %), Student and hyperbolic
distributions. All three have two free parameters which were fixed to have unit variance
and kurtosis. The inset shows a blow-up of the tails where one can see that the Student
distribution has tails similar to (but slightly thicker than) those of the truncated Lévy.

The law of large numbers tells us that an event which has a probability p of
occurrence appears on average Np times on a series of N observations. One thus
expects to observe events which have a probability of at least 1 /N. It would be
surprising to encounter an event which has a probability much smaller than 1/N.
The order of magnitude of the largest event, Ap.y, observed in a series of N
independent identically distributed (iid) random variables is thus given by:

P> (Amax) = ]/N (].34)

More precisely, the full probability distribution of the maximum value Xy =
max;=y y{x;}, is relatively easy to characterize; this will justify the above simple
criterion Eq. (1.34). The cumulative distribution P(xmax < A) is obtained by
noticing that if the maximum of all x;’s is smaller than A, all of the x;’s must
be smaller than A. If the random variables are iid, one finds:

P(Xmax < A) = [P(M)]". (1.35)

Note that this result is general, and does not rely on a specific choice for P(x).
When A is large, it is useful to use the following approximation:

PXmax < A) = [1 = P (AN e VP, (1.36)

Since we now have a simple formula for the distribution of xy,,, one can invert
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1.4 Maximum of random variables 17

it in order to obtain, for example, the median value of the maximum, noted A peq,
such that P(xXpux < Amed) = %:

N loe?2
Po(Amea) = 1 — (1) = ke (1.37)
- N

More generally, the value A, which is greater than x,,,, with probability p is given

by
log p
Po(Ay) > ———. 1.38
= (Ap) N (1.38)

The quantity Any,x defined by Eq. (1.34) above is thus such that p = 1 /e >~ 0.37.
The probability that X, is even larger than Apy, is thus 63%. As we shall now
show, A,y also corresponds, in many cases, to the most probable value of Xy,y.

Equation (1.38) will be very useful in Chapter 3 to estimate a maximal potential
loss within a certain confidence level. For example, the largest daily loss A
expected next year, with 95% confidence, is defined such that P_(—A) =
—log(0.95) /250, where P is the cumulative distribution of daily price changes,
and 250 is the number of market days per year.

Interestingly, the distribution of xy. only depends, when N is large, on the
asymptotic behaviour of the distribution of x, P(x), when x — oco. For example,
if P(x) behaves as an exponential when x — oo, or more precisely if P.(x) ~
exp(—awx), one finds:

log N

Amax = , (]39)
o

which grows very slowly with N.'* Setting X, = Amax + (4/c), one finds that
the deviation u around A, is distributed according to the Gumbel distribution:
Pu)=e"°"e". (1.40)

The most probable value of this distribution is u = 0." This shows that Ay
is the most probable value of xp.. The result, Eq. (1.40), is actually much more
general, and is valid as soon as P(x) decreases more rapidly than any power-law
for x — oc: the deviation between Ay, (defined as Eq. (1.34)) and X, is always
distributed according to the Gumbel law, Eq. (1.40), up to a scaling factor in the
definition of u.

The situation is radically different if P(x) decreases as a power-law, cf.
Eq. (1.14). In this case,

M

A

+

Po(x) = =, (1.41)
xH

4 For example, for a symmetric exponential distribution P(x) = exp(—|x|)/2, the median value of the

maximum of N = 10000 variables is only 6.3.
15 This distribution is discussed further in the context of financial risk control in Section 3.1.2, and drawn in
Figure 3.1.
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18 Probability theory: basic notions

and the typical value of the maximum is given by:
Amax = A-!-N'(L‘ (1-42)

Numerically, for a distribution with ¢ = % and a scale factor A; = 1, the largest of
N = 10000 variables is on the order of 450, whereas for u = % it is one hundred
million! The complete distribution of the maximum, called the Fréchet distribution,
is given by:
Pu) = u%e—“"“ w= (1.43)
A N7

Its asymptotic behaviour for # — oo is still a power-law of exponent | + p. Said
differently, both power-law tails and exponential tails are stable with respect to the
‘max’ operation."® The most probable value X, is now equal to (14 /1424) " Apay.
As mentioned above, the limit & — oo formally corresponds to an exponential
distribution. In this limit, one indeed recovers Anax as the most probable value.

Equation (1.42) allows us to discuss intuitively the divergence of the mean value for
1 = 1 and of the variance for u < 2. If the mean value exists, the sum of N random
variables is typically equal to Nm, where m is the mean (see also below). But when (1 < 1,
the largest encountered value of X is on the order of N''™ > N, and would thus be larger
than the entire sum. Similarly, as discussed below, when the variance exists, the RMS of
the sum is equal to 6 /N. But for it < 2, Xpax grows faster than /N.

More generally, one can rank the random variables x; in decreasing order, and
ask for an estimate of the nth encountered value, noted A[n] below. (In particular,
A[1] = Xmax). The distribution P, of A[n] can be obtained in full generality as:

P,(A[n]) = NCiZ\ P(x = A[n]) (P(x > A[n])" "(P(x < A[n])"™". (1.44)

The previous expression means that one has first to choose A[n] among N variables
(N ways), n — 1 variables among the N — 1 remaining as the n — 1 largest ones
(Chy— 1| ways), and then assign the corresponding probabilities to the configuration
where n — 1 of them are larger than A[n] and N —n are smaller than A[n]. One can
study the position A*[n] of the maximum of P,, and also the width of P, defined
from the second derivative of log P, calculated at A*[n]. The calculation simplifies
in the limit where N — oo, n — oo, with the ratio n/N fixed. In this limit, one
finds a relation which generalizes Eq. (1.34):

P_(A*[n]) = n/N. (1.45)

16 A third class of laws, stable under ‘'max’ concerns random variables, which are bounded from above —i.e. such
that P(x) = 0 for x = xyy, with xyy finite. This leads to the Weibull distributions, which we will not consider
further in this book.

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 32

http://site.ebrary.com/id/10014876?ppg=32

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



1.4 Maximum of random variables 19

The width w,, of the distribution is found to be given by:

1 JT=m/N)?
Wy = —=—""—-—,
/N P(x = A*[n])

which shows that in the limit N — o0, the value of the nth variable is more and
more sharply peaked around its most probable value A*[n], given by Eq. (1.45).

In the case of an exponential tail, one finds that A*[n] =~ log(N/n)/a; whereas
in the case of power-law tails, one rather obtains:

(1.46)

A*[n]:m(%)ﬂ. (1.47)

This last equation shows that, for power-law variables, the encountered values are
hierarchically organized: for example, the ratio of the largest value x,,,, = A[l] to
the second largest A[2] is of the order of 2!//#, which becomes larger and larger as
i decreases, and conversely tends to one when it — oo.

The property, Eq. (1.47) is very useful in identifying empirically the nature
of the tails of a probability distribution. One sorts in decreasing order the set of
observed values {x;, x>, ..., xy} and one simply draws A[n] as a function of n.
If the variables are power-law distributed, this graph should be a straight line in
log-log plot, with a slope —1/u, as given by Eq. (1.47) (Fig. 1.6). On the same
figure, we have shown the result obtained for exponentially distributed variables.
On this diagram, one observes an approximately straight line, but with an effective
slope which varies with the total number of points N: the slope is less and less as
N /n grows larger. In this sense, the formal remark made above, that an exponential
distribution could be seen as a power-law with 4 — oo, becomes somewhat
more concrete. Note that if the axes x and y of Figure 1.6 are interchanged, then
according to Eq. (1.45), one obtains an estimate of the cumulative distribution, P-.

Let us finally note another property of power-laws, potentially interesting for their
empirical determination. If one computes the average value of x conditioned to a certain
minimum value A:

[a.9]
()4 = Ja xPxdr (1.48)
[ Px)dx’
then, if P(x) decreases as in Eq. (1.14), one finds, for A — oo,
)4 = 24, (1.49)
n—1

independently of the tail amplitude Ai.” The average (x) o is thus always of the same
order as A itself, with a proportionality factor which diverges as ;1 — 1.

I7 This means that ¢ can be determined by a one parameter fit only.

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 33

http://site.ebrary.com/id/10014876?ppg=33

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



20 Probability theory: basic notions
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Fig. 1.6. Amplitude versus rank plots. One plots the value of the nth variable A[n] as a
function of its rank n. If P (x) behaves asymptotically as a power-law, one obtains a straight
line in log—log coordinates, with a slope equal to —1/pt. For an exponential distribution,
one observes an effective slope which is smaller and smaller as N /n tends to infinity. The
points correspond to synthetic time series of length 5000, drawn according to a power-law
with . = 3, or according to an exponential. Note that if the axes x and y are interchanged,
then according to Eq. (1.45), one obtains an estimate of the cumulative distribution, P-.

1.5 Sums of random variables

In order to describe the statistics of future prices of a financial asset, one a
priori needs a distribution density for all possible time intervals, corresponding
to different trading time horizons. For example, the distribution of 5-min price
fluctuations is different from the one describing daily fluctuations, itself different
for the weekly, monthly, etc. variations. But in the case where the fluctuations are
independent and identically distributed (iid), an assumption which is, however,
usually not justified, see Sections 1.7 and 2.4, it is possible to reconstruct the
distributions corresponding to different time scales from the knowledge of that
describing short time scales only. In this context, Gaussians and Lévy distributions
play a special role, because they are stable: if the short time scale distribution is
a stable law, then the fluctuations on all time scales are described by the same
stable law — only the parameters of the stable law must be changed (in particular its
width). More generally, if one sums iid variables, then, independently of the short
time distribution, the law describing long times converges towards one of the stable
laws: this is the content of the ‘central limit theorem’ (CLT). In practice, however,
this convergence can be very slow and thus of limited interest, in particular if one
is concerned about short time scales.
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1.5 Sums of random variables 21

1.5.1 Convolutions

What is the distribution of the sum of two independent random variable? This sum
can, for example, represent the variation of price of an asset between today and
the day after tomorrow (X), which is the sum of the increment between today
and tomorrow (X ) and between tomorrow and the day after tomorrow (X>), both
assumed to be random and independent.

Let us thus consider X = X, + X> where X, and X, are two random variables,
independent, and distributed according to Py(x;) and P>(x»), respectively. The
probability that X is equal to x (within dx) is given by the sum over all possibilities
of obtaining X = x (that is all combinations of X; = x; and X, = x, such that
X1 + x2 = x), weighted by their respective probabilities. The variables X and X»
being independent, the joint probability that X; = x| and X» = x — x| is equal to
Py (x1) P.(x — x1), from which one obtains:

P(x,N=2)= j P(x"YP(x —x")dx'. (1.50)

This equation defines the convolution between Pj(x) and P>(x), which we shall
write P = P; » P,. The generalization to the sum of N independent random
variables is immediate. If X = X | + X, + - -- + X with X, distributed according
to P;(x;), the distribution of X is obtained as:

N—1
P(x,N) = f Pi(x]) ... Pyl ) Py(x —x) — - —x)_p [ ] dxf. (1.51)
i=l
One thus understands how powerful is the hypothesis that the increments are iid,
i.e. that Py = P, = - .- = Py. Indeed, according to this hypothesis, one only needs
to know the distribution of increments over a unit time interval to reconstruct that
of increments over an interval of length N': it is simply obtained by convoluting the
elementary distribution N times with itself.
The analytical or numerical manipulations of Eqs (1.50) and (1.51) are much eased by the

use of Fourier transforms, for which convolutions become simple products. The equation
P(x, N =2) =[P » P1(x), reads in Fourier space:

P(z.N=2) = j gldtr—a"+x) f Pi(x)Po(x — x)dx' dx = Pi(2) Pa(2). (1.52)

In order to obtain the Nth convolution of a function with itself, one should raise its
characteristic function to the power N, and then take its inverse Fourier transform.

1.5.2 Additivity of cumulants and of tail amplitudes

It is clear that the mean of the sum of two random variables (independent or not)
is equal to the sum of the individual means. The mean is thus additive under

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 35

http://site.ebrary.com/id/10014876?ppg=35

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



22 Probability theory: basic notions

convolution. Similarly. if the random variables are independent, one can show that
their variances (when they both exist) are also additive. More generally, all the
cumulants (c,) of two independent distributions simply add. This follows from
the fact that since the characteristic functions multiply, their logarithm add. The
additivity of cumulants is then a simple consequence of the linearity of derivation.
The cumulants of a given law convoluted N times with itself thus follow the
simple rule ¢, v = Nc,,1 where the {c;,1} are the cumulants of the elementary
distribution P;. Since the cumulant ¢, has the dimension of X to the power n, its
relative importance is best measured in terms of the normalized cumulants:

N _ Cn,N Cn,1 N 1—n/2

n = T T
(C2,n)T (c21)2

(1.53)

The normalized cumulants thus decay with N for n > 2; the higher the cumulant,
the faster the decay: A o N'="/2. The kurtosis «, defined above as the fourth
normalized cumulant, thus decreases as 1/N. This is basically the content of
the CLT: when N is very large, the cumulants of order > 2 become negligible.
Therefore, the distribution of the sum is only characterized by its first two
cumulants (mean and variance): it is a Gaussian.

Let us now turn to the case where the elementary distribution P (x;) decreases
as a power-law for large arguments x| (cf. Eq. (1.14)), with a certain exponent
i. The cumulants of order higher than p are thus divergent. By studying the
small z singular expansion of the Fourier transform of P(x, N), one finds that
the above additivity property of cumulants is bequeathed to the tail amplitudes A’ :
the asymptotic behaviour of the distribution of the sum P(x, N) still behaves as a
power-law (which is thus conserved by addition for all values of i, provided one
takes the limit x — oo before N — oo —see the discussion in Section 1.6.3), with
a tail amplitude given by:

Al =NAL (1.54)

The tail parameter thus plays the role, for power-law variables, of a generalized
cumulant.

1.5.3 Stable distributions and self-similarity

If one adds random variables distributed according to an arbitrary law P (x;),
one constructs a random variable which has, in general, a different probability
distribution (P(x, N) = [P;(x;)]*"). However, for certain special distributions,
the law of the sum has exactly the same shape as the elementary distribution — these
are called stable laws. The fact that two distributions have the ‘same shape’ means
that one can find a (N-dependent) translation and dilation of x such that the two
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1.6 Central limit theorem 23

laws coincide:
P(x, N)dx = Pi(x;)dx, where x = ayx| + by. (1.55)

The distribution of increments on a certain time scale (week, month, year) is thus
scale invariant, provided the variable X is properly rescaled. In this case, the
chart giving the evolution of the price of a financial asset as a function of time
has the same statistical structure, independently of the chosen elementary time
scale—only the average slope and the amplitude of the fluctuations are different.
These charts are then called self-similar, or, using a better terminology introduced
by Mandelbrot, self-affine (Figs 1.7 and 1.8).

The family of all possible stable laws coincide (for continuous variables) with
the Lévy distributions defined above,'® which include Gaussians as the special
case ;4 = 2. This is easily seen in Fourier space, using the explicit shape of
the characteristic function of the Lévy distributions. We shall specialize here for
simplicity to the case of symmetric distributions P,(x;) = P;(—x;), for which
the translation factor is zero (by = 0). The scale parameter is then given by
ay = N'* ' and one finds, for u < 2:

(x|“)$o<ANfl' q < p (1.56)

where A = A, = A . In words, the above equation means that the order of
magnitude of the fluctuations on ‘time’ scale N is a factor N'/* larger than the
fluctuations on the elementary time scale. However, once this factor is taken into
account, the probability distributions are identical. One should notice the smaller
the value of p, the faster the growth of fluctuations with time.

1.6 Central limit theorem

We have thus seen that the stable laws (Gaussian and Lévy distributions) are “fixed
points’ of the convolution operation. These fixed points are actually also attractors,
in the sense that any distribution convoluted with itself a large number of times
finally converges towards a stable law (apart from some very pathological cases).
Said differently, the limit distribution of the sum of a large number of random
variables is a stable law. The precise formulation of this result is known as the
central limit theorem (CLT).

18 For discrete variables, one should also add the Poisson distribution Eq. (1.27).
The case 4 = | is special and involves extra logarithmic factors.
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Fig. 1.7. Example of a self-affine function, obtained by summing random variables. One
plots the sum x as a function of the number of terms N in the sum, for a Gaussian
elementary distribution Pj(x]). Several successive ‘zooms’ reveal the self-similar nature
of the function, here with ay = N2,

1.6.1 Convergence to a Gaussian

The classical formulation of the CLT deals with sums of iid random variables of
finite variance o* towards a Gaussian. In a more precise way, the result is then the
following:

lim P(u <2 —mN <u ) _j”z 1 e 2 dy (1.57)
N—o0 '= O'«/N = w2 : )

for all finite u,, u». Note however that for finite N, the distribution of the sum X =
X| + -+ 4+ Xy in the tails (corresponding to extreme events) can be very different

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 38

http://site.ebrary.com/id/10014876?ppg=38

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



1.6 Central limit theorem 25
600 T T T I_'-'EC T
;'-.-"-.II M b,
Y
|
| oA
400 00 - WA B
‘H“ LW
i
A‘F W \ \.'Ul
L *
]I‘ L w.llll b{ ]H%'.‘CQ ’ I ’ 3750
200 p.k\ rwlb ' i
f | s
| | h rl il Y Ii
Y W M T
it \ |'oreceasy
0 #y L"; \ W i ]
250 i‘\j]
L]
M 4 I‘I'IN"I afl l”||
J\"\l,»}'w ||.\«"1IL-' ‘d \l'.&,' I’I\ Hll I'-1
-200 | l ) ﬁ‘ .
|
150 1 M‘:Lhrf =
)
—400 - 'ﬂl_
(
50
3500 4000
-600 — — '
0 1000 2000 3000 4000 5000

Fig. 1.8. In this case, the elementary distribution P;(x) decreases as a power-law with an
exponent i = 1.5. The scale factor is now given by ay = N2/3. Note that, contrarily to
the previous graph, one clearly observes the presence of sudden ‘jumps’, which reflect the
existence of very large values of the elementary increment x;.

trom the Gaussian prediction; but the weight of these non-Gaussian regions tends
to zero when N goes to infinity. The CLT only concerns the cenfral region, which
keeps a finite weight for N large: we shall come back in detail to this point below.

The main hypotheses ensuring the validity of the Gaussian CLT are the follow-

ing:

e The X; must be independent random variables, or at least not ‘too’ correlated

(the correlation function (x;x;) — m

% must decay sufficiently fast when |i — j|

becomes large, see Section 1.7.1 below). For example, in the extreme case where
all the X; are perfectly correlated (i.e. they are all equal), the distribution of X
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26 Probability theory: basic notions

is obviously the same as that of the individual X; (once the factor N has been
properly taken into account).

¢ The random variables X; need not necessarily be identically distributed. One
must however require that the variance of all these distributions are not too
dissimilar, so that no one of the variances dominates over all the others (as
would be the case, for example, if the variances were themselves distributed as
a power-law with an exponent ¢ < 1). In this case, the variance of the Gaussian
limit distribution is the average of the individual variances. This also allows one
to deal with sums of the type X = p1 X+ p2 X2+ - -+ pn X, where the p; are
arbitrary coefficients; this case is relevant in many circumstances, in particular
in portfolio theory (cf. Chapter 3).

e Formally, the CLT only applies in the limit where N is infinite. In practice,
N must be large enough for a Gaussian to be a good approximation of the
distribution of the sum. The minimum required value of N (called N* below)
depends on the elementary distribution P, (x,) and its distance from a Gaussian.
Also, N* depends on how far in the tails one requires a Gaussian to be a good
approximation, which takes us to the next point.

e As mentioned above, the CLT does not tell us anything about the tails of the
distribution of X; only the central part of the distribution is well described by
a Gaussian. The ‘central” region means a region of width at least of the order
of /No around the mean value of X. The actual width of the region where
the Gaussian turns out to be a good approximation for large finite N crucially
depends on the elementary distribution P;(x;). This problem will be explored in
Section 1.6.3. Roughly speaking, this region is of width ~ N3*g for ‘narrow’
symmetric elementary distributions, such that all even moments are finite. This
region is however sometimes of much smaller extension: for example, if P (x;)
has power-law tails with u > 2 (such that o is finite), the Gaussian ‘realm’

grows barely faster than VN (as ~ /N log N).

The above formulation of the CLT requires the existence of a finite variance. This
condition can be somewhat weakened to include some ‘marginal’ distributions such as
a power-law with ;u = 2. In this case the scale factor is not ay = /N but rather
ay = /N log N. However, as we shall discuss in the next section, elementary distributions
which decay more slowly than |x|~3 do not belong the the Gaussian basin of attraction.
More precisely, the necessary and sufficient condition for Py(x|) to belong to this basin is
that:

. Pie(—u) +Pr=(u)
lim u~ = =
U—0C f|”'|‘3“ u's P] (H") du’

(1.58)

This condition is always satisfied if the variance is finite, but allows one to include the
marginal cases such as a power-law with i = 2.
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1.6 Central limit theorem 27

The central limit theorem and information theory

It is interesting to notice that the Gaussian is the law of maximum entropy — or minimum
information—such that its variance is fixed. The missing information quantity T (or
entropy) associated with a probability distribution P is defined as:*°

I[Pl= - ] P(x)log P(x)dx. (1.59)

The distribution maximizing L[ P] for a given value of the variance is obtained by taking a
functional derivative with respect to P(x):

d
— [I[P] - fx’zP(x’)dx’ — _C'] P(x") dx’] =0, (1.60)
dP(x)
where ¢ is fixed by the condition [ x2P(x)dx = a2 and ¢’ by the normalization of P(x).
It is immediately seen that the solution to Eq. (1.60) is indeed the Gaussian. The numerical
value of its entropy is:

1 1
Ig = 3 + > log(2m) + log(o) =~ 1.419 + log(o). (1.61)
For comparison, one can compute the entropy of the symmetric exponential distribution,
which is:
. log2
g =1+ - +log(o) = 1.346 + log(o). (1.62)

It is important to realize that the convolution operation is ‘information burning’, since
all the details of the elementary distribution P)(x)) progressively disappear while the
Gaussian distribution emerges.

1.6.2 Convergence to a Lévy distribution

Let us now turn to the case of the sum of a large number N of iid random
variables, asymptotically distributed as a power-law with u < 2, and with a tail
amplitude A" = AL = A" (cf. Eq. (1.14)). The variance of the distribution is
thus infinite. The limit distribution for large N is then a stable Lévy distribution
of exponent ;¢ and with a tail amplitude N A". If the positive and negative tails
of the elementary distribution P;(x;) are characterized by different amplitudes
(AZ and AY) one then obtains an asymmetric Lévy distribution with parameter
B = (AL — A") /(AL + AY). If the ‘left’ exponent is different from the ‘right’
exponent (;t_ # (), then the smallest of the two wins and one finally obtains
a totally asymmetric Lévy distribution (8 = —1 or B = 1) with exponent
i = min(p_, ;+). The CLT generalized to Lévy distributions applies with the
same precautions as in the Gaussian case above.

20 Note that entropy is defined up to an additive constant. It is common to add | to the above definition.
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28 Probability theory: basic notions

Technically, a distribution Py(xy) belongs to the basin of attraction of the Lévy distribu-
tion Ly g if and only if:
. Pic(-u) 1-p
lim =

- - . 1.63
AP 158 (1.63)

and for all r,
Pre(—u) + P (u)

li =r*, 1.64
"l*mx’Ph:(—ru)+’P|;>(ru) " (1.64)

A distribution with an asymptotic tail given by Eq. (1.14) is such that,

128 s

A Al
'Pl(‘-(u)“ o~ ar.id’l—’|>(u)"2 —, (1.65)

——00 |”|H —oo M

and thus belongs to the attraction basin of the Lévy distribution of exponent u and
asymmetry parameter f§ = (Aif_ — AE)/(A"_‘,{_ + Aﬁ).

1.6.3 Large deviations

The CLT teaches us that the Gaussian approximation is justified to describe the
‘central’ part of the distribution of the sum of a large number of random variables
(of finite variance). However, the definition of the cenfre has remained rather vague
up to now. The CLT only states that the probability of finding an event in the tails
goes to zero for large N. In the present section, we characterize more precisely the
region where the Gaussian approximation is valid.
If X is the sum of N iid random variables of mean m and variance ¢, one

defines a ‘rescaled variable’ U as:
X —Nm

oV/N
which according to the CLT tends towards a Gaussian variable of zero mean and
unit variance. Hence, for any fixed u, one has:

U= (1.66)

N!im_P}(u} = Pa= (1), (1.67)

where Pg- (i) is the related to the error function, and describes the weight
contained in the tails of the Gaussian:

) | \/12? exp(—u®/2)du’ = %erfc (%) ) (1.68)

However, the above convergence is not uniform. The value of N such that the
approximation P. (1) = Pg. () becomes valid depends on u. Conversely, for
fixed N, this approximation is only valid for u not too large: |u| < tp(N).

One can estimate ug(N) in the case where the elementary distribution P;(x;) is
‘narrow’, that is, decreasing faster than any power-law when |x;| — oo, such that

Pg- (1) =
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1.6 Central limit theorem 29

all the moments are finite. In this case, all the cumulants of P, are finite and one

can obtain a systematic expansion in powers of N~!/2 of the difference AP- (u) =

Pr» (“} - PG> (“}:

exp(—12/2) (Quw) Qo) . Qew)
NG N1/2 N Nk/2

where the Oy (u) are polynomials functions which can be expressed in terms of

the normalized cumulants A, (cf. Eq. (1.12)) of the elementary distribution. More
explicitly, the first two terms are given by:

01(u) = Prs(u® — 1), (1.70)

AP (u) =~

-I-) (1.69)

and
Q2(u) = 72517 + (g — AU’ + (A3 — gha)u. (1.71)

One recovers the fact that if all the cumulants of P;(x;) of order larger than
two are zero, all the @y are also identically zero and so is the difterence between
P(x, N) and the Gaussian.

For a general asymmetric elementary distribution Py, A3 is non-zero. The leading
term in the above expansion when N is large is thus Q(u). For the Gaussian
approximation to be meaningful, one must at least require that this term is small in
the central region where 1 is of order one, which corresponds to x — mN ~ a+/N.
This thus imposes that N > N* = )L_E. The Gaussian approximation remains
valid whenever the relative error is small compared to 1. For large u# (which will
be justified for large N), the relative error is obtained by dividing Eq. (1.69) by
Ps- (1) ~ exp(—u>/2) /(u~/27). One then obtains the following condition:*!

s N\
Jai® € N2 e |x — Nm| < aﬁ(m) . (1.72)

This shows that the central region has an extension growing as N2/°.

A symmetric elementary distribution is such that A3 = 0; it is then the kurtosis
k = A4 that fixes the first correction to the Gaussian when N is large, and thus the
extension of the central region. The conditions now read: N 3> N* = }4 and

N4
it < N ie.|x — Nm| < ov/N (N—) ) (1.73)

The central region now extends over a region of width N3/4.

The results of the present section do not directly apply if the elementary
distribution Pj(x|) decreases as a power-law (‘broad distribution’). In this case,
some of the cumulants are infinite and the above cumulant expansion, Eq. (1.69), is

2! The above arguments can actually be made fully rigorous, see [Feller].
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30 Probability theory: basic notions

meaningless. In the next section, we shall see that in this case the ‘central’ region
is much more restricted than in the case of ‘narrow’ distributions. We shall then
describe in Section 1.6.5, the case of ‘truncated” power-law distributions, where the
above conditions become asymptotically relevant. These laws however may have
a very large kurtosis, which depends on the point where the truncation becomes
noticeable, and the above condition N 3> A4 can be hard to satisfy.

Cramér function

More general{},‘, when N is large, one can write the distribution of the sum of N iid random
variables as:>

X

Per Ny = exp[-NS (5], 1.74

(. N) = exp S (1.74)

where S is the so-called Cramér function, which gives some information about the
probability of X even outside the ‘central’ region. When the variance is finite, S grows

as S(u) o u” for small u’s, which again leads to a Gaussian central region. For finite u, §
can be computed using Laplace’s saddle point method, valid for N large. By definition:

| .
P N) =3 jexpN (—iz% +log[ Py (z}])dz. (1.75)

When N is large, the above integral is dominated by the neighbourhood of the point z*
where the term in the exponential is stationary. The results can be written as:

P(x,N) ~ exp [—NS(%)], (1.76)
with S(u) given by:
‘il"gf__l# =iu  S(u) = —iz*u+log[ P (z)], (1.77)

which, in principle, allows one to estimate P(x, N) even outside the central region. Note
that if S(u) is finite for finite u, the corresponding probability is exponentially small in N.

1.6.4 The CLT at work on a simple case

It is helpful to give some flesh to the above general statements, by working out
explicitly the convergence towards the Gaussian in two exactly soluble cases. On
these examples, one clearly sees the domain of validity of the CLT as well as its
limitations.

Let us first study the case of positive random variables distributed according to
the exponential distribution:

Pi(x) = @(x))ae ", (1.78)
where @ (x)) is the function equal to 1 for x; = 0 and to O otherwise. A simple

22 We assume that their mean is zero, which can always be achieved through a suitable shift of x|.
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1.6 Central limit theorem 31

computation shows that the above distribution is correctly normalized, has a mean
given by m = a~! and a variance given by 62 = @ 2. Furthermore, the exponential
distribution is asymmetrical; its skewness is given by c¢3 = ((x — m)}y =203, or
k3 =12.

The sum of N such variables is distributed according to the Nth convolution
of the exponential distribution. According to the CLT this distribution should
approach a Gaussian of mean m N and of variance No2. The Nth convolution of
the exponential distribution can be computed exactly. The result is:*’

N—1,—ax

_ = N
P(x,N)=0x)x 7(3\’ O

(1.79)
which is called a ‘Gamma’ distribution of index N. At first sight, this distribution
does not look very much like a Gaussian! For example, its asymptotic behaviour is
very far from that of a Gaussian: the ‘left’ side is strictly zero for negative x, while
the ‘right’ tail is exponential, and thus much fatter than the Gaussian. It is thus
very clear that the CLT does not apply for values of x too far from the mean value.
However, the central region around Nm = Na~! is well described by a Gaussian.
The most probable value (x*) is defined as:

d |
—xM e =, (1.80)
dx

x®

or x* = (N — 1)m. An expansion in x — x* of P(x, N) then gives us:

a?(x —x*)?

logP(x, N) = —K(N—-1)—1logm— SN 1)
Q"}(I—X*)}
40 —xHY, 1.81
3(N—1}2+ (x —x™)", ( )
where
K(N) =logN!+ N —NlogN = 3log(2mN). (1.82)

Hence, to second order in x —x*, P(x, N) is given by a Gaussian of mean (N —1)m
and variance (N — 1)o2. The relative difference between N and N — 1 goes to
zero for large N. Hence, for the Gaussian approximation to be valid, one requires
not only that N be large compared to one, but also that the higher-order terms in
(x — x*) be negligible. The cubic correction is small compared to 1 as long as
alx — x*| < N2, in agreement with the above general statement, Eq. (1.72),
for an elementary distribution with a non-zero third cumulant. Note also that

for x — oo, the exponential behaviour of the Gamma function coincides (up

23 This result can be shown by induction using the definition (Eq. (1.50)).
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32 Probability theory: basic notions

to subleading terms in xV~!) with the asymptotic behaviour of the elementary
distribution P (x)).

Another very instructive example is provided by a distribution which behaves
as a power-law for large arguments, but at the same time has a finite variance to
ensure the validity of the CLT. Consider the following explicit example of a Student
distribution with p = 3:

2a’

Pi(x)) = W,

(1.83)

where qa is a positive constant. This symmetric distribution behaves as a power-law
with 0 = 3 (cf. Eq. (1.14)); all its cumulants of order larger than or equal to three

are infinite. However, its variance is finite and equal to az.
It is useful to compute the characteristic function of this distribution,
Pi(2) = (1 +alze (1.84)
and the first terms of its small 7 expansion, which read:

2.2 3.3
N z°a |z]"a
P ~1 - —
1(2) 5 + 3

+o(zh. (1.85)

The first singular term in this expansion is thus |z|3, as expected from the asymptotic

behaviour of Pi(x1) in x|_4. and the divergence of the moments of order larger than three.
The Nth convolution of Py (x1) thus has the following characteristic function:

~ N r .

P (2) = (1 +alz])Ne ®NEI (1.86)
which, expanded around 7 = 0, gives:
NZZHQ NIZ‘B 3

a 4
t— T oG (1.87)

ANy =1-

Note that the |z|* singularity (which signals the divergence of the moments m, forn = 3)
does not disappear under convolution, even if at the same time P(x, N) converges towards
the Gaussian. The resolution of this apparent paradox is again that the convergence
towards the Gaussian only concerns the centre of the distribution, whereas the tail in x—*
survives for ever (as was mentioned in Section 1.5.3).

As follows from the CLT, the centre of P(x, N) is well approximated, for N
large, by a Gaussian of zero mean and variance Na?:

1 x?
2rNa (_W) '
On the other hand, since the power-law behaviour is conserved upon addition and
that the tail amplitudes simply add (cf. Eq. (1.14)), one also has, for large x’s:

2Na®
P(x,N) ~ a

X— 00 T[‘x4 ’

P(x,N) ~ (1.88)

(1.89)
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1.6 Central limit theorem 33

The above two expressions Eqs (1.88) and (1.89) are not incompatible, since these
describe two very different regions of the distribution P(x, N). For fixed N, there
is a characteristic value xo(N) beyond which the Gaussian approximation for
P(x, N) is no longer accurate, and the distribution is described by its asymptotic
power-law regime. The order of magnitude of xo(N) is fixed by looking at the point
where the two regimes match to one another:

1 o ( x3 )W2Na3 (1.90)
V2nNa P\Tava) ~ Xy ’

One thus finds,
xp(N) = a/NloghN, (1.91)

(neglecting subleading corrections for large N).

This means that the rescaled variable U = X/(a+/N) becomes for large N a
Gaussian variable of unit variance, but this description ceases to be valid as soon
as u ~ ,/log N, which grows very slowly with N. For example, for N equal to a
million, the Gaussian approximation is only acceptable for fluctuations of u of less
than three or four RMS!

Finally, the CLT states that the weight of the regions where P(x, N) substan-
tially differs from the Gaussian goes to zero when N becomes large. For our
example, one finds that the probability that X falls in the tail region rather than
in the central region is given by:

*® 2a°N 1
P_(x0) + Po(xg) = 2/ a - dx o ——
ay/NlogN TTX ~'Nlog’~ N

(1.92)

which indeed goes to zero for large N.

The above arguments are not special to the case ;& = 3 and in fact apply more
generally, as long as ;¢ > 2, i.e. when the variance is finite. In the general case, one
finds that the CLT is valid in the region |x| < xp o /N log N, and that the weight
of the non-Gaussian tails is given by:

P_(xo) +P.(xp) x (1.93)

.
N#/2-1 log“fz N

which tends to zero for large N. However, one should notice that as j approaches
the ‘dangerous’ value u = 2, the weight of the tails becomes more and more
important. For ;© < 2, the whole argument collapses since the weight of the tails
would grow with N. In this case, however, the convergence is no longer towards
the Gaussian, but towards the Lévy distribution of exponent jt.
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34 Probability theory: basic notions

1.6.5 Truncated Lévy distributions

An interesting case is when the elementary distribution Pj(x,) is a truncated
Lévy distribution (TLLD) as defined in Section 1.3.3. The first cumulants of the
distribution defined by Eq. (1.23) read, for 1 < p < 2:

ul at? c3 =0. (1.94)

Cy = (L - 1)
2= p(p )|COSKW2|

The kurtosis k = Ay = q/cg is given by:

_ B-w@—mwlcosmu/2|

Aq
Ju(.lu' - ])ﬂ“&‘”

(1.95)
Note that the case ¢ = 2 corresponds to the Gaussian, for which A4 = 0 as
expected. On the other hand, when oo — 0, one recovers a pure Lévy distribution,
for which ¢, and ¢4 are formally infinite. Finally, if « — oo with a“ar‘”‘2 fixed,
one also recovers the Gaussian.

If one considers the sum of N random variables distributed according to a TLD,
the condition for the CLT to be valid reads (for u < 2):%*

N> N* = = (Na,)7 > ", (1.96)

This condition has a very simple intuitive meaning. A TLD behaves very much
like a pure Lévy distribution as long as x <« «~'. In particular, it behaves as a
power-law of exponent y and tail amplitude A" o a, in the region where x is
large but still much smaller than ¢! (we thus also assume that « is very small). If
N is not too large, most values of x fall in the Lévy-like region. The largest value of
x encountered is thus of order x,,,,, =~ ANV (cf. Eq. (1.42)). If X,y is very small
compared to o~ ", it is consistent to forget the exponential cut-off and think of the
elementary distribution as a pure Lévy distribution. One thus observe a first regime
in N where the typical value of X grows as N'/*, as if & was zero.”> However, as
illustrated in Figure 1.9, this regime ends when X, reaches the cut-oft value ol
this happens precisely when N is of the order of N* defined above. For N > N*,
the variable X progressively converges towards a Gaussian variable of width VN,
at least in the region where |x| < o N3/#/N*'/# The typical amplitude of X thus
behaves (as a function of N) as sketched in Figure 1.9. Notice that the asymptotic
part of the distribution of X (outside the central region) decays as an exponential
for all values of N.

2 One can see by inspection that the other conditions, concerning higher-order cumulants, and which read
N+l A2i > 1, are actually equivalent to the one written here.

25 Note however that the variance of X grows like N for all N. However, the variance is dominated by the cut-off
and, in the region N < N, grossly overestimates the typical values of X, see Section 2.3.2.
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Fig. 1.9. Behaviour of the typical value of X as a function of N for TLD variables. When
N <« N*, x grows as N'/# (dotted line). When N ~ N*, x reaches the value &~! and the
exponential cut-off starts being relevant. When N > N*, the behaviour predicted by the

CLT sets in, and one recovers X o \/ﬁ (plain line).

1.6.6 Conclusion: survival and vanishing of tails

The CLT thus teaches us that if the number of terms in a sum is large, the
sum becomes (nearly) a Gaussian variable. This sum can represent the temporal
aggregation of the daily fluctuations of a financial asset, or the aggregation, in
a portfolio, of different stocks. The Gaussian (or non-Gaussian) nature of this
sum is thus of crucial importance for risk control, since the extreme tails of the
distribution correspond to the most ‘dangerous’ fluctuations. As we have discussed
above, fluctuations are never Gaussian in the far-tails: one can explicitly show
that if the elementary distribution decays as a power-law (or as an exponential,
which formally corresponds to ;1 = oc), the distribution of the sum decays in
the very same manner outside the central region, i.e. much more slowly than the
Gaussian. The CLT simply ensures that these tail regions are expelled more and
more towards large values of X when N grows, and their associated probability is
smaller and smaller. When confronted with a concrete problem, one must decide
whether N is large enough to be satisfied with a Gaussian description of the risks. In
particular, if N is less than the characteristic value N* defined above, the Gaussian
approximation is very bad.
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36 Probability theory: basic notions

1.7 Correlations, dependence and non-stationary models (*)

We have assumed up to now that the random variables were independent and iden-
tically distributed. Although the general case cannot be discussed as thoroughly
as the iid case, it is useful to illustrate how the CLT must be modified on a few
examples, some of which are particularly relevant in the context of financial time
series.

1.7.1 Correlations

Let us assume that the correlation function C; ; (defined as (x;x;) — m?) of the
random variables is non-zero for i # j. We also assume that the process is
stationary, i.e. that C; ; only depends on [i — j|: C; ; = C(|i — j|), with C(c0) = 0.
The variance of the sum can be expressed in terms of the matrix C as:*

. ¢
(%) = Zcf'f:N°2+2NZ(l_ﬁ) C(o), (1.97)

N
ij=l =1

where 02 = C(0). From this expression, it is readily seen that if C(£) decays
faster than 1/¢ for large £, the sum over £ tends to a constant for large N, and
thus the variance of the sum still grows as N, as for the usual CLT. If however
C(£) decays for large ¢ as a power-law £7", with v < 1, then the variance
grows faster than IV, as N2~V —correlations thus enhance fluctuations. Hence, when
v < 1, the standard CLT certainly has to be amended. The problem of the limit
distribution in these cases is however not solved in general. For example, if the
X; are correlated Gaussian variables, it is easy to show that the resulting sum is
also Gaussian, whatever the value of v. Another solvable case is when the X; are
correlated Gaussian variables, but one takes the sum of the squares of the X;’s. This
sum converges towards a Gaussian of width /N whenever v > % but towards a
non-trivial limit distribution of a new kind (i.e. neither Gaussian nor Lévy stable)

when v < 1. In this last case, the proper rescaling factor must be chosen as N'~".

One can also construct anti-correlated random variables, the sum of which
grows slower than +/N. In the case of power-law correlated or anti-correlated
Gaussian random variables, one speaks of ‘fractional Brownian motion’. This

notion was introduced in [Mandelbrot and Van Ness].

1.7.2 Neon-stationary models and dependence

It may happen that the distribution of the elementary random variables Pj(x;),
P>(x2), ..., Py(xy) are not all identical. This is the case, for example, when the

2 - - - . = - - .
260 we again assume in the following. without loss of generality, that the mean m is zero.
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1.7 Correlations, dependence, non-stationary models 37

variance of the random process depends upon time—in financial markets, it is a
well-known fact that the daily volatility is time dependent, taking rather high levels
in periods of uncertainty, and reverting back to lower values in calmer periods. For
example, the volatility of the bond market has been very high during 1994, and
decreased in later years. Similarly, the volatility of stock markets has increased
since August 1997.

If the distribution P; varies sufficiently ‘slowly’, one can in principle measure
some of its moments (for example its mean and variance) over a time scale which
is long enough to allow for a precise determination of these moments, but short
compared to the time scale over which P, is expected to vary. The situation is
less clear if Py varies ‘rapidly’. Suppose for example that Py(x;) is a Gaussian
distribution of variance of, which is itself a random variable. We shall denote as
(---) the average over the random variable oy, to distinguish it from the notation
(- - )& which we have used to describe the average over the probability distribution
Py. If oy varies rapidly, it is impossible to separate the two sources of uncertainty.
Thus, the empirical histogram constructed from the series {x,, x5, ..., xy} leads to
an ‘apparent’ distribution P which is non-Gaussian even if each individual P is
Gaussian. Indeed, from:

_ 1 x2
P(k] :fP(U}mexp(—F) do, (1.98)
one can calculate the kurtosis of P as:
) o?
K=—>—-3=3=-1]. (1.99)
((x7))° (0%)?

Since for any random variable one has o* > (62)% (the equality being reached only
if 0 does not fluctuate at all), one finds that ¥ is always positive. The volatility
fluctuations can thus lead to ‘fat tails’. More precisely, let us assume that the
probability distribution of the RMS, P (o), decays itself for large o as exp(—o©),
¢ > 0. Assuming P; to be Gaussian, it is casy to obtain, using a saddle-point
method (cf. Eq. (1.75)), that for large x one has:

log[P(x)] o —x 7. (1.100)
Since ¢ < 2+ ¢, this asymptotic decay is always much slower than in the Gaussian
case, which corresponds to ¢ — oc. The case where the volatility itself has a
Gaussian tail (¢ = 2) leads to an exponential decay of P (x).

Another interesting case is when o is distributed as a completely asymmetric
Lévy distribution (8 = 1) of exponent 4 < 1. Using the properties of Lévy
distributions, one can then show that P is itself a symmetric Lévy distribution
(B = 0), of exponent equal to 2pt.
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38 Probability theory: basic notions

If the fluctuations of oy are themselves correlated, one observes an interesting
case of dependence. For example, if oy is large, ox+; will probably also be large.
The fluctuation X; thus has a large probability to be large (but of arbitrary sign)
twice in a row. We shall often refer, in the following, to a simple model where x;
can be written as a product €;0y, where ¢ are iid random variables of zero mean
and unit variance, and oy, corresponds to the local ‘scale’ of the fluctuations, which
can be correlated in time. The correlation function of the X; is thus given by:

(x,-xj) ZW(GJ‘GJ‘):SLJ‘O’% (1101)

Hence the X are uncorrelated random variables, but they are not independent since
a higher-order correlation function reveals a richer structure. Let us for example
consider the correlation of X7:

(xPxd) — ) (x]) = oo} —olo? (i # ), (1.102)

which indeed has an interesting temporal behaviour: see Section 2.4.2” However,
2

even if the correlation function cfcr} — 02 decreases very slowly with [i — j|,

one can show that the sum of the X}, obtained as Z;\L] €0} is still governed by
the CLT, and converges for large N towards a Gaussian variable. A way to see this
is to compute the average kurtosis of the sum, . As shown in Appendix A, one
finds the following result:

1 N ¢ \
N = Ko+(3+if0}g(0)+6§ l—ﬁ)g(t} ; (1.103)

where kg is the kurtosis of the variable €, and g(£) the correlation function of the
variance, defined as:

o202 — a7 =02 glli - ji). (1.104)

It is interesting to see that for N = 1, the above formula gives x; = o + (3 +
Ko)g(0) = Ky, which means that even if ky = 0, a fluctuating volatility is enough to
produce some kurtosis. More importantly, one sees that if the variance correlation
tunction g(€) decays with ¢, the kurtosis xy tends to zero with N, thus showing
that the sum indeed converges towards a Gaussian variable. For example, if g(£)
decays as a power-law £7" for large ¢, one finds that for large N:

1 1
.!(NO(W for v=>1; ky o —  for v <1. (1.105)

2 - . ] . . - - . - .
27 Note that for i # j this correlation function can be zero either because o is identically equal to a certain value
a(), or because the fluctuations of & are completely uncorrelated from one time to the next.
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1.8 Central limit theorem for random matrices 39

Hence, long-range correlation in the variance considerably slows down the conver-
gence towards the Gaussian. This remark will be of importance in the following,
since financial time series often reveal long-ranged volatility fluctuations.

1.8 Central limit theorem for random matrices (*)

One interesting application of the CLT concerns the spectral properties of ‘random
matrices’. The theory of random matrices has made enormous progress during the
past 30 years, with many applications in physical sciences and elsewhere. More
recently, it has been suggested that random matrices might also play an important
role in finance: an example is discussed in Section 2.7. It is therefore appropriate
to give a cursory discussion of some salient properties of random matrices. The
simplest ensemble of random matrices is one where all elements of the matrix H
are iid random variables, with the only constraint that the matrix be symmetrical
(H;; = Hj;). One interesting result is that in the limit of very large matrices, the
distribution of its eigenvalues has universal properties, which are to a large extent
independent of the distribution of the elements of the matrix. This is actually
the consequence of the CLT, as we will show below. Let us introduce first some
notation. The matrix H is a square, M x M symmetric matrix. Its eigenvalues are

he, Witha =1, ..., M. The densiry of eigenvalues is defined as:
l Jw
p(k}zﬁgé(k—ka), (1.106)

where § is the Dirac function. We shall also need the so-called ‘resolvent” G(i) of
the matrix H, defined as:

1
Gr‘j(UZ(m)_: (1.107)
ij

where 1 is the identity matrix. The trace of G(X) can be expressed using the
eigenvalues of H as:
M |
TrG(L) = . 1.108
W= = (1.108)

a=1

The ‘trick’ that allows one to calculate o(X) in the large M limit is the following
representation of the § function:

1

X — i€

1

=PP— +imd(x) (e — 0), (1.109)
x

where P P means the principal part. Therefore, p (i) can be expressed as:

JI(TrG(x — ie)). (1.110)

1
) =1
pA) EEQ)ME
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40 Probability theory: basic notions

Our task is therefore to obtain an expression for the resolvent G(1). This can
be done by establishing a recursion relation, allowing one to compute G(x) for
a matrix H with one extra row and one extra column, the elements of which being
Hy;. One then computes GE}?,‘H (A) (the superscript stands for the size of the matrix

H) using the standard formula for matrix inversion:

) minor(i1l — H)g
Gt = —— (1.111)
det(A1 — H)
Now, one expands the determinant appearing in the denominator in minors along
the first row, and then each minor is itself expanded in subminors along their first
column. After a little thought, this finally leads to the following expression for

M"f’l()\')

M
Mi, — Hoo — ) HoiHo, Gl (0. (1.112)
G (A) i.j=1
This relation is general, without any assumption on the H;;. Now, we assume that
the H;;’s are iid random variables, of zero mean and variance equal to {H 2y =
o?/M. This scaling with M can be understood as follows: when the matrix H
acts on a certain vector, each component of the image vector is a sum of M random
variables. In order to keep the image vector (and thus the corresponding eigenvalue)
finite when M — o0, one should scale the elements of the matrix with the factor
1/vVM.

One could also write a recursion relation for Ggf“ , and establish self-
consistently that G,; ~ 1//M fori # j. On the other hand, due to the diagonal
term A, G;; remains finite for M — oc. This scaling allows us to discard all
the terms with i # j in the sum appearing in the right-hand side of Eq. (1.112).
Furthermore, since Hyy ~ l/\/ﬁ, this term can be neglected compared to A. This
finally leads to a simplified recursion relation, valid in the limit M — oo:

1

~h— Y H;GM(). (1.113)
Gg(il;‘i-l(l) Z 0

i=1

Now, using the CLT, we know that the last sum converges, for large M, towards
ol /M Zr_l GM(}). This result is independent of the precise statistics of the Hy;,

provided their variance is finite.”® This shows that Gy converges for large M

towards a well-defined limit G ., which obeys the following limit equation:

1 >
m:l—o Go(R). (1.114)

28 The case of Lévy distributed H;;’s with infinite variance has been investigated in: . Cizeau, J.-P. Bouchaud.
Theory of Lévy matrices, Physical Review, E 50, 1810 (1994).
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1.8 Central limit theorem for random matrices 41

The solution to this second-order equation reads:

]2[,1—\&2—402]. (1.115)

20

(The correct solution is chosen to recover the right limit for & = 0.) Now, the only
way for this quantity to have a non-zero imaginary part when one adds to i a small
imaginary term ie which tends to zero is that the square root itself is imaginary.
The final result for the density of eigenvalues is therefore:

Goo(d) =

p(.) = 402 —)2  for |A| < 20, (1.116)

2mo?

and zero elsewhere. This is the well-known ‘semi-circle’ law for the density
of states, first derived by Wigner. This result can be obtained by a variety of
other methods if the distribution of matrix elements is Gaussian. In finance, one
often encounters correlation matrices C, which have the special property of being
positive definite. C can be written as C = HH, where H' is the matrix transpose of
H. In general, H is a rectangular matrix of size M x N, so C is M x M. In Chapter
2, M will be the number of assets, and N, the number of observations (days). In
the particular case where N = M, the eigenvalues of C are simply obtained from
those of H by squaring them:

Ao = A (1.117)

If one assumes that the elements of H are random variables, the density of
eigenvalues of C can be obtained from:

p(he)dre =2p(h) diy  for Ay > 0, (1.118)

where the factor of 2 comes from the two solutions Ay = £./A¢; this then leads
to:

for 0 < ic < 40?2, (1.119)

and zero elsewhere. For N # M, a similar formula exists, which we shall use in
the following. In the limit N, M — oo, with a fixed ratio Q = N/M = 1, one
has:?

/ max A Ac — )Lmin
o) = 2 VO A)Cc )

2ol Ac
e = o’(1+1/Q+21/0). (1.120)

with A € [Amin, Amax] and where 02/N is the variance of the elements of H,

29 A derivation of Eq. (1.120) is given in Appendix B. See also: A. Edelmann, Eigenvalues and condition
numbers of random matrices, STAM Journal of Matrix Analysis and Applications, 9, 543 (1988).
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Fig. 1.10. Graph of Eq. (1.120) for Q@ = 1, 2 and 5.

equivalently o? is the average eigenvalue of C. This form is actually also valid
for Q < 1, except that there appears a finite fraction of strictly zero eigenvalues,
of weight 1 — Q (Fig. 1.10).

The most important features predicted by Eq. (1.120) are:

e The fact that the lower ‘edge’ of the spectrum is positive (except for @ = 1);
there is therefore no eigenvalue between 0 and A,;,. Near this edge, the density
of eigenvalues exhibits a sharp maximum, except in the limit Q = 1 (A ;;, = 0)
where it diverges as ~ 1/v/A.

e The density of eigenvalues also vanishes above a certain upper edge Amax.

Note that all the above results are only valid in the limit N — oco. For finite N,
the singularities present at both edges are smoothed: the edges become somewhat
blurred, with a small probability of finding eigenvalues above i, and below A,
which goes to zero when N becomes large.?

In Chapter 2, we will compare the empirical distribution of the eigenvalues of the
correlation matrix of stocks corresponding to different markets with the theoretical
prediction given by Eq. (1.120).

0 See e.g. M. J. Bowick, E. Brézin, Universal scaling of the tails of the density of eigenvalues in random matrix
models, Physics Letters, B268, 21 (1991).
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1.9 Appendix A 43

1.9 Appendix A: non-stationarity and anomalous kurtosis

In this appendix, we calculate the average kurtosis of the sum ZL, 8x;, assuming
that the dx; can be written as 0;¢;. The ¢;’s are correlated as:

(Dy —D)(De —D)=D'g(lt —kl)  Di xof. (1.121)

. 4
Let us first compute <( Ll S.r,-) ) where (---) means an average over the ;s

and the overline means an average over the o;’s. If {¢;) = 0, and (e;¢;) = 0 for
i # j,one finds:

N N N
<( Z 3x;3xj3x;\-§x;)> = Z{&xf} +3 Z (8x7)(8x7)

ijki=1 i=1 i#j=1

(3—1—}((]}2 8x7)? +3 Z (312)(578} (1.122)

i#j=1

where we have used the definition of &y (the kurtosis of €). On the other hand, one

must estimate <(Z:L] Sx,-)k> . One finds:

N 2 N o
<(Z§x,—) > = > (8x}) (8x3). (1.123)

i.j=1
Gathering the different terms and using the definition Eq. (1.121), one finally
establishes the following general relation:

1 —2 — g ..
ky = ———= | ND 3+ «ko)(1 +g(0)) =3ND +3D Z gli —=Jjb |,
N2D ij=1
(1.124)
or:

| N ¢
KNZE[K0+(3+K0]g(0}+62(] —ﬁ)g(f)]. (1.125)

=1

1.10 Appendix B: density of eigenvalues for random correlation matrices

This very technical appendix aims at giving a few of the steps of the computation
needed to establish Eq. (1.120). One starts from the following representation of the
resolvent G()):

G = EA —l)w = d—hloun(l ) = logdet(nl ~C) = lzu}
(1.126)
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44 Probability theory: basic notions
Using the following representation for the determinant of a symmetrical matrix A:

1

M
[detA]—'ﬂ:(—) /exp — prJ ij ndzpu (1.127)

2 fj—l i=l

we find, in the case where C = HH':

'| f A.f .
Z(k)z—Zlogfexp ——Z(p, - = ZZ@:% Hiy H i n(j%)

i=l1 - i.j=1 k=1 i=l1

(1.128)
The claim is that the quantity G(A) is self-averaging in the large M limit. So in
order to perform the computation we can replace G (1) for a specific realization of
H by the average over an ensemble of H. In fact, one can in the present case show
that the average of the logarithm is equal, in the large N limit, to the logarithm of
the average. This is not true in general, and one has to use the so-called ‘replica
trick’ to deal with this problem: this amounts to taking the nth power of the quantity
to be averaged (corresponding to n copies (replicas) of the system) and to let n go
to zero at the end of the computation.’!

We assume that the M x N variables H;; are iid Gaussian variable with zero
mean and variance o”/N. To perform the average of the Hj;, we notice that the
integration measure generates a term exp—M Y H3 /(202) that combines with
the H;; Hj. term above. The summation over the index k doesn’t play any role
and we get N copies of the result with the index k dropped. The Gaussian integral
over H;, gives the square-root of the ratio of the determinant of [M§;; /0] and

[M&;; /0% — @ip)]:

—N2

M N
|3 30 D vt | ) = (1- —er,) LS
f;—l k=1
We then introduce a variable ¢ = 02 ¢7/N which we fix using an integral

representation of the delta function:

5 (q P Z({JE/N) - f %exp [ig(q _o? Z(pf/N)] dc.  (1.130)

After performing the integral over the ¢;’s and writing z = 2i¢ /N, we find:
Z(x) = —2]0g— j cxp[ (log(k —0%7) +
—ing

Qlog(1 —q)+qu)] dg dz, (1.131)

31 For more details on this technique, see, for example, M. Mézard, G. Parisi, M. A. Virasoro, Spin Glasses and
Beyond, World Scientific, Singapore, 1987.
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1.11 References 45

where Q = N/M. The integrals over z and g are performed by the saddle point
method, leading to the following equations:

a? 1
= d z=——. 1.132
Qq o M 4 (1.132)

The solution in terms of g (1) is:

01— Q)+ Qr£/(02(1 — Q) + Q1) — 4020)
201 '
We find G (4) by differentiating Eq. (1.131) with respect to A. The computation is
greatly simplified if we notice that at the saddle point the partial derivatives with
respect to the functions ¢ (A) and z(A) are zero by construction. One finally finds:
M MQqG)
r—o2z(x) o2

q(2) (1.133)

G() = (1.134)

We can now use Eq. (1.110) and take the imaginary part of G(A) to find the density
of eigenvalues:

V4020% — (02(1 — Q) + QX)?

1) =
P 2w ha?

(1.135)

which is identical to Eq. (1.120).
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2

Statistics of real prices

Le marché, a son insu, obéit a une loi qui le domine : la loi de la probabilité.!

(Bachelier, Théorie de la spéculation.)

2.1 Aim of the chapter

The easy access to enormous financial databases, containing thousands of asset
time series, sampled at a frequency of minutes or sometimes seconds, allows one
to investigate in detail the statistical features of the time evolution of financial
assets. The description of any kind of data, be it of physical, biological, or financial
origin, requires however an interpretation framework, needed to order and give
a meaning to the observations. To describe necessarily means to simplify, and
even sometimes betray: the aim of any empirical science is to approach reality
progressively, through successive improved approximations.

The goal of the present chapter is to present in this spirit the statistical properties
of financial time series. We shall propose some plausible mathematical modelling,
as faithful as possible (though imperfect) of the observed properties of these
time series. The models we discuss are however not the only possible models;
the available data is often not sufficiently accurate to distinguish, say, between a
truncated Lévy distribution and a Student distribution. The choice between the two
is then guided by mathematical convenience. In this respect, it is interesting to note
that the word ‘modelling’ has two rather different meanings within the scientific
community. The first one, often used in applied mathematics, engineering sciences
and financial mathematics, means that one represents reality using appropriate
mathematical formulae. This is the scope of the present chapter. The second,
more common in the physical sciences, is perhaps more ambitious: it aims at
finding a set of plausible causes sufficient to explain the observed phenomena,

U The market, without knowing it, obeys a law which overwhelms it: the law of probability.

47
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48 Statistics of real prices

and therefore, ultimately, to justify the chosen mathematical description. We will
however only discuss in a cursory way the ‘microscopic’ mechanisms of price
formation and evolution, of adaptive traders’ strategies, herding behaviour between
traders, feedback of price variations onto themselves, etc., which are certainly at
the origin of the interesting statistics that we shall report below. We feel that this
aspect of the problem is still in its infancy, and will evolve rapidly in the coming
years. We briefly mention, at the end of this chapter, two simple models of herding
and feedback, and give references of several very recent articles.
We shall describe several types of market:

e Very liquid, ‘mature’ markets of which we take three examples: a US stock index
(S&P 500), an exchange rate (DEM/$), and a long-term interest rate index (the
German Bund);

e Very volatile markets, such as emerging markets like the Mexican peso;

e Volatility markets: through option markets, the volatility of an asset (which is
empirically found to be time dependent) can be seen as a price which is quoted
on markets (see Chapter 4);

e Interest rate markets, which give fluctuating prices to loans of different maturi-
ties, between which special types of correlations must however exist.

We chose to limit our study to fluctuations taking place on rather short time
scales (typically from minutes to months). For longer time scales, the available
data-set is in general too small to be meaningful. From a fundamental point of
view, the influence of the average return is negligible for short time scales, but
becomes crucial on long time scales. Typically, a stock varies by several per cent
within a day, but its average return is, say, 10% per year, or 0.04% per day. Now,
the “average return’ of a financial asset appears to be unstable in time: the past
return of a stock is seldom a good indicator of future returns. Financial time series
are intrinsically non-stationary: new financial products appear and influence the
markets, trading techniques evolve with time, as does the number of participants
and their access to the markets, etc. This means that taking very long historical
data-set to describe the long-term statistics of markets is a priori not justified. We
will thus avoid this difficult (albeit important) subject of long time scales.

The simplified model that we will present in this chapter, and that will be the
starting point of the theory of portfolios and options discussed in later chapters,
can be summarized as follows. The variation of price of the asset X between time
t =0andt = T can be decomposed as:

T
- (2.1)
T

N-1
x(T) = xo + Z Sxp N =
k=0

where,
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2.1 Aim of the chapter 49

e [In a first approximation, and for T not too large, the price increments dx; are
random variables which are (i) independent as soon as t is larger than a few
tens of minutes (on liquid markets) and (ii) identically distributed, according to
a TLD, Eq. (1.23), P,(éx) = L}f) (6x) with a parameter pt approximately equal
to 2, for all markets.* The exponential cut-off appears ‘earlier’ in the tail for
liquid markets, and can be completely absent in less mature markets.

The results of Chapter 1 concerning sums of random variables, and the
convergence towards the Gaussian distribution, allows one to understand the
observed ‘narrowing’ of the tails as the time interval T increases.

e A refined analysis however reveals important systematic deviations from this
simple model. In particular, the kurtosis of the distribution of x(7') —x decreases
more slowly than 1/N, as it should if the increments §x; were iid random
variables. This suggests a certain form of temporal dependence, of the type
discussed in Section 1.7.2. The volatility (or the variance) of the price increments
dx is actually itself time dependent: this is the so-called ‘heteroskedasticity’
phenomenon. As we shall see below, periods of high volatility tend to persist
over time, thereby creating long-range higher-order correlations in the price
increments. On long time scales, one also observes a systematic dependence
of the variance of the price increments on the price x itself. In the case
where the RMS of the variables dx grows linearly with x, the model becomes
multiplicative, in the sense that one can write:

N-1

T
x(T) = xp | |(l+m-) N=—, (2.2)
k=0 T

where the returns n; have a fixed variance. This model is actually more
commonly used in the financial literature. We will show that reality must
be described by an intermediate model, which interpolates between a purely
additive model, Eq. (2.1), and a multiplicative model, Eq. (2.2).

Studied assets

The chosen stock index is the futures contract on the Standard and Poor’s 500 (S&P 500)
US stock index, traded on the Chicago Mercantile Exchange (CME). During the time
period chosen (from November 1991 to February 1995), the index rose from 375 to 480
points (Fig. 2.1 (top)). Qualitatively, all the conclusions reached on this period of time are
more generally valid, although the value of some parameters (such as the volatility) can
change significantly from one period to the next.

The exchange rate is the US dollar ($) against the German mark (DEM), which is the most
active exchange rate market in the world. During the analysed period, the mark varied

2 Alternatively, a description in terms of Student distributions is often found to be of comparable quality, with
a tail exponent jt ~ 3-5 for the S&P 500, for example.
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Fig. 2.1. Charts of the studied assets between November 1991 and February 1995. The top
chart is the S&P 500, the middle one is the DEM/S, and the bottom one is the long-term

German interest rate (Bund).

between 58 and 75 cents (Fig. 2.1 (middle)). Since the interbank settlement prices are not
available, we have defined the price as the average between the bid and the ask prices.

Finally, the chosen interest rate index is the futures contract on long-term German bonds
(Bund), quoted on the London International Financial Futures and Options Exchange

(LIFFE). 1t is typically varying between 85 and 100 points (Fig. 2.1 (bottom)).

3 There is, on all financial markets, a difference between the bid price and the ask price for a certain asset at a
given instant of time. The difference between the two is called the ‘bid/ask spread’. The more liquid a market,

the smaller the average spread.
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The indices S&P 500 and Bund that we have studied are thus actually futures contracts
(cf. Section 4.2). The fluctuations of futures prices follow in general those of the underlying
contract and it is reasonable to identify the statistical properties of these two objects.
Futures contracts exist with several fixed maturity dates. We have always chosen the most
liquid maturity and suppressed the artificial difference of prices when one changes from
one maturity to the next (roll). We have also neglected the weak dependence of the futures
contracts on the short time interest rate (see Section 4.2): this trend is completely masked
by the fluctuations of the underlying contract itself.

2.2 Second-order statistics
2.2.1 Variance, volatility and the additive—multiplicative crossover

In all that follows, the notation §x represents the difference of value of the asset X
between two instants separated by a time interval t:

8xp = x(t+ 1) —x(1) t =kt (2.3)

In the whole modern financial literature, it is postulated that the relevant variable
is not the increment éx itself, but rather the return n = 8x/x. It is therefore
interesting to study empirically the variance of x, conditioned to a certain value
of the price x itself, which we shall denote (§x?)|,. If the return 5 is the natural
random variable, one should observe that /(§x2)|, = o,x, where o, is constant
(and equal to the RMS of n). Now, in many instances (Figs 2.2 and 2.4). one
rather finds that ,/(8x2)|, is independent of x, apart from the case of exchange
rates between comparable currencies. The case of the CAC 40 is particularly
interesting, since during the period 1991-95, the index went from 1400 to 2100,
leaving the absolute volatility nearly constant (if anything, it is seen to decrease
with x!).

On longer time scales, however, or when the price x rises substantially, the RMS
of éx increases significantly, as to become proportional to x (Fig. 2.3). A way to
model this crossover from an additive to a multiplicative behaviour is to postulate
that the RMS of the increments progressively (over a time scale T,) adapt to the
changes of price of x. Schematically, for T < T, the prices behave additively,
whereas for T > T, multiplicative effects start playing a significant role:*

(x(T)—x0)*) = DT (T« T,):

<10g2(x(T})> = o’T (T>T,). (2.4)

Xp

4 Inthe additive regime, where the variance of the increments can be taken as a constant, we shall write {6.\'2} =
19
oixy = Dr.
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Fig. 2.2. RMS of the increments §x, conditioned to a certain value of the price x, as a
function of x, for the three chosen assets. For the chosen period, only the exchange rate
DEMY/$ conforms to the idea of a multiplicative model: the straight line corresponds to the
best fit (3.r2}|_1.‘x‘ = o1.x. The adequacy of the multiplicative model in this case is related to
the symmetry $/DEM — DEM/$.

On liquid markets, this time scale is on the order of months. A convenient way
to model this crossover is to introduce an additive random variable £(T'), and to
represent the price x(7) as x(T) = xo(1 + {E(T)/q(T))‘“n. ForT «T,,q — 1,
the price process is additive, whereas for T > T, ¢ — oo, which corresponds to
the multiplicative limit.
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Fig. 2.3. RMS of the increments éx, conditioned to a certain value of the price x, as a
function of x, for the S&P 500 for the 1985-98 time period.
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Fig. 2.4. RMS of the increments §x, conditioned to a certain value of the price x, as a
function of x, for the CAC 40 index for the 1991-95 period; it is quite clear that during
that time period (8x2}|, was almost independent of x.

2.2.2 Autocorrelation and power spectrum

The simplest quantity, commonly used to measure the correlations between price
increments, is the temporal two-point correlation function Cj,, defined as:’

| 2
Ci = E{ﬁxkﬁxg}; Dt = (5xj;). (2.5)

5 In principle, one should subtract the average value (dx) = mt = m| from dx. However, if T is small (for
example equal to a day), mt is completely negligible compared to +/ Dt.
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Fig. 2.5. Normalized correlation function Cfff for the three chosen assets, as a function
of the time difference |k — I|t, and for t

5 min. Up to 30 min, some weak but
significant correlations do exist (of amplitude ~0.05). Beyond 30 min, however, the
two-point correlations are not statistically significant.

Figure 2.5 shows this correlation function for the three chosen assets, and for t =

5 min. For uncorrelated increments, the correlation function Cf, should be equal
to zero for k # [, with an RMS equal to 0 = 1/4/N, where N is the number of
independent points used in the computation. Figure 2.5 also shows the 30 error
bars. We conclude that beyond 30 min, the two-point correlation function cannot
be distinguished from zero. On less liquid markets, however, this correlation time is

longer. On the US stock market, for example, this correlation time has significantly
decreased between the 1960s and the 1990s.
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Fig. 2.6. Normalized correlation function C}, for the three chosen assets, as a function of
the time difference |k — /|t, now on a daily basis, T = 1 day. The two horizontal lines at
+0.1 correspond to a 3¢ error bar. No significant correlations can be measured.

On very short time scales, however, weak but significant correlations do exist.
These correlations are however too small to allow profit making: the potential
return is smaller than the transaction costs involved for such a high-frequency
trading strategy, even for the operators having direct access to the markets (cf.
Section 4.1.2). Conversely, if the transaction costs are high, one may expect
significant correlations to exist on longer time scales.

We have performed the same analysis for the daily increments of the three
chosen assets (r = | day). Figure 2.6 reveals that the correlation function is
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Fig. 2.7. Power spectrum S (@) of the time series DEM/S$, as a function of the frequency
w. The spectrum is flat: for this reason one often speaks of white noise, where all
the frequencies are represented with equal weights. This corresponds to uncorrelated
increments.

always within 30 of zero, confirming that the daily increments are not significantly
correlated.

Power Spectrum

Let us briefly mention another equivalent way of presenting the same results, using the
so-called power spectrum, defined as:

N
1 .
_ iw (k=)
S(w) = N E dxpdxpe . (2.6)
k=1
The case of uncorrelated increments leads to a flat power spectrum, §(w) = Sp. Figure

2.7 shows the power spectrum of the DEM/$ time series, where no significant structure
appears.

2.3 Temporal evolution of fluctuations
2.3.1 Temporal evolution of probability distributions

The results of the previous section are compatible with the simplest scenario
where the price increments dx;, are, beyond a certain correlation time, independent
random variables. A much finer test of this assumption consists in studying directly
the probability distributions of the price increments xy — xp = Z?:ul dx; on
different time scales N = T/r. If the increments are independent, then the
distributions on different time scales can be obtained from the one pertaining to
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Table 2.1. Value of the parameters A and a~', as obtained by fitting the data
with a symmetric TLD L', of index u = % Note that both A and «~' have the
dimension of a price variation 8x, and therefore directly characterize the nature of
the statistical fluctuations. The other columns compare the RMS and the kurtosis of
the fluctuations, as directly measured on the data, or via the formulae, Eqs (1.94),
(1.95). Note that in the case DEM/$, the studied variable is 1006x /x. In this last
case, the fit with u = 1.5 is not very good: the calculated kurtosis is found to be
too high. A better fit is obtained with ;t = 1.2

Asset Variance alz Kurtosis k|

A o ! Measured Computed Measured Computed
S&P 500 0.22 221 0.280 0.279 12.7 13.1
Bund 0.0091 0.275 0.00240 0.00242 204 235
DEM/$ 0.0447 0.96 0.0163 0.0164 20.5 41.9

the elementary time scale t (chosen to be larger than the correlation time). More
precisely (see Section 1.5.1), one should have P(x, N) = [Py (dx)]*V.

The elementary distribution P,

The elementary cumulative probability distribution P).(8x) is represented in
Figures 2.8, 2.9 and 2.10. One should notice that the tail of the distribution is broad,
in any case much broader than a Gaussian. A fit using a truncated Lévy distribution
of index pu = %, as given by Eq. (1.23), is quite sat}isfying.6 The corresponding
parameters A and « are given in Table 2.1 (For = 3, the relation between A and
azp reads: azpp = 2/2m A2 /3.) Alternatively. as shown in Figure 1.5, a fit using
a Student distribution would also be acceptable.

We have chosen to fix the value of i to % This reduces the number of adjustable
parameters, and is guided by the following observations:

e A large number of empirical studies on the use of Lévy distributions to fit the
financial market fluctuations report values of y in the range 1.6—-1.8. However,
in the absence of truncation (i.e. with @ = 0), the fit overestimates the tails of the
distribution. Choosing a higher value of 1t partly corrects for this effect, since it
leads to a thinner tail.

e If the exponent . is left as a free parameter, it is in many cases found to be
in the range 1.4-1.6, although sometimes smaller, as in the case of the DEM/$
(n~1.2).

A more refined study of the tails actually reveals the existence of a small asymmetry, which we neglect here.
Therefore, the skewness A3 is taken to be zero.
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Fig. 2.8. Elementary cumulative distribution Pj-. (§x) (for §x > 0) and P; . (§x) (for éx <
0), for the S&P 500, with T = 15 min. The thick line corresponds to the best fit using a

symmetric TLD L:f), of index u = % We have also shown on the same graph the values
of the parameters A and @ ~! as obtained by the fit.

TR

e The particular value © = 3 has a simple theoretical interpretation, which we
shall briefly present in Section 2.8.

In order to characterize a probability distribution using empirical data, it is always better
to work with the cumulative distribution function rather than with the distribution density.
To obtain the latter, one indeed has to choose a certain width for the bins in order to
construct frequency histograms, or to smooth the data using, for example, a Gaussian with
a certain width. Even when this width is carefully chosen, part of the information is lost.
It is furthermore difficult to characterize the tails of the distribution, corresponding to rare
events, since most bins in this region are empty. On the other hand, the construction of the
cumulative distribution does not require to choose a bin width. The trick is to order the
observed data according to their rank, for example in decreasing order. The value x;. of the
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Fig. 2.9. Elementary cumulative distribution for the DEM/S$, for T = 15 min, and best fit

using a symmetric TLD LEEJ, of index ;t = % In this case, it is rather 1008x/x that has
been considered. The fit is not very good, and would have been better with a smaller value
of p ~ 1.2. This increases the weight of very small variations.

kth variable (out of N ) is then such that:

k

P_(xp) = — 2

P (x) = NIl (2.7)
This result comes from the following observation: if one draws an (N + 1)th random
variable from the same distribution, there is an a priori equal probability 1/N + 1 that
it falls within any of the N + 1 intervals defined by the previously drawn variables. The
probability that it falls above the kth one, xi is therefore equal to the number of intervals
beyond xy, which is equal to k, times 1/ N + 1. This is also equal, by definition, to P~ (x).
(See also the discussion in Section 1.4, and Eq. (1.45)). Since the rare events part of the
distribution is a particular interest, it is convenient to choose a logarithmic scale for the
probabilities. Furthermore, in order to check visually the symmetry of the probability
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Fig. 2.10. Elementary cumulative distribution for the Bund, for T = 15 min, and best fit
using a symmetric TLD L}_f"‘ of index 1 = %

distributions, we have systematically used P.(—é8x) for the negative increments, and
P.. (8x) for positive §x.

Maximum likelihood

Suppose that one observes a series of N realizations of the random iid variable X,
[x1, X2, ..., Xy}, drawn with an unknown distribution that one would like to parameterize,
for simplicity, by a single parameter 1. If P,(x) denotes the corresponding probability
distribution, the a priori probability to observe the particular series {x1,x2, ..., Xy} is
proportional to:

Pu(xp)Py(xa) ... Pulxn). (2.8)
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2.3 Temporal evolution of fluctuations 61

The most likely value (* of p is such that this a priori probability is maximized. Taking for
example Py (x) to be a power-law distribution:

"

X
P,(x)= e X = Xp, (2.9)
(with xo known), one has:
oo r v N -
P!-I (x1) PH (x2) ... Ppt () o e}'\ log u+Nplog xg—(14+) 3.0 | logx; . (2.10)

The equation fixing i* is thus, in this case:

J'V

N 4+ Nlogxp Zlogx-—oz:au*——N (2.11)
¥ g X0 — i = =5 : =
mr i=1 2 i= log(xi /x0)
This method can be generalized to several parameters. In the above example, if xq is
unknown, its most likely value is simply given by: xo = min{x1, x2, ..., xn}

Convolutions

The parameterization of P;(5x) as a TLD allows one to reconstruct the distribution
of price increments for all time intervals T = N, if one assumes that the
increments are iid random variables. As discussed in Chapter 1, one then has
P(8x, N) = [P, (6x)]*N. Figure 2.11 shows the cumulative distribution for T = 1
hour, 1 day and 5 days, reconstructed from the one at 15 min, according to
the simple iid hypothesis. The symbols show empirical data corresponding to
the same time intervals. The agreement is acceptable; one notices in particular
the progressive deformation of P(dx, N) towards a Gaussian for large N. The
evolution of the variance and of the kurtosis as a function of N is given in Table
2.2, and compared with the results that one would observe if the simple convolution
rule was obeyed, i.e. o}%, = Nalz and ky = 1/ N. For these liquid assets, the time
scale T* = ;7 which sets the convergence towards the Gaussian is on the order
of days. However, it is clear from Table 2.2 that this convergence is slower than it
ought to be: « decreases much more slowly than the 1 /N behaviour predicted by
an iid hypothesis. A closer look at Figure 2.11 also reveals systematic deviations:
for example the tails at 5 days are distinctively fatter than they should be.

Tails, what tails?

The asymptotic tails of the distributions P(éx, N) are approximately exponential
for all N. This is particularly clear for T = Nt = 1 day, as illustrated in
Figure 2.12 in a semi-logarithmic plot. However, as mentioned in Section 1.3.4 and
in the above paragraph, the distribution of price changes can also be satisfactorily
fitted using Student distributions (which have power-law tails) with rather high
exponents. In some cases, for example the distribution of losses of the S&P
500 (Fig. 2.12), one sees a slight upward bend in the plot of P.(x) versus x
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Fig. 2.11. Evolution of the distribution of the price increments of the S&P 500, P(dx, N)
(symbols), compared with the result obtained by a simple convolution of the elementary
distribution P (8x) (dark lines). The width and the general shape of the curves are rather
well reproduced within this simple convolution rule. However, systematic deviations can
be observed, in particular for large |§x|. This is also reflected by the fact that the kurtosis
kn decreases more slowly than k1 /N, ctf. Table 2.2.

in a linear-log plot. This indeed suggests that the decay could be slower than
exponential. Many authors have proposed that the tails of the distribution of price
changes is a streiched exponential exp(—|dx|°) with ¢ < 1,7 or even a power-law
with an exponent i in the range 3-5.% For example, the most likely value of p

7 See:J. Laherrére, D. Sornette, Stretched exponential distributions in nature and in economy. European Journal
of Physics, B 2. 525 (1998).

8 See e.g. M. M. Dacorogna, U. A. Muller, O. V. Pictet, C. G. de Vries, The distribution of extremal
exchange rate returns in extremely large data sets, Olsen and Associate working paper (1995), available
at http:/f'www.olsen.ch: F. Longin, The asymptotic distribution of extreme stock market returns, Journal of
Business 69, 383 (1996); P. Gopikrishnan, M. Meyer, L. A. Amaral, H. E. Stanley, Inverse cubic law for the
distribution of stock price variations, European Jowrnal of Physics, B 3, 139 (1998).
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Table 2.2. Variance and kurtosis of the distributions P(dx, N) measured or
computed from the variance and kurtosis at time scale T by assuming a simple
convolution rule, leading to oﬁ. = Ncrl2 and xy = k1/N. The kurtosis at scale N
is systematically too large, cf. Section 2.4. We have used N = 4 for T = 1 hour,
N =28forT = 1dayand N = 140 for T = 5 days

Asset Variance 01%, Kurtosis kp
Measured Computed  Measured Computed

S&P 500 (T =1h) 1.06 1.12 6.65 3.18
Bund (T = 1h) 9.49 x 1073  9.68 x 1073 10.9 5.88
DEM/$ (T = 1h) 6.03 x 1072 6.56 x 1072 7.20 5.11
S&P 500 (T = 1 day) 7.97 7.84 1.79 0.45
Bund (T = 1 day) 6.80 x 1072 6.76 x 1072 4.24 0.84
DEM/$ (T = 1 day) 0.477 0.459 1.68 0.73
S&P 500 (T = 5 days) 38.6 39.20 1.85 0.09
Bund (T = 5 days) 0.341 0.338 1.72 0.17
DEM/S (T = 5 days) 2.52 2.30 0.91 0.15

using a Student distribution to fit the daily variations of the S&P in the period
1991-95 is u = 5. Even if it is rather hard to distinguish empirically between an
exponential and a high power-law, this question is very important theoretically. In
particular, the existence of a finite kurtosis requires p to be larger than 4. As far
as applications to risk control, for example, are concerned, the difference between
the extrapolated values of the risk using an exponential or a high power-law fit of
the tails of the distribution is significant, but not dramatic. For example, fitting the
tail of an exponential distribution by a power-law, using 1000 days, leads to an
effective exponent 2= 4. An extrapolation to the most probable drop in 10000
days overestimates the true figure by a factor 1.3. In any case, the amplitude of
very large crashes observed in the century are beyond any reasonable extrapolation
of the tails, whether one uses an exponential or a high power-law. The a priori
probability of observing a 229% drop in a single day, as happened on the New York
Stock Exchange in October 1987, is found in any case to be much smaller than 10~
per day, that is, once every 40 years. This suggests that major crashes are governed
by a specific amplification mechanism, which drives these events outside the scope
of a purely statistical analysis, and require a specific theoretical description.’

9 On this point, see A. Johansen, D. Sornette, Stock market crashes are outliers, European Journal of Physics,
B 1. 141 (1998), and J.-P. Bouchaud, R. Cont, European Journal of Physics, B 6, 543 (1998).
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Fig. 2.12. Cumulative distribution of the price increments (positive and negative), on the
scale of N = 1 day, for the three studied assets, and in a linear-log representation. One
clearly see the approximate exponential nature of the tails, which are straight lines in this
representation.

2.3.2 Multiscaling — Hurst exponent (*)

The fact that the autocorrelation function is zero beyond a certain time scale
t implies that the quantity ([xy — Xx¢]°) grows as DtN. However, measuring
the temporal fluctuations using solely this quantity can be misleading. Take for
example the case where the price increments §x; are independent, but distributed
according to a TLD of index & < 2. As we have explained in Section 1.6.5,
the sum xy — xp = Z?:ul éx; behaves, as long as N &« N* = &, as a
pure ‘Lévy’ sum, for which the truncation is inessential. Its order of magnitude
is therefore xy — xg ~ AN, where A" is the tail parameter of the Lévy
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2.3 Temporal evolution of fluctuations 65

distribution. However, the second moment {[xy — x0]*) = DN, is dominated by
extreme fluctuations, and is therefore governed by the existence of the exponential
truncation which gives a finite value to Dt proportional to A”a/~2. One can check
that as long as N < N*, one has +/DtN > ANV This means that in this case,
the second moment overestimates the amplitude of probable fluctuations. One can
generalize the above result to the gth moment of the price difference, {[xy — xy]9).
If ¢ > p, one finds that all moments grow like N in the regime N <« N*, and
like N9/ if ¢ < p. This is to be contrasted with the sum of Gaussian variables,
where ([xy — x0]?) grows as N9/2 for all ¢ > 0. More generally, one can define
an exponent {; as {[xy — xg]?) & N%.If {,/q is not constant with g, one speaks
of multiscaling. It is not always easy to distinguish true multiscaling from apparent
multiscaling, induced by crossover or finite size effects. For example, in the case
where one sums uncorrelated random variables with a long-range correlation in the
variance, one finds that the kurtosis decays slowly, as ky o« N7", where v < 1 is
the exponent governing the decay of the correlations. This means that the fourth
moment of the difference xy — x; behaves as:

([xn — x0]*) = (DTN)’[3 + kn] ~ N> + N7 (2.12)

If v is small, one can fit the above expression, over a finite range of N, using an
effective exponent {4 < 2, suggesting multiscaling. Similarly, higher moments can
be accurately fitted using an effective exponent ¢, < g/2.'" This is certainly a
possibility that one should keep in mind, in particular when analysing financial
time series (see Mandelbrot, 1998).

Another interesting way to characterize the temporal development of the fluctu-
ations is to study, as suggested by Hurst, the average distance between the ‘high’
and the ‘low” in a window of size t = nt:

H(n) = (max(Xp)k=c+1,e4n — MINXE k=gt 1.640) ¢ (2.13)

The Hurst exponent H is defined from H(n) o n. In the case where the
increments dx; are Gaussian, one finds that H = % (for large n). In the case of
aTLD ofindex 1 < it < 2, one finds:

H(n) x Ant (n < N*)  H@n) o v/Dn (n> NY). (2.14)

The Hurst exponent therefore evolves from an anomalously high value H = 1/
to the ‘normal’ value H = ;— as n increases. Figure 2.13 shows the Hurst function
H(n) for the three liquid assets studied here. One clearly sees that the ‘local’
exponent H slowly decreases from a high value (~0.7, quite close to 1/ = %) at
small times, to H >~ % at long times.

19" For more details on this point, see: J.-P. Bouchaud, M. Potters, M. Meyer, Apparent multifractality in financial
time series, European Journal of Physics, 13, 595 (2000).
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Fig. 2.13. Hurst Function H(n) (up to an arbitrary scaling factor) for the three liquid assets
studied in this chapter, in log—log coordinates. The local slope gives the value of the Hurst
exponent . One clearly sees that this exponent goes from rather a high value for small n
to a value close to % when n increases.

2.4 Anomalous kurtosis and scale fluctuations
For in a minute there are many days.

(Shakespeare, Romeo and Juliet.)

As mentioned above, one sees in Figure 2.11 that P (dx, N) systematically deviates
from [Py(8x1)]™N. In particular, the tails of P(dx, N) are anomalously ‘fat’.
Equivalently, the kurtosis «y of P(dx, N) is higher than «|/N, as one can see
trom Figure 2.14, where «y is plotted as a function of N in log—log coordinates.
Correspondingly, more complex correlations functions, such as that of the
squares of 8xi, reveal a non-trivial behaviour. An interesting quantity to consider
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Fig. 2.14. Kurtosis «y at scale N as a function of N, for the Bund. In this case, the
elementary time scale 7 is 30 min. If the iid assumption were true, one should find
kn = k1/N. The straight line has a slope of —0.43, which means that the decay of

the kurtosis «p is much smaller, as = ZO/NU‘“.

is the amplitude of the fluctuations, averaged over one day, defined as:

Na

1
V:N—dz

k=1

8x;l, (2.15)

where dx; is the 5-min increment, and N; is the number of 5-min intervals within
a day. This quantity is clearly strongly correlated in time (Figs 2.15 and 2.16): the
periods of strong volatility persist far beyond the day time scale.

A simple way to account for these effects is to assume that the elementary
distribution P, also depends of time. One actually observes that the level of activity
on a market (measured by the volume of transactions) on a given time interval

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 81

http://site.ebrary.com/id/10014876?ppg=81

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



68 Statistics of real prices

150 — - . . : : ,

100 1

Y o
so -y , |
ﬂ\| himhw‘ﬁ |w L\““ll “Jh}l" | M ‘l nllllsj U’ 4, WML ,J ‘M |1 ﬂ WHJFlI )M'I:

|

1992 1993 1994 1995
t (years)

¥

Fig. 2.15. Evolution of the ‘volatility’ y as a function of time, for the S&P 500 in the
period 1991-95. One clearly sees periods of large volatility, which persist in time.

can vary quite strongly with time. It is reasonable to think that the scale of the
fluctuations y of the price depends directly on the frequency and volume of the
transactions. A simple hypothesis is that apart from a change of this level of
activity, the mechanisms leading to a change of price are the same, and therefore
that the fluctuations have the same distributions, up to a change of scale. More
precisely, we shall assume that the distribution of price changes is such that:

I 5
Pi(Sx) = —Pm( "") . (2.16)
Vi

where Pip(it) is a certain distribution normalized to 1 and independent of k. The
factor y; represents the scale of the fluctuations: one can define y; and P, such
that f |tr| Pyg(ut) du = 1. The variance Dyt is then proportional to yf.

In the case where Pjj is Gaussian and in the limit of continuous time, the model
defined by Eq. (2.16) is known in the literature as a ‘stochastic volatility’ model.
The model defined by Eq. (2.16) is however more general since Pyg is a priori
arbitrary.

If one assumes that the random variables dx;/yx are independent and of zero
mean, one can show (see Section 1.7.2 and Appendix A) that the average kurtosis
of the distribution P(éx, N) is given, for N > 1, by:

1 N ¢
N = Ko+(3+xu)g(0}+6; 1 —ﬁ)g(ff) . (2.17)
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Fig. 2.16. Temporal correlation function, (¥ yc+¢) — (¥)2, normalized by {yf} — ()2
The value £ = 1 corresponds to an interval of 1 day. For comparison, we have shown a

decay as 1/ NI

where kg is the kurtosis of the distribution Py defined above (cf. Eq. (2.16)), and
g the correlation function of the variance Dyt (or of the yf):

(D = D)(D; — D) = D g(|t — k). (2.18)

The overbar means that one should average over the fluctuations of the D. Tt is
interesting to notice that even in the absence of ‘bare’ kurtosis (kg = 0), volatility
fluctuations are enough to induce a non-zero kurtosis k1 = ko + (3 + x0)g(0).
The empirical data on the kurtosis are well accounted for using the above
formula, with the choice g(£) oc £7", with v = 0.43 in the case of the Bund. This
choice for g(€) is also in qualitative agreement with the decay of the correlations
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70 Statistics of real prices

of the y’s (Fig. 2.16). However, a fit of the data using for g(¢) the sum of two
exponentials exp(—£/£ ) is also acceptable. One finds two rather different time
scales: £; is shorter than a day, and a long correlation time € of a few tens of
days.

One can thus quite clearly see that the scale of the fluctuations (known in the
market as the volatility) changes with time, with a rather long persistence time
scale. This slow evolution of the volatility in turn leads to an anomalous decay
of the kurtosis « as a function of N. As we shall see in Section 4.3.4, this has
direct consequences for the dynamics of the volatility smile observed on option
markets.

2.5 Volatile markets and volatility markets

We have considered, up to now, very liquid markets, where extreme price fluctua-
tions are rather rare. On less liquid/less mature markets, the probability of extreme
moves is much larger. The case of short-term interest rates is also interesting,
since the evolution of, say, the 3-month rate is directly affected by the decision
of central banks to increase or to decrease the day to day rate. As discussed
further in Section 2.6 below, this leads to a rather high kurtosis, related to the
fact that the short rate often does not change at all, but sometimes changes a lot.
The kurtosis of the US 3-month rate is on the order of 20 for daily moves (Fig.
2.17). Emerging markets (such as South America or Eastern Europe markets) are
obviously even wilder. The example of the Mexican peso (MXP) is interesting,
because the cumulative distribution of the daily changes of the rate MXP/§$ reveals
power-law tails, with no obvious truncation, with an exponent & = 1.5 (Fig. 2.18).
This data-set corresponds to the years 1992-94, just before the crash of the peso
(December 1994). A similar value of i« has also been observed, for example, in the
fluctuations of the Budapest Stock Exchange.'!

Another interesting quantity is the volatility itself which varies with time, as
emphasized above. The price of options reflect quite accurately the value of the
historical volatility in a recent past (see Section 4.3.4). Therefore, the volatility
can be considered as a special type of asset, which one can study as such. We
shall define as above the volatility y; as the average over a day of the absolute
value of the 5-min price increments. The autocorrelation function of the y’s is
shown in Figure 2.16; it is found to decrease slowly, perhaps as a power-law
with an exponent v in the range 0.1 to 0.5 (Fig. 2.16).!> The distribution of the

I, Rotyis, G. Vattay, Statistical analysis of the stock index of the Budapest Stock Exchange. in [Kondor and
Kertecz].

12 On this point, see. e.g. [Ding, Arneodo], and Y. Liu et al., The statistical properties of volatility of price
fluctuations, Physical Review, E 60, 1390 (1999).
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Fig. 2.17. Cumulative distribution Pj-. (dx) (for éx = 0) and P~ (dx) (for dx < 0), for
the US 3-month rate (US T-Bills from 1987 to 1996), with 1 = 1 day. The thick line

corresponds to the best fit using a symmetric TLD LL”, of index u = % We have also
shown the corresponding values of A and @', which gives a kurtosis equal to 22.6.

measured volatility ) is shown in Figure 2.19 for the S&P 500, but other assets
lead to similar curves. This distribution decreases slowly for large y’s, again as an
exponential or a high power-law. Several functional forms have been suggested,
such as a log-normal distribution, or an inverse Gamma distribution (see Section
2.9 for a specific model for this behaviour). However, one must keep in mind that
the quantity y is only an approximation for the ‘true’ volatility. The distribution
shown in Figure 2.19 is therefore the convolution of the true distribution with a
measurement error distribution.
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Fig. 2.18. Cumulative distribution 7). (dx) (for dx = 0) and P, - (dx) (for §x < 0), for

the Mexican peso versus $, with 7 = 1 day. The data corresponds to the years 1992-94.
The thick line shows a power-law decay, with a value of 1 = ; The extrapolation to 10

years gives a most probable worst day on the order of —40%.

2.6 Statistical analysis of the forward rate curve (*)

The case of the interest rate curve is particularly complex and interesting, since it
is not the random motion of a point, but rather the consistent history of a whole
curve (corresponding to different loan maturities) which is at stake. The need for
a consistent description of the whole interest rate curve is furthermore enhanced
by the rapid development of interest rate derivatives (options, swaps,'® options on
swaps, etc.) [Hull].

3 . . . . L
13 A swap is a contract where one exchanges fixed interest rate payments with floating interest rate payments.
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Fig. 2.19. Cumulative distribution of the measured volatility y of the S&P, P;~(y). in a
linear-log plot. Note that the tail of this distribution decays more slowly than exponentially.

Present models of the interest rate curve fall into two categories: the first
one is the Vasicek model and its variants, which focuses on the dynamics of
the short-term interest rate, from which the whole curve is reconstructed.'* The
second one, initiated by Heath, Jarrow and Morton takes the full forward rate
curve as dynamic variables, driven by (one or several) continuous-time Brownian
motion, multiplied by a maturity-dependent scale factor. Most models are however
primarily motivated by their mathematical tractability rather than by their ability to
describe the data. For example, the fluctuations are often assumed to be Gaussian,
thereby neglecting ‘fat tail” effects.

Our aim in this section is not to discuss these models in any detail, but
rather to present an empirical study of the forward rate curve (FRC), where we
isolate several important qualitative features that a good model should be asked
to reproduce.'” Some intuitive arguments are proposed to relate the series of
observations reported below.

2.6.1 Presentation of the data and notations

The forward interest rate curve (FRC) at time ¢ is fully specified by the collection
of all forward rates f(t, 0), for different maturities 6. It allows us for example to
calculate the price B(z, #) at time f of a (so-called ‘zero-coupon’) bond, which by
4 Fora compilation of the most important theoretical papers on the interest rate curve, see: [Hughston].

15" This section is based on the following papers: J.-P. Bouchaud, N. Sagna. R. Cont, N. ElKaroui, M. Potters,

Phenomenology of the interest rate curve, Applied Mathematical Finance, 6, 209 (1999) and idem, Strings
attached, Risk Magazine, 11 (7), 56 (1998).
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74 Statistics of real prices

definition pays 1 at time ¢ 4 6. The forward rates are by definition such that they
compound to give B(t, 6):

f
B(t,0) = exp ([ ft, u) du), (2.19)
0

r(r) = f(r,8 = 0) is called the “spot rate’. Note that in the following 8 is always
a time difference; the maturity date T is t + 6.

Our study is based on a data-set of daily prices of Eurodollar futures contracts on
interest rates.'® The interest rate underlying the Eurodollar futures contract is a 90-
day rate, earned on dollars deposited in a bank outside the US by another bank. The
interest in studying forward rates rather than yield curves is that one has a direct
access to a ‘derivative’ (in the mathematical sense: f(t,6) = —d log B(t, 8)/08),
which obviously contains more precise information than the yield curve (defined
from the logarithm of B(7, 8)) itself.

In practice, the futures markets price 3-months forward rates for fixed expiration
dates, separated by 3-month intervals. Identifying 3-months futures rates with
instantaneous forward rates, we have available a sequence of time series on forward
rates f (¢, T; —t), where T; are fixed dates (March, June, September and December
of each year). We can convert these into fixed maturity (multiple of 3-months)
forward rates by a simple linear interpolation between the two nearest points such
that T; —t < 6 < T;; —t. Between 1990 and 1996, one has at least 15 different
Eurodollar maturities for each market date. Between 1994 and 1996, the number of
available maturities rises to 30 (as time grows, longer and longer maturity forward
rates are being traded on future markets); we shall thus often use this restricted
data-set. Since we only have daily data, our reference time scale will be 7 = 1 day.
The variation of f (¢, &) between t and ¢ + t will be denoted as £ (¢, 8):

8f(t,6) = f(t +1,0) — f(2,6). (2.20)

2.6.2 Quantities of interest and data analysis
The description of the FRC has two, possibly interrelated, aspects:

(i) What is, at a given instant of time, the shape of the FRC as a function of
the maturity 67

(ii) What are the statistical properties of the increments §f (¢, ) between time
t and time ¢ + 7, and how are they correlated with the shape of the FRC at
time 1?

16 1n principle forward contracts and futures contracts are not strictly identical —they have different margin
requirements —and one may expect slight differences, which we shall neglect in the following.
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Fig. 2.20. The historical time series of the spot rate »(f) from 1990 to 1996 (top curve)—
actually corresponding to a 3-month future rate (dark line) and of the ‘spread’ s(t) (bottom
curve), defined with the longest maturity available over the whole period 1990-96 on future
markets, i.e. O, = 4 years.

The two basic quantities describing the FRC at time ¢ are the value of the short-
term interest rate f (7, fin) (Where By, is the shortest available maturity), and that
of the short-term/long-term spread s(t) = f(t, Opa) — f(t, Omin)» where 0., is the
longest available maturity. The two quantities r(t) =~ f(f, 6y,), s(f) are plotted
versus time in Figure 2.20:'7 note that:

¢ The volatility o of the spot rate r(f) is equal to O.B%IW.'S This obtained by
averaging over the whole period.

e The spread s(f) has varied between 0.53 and 4.34%. Contrarily to some
European interest rates on the same period, s(f) has always remained positive.
(This however does not mean that the FRC is increasing monotonically, see
below.)

Figure 2.21 shows the average shape of the FRC, determined by averaging
the difference f(f,6) — r(t) over time. Interestingly, this function is rather well
fitted by a simple square-root law. This means that on average, the difference
between the forward rate with maturity # and the spot rate is equal to a+/#, with a
proportionality constant a = 0.85%/,/year which turns out to be nearly identical
to the spot rate volatility. We all propose a simple interpretation of this fact below.

17 We shall from now on take the 3-month rate as an approximation to the spot rate r(f).
I8 The dimension of r should really be % per year, but we conform here to the habit of quoting r simply in %.
Note that this can sometimes be confusing when checking the correct dimensions of a formula.
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Fig. 2.21. The average FRC in the period 1994-96, as a function of the maturity 6. We
have shown for comparison a one parameter fit with a square-root law, a(\/g — ' Bmin)-

The same \/67 behaviour actually extends up to fy,x = 10 years, which is available in the
second half of the time period.

Let us now turn to an analysis of the fluctuations around the average shape. These
fluctuations are actually similar to that of a vibrating elastic string. The average
deviation A(6) can be defined as:

AYO) = (| ft.0) —r@) —s() . (2.21)

and is plotted in Figure 2.22, for the period 1994-96. The maximum of A is reached
for a maturity of 6% = 1 year.

We now turn to the statistics of the daily increments §f (1, 6) of the forward rates,
by calculating their volatility o (6) = /{(8f (¢, #)?} and their excess kurtosis

_6fa.e)
k(@) = 047(9} 3

A very important quantity will turn out to be the following ‘spread’ correlation
function:

(2.22)

<3f('fs Bmin) (Sf (f. 9} - §f(r: 9111in)})

C(g) - Jz(emin)

, (2.23)

which measures the influence of the short-term interest fluctuations on the other
modes of motion of the FRC, subtracting away any trivial overall translation of the
FRC.
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the maximum for 0* = 1 year, for which A > 0.38%. We have also plotted the correlation
function C(f) (defined by Eq. (2.23)) between the daily variation of the spot rate and that of
the forward rate at maturity 8, in the period 1994-96. Again, C(9) is maximum for # = 6%,
and decays rapidly beyond.

Figure 2.23 shows o(#) and «(f). Somewhat surprisingly, o (#), much like
A(6) has a maximum around 6* = 1 year. The order of magnitude of o (8) is
0.05%/+/day, or 0.8%//year. The daily kurtosis « () is rather high (on the order
of 5), and only weakly decreasing with 6.

Finally, C(#) is shown in Figure 2.22; its shape is again very similar to those of
A(6) and o (6), with a pronounced maximum around 6* = | year. This means that
the fluctuations of the short-term rate are amplified for maturities around 1 year.
We shall come back to this important point below.

2.6.3 Comparison with the Vasicek model

The simplest FRC model is a one-factor model due to Vasicek, where the whole
term structure can be ascribed to the short-term interest rate. The latter is assumed
to follow a so-called ‘Ornstein—Uhlenbeck’ (or mean reverting) process defined as:

dr(r)
dt
where rp is an ‘equilibrium’ reference rate, 2 describes the strength of the

reversion towards ry (and is the inverse of the mean reversion time), and &(¢) is
a Gaussian noise, of volatility 1. In its simplest version, the Vasicek model prices

= R2(ro —r(t)) +0§(1), (2.24)
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Fig. 2.23. The daily volatility and kurtosis as a function of maturity. Note the maximum of
the volatility for & = #*, while the kurtosis is rather high, and only very slowly decreasing
with . The two curves correspond to the periods 1990-96 and 199496, the latter period
extending to longer maturities.

a bond maturing at T as the following average:

T
B, T)= ( exp—f r(u)du ), (2.25)
t

where the averaging is over the possible histories of the spot rate between now and
the maturity, where the uncertainty is modelled by the noise &. The computation of
the above average is straightforward when £ is Gaussian, and leads to (using Eq.
(2.19)):

T (1 —e ), (2.26)

F.0)=r@+0o—r) —e ) —
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2.6 Statistical analysis of the FRC 79

The basic results of this model are as follows:
e Since (ry — r(t)) = 0, the average of f(t,#) — r(f) is given by
(f(t,0) —r(t)) = —02/22%(1 —e%%)?, (2.27)

and should thus be negative, at variance with empirical data. Note that in the
limit £26 <« 1, the order of magnitude of this (negative) term is very small:
taking 0 = 1%/ /year and 6 = 1 year, it is found to be equal to 0.005%, much
smaller than the typical differences actually observed on forward rates.

e The volatility o (€) is monotonically decreasing as exp —§26, while the kurtosis
Kk (6) is identically zero (because £ is Gaussian).

e The correlation function C(#) is negative and is a monotonic decreasing function
of its argument, in total disagreement with observations (Fig. 2.22).

e The variation of the spread s(tf) and of the spot rate should be perfectly
correlated, which is not the case (Fig. 2.22): more than one factor is in any case
needed to account for the deformation of the FRC.

An interesting extension of Vasicek’s model designed to fit exactly the ‘initial’ FRC
ft = 0,0) was proposed by Hull and White [Hull]. It amounts to replacing the
above constants 2 and rg by time-dependent functions. For example, ry(t) represents the
anticipated evolution of the ‘reference’ short-term rate itself with time. These functions
can be adjusted to fit f(t = 0, 8) exactly. Interestingly, one can then derive the following

relation:
ar(t) _ af
( % >—(a—9(r.0)>. (2.28)

up to a term of order o> which turns out to be negligible, exactly for the same reason
as explained above. On average, the second term (estimated by taking a finite difference
estimate of the partial derivative using the first two points of the FRC) is definitely found
to be positive, and equal to 0.8%/vear. On the same period (1990-96), however, the spot
rate has decreased from 8.1 to 5.9%, instead of growing by 7 x 0.8% = 5.6%.

In simple terms, both the Vasicek and the Hull-White model mean the following:
the FRC should basically reflect the market’s expectation of the average evolution
of the spot rate (up to a correction of the order of o2, but which turns out to be
very small, see above). However, since the FRC is on average increasing with the
maturity (situations when the FRC is ‘inverted’ are comparatively much rarer),
this would mean that the market systematically expects the spot rate to rise, which
it does not. It is hard to believe that the market persists in error for such a long
time. Hence, the upward slope of the FRC is not only related to what the market
expects on average, but that a systematic risk premium is needed to account for this
increase.
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2.6.4 Risk-premium and the /9 law

The average FRC and value-at-risk pricing
The observation that on average the FRC follows a simple /@ law (i.e. (f(t,8) —
r(t)) o NG)) suggests an intuitive, direct interpretation. At any time #, the market
anticipates either a future rise, or a decrease of the spot rate. However, the
average anticipated trend is, in the long run, zero, since the spot rate has bounded
fluctuations. Hence, the average market’s expectation is that the future spot rate
r(t) will be close to its present value r(f = 0). In this sense, the average FRC
should thus be flat. However, even in the absence of any trend in the spot rate, its
probable change between now and f = ¢ is (assuming the simplest random walk
behaviour) of the order of o +/6, where o is the volatility of the spot rate. Money
lenders agree at time f on a loan at rate f (¢, #), which will run between time t 4 6
and 1 4+ 6 + d@. These money lenders will themselves borrow money from central
banks at the short-term rate prevailing at that date, i.e. 7 (f +6). They will therefore
lose money whenever r(t + 8) > f(t.6). Hence, money lenders take a bet on
the future value of the spot rate and want to be sure not to lose their bet more
frequently than, say, once out of five. Thus their price for the forward rate is such
that the probability that the spot rate at time ¢ 46, r(t 4-6) actually exceeds f (¢, 6)
is equal to a certain number p:

[a.9]
f P(r',t +6|r. t)dr' = p, (2.29)
fi.8)

where P(r', t'|r, 1) is the probability that the spot rate is equal to r' at time t'
knowing that it is ¥ now (at time 7). Assuming that r* follows a simple random
walk centred around r (1) then leads to:'

f(t.0)=r()+ao (0)«/5, a=~2erfc! (2p). (2.30)

which indeed matches the empirical data, with p >~ 0.16.

Hence, the shape of today’s FRC can be thought of as an envelope for the
probable future evolutions of the spot rate. The market appears to price future rates
through a Value at Risk procedure (Eqs. (2.29) and (2.30) —see Chapter 3 below)
rather than through an averaging procedure.

The anticipated trend and the volatility hump

Let us now discuss, along the same lines, the shape of the FRC at a given instant of time,
which of course deviates from the average square root law. For a given instant of time t, the
market actually expects the spot rate to perform a biased random walk. We shall argue that
a consistent interpretation is that the market estimates the trend m(t) by extrapolating the

19 This assumption is certainly inadequate for small times, where large kurtosis effects are present. However, on
the scale of months, these non-Gaussian effects can be considered as small.
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2.6 Statistical analysis of the FRC 81

past behaviour of the spot rate itself. Hence, the probability distribution P(r',t 4+ 0|r, t)
used by the market is not centred around r(t) but rather around:

1+
r(.f)+] m(t,t +u)du, (2.31)
I

where m(t, t') can be called the anticipated bias at time ', seen from time t.
It is reasonable to think that the market estimates m by extrapolating the recent past to
the nearby future. Mathematically, this reads:

mt, t +u) =m ) Z(u) where m(t) = f K(v)dr(t — v)dv, (2.32)
0

and where K (v) is an averaging kernel of the past variations of the spot rate. One may call
Z(u) the trend persistence function; it is normalized such that Z(0) = 1, and describes
how the present trend is expected to persist in the future. Equation (2.29) then gives:

a8
F(t.6) =r(t) + AoV —|—m|(r)j Z(u) du. (2.33)
0

This mechanism is a possible explanation of why the three functions introduced above,
namely A(9), o(0) and the correlation function C(8) have similar shapes. Indeed, taking
Sfor simplicity an exponential averaging kernel K (v) of the form € exp[—ev], one finds:

dm (1) dr(t)
o =M +e? +€£(1), (2.34)

where £(t) is an independent noise of strength a2, added to introduce some extra noise in
the determination of the anticipated bias. In the absence of temporal correlations, one can
compute from the above equation the average value of m%. It is given by:

2 € 2 2
(my) = 5(0 (0) +07). (2.35)

In the simple model defined by Eq. (2.33) above, one finds that the correlation function
C(9) is given by:20

&
C() :ej Z(u)du. (2.36)
0

Using the above result for {m?}, one also finds:

02(0) + o7
A6) =] ———C(O), (2.37)

thus showing that A(0) and C(8) are in this model simply proportional.
Turning now to the volatility o (8), one finds that it is given by:

a?(0) = [1 +C@) 0°(0) +C(6) 0. (2.38)

We thus see that the maximum of o(0) is indeed related to that of C(8). Intuitively, the
reason for the volatility maximum is as follows: a variation in the spot rate changes that

20 In reality, one should also take into account the fact that ao(0) can vary with time. This brings an extra
contribution both to C(#) and to o (9).
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Fig. 2.24. Comparison between the theoretical prediction and the observed daily volatility
of the forward rate at maturity ¢, in the period 1994-96. The dotted line corresponds to Eq.
(2.38) with ¢¢ = 0(0), and the full line is obtained by adding the effect of the variation of
the coefficient ao (0) in Eq. (2.33), which adds a contribution proportional to &.

market anticipation for the trend m|(t). But this change of trend obviously has a larger
effect when multiplied by a longer maturity. For maturities beyond 1 year, however, the
decay of the persistence function comes into play and the volatility decreases again. The
relation Eq. (2.38) is tested against real data in Figure 2.24. An important prediction of
the model is that the deformation of the FRC should be strongly correlated with the past
trend of the spot rate, averaged over a time scale 1/e (see Eq. (2.34)). This correlation has
been convincingly established recently, with 1/e ~ 100 days.?!

2.7 Correlation matrices (*)

As we shall see in Chapter 3, an important aspect of risk management is the
estimation of the correlations between the price movements of different assets.
The probability of large losses for a certain portfolio or option book is dominated
by correlated moves of its different constituents — for example, a position which is
simultaneously long in stocks and short in bonds will be risky because stocks and
bonds move in opposite directions in crisis periods. The study of correlation (or
covariance) matrices thus has a long history in finance, and is one of the cornerstone
of Markowitz’s theory of optimal portfolios (see Section 3.3). However, a reliable
empirical determination of a correlation matrix turns out to be difficult: if one
considers M assets, the correlation matrix contains M (M — 1)/2 entries, which
must be determined from M time series of length N; if N is not very large

2l See: A. Matacz, J.-P. Bouchaud, An empirical study of the interest rate curve, to appear in International
Journal of Theoretical and Applied Finance (2000).
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2.7 Correlation matrices 83

compared to M, one should expect that the determination of the covariances
is noisy, and therefore that the empirical correlation matrix is to a large extent
random, i.e. the structure of the matrix is dominated by ‘measurement’ noise. If
this is the case, one should be very careful when using this correlation matrix in
applications. From this point of view, it is interesting to compare the properties of
an empirical correlation matrix C to a ‘null hypothesis’ purely random matrix as
one could obtain from a finite time series of strictly uncorrelated assets. Deviations
from the random matrix case might then suggest the presence of true information.?
The empirical correlation matrix C is constructed from the time series of price
changes 8x} (where i labels the asset and k the time) through the equation:

l N i .
Ci= Y dxiox]. (2.39)
k=1

In the following we assume that the average value of the éx’s has been subtracted
off, and that the dx’s are rescaled to have a constant unit volatility. The null
hypothesis of independent assets, which we consider now, translates itself in
the assumption that the coefficients 8x] are independent, identically distributed,
random variables.”® The theory of random matrices, briefly expounded in Section
1.8, allows one to compute the density of eigenvalues of C, ps (1), in the limit of
very large matrices: it is given by Eq. (1.120), with Q = N/ M.

Now, we want to compare the empirical distribution of the eigenvalues of the
correlation matrix of stocks corresponding to different markets with the theoretical
prediction given by Eq. (1.120), based on the assumption that the correlation
matrix is random. We have studied numerically the density of eigenvalues of the
correlation matrix of M = 406 assets of the S&P 500, based on daily variations
during the years 1991-96, for a total of N = 1309 days (the corresponding
value of @ is 3.22). An immediate observation is that the highest eigenvalue 1,
is 25 times larger than the predicted Ap.y (Fig. 2.25, inset). The corresponding
eigenvector is, as expected, the ‘market’ itself, i.e. it has roughly equal components
on all the M stocks. The simplest ‘pure noise’ hypothesis is therefore inconsistent
with the value of A;. A more reasonable idea is that the components of the
correlation matrix which are orthogonal to the ‘market’ is pure noise. This amounts
to subtracting the contribution of A, from the nominal value o2 = 1, leading to
o2 =1— Amax/M = 0.85. The corresponding fit of the empirical distribution is
shown as a dotted line in Figure 2.25. Several eigenvalues are still above Ay, and
might contain some information, thereby reducing the variance of the effectively

22 This section is based on the following paper: L. Laloux, P. Cizeau, I.-P. Bouchaud. M. Potters, Random matrix
theory, RISK Magagine, 12, 69 (March 1999).

23 Note that even if the “true’ correlation matrix Cirye is the identity matrix, its empirical determination from a
finite time series will generate non-trivial eigenvectors and eigenvalues.
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Fig. 2.25. Smoothed density of the eigenvalues of C, where the correlation matrix C is
extracted from M = 406 assets of the S&P 500 during the years 1991-96. For comparison
we have plotted the density Eq. (1.120) for Q = 3.22 and o> = 0.85: this is the theoretical
value obtained assuming that the matrix is purely random except for its highest eigenvalue
(dotted line). A better fit can be obtained with a smaller value of o2 = 0.74 (solid line),
corresponding to 74% of the total variance. Inset: same plot, but including the highest
eigenvalue corresponding to the ‘market’, which is found to be ~ 30 times greater than

Amax-

random part of the correlation matrix. One can therefore treat o2 as an adjustable
parameter. The best fit is obtained for 62 = 0.74, and corresponds to the dark
line in Figure 2.25, which accounts quite satisfactorily for 94% of the spectrum,
whereas the 6% highest eigenvalues still exceed the theoretical upper edge by a
substantial amount. These 6% highest eigenvalues are however responsible for 26%
of the total volatility.

One can repeat the above analysis on different stock markets (e.g. Paris, London,
Zurich), or on volatility correlation matrices, to find very similar results. In a first
approximation, the location of the theoretical edge, determined by fitting the part
of the density which contains most of the eigenvalues, allows one to distinguish
‘information’ from ‘noise’.
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2.8 Simple mechanism for anomalous price statistics 85

The conclusion of this section is therefore that a large part of the empirical
correlation matrices must be considered as ‘noise’, and cannot be trusted for risk
management. In the next chapter, we will dwell on Markowitz’ portfolio theory,
which assumes that the correlation matrix is perfectly known. This theory must
therefore be taken with a grain of salt, bearing in mind the results of the present
section.

2.8 A simple mechanism for anomalous price statistics (*)

We have chosen the family of TLD to represent the distribution of price fluctua-
tions. As mentioned above, Student distributions can also account quite well for
the shape of the empirical distributions. Hyperbolic distributions have also been
proposed. The choice of TLDs was motivated by two particular arguments:

e This family of distributions generalizes in a natural way the two classical
descriptions of price fluctuations, since the Gaussian corresponds to = 2,
and the stable Lévy distributions correspond to @ = 0.

e The idea of TLD allows one to account for the deformation of the distributions
as the time horizon N increases, and the anomalously high value of the Hurst
exponent H at small times, crossing over to H = % for longer times.

However, in order to justify the choice of one family of laws over the others, one
needs a microscopic model for price fluctuations where a theoretical distribution
can be computed. In the next two sections, we propose such ‘models’ (in the
physicist’s sense). These models are not very realistic, but only aim at showing
that power-law distributions (possibly with an exponential truncation) appear quite
naturally. Furthermore, the model considered in this section leads to a value of
n= %, close to the one observed on real data.’*

We assume that the price increment dx; reflects the instantaneous offset between
supply and demand. More precisely, if each operator on the market « wants to buy
or sell a certain fixed quantity ¢ of the asset X, one has:

dxp o g Z P (2.40)
o

where ¢, can take the values — 1. O or + 1, depending on whether the operator
« is selling, inactive, or buying. Suppose now that the operators interact among
themselves in an heterogeneous manner: with a small probability p/N (where
N is the total number of operators on the market), two operators o and f are

2 This model was proposed in R. Cont, J.-P. Bouchaud. Herd behavior and aggregate fluctuations in financial
markets, to appear in Journal of Macroeconomic Dynamics (1999). See also: D. Stauffer, P. M. C. de Olivera,
A. T. Bernardes, Monte Carlo simulation of volatility clustering in market model with herding, International
Journal of Theoretical and Applied Finance 2, 83 (1999).
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86 Statistics of real prices

‘connected’, and with probability 1 — p/\/, they ignore each other. The factor
I /N" means that on average, the number of operators connected to any particular
one is equal to p. Suppose finally that if two operators are connected, they come to
agree on the strategy they should follow, i.e. ¢, = @g.

It is easy to understand that the population of operators clusters into groups
sharing the same opinion. These clusters are defined such that there exists a
connection between any two operators belonging to this cluster, although the
connection can be indirect and follow a certain ‘path’ between operators. These
clusters do not all have the same size, i.e. do not contain the same number of
operators. If the size of cluster A is called N (.A), one can write:

8x; o qZN(A)(p(A}, (2.41)
A

where ¢(A) is the common opinion of all operators belonging to .A. The statistics
of the price increments 8x; therefore reduces to the statistics of the size of clusters,
a classical problem in percolation theory [Stauffer]. One finds that as long as p < 1
(less than one ‘neighbour’ on average with whom one can exchange information),
then all N(A)’s are small compared with the total number of traders N'. More
precisely, the distribution of cluster sizes takes the following form in the limit
where | — p =€ <« I

l 4
P(N) Xy Wexp(fezN) N &N, (2.42)

When p = 1 (percolation threshold), the distribution becomes a pure power-law
with an exponent | + & = % and the CLT tells us that in this case, the distribution
of the price increments 8x is precisely a pure symmetric Lévy distribution of index
W= % (assuming that ¢ = =£ | play identical roles, that is if there is no global bias
pushing the price up or down). If p < 1, on the other hand, one finds that the Lévy
distribution is truncated exponentially far in the tail. If p > 1, a finite fraction of
the \ traders have the same opinion: this leads to a crash.

This simple model is interesting but has one major drawback: one has to assume
that the parameter p is smaller than one, but relatively close to one such that
Eq. (2.42) is valid, and non-trivial statistics follows. One should thus explain
why the value of p spontaneously stabilizes in the neighbourhood of the critical
value p = 1. Certain models do actually have this property, of being close to
or at a critical point without having to fine tune any of their parameters. These
models are called ‘self-organized critical’ [Bak et al.]. In this spirit, let us mention
a very recent model of Sethna ef al. [Dahmen and Sethna], meant to describe
the behaviour of magnets in a time dependent magnetic field. Transposed to the
present problem, this model describes the collective behaviour of a set of traders
exchanging information, but having all different a priori opinions. One trader can
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2.9 Simple model with volatility correlations and tails 87

however change his mind and take the opinion of his neighbours if the coupling is
strong, or if the strength of his a priori opinion is weak. All these traders feel an
external ‘field’, which represents for example a long-term expectation of economy
growth or recession, leading to an increased average pessimism or optimism. For a
large range of parameters, one finds that the buy orders (or the sell orders) organize
as avalanches of various sizes, distributed as a power-law with an exponential
cut-off, with u = } = 1.25. If the anticipation of the traders are too similar, or
if the coupling between agents is too strong (strong mimetism), the model again
leads to a crash-like behaviour.

2.9 A simple model with volatility correlations and tails (*)

In this section, we show that a very simple feedback model where past high values
of the volatility influence the present market activity does lead to tails in the
probability distribution and, by construction, to volatility correlations. The present
model is close in spirit to the ARCH models which have been much discussed in
this context. The idea is to write:

Xkl = Xk + 0péy, (2.43)

where & is a random variable of unit variance, and to postulate that the present day
volatility o; depends on how the market feels the past market volatility. If the past
price variations happened to be high, the market interprets this as a reason to be
more nervous and increases its activity, thereby increasing oy. One could therefore
consider, as a toy-model:*’

Or+1 — 09 = (1 — €)(or — 0p) + Le|opdil, (2.44)

which means that the market takes as an indicator of the past day activity the
absolute value of the close to close price difference x;., — x;. Now, writing

oyl = (|o&l) + o€, (2.45)

and going to a continuous-time formulation, one finds that the volatility probability
distribution P (o, t) obeys the following ‘Fokker—Planck’ equation:

dP(o.1) _ GE}[U —0p)P(o,t) n CEGQE)EGEP(U, t)

2.46
ar oo do? ( )

where 6, = o0, — Ae(|o&|), and where ¢? is the variance of the noise A&. The
equilibrium solution of this equation, P.(¢), is obtained by setting the left-hand

25 In the simplest ARCH model. the following equation is rather written in terms of the variance, and second
term of the right-hand side is taken to be equal to: € (o & )2_
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88 Statistics of real prices

side to zero. One finds:
exp(—30/0)
Il I+pe

P(0) = (2.47)
with it = 1 4+ (c*¢)™! > 1. Now, for a large class of distributions for the random
noise &, for example Gaussian, it is easy to show, using a saddle-point calculation,
that the tails of the distribution of dx are power-laws, with the same exponent .
Interestingly, a short-memory market, corresponding to € ~ 1, has much wilder
tails than a long-memory market: in the limit ¢ — 0, one indeed has & — o0. In
other words, over-reactions is a potential cause for power-law tails.

2.10 Conclusion

The above statistical analysis reveals very important differences between the
simple model usually adopted to describe price fluctuations, namely the geometric
(continuous-time) Brownian motion and the rather involved statistics of real price
changes. The geometric Brownian motion description is at the heart of most
theoretical work in mathematical finance, and can be summarized as follows:

e One assumes that the relative returns (rather than the absolute price increments)
are independent random variables.

e One assumes that the elementary time scale T tends to zero; in other words that
the price process is a continuous-time process. It is clear that in this limit, the
number of independent price changes in an interval of time T is N = T/t — oo0.
One is thus in the limit where the CLT applies whatever the time scale T.

If the variance of the returns is finite, then according to the CLT, the only possibility
is that price changes obey a log-normal distribution. The process is also scale
invariant, that is that its statistical properties do not depend on the chosen time
scale (up to a multiplicative factor —see Section 1 .5.3).26

The main difference between this model and real data is not only that the tails of
the distributions are very poorly described by a Gaussian law, but also that several
important time scales appear in the analysis of price changes:

e A ‘microscopic’ time scale T below which price changes are correlated. This
time scale is of the order of several minutes even on very liquid markets.

e A time scale T* = N*r, which corresponds to the time where non-Gaussian
effects begin to smear out, beyond which the CLT begins to operate. This
time scale T* depends much on the initial kurtosis on scale 7. As a first

26 This scale invariance is more general than the Gaussian model discussed here, and is the basic assumption
underlying all “fractal’ descriptions of financial markets. These descriptions fail to capture the existence of
several important time scales that we discuss here.
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approximation, one has: T* = k7, which is equal to several days, even on
very liquid markets.

e A time scale corresponding to the correlation time of the volatility fluctuations,
which is of the order of 10 days to a month or even longer.

e And finally a time scale 7, governing the crossover from an additive model,
where absolute price changes are the relevant random variables, to a multiplica-
tive model, where relative returns become relevant. This time scale is also of the
order of months.

It is clear that the existence of all these time scales is extremely important to
take into account in a faithful representation of price changes, and play a crucial
role both in the pricing of derivative products, and in risk control. Different assets
differ in the value of their kurtosis, and in the value of these different time scales.
For this reason, a description where the volatility is the only parameter (as is the
case for Gaussian models) are bound to miss a great deal of the reality.
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3

Extreme risks and optimal portfolios

1l n’est plus grande folie que de placer son salut dans incertitude."

(Madame de Sévigné, Lettres.)

3.1 Risk measurement and diversification

Measuring and controlling risks is now one of the major concern across all modern
human activities. The financial markets, which act as highly sensitive economical
and political thermometers, are no exception. One of their roles is actually to allow
the different actors in the economic world to trade their risks, to which a price must
therefore be given.

The very essence of the financial markets is to fix thousands of prices all
day long, thereby generating enormous quantities of data that can be analysed
statistically. An objective measure of risk therefore appears to be easier to achieve
in finance than in most other human activities, where the definition of risk is vaguer,
and the available data often very poor. Even if a purely statistical approach to
financial risks is itself a dangerous scientists’ dream (see e.g. Fig. 1.1), it is fair to
say that this approach has not been fully exploited until the very recent years, and
that many improvements can be expected in the future, in particular concerning the
control of extreme risks. The aim of this chapter is to introduce some classical ideas
on financial risks, to illustrate their weaknesses, and to propose several theoretical
ideas devised to handle more adequately the ‘rare events’ where the true financial
risk resides.

3.1.1 Risk and volatility

Financial risk has been traditionally associated with the statistical uncertainty on
the final outcome. Its traditional measure is the RMS, or, in financial terms, the

! Nothing is more foolish than betting on uncertainty for salvation.
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92 Extreme risks and optimal portfolios

volatility. We will note by R(T) the logarithmic return on the time interval T,
defined by:

(3.1)

R(T) = log [xm] :
0
where x(T') is the price of the asset X at time T, knowing that it is equal to xy
today (t+ = 0). When |x(T) — xy| < xq, this definition is equivalent to R(T) =
x(T)/xo — 1.
If P(x, T|xo0.0)dx is the conditional probability of finding x(7') = x within dx,

the volatility o of the investment is the standard deviation of R(T'), defined by:

l 2
o= T f P(x, T|x0, 0)R*(T)dx — (/ P(x,T|xq, 0)R(T) cl.r) . (3.2)
The volatility is in general chosen as an adequate measure of risk associated to a
given investment. We notice however that this definition includes in a symmetrical
way both abnormal gains and abnormal losses. This fact is @ priori curious. The
theoretical foundations behind this particular definition of risk are numerous:

o First, operational; the computations involving the variance are relatively simple
and can be generalized easily to multi-asset portfolios.

e Second, the Central Limit Theorem (CLT) presented in Chapter 1 seems to
provide a general and solid justification: by decomposing the motion from x,
tox(T) in N = T/t increments, one can write:

N-1
x(T)=xp+ Z Sxp  with  Sxp = xpne, (3.3)
k=0
where x; = x(t = kt) and n; is by definition the instantaneous return.
Therefore, we have:

.r(T)] =

R(T) = lag[ =Y log(l+ m). (3.4)
k=0

o
In the classical approach one assumes that the returns 1 are independent variables.
From the CLT we learn that in the limit where N — oo, R(T) becomes a Gaussian
random variable centred on a given average return m7T, with m = (log(1 + nx))/1,
and whose standard deviation is given by o +/T .2 Therefore, in this limit, the entire
probability distribution of R(T) is parameterized by two quantities only, iz and o:
any reasonable measure of risk must therefore be based on o.

-
T,

td—

2 To second order in N < 1, we find: ol = é(:}z} and it = %{:}) -
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3.1 Risk measurement and diversification 93

However, as we have discussed at length in Chapter 1, this is not true for finite
N (which corresponds to the financial reality: there are only roughly N ~ 320
half-hour intervals in a working month), especially in the ‘tails” of the distribution,
corresponding precisely to the extreme risks. We will discuss this point in detail
below.

One can give to o the following intuitive meaning: after a long enough time T,
the price of asset X is given by:

x(T) = xpexp[mT + o/ TE], (3.5)

where & is a Gaussian random variable with zero mean and unit variance. The
quantity oNT gives us the order of magnitude of the deviation from the expected
return. By comparing the two terms in the exponential, one finds that when T >
T = o?/m?, the expected return becomes more important than the fluctuations,
which means that the probability that x (7)) is smaller than xy (and that the actual
rate of return over that period is negative) becomes small. The ‘security horizon’
T increases with 0. For a typical individual stock, one has i = 10% per year and
o = 20% per year, which leads to a T as long as 4 years!

The quality of an investment is often measured by its ‘Sharpe ratio” S, that is,
the ‘signal-to-noise’ ratio of the mean return m T to the fluctuations oNT?3

sszTEJE. (3.6)
o T

The Sharpe ratio increases with the investment horizon and is equal to | precisely
when T = T. Practitioners usually define the Sharpe ratio for a 1-year horizon.

Note that the most probable value of x(T), as given by Eq. (3.5), is equal
to xp exp(mT), whereas the mean value of x(7) is higher: assuming that & is
Gaussian, one finds: xo exp[(m T + o>T /2)]. This difference is due to the fact that
the returns n;, rather than the absolute increments dxi, are iid random variables.
However, if T is short (say up to a few months), the difference between the two
descriptions is hard to detect. As explained in Section 2.2.1, a purely additive
description is actually more adequate at short times. In other words, we shall often
in the following write x(T') as:

.r(T):x(,exp[rﬁT—f—oﬁE]:xo—l—mT—l—vDT{E, (3.7)

where we have introduced the following notations: m = mxy, D = azxoz, which
we shall use throughout the following. The non-Gaussian nature of the random
variable & is therefore the most important factor determining the probability for
extreme risks.

3 tis customary to subtract from the mean return i the risk-free rate in the definition of the Sharpe ratio.
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94 Extreme risks and optimal portfolios

3.1.2 Risk of loss and ‘Value at Risk’ (VaR)

The fact that financial risks are often described using the volatility is actually
intimately related to the idea that the distribution of price changes is Gaussian.
In the extreme case of ‘Lévy fluctuations’, for which the variance is infinite, this
definition of risk would obviously be meaningless. Even in a less risky world, this
measure of risk has three major drawbacks:

¢ The financial risk is obviously associated to losses and not to profits. A definition
of risk where both events play symmetrical roles is thus not in conformity with
the intuitive notion of risk, as perceived by professionals.

e As discussed at length in Chapter 1, a Gaussian model for the price fluctuations
is never justified tor the extreme events, since the CLT only applies in the centre
of the distributions. Now, it is precisely these extreme risks that are of most
concern for all financial houses, and thus those which need to be controlled in
priority. In recent years, international regulators have tried to impose some rules
to limit the exposure of banks to these extreme risks.

e The presence of extreme events in the financial time series can actually lead to a
very bad empirical determination of the variance: its value can be substantially
changed by a few ‘big days’. A bold solution to this problem is simply to remove
the contribution of these so-called aberrant events! This rather absurd solution is
actually quite commonly used.

Both from a fundamental point of view, and for a better control of financial risks,
another definition of risk is thus needed. An interesting notion that we shall develop
now is the probability of extreme losses, or, equivalently, the ‘value-at-risk’ (VaR).
The probability to lose an amount —8x larger than a certain threshold A on a
given time horizon t is defined as:
—A
Plox < —Al=P_[—-A] = ] P (8x)déx, (3.8)
—o
where P;(8x) is the probability density for a price change on the time scale 7. One
can alternatively define the risk as a level of loss (the “VaR’) Ay corresponding
to a certain probability of loss Py,r over the time interval t (for example, Pyar =
1%):

—Avar
/ P (6x)déx = Pyar. (3.9)
—00

This definition means that a loss greater than Ay, over a time interval of ¢ = 1 day
(for example) happens only every 100 days on average for Py,g = 1%. Let us note
that this definition does not take into account the fact that losses can accumulate on
consecutive time intervals 7, leading to an overall loss which might substantially

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 108

http://site.ebrary.com/id/10014876?ppg=108

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



3.1 Risk measurement and diversification 95

T T T T T T T
[ Amax T
/N
y |
= \\
< \
&L \-\ i
AN
A
xa \
-
S 3% 63% S
_-/I L 1 L 1 - e T
A

Fig. 3.1. Extreme value distribution (the so-called Gumbel distribution) P(A, N) when
P;(8x) decreases faster than any power-law. The most probable value, Apy, has a
probability equal to 0.63 to be exceeded.

exceed Awyur. Similarly, this definition does not take into account the value of the
maximal loss ‘inside’ the period 7. In other words, only the closing price over the
period [kz, (k + 1)t] is considered, and not the lowest point reached during this
time interval: we shall come back on these temporal aspects of risk in Section 3.1.3.

More precisely, one can discuss the probability distribution P(A, N) for the
worst daily loss A (we choose T = 1 day to be specific) on a temporal horizon
Tyar = Nt = 1/Py.r- Using the results of Section 1.4, one has:

P(A,N) = N[P-(—M)]¥ ' P (= A). (3.10)

For N large, this distribution takes a universal shape that only depends on the
asymptotic behaviour of P;(dx) for §x — —oo. In the important case for
practical applications where P;(8x) decays faster than any power-law, one finds
that P(A, N) is given by Eq. (1.40), which is represented in Figure 3.1. This
distribution reaches a maximum precisely for A = Avug, defined by Eq. (3.9). The
intuitive meaning of Av,r is thus the value of the most probable worst day over a
time interval Ty,p. Note that the probability for A to be even worse (A > Ay,g) is
equal to 63% (Fig. 3.1). One could define Ay, in such a way that this probability
is smaller, by requiring a higher confidence level, for example 95%. This would
mean that on a given horizon (for example 100 days), the probability that the worst
day is found to be beyond Av,r is equal to 5%. This Av,r then corresponds to the
most probable worst day on a time period equal to 100/0.05 = 2000 days.
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Fig. 3.2. Growth of Ay as a function of the number of days N, for an asset of
daily volatility equal to 1%, with different distribution of price increments: Gaussian,
(symmetric) exponential, or power-law with © = 3 (cf. Eq. (1.83)). Note that for
intermediate N, the exponential distribution leads to a larger VaR than the power-law;
this relation is however inverted for N — oc.

In the Gaussian case, the VaR is directly related to the volatility o. Indeed, for a
Gaussian distribution of RMS equal to 01Xy = 0Xp4/T, and of mean m, one finds
that Ay,r is given by:

Ps - (—@) = Pyar = Avar = V20 x0erfe ™! [2Pyr] —my,  (3.11)
10

(cf. Eq. (1.68)). When m is small, minimizing Av,p is thus equivalent to minimiz-
ing o . It is furthermore important to note the very slow growth of Av,g as a function
of the time horizon in a Gaussian framework. For example, for Tv.,g = 2507 (1
market year), corresponding to Py,r = 0.004, one finds that Av,g >~ 2.650x.
Typically, for t = 1 day, 6; = 1%, and therefore, the most probable worst day
on a market year is equal to —2.65%, and grows only to —3.35% over a 10-year
horizon!

In the general case, however, there is no useful link between o and Avug. In
some cases, decreasing one actually increases the other (see below, Section 3.2.3
and 3.4). Let us nevertheless mention the Chebyshev inequality, often invoked by
the volatility fans, which states that if o exists,

(3.12)
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3.1 Risk measurement and diversification 97

Table 3.1. J.P. Morgan international bond indices (expressed in French Francs),
analysed over the period 1989-93, and worst day observed day in 1994. The
predicted numbers correspond to the most probable worst day Amax. The amplitude
of the worst day with 95% confidence level is easily obtained, in the case of
exponential tails, by multiplying A, by a factor 1.53. The last line corresponds
to a portfolio made of the 11 bonds with equal weight. All numbers are in per cent

Country Worstday  Worstday  Worst day
Log-normal TLD Observed
Belgium 0.92 1.14 1.11
Canada 2.07 2.78 2.76
Denmark 0.92 1.08 1.64
France 0.59 0.74 1.24
Germany 0.60 0.79 1.44
Great Britain 1.59 2.08 2.08
Ttaly 1.31 2.60 4.18
Japan 0.65 0.82 1.08
Netherlands 0.57 0.70 1.10
Spain 1.22 1.72 1.98
United States 1.85 2.31 2.26
Portfolio 0.61 0.80 1.23

This inequality suggests that in general, the knowledge of ¢ is tantamount to that
of Av,r. This is however completely wrong, as illustrated in Figure 3.2. We have
represented A, (= Ayr with Py, = 0.63) as a function of the time horizon
Tvur = Nt for three distributions P, (§x) which all have exactly the same variance,
but decay as a Gaussian, as an exponential, or as a power-law with an exponent
i = 3 (cf. Eq. (1.83)). Of course, the slower the decay of the distribution, the
taster the growth of Av,g when Ty, — oc.

Table 3.1 shows, in the case of international bond indices, a comparison between
the prediction of the most probable worst day using a Gaussian model, or using
the observed exponential character of the tail of the distribution, and the actual
worst day observed the following year. It is clear that the Gaussian prediction is
systematically over-optimistic. The exponential model leads to a number which is
seven times out of 11 below the observed result, which is indeed the expected result
(Fig. 3.1).

Note finally that the measure of risk as a loss probability keeps its meaning even
if the variance is infinite, as for a Lévy process. Suppose indeed that P (5x) decays
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very slowly when dx is very large, as:

AH
P.(5x) ~ M

P |3x|1+“, (3.13)

with u < 2, such that (§x?) = oo. A* is the ‘tail amplitude’ of the distribution
Pr; A gives the order of magnitude of the probable values of §x. The calculation
of Av,r 1s immediate and leads to:

Ay = AP, (3.14)

which shows that in order to minimize the VaR one should minimize A", indepen-
dently of the probability level Py,g.

Note however that in this case, the most probable loss level is not equal to Avyr but
to (1 4 1/u)' " Avar. The previous Gumbel case again corresponds formally to the limit
o — 0oQ.

As we have noted in Chapter 1, A" is actually the natural generalization of the
variance in this case. Indeed, the Fourier transform P:(z) of Pr behaves, for small
z, as exp(—b, A"|z|") for © < 2 (b is a certain numerical factor), and simply as
exp(—D1z%/2) for it > 2, where A% = Dt is precisely the variance of Py.

3.1.3 Temporal aspects: drawdown and cumulated loss
Worst low

A first problem which arises is the following: we have defined P as the probability
for the loss observed at the end of the period [kt, (k + 1)7] to be at least equal
to A. However, in general, a worse loss still has been reached within this time
interval. What is then the probability that the worst point reached within the interval
(the ‘low’) is a least equal to A? The answer is easy for symmetrically distributed
increments (we thus neglect the average return mt < A, which is justified for
small enough time intervals): this probability is simply equal to 27,

PlXjp — Xop < —A] = 2P[Xyg — Xop < —Al (3.15)

where X, is the value at the beginning of the interval (open), X at the end (close)
and Xy, the lowest value in the interval (low). The reason for this is that for each
trajectory just reaching — A between kt and (k + 1)1, followed by a path which
ends up above —A at the end of the period, there is a mirror path with precisely
the same weight which reaches a ‘close’ value beyond —A.* This factor of 2 in
cumulative probability is illustrated in Figure 3.3. Therefore, if one wants to take
into account the possibility of further loss within the time interval of interest in

4 In fact, this argument — which dates back to Bachelier himself (1900)! —assumes that the moment where the
trajectory reaches the point —A can be precisely identified. This is not the case for a discontinuous process,
for which the doubling of P is only an approximate result.
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Fig. 3.3. Cumulative probability distribution of losses (Rank histogram) for the S&P 500
for the period 1989-98. Shown is the daily loss (X — Xop)/ Xop (thin line, left axis) and
the intraday loss (X, — Xop)/ Xop (thick line, right axis). Note that the right axis is shifted
downwards by a factor of two with respect to the left one, so in theory the two lines should
fall on top of one another.

Table 3.2. Average value of the absolute value of the open/close daily returns and
maximum daily range (high—low) over open for S&P 500, DEM/$ and Bund. Note
that the ratio of these two quantities is indeed close to 2. Data from 1989 to 1998

_ 1 Xa—=Xopl| _ | Xhi—X1o
a=("g) s={Bgk) B/

S&P 500 0.472% 0.924% 1.96
DEM/$ 0.392% 0.804% 2.05
Bund 0.250% 0.496% 1.98

the computation of the VaR, one should simply divide by a factor 2 the probability
level Py,r appearing in Eq. (3.9).

A simple consequence of this “factor 2’ rule is the following: the average value of
the maximal excursion of the price during time t, given by the high minus the low
over that period, is equal to twice the average of the absolute value of the variation
from the beginning to the end of the period ({|open—close|)). This relation can be
tested on real data; the corresponding empirical factor is reported in Table 3.2.

Cumiutlated losses

Another very important aspect of the problem is to understand how losses can
accumulate over successive time periods. For example, a bad day can be followed
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100 Extreme risks and optimal portfolios

by several other bad days, leading to a large overall loss. One would thus like to
estimate the most probable value of the worst week, month, etc. In other words,
one would like to construct the graph of Av,r (N 7), for a fixed overall investment
horizon T.

The answer is straightforward in the case where the price increments are
independent random variables. When the elementary distribution P; is Gaussian,
Py; is also Gaussian, with a variance multiplied by N. At the same time, the
number of different intervals of size Nt for a fixed investment horizon T decreases
by a factor N. For large enough 7', one then finds:

A\iﬂR(NL'NT ™ 01 Xo 2N ]Og( (3]6)

e
27Nt )’

where the notation |r means that the investment period is fixed.” The main effect
is then the /N increase of the volatility, up to a small logarithmic correction.

The case where P;(8x) decreases as a power-law has been discussed in Chapter
I: for any N, the far tail remains a power-law (that is progressively ‘eaten up’ by
the Gaussian central part of the distribution if the exponent p of the power-law is
greater than 2, but keeps its integrity whenever ;< 2). For finite N, the largest
moves will always be described by the power-law tail. Its amplitude A" is simply
multiplied by a factor N (cf. Section 1.5.2). Since the number of independent
intervals is divided by the same factor N, one finds:®

NT\*

Avr(NT)|p = A (—) ; (3.17)
Nt

independently of N. Note however that for ;i > 2, the above result is only valid if

Avar (N 7) is located outside of the Gaussian central part, the size of which growing

as o/N (Fig. 3.4). In the opposite case, the Gaussian formula (3.16) should be

used.

One can of course ask a slightly different question, by fixing not the investment
horizon T but rather the probability of occurrence. This amounts to multiplying
both the period over which the loss is measured and the investment horizon by the
same factor N. In this case, one finds that:

Avr(NT) = NT Ay (7). (3.18)

The growth of the value-at-risk with N is thus faster for small 1, as expected. The
case of Gaussian fluctuations corresponds to ;t = 2.

5 One can also take into account the average return, m| = {dx}. In this case, one must subtract to Avap (NT)|1
the quantity —m N (the potential losses are indeed smaller if the average return is positive).

cf. previous footnote.
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3.1 Risk measurement and diversification 101

P(5x)
o

dx

Fig. 3.4, Distribution of cumulated losses for finite N: the central region, of width
~o N'/2_is Gaussian. The tails, however, remember the specific nature of the elementary
distribution P;(dx), and are in general fatter than Gaussian. The point is then to determine
whether the confidence level Pyyr puts Ayyr(N1) within the Gaussian part or far in the
tails.

Drawdowns

One can finally analyse the amplitude of a cumulated loss over a period that is not a
priori limited. More precisely, the question is the following: knowing that the price
of the asset today is equal to x, what is the probability that the lowest price ever
reached in the future will be xp; and how long such a drawdown will last? This
is a classical problem in probability theory [Feller, vol. TI, p. 404]. Let us denote
as Apax = X — Xmin the maximum amplitude of the loss. If P, (5x) decays at least
exponentially when §x — —co, the result is that the tail of the distribution of A,
behaves as an exponential:

max—*0J A 0

Amﬂx
P[Amax} A X exp (_ ) b (319)

where A > 0 is the finite solution of the following equation:

/exp(—%) P.(x)déx = 1. (3.20)

Note that for this last equation to be meaningful, P, (6x) should decrease at least
as exp(—|8x|/Ay) for large negative dx’s. It is clear (see below) that if P;(dx)
decreases as a power-law, say, the distribution of cumulated losses cannot decay
exponentially, since it would then decay faster than that of individual losses!
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102 Extreme risks and optimal portfolios

It is interesting to show how this result can be obtained. Let us introduce the cumulative
distribution P-(A) = f :’ P(Amax) dAmax. The first step of the walk, of size x can either
exceed — A, or stay above it. In the first case, the level A is immediately reached. In
the second case, one recovers the very same problem as initially, but with — A shifted to
— A — éx. Therefore, P-.(A) obeys the following equation:

—A +oo
P_(A) = f P (8x) déx +/ Pr(5xYP- (A + 8x)dbx. (3.21)
-0 —-A

If one can neglect the first term in the right-hand side for large A (which should be self-
consistently checked), then, asymptotically, P (A) should obey the following equation:

+oo
P_(A) =f P, (5x)P- (A + 8x) déx. (3.22)
—-A

Inserting an exponential shape for P- (A) then leads to Eq. (3.20) for Ay, in the limit
A — o0. This result is however only valid if P;(8x) decays sufficiently fast for large
negative 8x s, such that Eq. (3.20) has a non-trivial solution.

Let us study two simple cases:

e For Gaussian fluctuations, one has:

2
P.(5x) = ﬁ exp—%. (3.23)
Equation (3.20) thus becomes:
m D D

Ag gives the order of magnitude of the worst drawdown. One can understand
the above result as follows: Ag is the amplitude of the probable fluctuation over

the characteristic time scale T = D/m? introduced above. By definition, for
times shorter than T, the average return m is negligible. Therefore, one has:
AoV DT = D/m.

If m = 0, the very idea of worst drawdown loses its meaning: if one waits a
long enough time, the price can then reach arbitrarily low values. It is natural
to introduce a quality factor Q that compares the average return m; = mt
to the amplitude of the worst drawdown Ag. One thus has Q = m,/Ay =
2m*t/D = 2r/f". The larger the quality factor, the smaller the time needed
to end a drawdown period.

e The case of exponential tails is important in practice (cf. Chapter 2). Choosing
for simplicity Pr(dx) = (2a)! exp(—a|8x —mt|), the equation for Ay is found

to be:
o? ( mr)
—  expl-—) =1 (3.25)
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3.1 Risk measurement and diversification 103

In the limit where mta < 1 (i.e. that the potential losses over the time interval
T are much larger than the average return over the same period), one finds: Ay =
1/mto’.

e More generally, if the width of P;(8x) is much smaller than Ag, one can expand
the exponential and find that the above equation —(m/Aq) + (D/2A%) = 0 is

still valid.

How long will these drawdowns last? The answer can only be statistical. The
probability for the time of first return 7T to the initial investment level xy, which
one can take as the definition of a drawdown (although it could of course be
immediately followed by a second drawdown), has, for large T, the following form:

r!/? T
P(T)~ T exp —F) (3.26)

The probability for a drawdown to last much longer than T is thus very small.
In this sense, T appears as the characteristic drawdown time. Note that it is not
equal to the average drawdown time, which is on the order of tT, and thus
much smaller than 7. This is related to the fact that short drawdowns have a large
probability: as T decreases, a large number of drawdowns of order t appear, thereby
reducing their average size.

3.1.4 Diversification and utility — satisfaction thresholds

It is intuitively clear that one should not put all his eggs in the same basket. A
diversified portfolio, composed of different assets with small mutual correlations,
is less risky because the gains of some of the assets more or less compensate the
loss of the others. Now, an investment with a small risk and small return must
sometimes be preferred to a high yield, but very risky, investment.

The theoretical justification for the idea of diversification comes again from the
CLT. A portfolio made up of M uncorrelated assets and of equal volatility, with
weight 1/M, has an overall volatility reduced by a factor /M. Correspondingly,
the amplitude (and duration) of the worst drawdown is divided by a factor M (cf.
Eq. (3.24)), which is obviously satisfying.

This qualitative idea stumbles over several difficulties. First of all, the fluctu-
ations of financial assets are in general strongly correlated; this substantially de-
creases the possibility of true diversification, and requires a suitable theory to deal
with these correlations and construct an ‘optimal’ portfolio: this is Markowitz’s
theory, to be detailed below. Furthermore, since price fluctuations can be strongly
non-Gaussian, a volatility-based measure of risk might be unadapted: one should
rather try to minimize the value-at-risk of the portfolio. It is therefore interesting to
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104 Extreme risks and optimal portfolios

look for an extension of the classical formalism, allowing one to devise minimum
VaR portfolios. This will be presented in the next sections.

Now, one is immediately confronted with the problem of defining properly an
‘optimal’ portfolio. Usually, one invokes the rather abstract concept of ‘utility
functions’, on which we shall briefly comment in this section, in particular to show
that it does not naturally accommodate for the notion of value-at-risk.

We will call Wy the wealth of a given operator at time t+ = T. If one
argues that the level of satisfaction of this operator is quantified by a certain
function of Wy 0nly,7 which one usually calls the ‘utility function® U (Wy). This
function is furthermore taken to be continuous and even twice differentiable. The
postulated ‘rational’ behaviour for the operator is then to look for investments
which maximize his expected utility, averaged over all possible histories of price
changes:

(U (Wp)) = j P(Wp)U(Wy)dWs. (327)

The utility function should be non-decreasing: a larger profit is clearly always more
satisfying. One can furthermore consider the case where the distribution P(Wy) is
sharply peaked around its mean value (Wy) = W, + mT. Performing a Taylor
expansion of (U (Wz)} around U (W, + mT) to second order, one deduces that the
utility function must be such that:

d’U
<Y o, (3.28)
dWs

This property reflects the fact that for the same average return, a less risky
investment should always be preferred.

A simple example of utility function compatible with the above constraints is the
exponential function U (W) = — exp[— Wy /wy]. Note that wy has the dimensions
of a wealth, thereby fixing a wealth scale in the problem. A natural candidate is the
initial wealth of the operator, wy o« Wy. If P(Wy) is Gaussian, of mean Wy +mT
and variance DT, one finds that the expected utility is given by:

Wo T D
(U) = —exp [——0 -~ (m- —)] . (3.29)
wo W 2wy

One could think of constructing a utility function with no intrinsic wealth scale
by choosing a power-law: U (W) = (Wy /wy)* with @ < 1 to ensure the correct
convexity. Indeed, in this case a change of w( can be reabsorbed in a change of scale

7 But not of the whole ‘history” of his wealth between f = 0 and 7. One thus assumes that the operator
is insensitive to what can happen between these two dates; this is not very realistic. One could however
generalize the concept of utility function and deal with utility functionals U({W (t)}p<;<T)-
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3.1 Risk measurement and diversification 105

U(AW)

AW

Fig. 3.5. Example of a ‘utility function” with thresholds, where the utility function is non-
continuous. These thresholds correspond to special values for the profit, or the loss, and
are often of purely psychological origin.

of the utility function itself. However, this definition cannot allow for negative final
wealths, and is thus problematic.

Despite the fact that these postulates sound reasonable, and despite the very large
number of academic studies based on the concept of utility function, this axiomatic
approach suffers from a certain number of fundamental flaws. For example, it is not
clear that one could ever measure the utility function used by a given agent on the
markets.® The theoretical results are thus:

e Either relatively weak, because independent of the special form of the utility
function, and only based on its general properties.
¢ Or rather arbitrary, because based on a specific, but unjustified, form for U (Wr).

On the other hand, the idea that the utility function is regular is probably not
always realistic. The satisfaction of an operator is often governed by rather sharp
thresholds, separated by regions of indifference (Fig. 3.5). For example, one can
be in a situation where a specific project can only be achieved if the profit AW =
Wr — Wy exceeds a certain amount. Symmetrically, the clients of a fund manager
will take their money away as soon as the losses exceed a certain value: this is
the strategy of ‘stop-losses’, which fix a level for acceptable losses, beyond which
the position is closed. The existence of option markets (which allow one to limit

& Even the idea that an operator would really optimize his expected utility, and not take decisions partly based on
‘non-rational” arguments, is far from being obvious. On this point, see: M. Marsili, Y. C. Zhang, Fluctuations
around Nash equilibria in Game Theory, Physica A245, 181 (1997).
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106 Extreme risks and optimal portfolios

the potential losses below a certain level —see Chapter 4), or of items the price
of which is $99 rather than $100, are concrete examples of the existence of these
thresholds where ‘satisfaction’ changes abruptly. Therefore, the utility function U
is not necessarily continuous. This remark is actually intimately related to the fact
that the value-at-risk is often a better measure of risk than the variance. Let us
indeed assume that the operator is ‘happy’ if AW > — A and “unhappy’ whenever
AW < —A. This corresponds formally to the following utility function:

U (AW > —A)
= 3.
Ua(AW) I U (AW < —4) (3.30)
with U2 - U] < 0.
The expected utility is then simply related to the loss probability:
—A
Un) = Ui+ -0y [ P@awdaw

—0C

= U —|U;—-Ul|P. (3.31)

Therefore, optimizing the expected utility is in this case tantamount to minimizing
the probability of losing more that A. Despite this rather appealing property, which
certainly corresponds to the behaviour of some market operators, the function
U, (AW) does not satisfy the above criteria (continuity and negative curvature).

Confronted to the problem of choosing between risk (as measured by the
variance) and return, another very natural strategy (for those not acquainted with
utility functions) would be to compare the average return to the potential loss
V/DT. This can thus be thought of as defining a risk-corrected, ‘pessimistic’
estimate of the profit, as:

m, T =mT — ~NDT, (3.32)

where A is an arbitrary coefficient that measures the pessimism (or the risk
aversion) of the operator. A rather natural procedure would then be to look for
the optimal portfolio which maximizes the risk corrected return m;. However, this
optimal portfolio cannot be obtained using the standard utility function formalism.
For example, Eq. (3.29) shows that the object which should be maximized is not
mT — )~/DT but rather mT — DT /2w,. This amounts to comparing the average
profit to the square of the potential losses, divided by the reference wealth scale wy,
a quantity that depends a priori on the operator.” On the other hand, the quantity
mT — /DT is directly related (at least in a Gaussian world) to the value-at-risk
Avgr, cf. Eq. (3.16).

9 This comparison is actually meaningful, since it corresponds to comparing the reference wealth wy to the
order of magnitude of the worst drawdown D/m, cf. Eq. (3.24).
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3.1 Risk measurement and diversification 107

This can be expressed slightly differently: a reasonable objective could be to
maximize the value of the “probable gain’ G, such that the probability of earning
more is equal to a certain probability p:'°

+oo
j P(AW)dAW = p. (3.33)
G

P

In the case where P(AW) is Gaussian, this amounts to maximizing mT — DT,
where J is related to p in a simple manner. Now, one can show that it is impossible
to construct a utility function such that, in the general case, different strategies
can be ordered according to their probable gain G,. Therefore, the concepts of
loss probability, value-at-risk or probable gain cannot be accommodated naturally
within the framework of utility functions. Still, the idea that the quantity which
is of most concern and that should be optimized is the value-at-risk sounds
perfectly rational. This is at least the conceptual choice that we make in the present
monograph.

3.1.5 Conclusion

Let us now recapitulate the main points of this section:

¢ The usual measure of risk through a Gaussian volatility is not always adapted to
the real world. The tails of the distributions, where the large events lie, are very
badly described by a Gaussian law: this leads to a systematic underestimation
of the extreme risks. Sometimes, the measurement of the volatility on historical
data is difficult, precisely because of the presence of these large fluctuations.

e The measure of risk through the probability of loss, or the value-at-risk, on the
other hand, precisely focuses on the tails. Extreme events are considered as the
true source of risk, whereas the small fluctuations contribute to the ‘centre’ of
the distributions (and contribute to the volatility) can be seen as a background
noise, inherent to the very activity of financial markets, but not relevant for risk
assessment.

e From a theoretical point of view, this definition of risk (based on extreme
events) does not easily fit into the classical ‘utility function’ framework. The
minimization of a loss probability rather assumes that there exists well-defined
thresholds (possibly different for each operator) where the ‘utility function’
is discontinuous.!" The concept of ‘value-at-risk’, or probable gain, cannot be
naturally dealt with by using utility functions.

10

Maximizing Gp is thus equivalent to minimizing AyyR such that Pyap = 1 — p.
11

It is possible that the presence of these thresholds actually plays an important role in the fact that the price
fluctuations are strongly non-Gaussian.
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108 Extreme risks and optimal portfolios

3.2 Portfolios of uncorrelated assets

The aim of this section is to explain, in the very simple case where all assets that
can be mixed in a portfolio are uncorrelated, how the trade-off between risk and
return can be dealt with. (The case where some correlations between the asset
fluctuations exist will be considered in the next section). On thus considers a set of
M different risky assets X;,i = 1, ..., M and one risk-less asset Xy. The number
of asset i in the portfolio is n;, and its present value is x?. If the total wealth to
be invested in the portfolio is W, then the n;’s are constrained to be such that
Z}iu n;x? = W. We shall rather use the weight of asset i in the portfolio, defined
as: pi = n,—x}'/W, which therefore must be normalized to one: Z}io pi = 1. The
pi’s can be negative (short positions). The value of the portfolio at time T is given
by: § = Zio nixi(T)y =W Ziu p,-x;(T)/x?. In the following, we will set the
initial wealth W to 1, and redefine each asset i/ in such a way that all initial prices
are equal to x? = 1. (Therefore, the average return m; and variance D; that we will
consider below must be understood as relative, rather than absolute.)

One furthermore assumes that the average return m; is known. This hypothesis
is actually very strong, since it assumes for example that past returns can be used
as estimators of future returns, i.e. that time series are to some extent stationary.
However, this is very far from the truth: the life of a company (in particular
high-tech ones) is very clearly non-stationary; a whole sector of activity can be
booming or collapsing, depending upon global factors, not graspable within a
purely statistical framework. Furthermore, the markets themselves evolve with
time, and it is clear that some statistical parameters do depend on time, and
have significantly shifted over the past 20 years. This means that the empirical
determination of the average return is difficult: volatilities are such that at least
several years are needed to obtain a reasonable signal-to-noise ratio, this time must
indeed be large compared to the ‘security time’ T. But as discussed above, several
years is also the time scale over which the intrinsically non-stationary nature of the
markets starts being important.

One should thus rather understand m; as an ‘expected’ (or anticipated) future
return, which includes some extra information (or intuition) available to the
investor. These m;’s can therefore vary from one investor to the next. The relevant
question is then to determine the composition of an optimal portfolio compatible
with the information contained in the knowledge of the different m;’s.

The determination of the risk parameters is a priori subject to the same caveat.
We have actually seen in Section 2.7 that the empirical determination of the corre-
lation matrices contains a large amount of noise, which blur the true information.
However, the statistical nature of the fluctuations seems to be more robust in time
than the average returns. The analysis of past price changes distributions appears
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3.2 Portfolios of uncorrelated assets 109

to be, to a certain extent, predictive for future price fluctuations. It, however,
sometimes happens that the correlations between two assets change abruptly.

3.2.1 Uncorrelated Gaussian assets

Let us suppose that the variation of the value of the ith asset X; over the time
interval T is Gaussian, centred around m;7T and of variance D;T. The portfolio
P = {po. p1. . ... pu} as awhole also obeys Gaussian statistics (since the Gaussian
is stable). The average return m, of the portfolio is given by:

M M
my, = Zpimr' =my+ ZP;(”‘?;‘ — my), (3.34)

i=0 i=l

where we have used the constraint Zfio p; = 1 to introduce the excess return
m; — my, as compared to the risk-free asset (i = 0). If the X;’s are all independent,
the total variance of the portfolio is given by:

M
D, = Z p>D;, (3.35)

i=1

(since Dy is zero by assumption). If one tries to minimize the variance without any
constraint on the average return m ,, one obviously finds the trivial solution where
all the weight is concentrated on the risk-free asset:

pi=0 (#0):; po=1. (3.36)

On the opposite, the maximization of the return without any risk constraint leads
to a full concentration of the portfolio on the asset with the highest return.

More realistically, one can look for a tradeoff between risk and return, by
imposing a certain average return m ,, and by looking for the less risky portfolio
(for Gaussian assets, risk and variance are identical). This can be achieved by
introducing a Lagrange multiplier in order to enforce the constraint on the average
return:

3(D,r} - _Cmp)

- =0 (i #0), (3.37)
pi pi=p;

while the weight of the risk-free asset p; is determined via the equation ), p; =

I. The value of ¢ is ultimately fixed such that the average value of the return is
precisely m ,. Therefore:

2p{Di = ¢(m; —mo), (3.38)
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Fig. 3.6. ‘Efficient frontier’ in the return/risk plane mp, Dp. In the absence of constraints,
this line is a parabola (dark line). If some constraints are imposed (for example, that all the
weights p; should be positive), the boundary moves downwards (dotted line).

and the equation for ¢:

M 2
¢ (m; —my)
—mg =2y 33
m, — mo 2L D, (3.39)
The variance of this optimal portfolio is therefore given by:
q (mf - mU
p 4 E (3.40)

i=l

The case { = 0 corresponds to the risk-free portfolio p; = 1. The set of all optimal
portfolios is thus described by the parameter ¢, and define a parabola in the m,, D,
plane (compare the last two equations below, and see Fig. 3.6). This line is called
the ‘efficient frontier’; all portfolios must lie above this line. Finally, the Lagrange
multiplier ¢ itself has a direct interpretation: Equation (3.24) tells us that the worst
drawdown is of order D} /2m ,, which is, using the above equations, equal to ¢ /4.

The case where the portfollo only contains risky assets (i.e. p = 0) can be
treated in a similar fashion. One introduces a second Lagrange multiplier £ to deal
with the normalization constraint 3" | p; = 1. Therefore, one finds:

o Cmi+ ¥

= 341
Pr 2DI ( )

The least risky portfolio corresponds to the one such that { = 0 (no constraint on
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3.2 Portfolios of uncorrelated assets 111

the average return):

M
1
pf=—r Z:ZH' (3.42)
)

i=1

Its total variance is given by D, = 1/Z. If all the D;’s are of the same order of
magnitude, one has Z ~ M /D; therefore, one finds the result, expected from the
CLT, that the variance of the portfolio is M times smaller than the variance of the
individual assets.

In practice, one often adds extra constraints to the weights p; in the form of
linear inequalities, such as p7 = 0 (no short positions). The solution is then
more involved, but is still unique. Geometrically, this amounts to looking for the
restriction of a paraboloid to an hyperplane, which remains a paraboloid. The
efficient border is then shifted downwards (Fig. 3.6). A much richer case is when
the constraint is non-linear. For example, on futures markets, margin calls require
that a certain amount of money is left as a deposit, whether the position is long
(pi = 0) or short (p; < 0). One can then impose a leverage constraint, such
that Zf’i] |pil = f. where f is the fraction of wealth invested as a deposit. This
constraint leads to a much more complex problem, similar to the one encountered
in hard optimization problems, where an exponentially large (in M) number of
quasi-degenerate solutions can be found.!?

Effective asset number in a portfolio

It is useful to introduce an objective way to measure the diversification, or the asset
concentration, in a given portfolio. Once such an indicator is available, one can
actually use it as a constraint to construct portfolios with a minimum degree of
diversification. Consider the quantity ¥, defined as:

M
Y= ()% (3.43)

i=l

If a subset M’ < M of all p; are equal to 1/M’, while the others are zero, one
finds Y, = 1/M’. More generally, Y, represents the average weight of an asset in
the portfolio, since it is constructed as the average of p; itself. It is thus natural
to define the ‘effective’ number of assets in the portfolio as Moy = 1/Y5. In order
to avoid an overconcentration of the portfolio on very few assets (a problem often
encountered in practice), one can look for the optimal portfolio with a given value
for ¥,. This amounts to introducing another Lagrange multiplier {”, associated to

12 On this point, see S. Galluccio, J.-P. Bouchaud, M. Potters, Portfolio optimisation, spin-glasses and random
matrix theory, Physica, A259, 449 (1998). and references therein.
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112 Extreme risks and optimal portfolios

Average return

L L L L L
Average return
1 L | L 1

Risk

Fig. 3.7. Example of a standard efficient border £ = 0 (thick line) with four risky assets.
If one imposes that the effective number of assets is equal to 2, one finds the sub-efficient
border drawn in dotted line, which touches the efficient border at ry, r». The inset shows
the effective asset number of the unconstrained optimal portfolio (£ = 0) as a function of
average return. The optimal portfolio satisfying Mg = 2 is therefore given by the standard
portfolio for returns between r| and r> and by the Mg = 2 portfolios otherwise.

Y,. The equation for p} then becomes:

P gmit ¢
pi = “ gn : (3'44)
2(Di +¢")
An example of the modified efficient border is given in Figure 3.7.
More generally, one could have considered the quantity Y, defined as:
M
Vo= (P, (3.45)

i=1

and used it to define the effective number of assets via ¥, = Melﬂ_-q. It is interesting

to note that the quantity of missing information (or entropy) Z associated to the
very choice of the p;’s is related to ¥, when ¢ — 1. Indeed, one has:
Y, |

1‘4
7 =— Z pilogpl = — 7 . (3.46)
i=1 (q g=I

Approximating Y, as a function of ¢ by a straight line thus leads to 7 ~ —Y,.
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3.2 Portfolios of uncorrelated assets 113

3.2.2 Uncorrelated ‘power-law’ assets

As we have already underlined, the tails of the distributions are often non-Gaussian.
In this case, the minimization of the variance is not necessarily equivalent to an
optimal control of the large fluctuations. The case where these distribution tails
are power-laws is interesting because one can then explicitly solve the problem of
the minimization of the value-at-risk of the full portfolio. Let us thus assume that
the fluctuations of each asset X; are described, in the region of large losses, by a
probability density that decays as a power-law:

Aj‘.(
Prox), = R (3.47)

oo oy
with an arbitrary exponent u, restricted however to be larger than 1, such that the
average return is well defined. (The distinction between the cases ;+ < 2, for which
the variance diverges, and & > 2 will be considered below). The coefficient A;
provides an order of magnitude for the extreme losses associated with the asset I
(cf. Eq. (3.14)).

As we have mentioned in Section 1.5.2, the power-law tails are interesting
because they are stable upon addition: the tail amplitudes A} (that generalize the
variance) simply add to describe the far-tail of the distribution of the sum. Using
the results of Appendix C, one can show that if the asset X; is characterized by a
tail amplitude A}, the quantity p; X; has a tail amplitude equal to p!' A”. The tail
amplitude of the global portfolio p is thus given by:

M
Al =" pl'AT, (3.48)

i=1

and the probability that the loss exceeds a certain level A is given by P = Ajj /A",
Hence, independently of the chosen loss level A, the minimization of the loss
probability P requires the minimization of the tail amplitude Al): the optimal
portfolio is therefore independent of A. (This is not true in general: see Section
3.2.4.) The minimization of A, for a fixed average return m , leads to the following
equations (valid if & > 1):

up AL = Cmi —mo), (3.49)

with an equation to fix ¢:

1 M M
e m; — )T
(E) o Bl — (3.50)

22

I
i=1 AT
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114 Extreme risks and optimal portfolios
The optimal loss probability is then given by:

1 .':Ji M — .u‘i

. ¢ (m; —my)

P _.
1

A\

(3.51)

[
i—1 A['“__T

Therefore, the concept of ‘efficient border’ is still valid in this case: in the plane
return/probability of loss, it is similar to the dotted line of Figure 3.6. Eliminating
¢ from the above two equations, one finds that the shape of this line is given by
P* o (m, — mp)". The parabola is recovered in the limit u = 2.

In the case where the risk-free asset cannot be included in the portfolio, the
optimal portfolio which minimizes extreme risks with no constraint on the average
return is given by:

l M _ K
pi=—a Z=) AT, (3.52)
ZAT =

and the corresponding loss probability is equal to:

|
®__ 1—pt 3
P T VAR (3.53)
If all assets have comparable tail amplitudes A; ~ A, one finds that Z ~
M A="/ W=D Therefore, the probability of large losses for the optimal portfolio
is a factor M*~! smaller than the individual probability of loss.

Note again that this result is only valid if @ = 1. If u < 1, one finds that the risk increases
with the number of assets M. In this case, when the number of assets is increased, the
probability of an unfavourable event also increases —indeed, for ;1 < 1 this largest event
is so large that it dominates over all the others. The minimization of risk in this case leads

10 Pipin = 1, Where imin is the least risky asset, in the sense that Aimm = min{A;t L

One should now distinguish the cases ;& < 2 and u > 2. Despite the fact that
the asymptotic power-law behaviour is stable under addition for all values of y,
the tail is progressively ‘eaten up’ by the centre of the distribution for it > 2, since
the CLT applies. Only when 1t < 2 does this tail remain untouched. We thus again
recover the arguments of Section 1.6.4, already encountered when we discussed
the time dependence of the VaR. One should therefore distinguish two cases: if
D, is the variance of the portfolio p (which is finite if p > 2), the distribution
of the changes §S of the value of the portfolio p is approximately Gaussian if
85| = W, and becomes a power-law with a tail amplitude given by
AP beyond this point. The question is thus whether the loss level A that one wishes
to control is smaller or larger than this crossover value:

o If A « /D,T log(M), the minimization of the VaR becomes equivalent to
the minimization of the variance, and one recovers the Markowitz procedure
explained in the previous paragraph in the case of Gaussian assets.
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3.2 Portfolios of uncorrelated assets 115

e If on the contrary A > ,/D,T log(M), then the formulae established in the
present section are valid even when pt = 2.

Note that the growth of ,/log(M) with M is so slow that the Gaussian CLT is
not of great help in the present case. The optimal portfolios in terms of the VaR are
not those with the minimal variance, and vice versa.

3.2.3 ‘Exponential’ assets

Suppose now that the distribution of price variations is a symmetric exponential
around a zero mean value (m; = 0):

P(6x) = - expl—an sl (3.54)

where ar-_] gives the order of magnitude of the fluctuations of X; (more precisely,
«/E/a,- is the RMS of the fluctuations.). The variations of the full portfolio p,
defined as 65 = Z;i, piéx;, are distributed according to:

exp(izés)

|
P(5S) = — dz, 3.55
02 %/HLﬂﬂme (359

where we have used Eq. (1.50) and the fact that the Fourier transform of the
exponential distribution Eq. (3.54) is given by:
|

P(Z}: m.

(3.56)

Now, using the method of residues, it is simple to establish the following expression
for P(8S) (valid whenever the «; / p; are all different):

1 <L o 1 o
P(SS):—E - —ex [——‘|§S|]. (3.57)
2% 0, (L= e/ (papl) T L m

The probability for extreme losses is thus equal to:

~ I _F
PSS < A)A—»_—OO2]_[J.#_ (l — [[pjor*)/aj]z) exp[—a” A, (3.58)
where o™ is equal to the smallest of all ratios «; / p;, and i * the corresponding value
of i. The order of magnitude of the extreme losses is therefore given by 1 /a*. This
is then the quantity to be minimized in a value-at-risk context. This amounts to
choosing the p;’s such that min;{e; / p;} is as large as possible.
This minimization problem can be solved using the following trick. One can
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116 Extreme risks and optimal portfolios

write formally that:

1 i M ;I-t T
— = max I &} = lim P_:u . (3.59)
a* o

i=1 i

This equality is true because in the limit 4 — oo, the largest term of the sum
dominates over all the others. (The choice of the notation jt is on purpose: see
below). For jt large but fixed, one can perform the minimization with respect to the
pi’s, using a Lagrange multiplier to enforce normalization. One finds that:

pi T xal. (3.60)

In the limit ;¢ — oo, and imposing 3 1=, p; = 1, one finally obtains:

# o
pi= = (3.61)
j=19]
which leads to «* = Z}i,a;. In this case, however, all «;/p; are equal to

a* and the result Eq. (3.57) must be slightly altered. However, the asymptotic
exponential fall-off, governed by «*, is still true (up to polynomial corrections:
cf. Section 1.6.4). One again finds that if all the ¢;’s are comparable, the potential
losses, measured through 1 /e*, are divided by a factor M.

Note that the optimal weights are such that p} o @; if one tries to minimize
the probability of extreme losses, whereas one would have found p} oc o7 if the
goal was to minimize the variance of the portfolio, corresponding to u = 2 (cf.
Eq. (3.42)). In other words, this is an explicit example where one can sce that
minimizing the variance actually increases the value-at-risk.

Formally, as we have noticed in Section 1.3.4, the exponential distribution corresponds
to the limit i — oo of a power-law distribution: an exponential decay is indeed more
rapid than any power-law. Technically, we have indeed established in this section that the
minimization of extreme risks in the exponential case is identical to the one obtained in the
previous section in the limit i — oo (see Eq. (3.52)).

3.2.4 General case: optimal portfolio and VaR (™)

In all of the cases treated above, the optimal portfolio is found to be independent of
the chosen loss level A. For example, in the case of assets with power-law tails, the
minimization of the loss probability amounts to minimizing the tail amplitude A’
independently of A. This property is however not true in general, and the optimal
portfolio does indeed depend on the risk level A, or, equivalently, on the temporal
horizon over which risk must be ‘tamed’. Let us for example consider the case
where all assets are power-law distributed, but with a tail index p; that depends on
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3.3 Portfolios of correlated assets 117

the asset X;. The probability that the portfolio p experiences of loss greater than A
is given, for large values of A, by:!?

Hi

AL A
PES < —A) =) pl"

]
> P i (3.62)
i=

Looking for the set of p;’s which minimizes the above expression (without
constraint on the average return) then leads to:

1 1
1 [ AM yET M s g T
o | —— ZzZ = —_— . 3.63
Pir=7 (u,,-Af.‘) Z(MF‘) (369

i=1
This example shows that in the general case, the weights p;* explicitly depend on
the risk level A. If all the u;’s are equal, A" factors out and disappears from the
pi’s.
Another interesting case is that of weakly non-Gaussian assets, such that the first

correction to the Gaussian distribution (proportional to the kurtosis k; of the asset X;)
is enough to describe faithfully the non-Gaussian effects. The variance of the full portfolio

is given by Dp = Efi, pr,' while the kurtosis is equal to: kp =3 _,_, p?D?K;/Df,. The
probability that the portfolio plummets by an amount larger than A is therefore given by:

A K A
PGS < -A)~Pgo | —— |+ 20| — ). 3.64
(3S < —A)=Pg ( ,_DPT) T ( D,,T) (3.64)

where Pg- is related to the error function (cf. Section 1.6.3) and
(u® = 3u). (3.65)

To first order in kurtosis, one thus finds that the optimal weights p} (without fixing the
average return) are given by:

! =13 N
pr= ¢ h(—A ) (3.66)

2D; D} /DT

where h is another function, positive for large arguments, and t' is fixed by the condition
E,—‘il pi = 1. Hence, the optimal weights do depend on the risk level A, via the kurtosis
of the distribution. Furthermore, as could be expected, the minimization of extreme risks
leads to a reduction of the weights of the assets with a large kurtosis k;.

3.3 Portfolios of correlated assets

The aim of the previous section was to introduce, in a somewhat simplified
context, the most important ideas underlying portfolio optimization, in a Gaussian
world (where the variance is minimized) or in a non-Gaussian world (where

13 The following expression is valid only when the subleading corrections to Eq. (3.47) can safely be neglected.
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118 Extreme risks and optimal portfolios

the quantity of interest is the value-at-risk). In reality, the fluctuations of the
different assets are often strongly correlated (or anti-correlated). For example, an
increase of short-term interest rates often leads to a drop in share prices. All the
stocks of the New York Stock Exchange behave, to a certain extent, similarly.
These correlations of course modify completely the composition of the optimal
portfolios, and actually make diversification more difficult. In a sense, the number
of effectively independent assets is decreased from the true number of assets M.

3.3.1 Correlated Gaussian fluctuations

Let us first consider the case where all the fluctuations §x; of the assets X; are
Gaussian, but with arbitrary correlations. These correlations are described in terms
of a (symmetric) correlation matrix C;;, defined as:

C”‘ = ((SX;SXJ'} —mimgj. (367)

This means that the joint distribution of all the fluctuations 8x|, dxa, ..., dxp is
given by:

1
P(5x1,8x2,...,8xy) o exp —3 Z(ij — m;)(C"),—J,—(Sx; —mj)|, (3.68)
ij

where the proportionality factor is fixed by normalization and is equal to
1/ (2m)N det C, and (Cc! )ij denotes the elements of the matrix inverse of C.

An important property of correlated Gaussian variables is that they can be
decomposed into a weighted sum of independent Gaussian variables e,, of mean
zero and variance equal to Dy:

M
Sxi=mi+ Y Oiata  (ats) =8apDa. (3.69)
a=1
The {e,} are usually referred to as the ‘explicative factors’ (or principal com-
ponents) for the asset fluctuations. They sometimes have a simple economic
interpretation.
The coefficients O;, give the weight of the factor ¢, in the evolution of the asset
X;. These can be related to the correlation matrix Cj; by using the fact that the
{eq}’s are independent. This leads to:

M M
Cr'j = Z Oia Ojb(eﬂeb} = Z Oa'anﬂDa- (3.70)

a.b=1 a=l

or, seen as a matrix equality: C = O DO7, where O denotes the matrix transposed
of O and D the diagonal matrix obtained from the D,’s. This last expression shows
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3.3 Portfolios of correlated assets 119

that the D,’s are the eigenvalies of the matrix C;;, whereas O is the orthogonal
matrix allowing one to go from the set of assets i’s to the set of explicative factors
€q.

The fluctuations 6§ of the global portfolio p are then also Gaussian (since 8 is a
weighted sum of the Gaussian variables ¢,), of meanm, = Z:i] pi(m; —mo)+my
and variance:

M
D, =" pipCy. (3.71)

ij=1
The minimization of D, for a fixed value of the average return m, (and with the
possibility of including the risk-free asset X)) leads to an equation generalizing Eq.

(3.38):
M
23 Cypj = tm; —my), (3.72)
=1
which can be inverted as:
cH
pi = E;C,.;‘(mj — mo). (3.73)

This is Markowitz’s classical result (cf. [Markowitz, Elton and Gruber]).
In the case where the risk-free asset is excluded, the minimum variance portfolio
is given by:

M M
p;‘:%ZCJI Z= ZC,;'. (3.74)
i=1 ij=1

Actually, the decomposition, Eq. (3.69), shows that, provided one shifts to the
basis where all assets are independent (through a linear combination of the original
assets), all the results obtained above in the case where the correlations are absent
(such as the existence of an efficient border, etc.) are still valid when correlations
are present.

In the more general case of non-Gaussian assets of finite variance, the total
variance of the portfolio is still given by: Zﬁ:l pip;iCij, where Cj; is the
correlation matrix. If the variance is an adequate measure of risk, the composition
of the optimal portfolio is still given by Eqs (3.73) and (3.74). Let us however
again emphasize that, as discussed in Section 2.7, the empirical determination of
the correlation matrix C;; is difficult, in particular when one is concerned with the
small eigenvalues of this matrix and their corresponding eigenvectors.

The ideas developed in Section 2.7 can actually be used in practice to reduce the real risk

of optimized portfolios. Since the eigenstates corresponding to the ‘noise band’ are not
expected to contain real information, one should not distinguish the different eigenvalues
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120 Extreme risks and optimal portfolios

and eigenvectors in this sector. This amounts to replacing the restriction of the empirical
correlation matrix to the noise band subspace by the identity matrix with a coefficient such
that the trace of the matrix is conserved (i.e. suppressing the measurement broadening
due to a finite observation time). This ‘cleaned’ correlation matrix, where the noise has
been (at least partially) removed, is then used to construct an optimal portfolio. We have
implemented this idea in practice as follows. Using the same data sets as above, the
total available period of time has been divided into two equal sub-periods. We determine
the correlation matrix using the first sub-period, ‘clean’ it, and construct the family of
optimal portfolios and the corresponding efficient frontiers. Here we assume that the
investor has perfect predictions on the future average returns m;, i.e. we take for m; the
observed return on the next sub-period. The results are shown in Figure 3.8: one sees very
clearly that using the empirical correlation matrix leads to a dramatic underestimation
of the real risk, by over-investing in artificially low-risk eigenvectors. The risk of the
optimized portfolio obtained using a cleaned correlation matrix is more reliable, although
the real risk is always larger than the predicted one. This comes from the fact that any
amount of uncertainty in the correlation matrix produces, through the very optimization
procedure, a bias towards low-risk portfolios. This can be checked by permuting the two
sub-periods: one then finds nearly identical efficient frontiers. (This is expected, since for
large correlation matrices these frontiers should be self-averaging.) In other words, even if
the cleaned correlation matrices are more stable in time than the empirical correlation
matrices, they are not perfectly reflecting future correlations. This might be due to a
combination of remaining noise and of a genuine time dependence in the structure of the
meaningful correlations.

The CAPM and its limitations

Within the above framework, all optimal portfolios are proportional to one another,
that is, they only differ through the choice of the factor {. Since the problem is
linear, this means that the linear superposition of optimal portfolios is still optimal.
If all the agents on the market choose their portfolio using this optimization
scheme (with the same values for the average return and the correlation coeffi-
cients—clearly quite an absurd hypothesis), then the ‘market portfolio” (i.e. the
one obtained by taking all assets in proportion of their market capitalization) is an
optimal portfolio. This remark is at the origin of the ‘CAPM’ (Capital Asset Pricing
Model), which aims at relating the average return of an asset with its covariance
with the ‘market portfolio’. Actually, for any optimal portfolio p, one can express
mp—myg in terms of the p*, and use Eq. (3.73) to eliminate ¢, to obtain the following
equality:

((6x; —mi)(8S5 —my))
(('SS - m;})z) .

m; —mo = Bi[my — mo] Bi (3.75)

The covariance coefficient f; is often called the ‘" of asset i when p is the market
portfolio.

This relation is however not true for other definitions of optimal portfolios. Let us define
the generalized kurtosis Ky that measures the first correction to Gaussian statistics, from
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3.3 Portfolios of correlated assets 121

e Ea

150 +

Return

50
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Fig. 3.8. Efficient frontiers from Markowitz optimization, in the return versus volatility
plane. The leftmost dotted curve corresponds to the classical Markowitz case using the
empirical correlation matrix. the rightmost short-dashed curve is the realization of the same
portfolio in the second time period (the risk is underestimated by a factor of 3!). The
central curves (plain and long-dashed) represent the case of a cleaned correlation matrix.
The realized risk is now only a factor of 1.5 larger than the predicted risk.

the joint distribution of the asset fluctuations:

P(dxy,8xy,....8xm) =
1 M
(E) /]"']CXP —i;?u.f(axj —mj) (3.76)

M
1 1
- 5%:3@;%+E§;Kwazf-zm +--- Edgj_ (3.77)

If one tries to minimize the probability that the loss is greater than a certain A, a
generalization of the calculation presented above (cf. Eq. (3.66)) leads to:

=t EMjC—'(m; —mo) — ¢ |
i ij
2 5 JDpT

M M
x D D KyuCryCrCplmy = mo)(mis — mo)(my —mo).  (3.78)
JkI=1 k=1

where I is a certain positive function. The important point here is that the level of risk A
appears explicitly in the choice of the optimal portfolio. If the different operators choose
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122 Extreme risks and optimal portfolios

different levels of risk, their optimal portfolios are no longer related by a proportionality
factor, and the above CAPM relation does not hold.

3.3.2 ‘Power-law’ fluctuations (%)

The minimization of large risks also requires, as in the Gaussian case detailed
above, the knowledge of the correlations between large events, and therefore an
adapted measure of these correlations. Now, in the extreme case . < 2, the
covariance (as the variance), is infinite. A suitable generalization of the covariance
is therefore necessary. Even in the case > 2, where this covariance is a priori
finite, the value of this covariance is a mix of the correlations between large
negative moves, large positive moves, and all the ‘central’ (i.e. not so large) events.
Again, the definition of a ‘tail covariance’, directly sensitive to the large negative
events, is needed. The aim of the present section is to define such a quantity, which
is a natural generalization of the covariance for power-law distributions, much
as the ‘tail amplitude’ is a generalization of the variance. In a second part, the
minimization of the value-at-risk of a portfolio will be discussed.

“Tail covariance’

Let us again assume that the dx;’s are distributed according to:
P(x:) LA (3.79)
X)) o~ —— 3.
(x; Sr;—=oo [Sx; |1+

A natural way to describe the correlations between large events is to generalize the
decomposition in independent factors used in the Gaussian case, Eq. (3.69) and to
write:

M
Sx; =m; + Z 0;4€4. (3.80)
a=|
where the e, are independent power-law random variables, the distribution of
which is:
L hAL
e oe T [T

Ple,) (3.81)
Since power-law variables are (asymptotically) stable under addition, the decom-
position Eq. (3.80) indeed leads for all  to correlated power-law variables d.x;.
The usual definition of the covariance is related to the average value of dx;8x;,
which can in some cases be divergent (i.e. when p < 2). The idea is then to study
directly the characteristic function of the product variable 7;; = 8x;8x;.'"* The

14 Other generalizations of the covariance have been proposed in the context of Lévy processes, such as the
‘covariation’ [Samorodnitsky and Tagqu].
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3.3 Portfolios of correlated assets 123

justification is the following: if ¢, and e}, are two independent power-law variables,
their product 7, is also a power-law variable (up to logarithmic corrections) with
the same exponent & (cf. Appendix C):

2 Aj.{AH 1 T,
P(ap) =~ (A Ay) log((ab ) (a #b). (3.82)

Tab—>00 [7Tan | Itu

On the contrary, the quantity m,, is distributed as a power-law with an exponent
/2 (cf. Appendix C):
LAY
P(rye) =~ —— (3.83)

Ty
Taa—0¢ 2|7rua|l+T

Hence, the variable 7;; gets both ‘non-diagonal’ contributions 7., and ‘diagonal’
ones 1qq. For 11;; — oo, however, only the latter survive. Therefore 7;; is a power-
law variable of exponent ;¢/2, with a tail amplitude that we will note A?}f:, and
an asymmetry coefficient B;; (see Section 1.3.3). Using the additivity of the tail
amplitudes, and the results of Appendix C, one finds:

M
2 i

Ar}f = Z |Of‘anrr| < Ai:, (3.84)

a=1

and
. n M .

Cl/" = pyAl" = sign(0,,014)10i4 04| Ay (3.85)

a=1
In the limit @ = 2, one sees that the quantity C:j-’fz reduces to the standard

covariance, provided one identifies A2 with the variance of the explicative factors
D,. This suggests that C:}*Q is the suitable generalization of the covariance
for power-law variables, which is constructed using extreme events only. The
expression Eq. (3.85) furthermore shows that the matrix é;(, = sign( 0ia)| Oig|"?
allows one to diagonalize the ‘tail covariance matrix’ C;;'Q;'S its eigenvalues are
given by the A/’s.

In summary, the tail covariance matrix C:}ﬂ is obtained by studying the
asymptotic behaviour of the product variable 8.x;6x;, which is a power-law variable
of exponent 12 /2. The product of its tail amplitude and of its asymmetry coefficient
is our definition of the tail covariance C ;;_;2_

15 Note that & = O for =2

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 137

http://site.ebrary.com/id/10014876?ppg=137

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



124 Extreme risks and optimal portfolios

Optimal portfolio
It is now possible to find the optimal portfolio that minimizes the loss probability.
The fluctuations of the portfolio p can indeed be written as:

M M

M
8§ = Z pa’axr' = Z Z pa’Om €q. (3.86)

i=1 a=I i=l

Due to our assumption that the e, are symmetric power-law variables, 65 is also a
symmetric power-law variable with a tail amplitude given by:

M H

Al=%" i piOia| Al (3.87)

a=] |i=I
In the simple case where one tries to minimize the tail amplitude A} without any
constraint on the average return, one then finds:'®
M é..r
Y 01, ALV = " (3.88)

a=|

where the vector V= sign(ZT:, Ojap})| ij:, Ojﬂp}‘ﬁ“' . Once the tail covari-
ance matrix C""/2 is known, the optimal weights p; are thus determined as follows:

(i) The diagonalization of C*/2 gives the rotation matrix O, and therefore one

can construct the matrix O = sign((m))|tm)|2-"‘u (understood for each element
of the matrix), and the diagonal matrix A.

(i) The matrix O A is then inverted, and applied to the vector (g"/p,)f. This
gives the vector V= g’/;L(OA)‘IT.

(iii) From the vector V* one can then obtain the weights p; by applying the
matrix inverse of O7 to the vector sign(V*)|V*| A

(iv) The Lagrange multiplier ¢’ is then determined such as Z;il pi=1

Rather symbolically, one thus has:

o1 (€ 13 o
p=(0") —(0A)" 1 . (3.89)
i
In the case ju = 2, one recovers the previous prescription, since in that case: 0A = OD =
CO, (OA)_] =0 'c Y and 0T = O_l,fram which one gets:

! !
p=>00"'c’'1= %C‘ll, (3.90)

t| Y

which coincides with Eq. (3.74).

16 If one wants to impose a non-zero average return, one should replace ¢'/u by '/t + £m; /ju, where ¢ is
determined such as to give to mp the required value.
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3.4 Optimized trading 125

The problem of the minimization of the value-at-risk in a strongly non-Gaussian
world, where distributions behave asymptotically as power-laws, and in the pres-
ence of correlations between tail events, can thus be solved using a procedure rather
similar to the one proposed by Markowitz for Gaussian assets.

3.4 Optimized trading (*)

In this section, we will discuss a slightly different problem of portfolio optimiza-
tion: how to dynamically optimize, as a function of time, the number of shares of a
given stock that one holds in order to minimize the risk for a fixed level of return.
We shall actually encounter a similar problem in the next chapter on options when
the question of the optimal hedging strategy will be addressed. In fact, much of the
notations and techniques of the present section are borrowed from Chapter 4. The
optimized strategy found below shows that in order to minimize the variance, the
time-dependent part of the optimal strategy consists in selling when the price goes
up and buying when it goes down. However, this strategy increases the probability
of very large losses!

We will suppose that the trader holds a certain number of shares ¢, (x, ), where
¢ depends both on the (discrete) time f, = nt, and on the price of the stock x,. For
the time being, we assume that the interest rates are negligible and that the change
of wealth is given by:

N-]
AWy =Y $r()dxx, (3.91)
k=0
where 8x; = x| — x;. (See Sections 4.1 and 4.2 for a more detailed discussion of
Eq. (3.91).) Let us define the gain G = (AWy) as the average final wealth, and the
risk R? as the variance of the final wealth:

R = (AW}) —G°. (3.92)

The question is then to find the optimal trading strategy ¢; (xx), such that the risk
R is minimized, for a given value of G. Introducing a Lagrange multiplier £, one
thus looks for the (functional) solution of the following equation:'”

8
S (x)
Now, we further assume that the price increments dx, are independent random

variables of mean mt and variance Dt. Introducing the notation P (x, k|xy, 0) for
the price to be equal to x at time k7, knowing that it is equal to x¢ at time t = 0,

[R? g7 Iqb,;-=¢;’f' =0. (3.93)

I7 The following equation results from a functional minimization of the risk. See Section 4.4.3 for further details.
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126 Extreme risks and optimal portfolios

one has:
N1 N1
G = (d(xx))(oxi) =mt Z[ P(x, k|xo, 0)¢(x) dx, (3.94)
k=0 k=0

where the factorization of the average values holds because of the absence of
correlations between the value of x; (and thus that of ¢;), and the value of the
increment 8x;. The calculation of {A W)%} is somewhat more involved, in particular
because averages of the type (8x¢¢r(xt)), with k > £ do appear: in this case one
cannot neglect the correlations between dx; and x;. Using the results of Appendix
D, one finally finds:

N-1

(AW}) = Dt Zf P(x, k|xo, 0)¢ (x) dx (3.95)
k=0
N—-1k-1 Y — x_,
i mg;{]fP(""‘f'-‘°=0)PfX-kl-r’,E)m(x’)m(.r) — drdy’

Taking the derivative of P2 — £G* with respect to ¢ (x), one finds:

2Dt P(x. k|xo, 0)¢h (x) — 2(1 + {)mt P(x, k|xo. 0)G

N-1 s
+mtP(x, k|xg, 0) Z /P(x’, E|x.k)q§f(.r’)1 _; dx’
£=k+1
k=1 v
7 s 3 ‘,. J_,. ; J"_ .
+mt ;] P(x', €lx0,0)P(x, k|x', £)e(x") ., dx (3.96)

Setting this expression to zero gives an implicit equation for the optimal strategy
¢;. A solution to this equation can be found, for m small, as a power series in m.
Looking for a reasonable return means that G should be of order m. Therefore we
set: G = GomT, with T = Nt, and expand ¢* and 1 + ¢ as:
o &
=+ (3.97)

bl
m-= m

$i=¢0+mdl+-- and ¢=

Inserting these expressions in Eq. (3.96) leads, to zero-th order, to a time-
independent strategy:

T
PP (x) = ¢o = g“%’ . (3.98)

The Lagrange multiplier y is then fixed by the equation:

G=GymT =mT¢, leadingto ) = ? and ¢y = Gy. (3.99)
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3.5 Conclusion of the chapter 127

To first order, the equation on ¢, reads:

N—1

D¢} = g]g[,—'%” Z /P(x’,flx.k}% dx’ (3.100)

gl

dx’.

bo "i/ P(x’, £|x0, 0)P(x, k|x', €) x — x'
2 L P(x. k|xo, 0) k—¢
The second term on the right-hand side is of order m, and thus negligible to
this order. Interestingly, the last term can be evaluated explicitly without any
assumption on the detailed shape for the probability distribution of the price

increments. Using the method of Appendix D, one can show that for independent
increments:

¢
/(x’ —xo)P(x'. €|x0, O)P(x. k|x', £)dx' = E(x —xo0)P(x, k|x0.0). (3.101)

Therefore, one finally finds:

T
51% _ %(x — xy). (3.102)

This equation shows that in order to minimize the risk as measured by the variance,

B (x) =

a trader should sell stocks when their price increases, and buy more stocks when
their price decreases, proportionally to m(x — xg). The value of ¢, is fixed such

that:
N-1

Zj P(x. k|x0, 0)} (x) dx =0, (3.103)
k=0

which leads to ; = 0 (plus order m corrections). However, it can be shown that
this strategy increases the VaR. For example, if the increments are Gaussian, the
left tail of the distribution of AWy (corresponding to large losses), using the above
strategy, is found to be exponential, and therefore much broader than the Gaussian
expected for a time-independent strategy:

(3.104)

2| AWy |
P(AWx) Zawy——oc eXp| ——5— |.

g

3.5 Conclusion of the chapter

In a Gaussian world, all measures of risk are equivalent. Minimizing the variance or
the probability of large losses (or the value-at-risk) lead to the same result, which
is the family of optimal portfolios obtained by Markowitz. In the general case,
however, the VaR minimization leads to portfolios which are different from those of
Markowitz. These portfolios depend on the level of risk A (or on the time horizon
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128 Extreme risks and optimal portfolios

T), to which the operator is sensitive. An important result is that minimizing the
variance can actually increase the VaR.

A simple case is provided by power-law distributed assets. In this case, the
concept of ‘tail covariance’ (that measure the correlation between extreme events)
can precisely be defined and measured. One can then obtain explicit formulae for
the controlled VaR optimal portfolios. These formulae boil down, in the appropriate
limit, to the classical Markowitz formulae. The minimization of the VaR (as
the relevant optimization criterion) is however not easy to formulate within the
classical framework of ‘utility functions’.

3.6 Appendix C: some useful results

Let us assume that the random variable X is distributed as a power-law, with
an exponent  and a tail amplitude A’. The random variable A X is then also
distributed as a power-law, with the same exponent y and a tail amplitude equal
to A*A%. This can easily be found using the rule for changing variables in
probability densities, recalled in Section 1.2.1: if y is a monotonic function of x,
then P(y)dy = P(x) dx. Therefore:

lluAi‘J\‘H—H

(3.105)

For the same reason, the random variable X is distributed as a power-law, with an
exponent 4¢/2 and a tail amplitude (A%)"/2. Indeed:
P(x) _ nAy

27X x—o0 2(x2)1+ns2 )

P(x?) = (3.106)

On the other hand, if X and ¥ are two independent power-law random variables
with the same exponent ¢, the variable Z = X x Y is distributed according to:

P(z):/]P(.r)P(y}cS(x_v—:}dxdy:/lP(.r)P (y: 5) dv. (3.107)
X X

When z is large, one can replace P(y = z/x) by pAyx' /727" aslong as x < z.
Hence, in the limit of large 7’s:

nAYy
ZI-H:

P(z)~ f ) L (3.108)

where a is a certain constant. Now, since the integral x diverges logarithmically
for large x’s (since P(x) o x~ 17", one can, to leading order, replace P(x) in the
integral by its asymptotic behaviour, and find:

HrALAY

ZH—u

P(z) ~ log z. (3.109)
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4

Futures and options: fundamental concepts

Les personnes non averties sont sujettes a se laisser induire en erreur."

(Lord Raglan. ‘Le tabou de Iinceste’. quoted by Boris Vian in L'automne a Pékin.)

4.1 Introduction
4.1.1 Aim of the chapter

The aim of this chapter is to introduce the general theory of derivative pricing
in a simple and intuitive, but rather unconventional, way. The usual presentation,
which can be found in all the available books on the subject,” relies on particular
models where it is possible to construct riskless hedging strategies, which replicate
exactly the corresponding derivative product.® Since the risk is strictly zero, there
is no ambiguity in the price of the derivative: it is equal to the cost of the
hedging strategy. In the general case, however, these ‘perfect’ strategies do not
exist. Not surprisingly for the layman, zero risk is the exception rather than the
rule. Correspondingly, a suitable theory must include risk as an essential feature,
which one would like to minimize. The present chapter thus aims at developing
simple methods to obtain optimal strategies, residual risks, and prices of derivative
products, which takes into account in an adequate way the peculiar statistical nature
of financial markets, as described in Chapter 2.

4.1.2 Trading strategies and efficient markets

In the previous chapters, we have insisted on the fact that if the detailed prediction
of future market moves is probably impossible, its statistical description is a
reasonable and useful idea, at least as a first approximation. This approach only

I Unwarned people may easily be fooled.
2 See e.g. [Hull, Wilmott, Baxter].
3

< A hedging strategy is a trading strategy allowing one to reduce, and sometimes eliminate, the risk.
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4.1 Introduction 131

relies on a certain degree of stability (in time) in the way markets behave and
the prices evolve.* Let us thus assume that one can determine (using a statistical
analysis of past time series) the probability density P(x, t|xo, fo), which gives the
probability that the price of the asset X is equal to x (to within dx) at time f,
knowing that at a previous time f, the price was equal to xg. As in previous
chapters, we shall denote as (O) the average (over the ‘historical’ probability
distribution) of a certain observable O:

(O(x, 1)) = f P(x, t|xy, 0)O(x, t) dx. (.1)

As we have shown in Chapter 2, the price fluctuations are somewhat correlated
for small time intervals (a few minutes), but become rapidly uncorrelated (but not
necessarily independent!) on longer time scales. In the following, we shall choose
as our elementary time scale t an interval a few times larger than the correlation
time —say T = 30 min on liquid markets. We shall thus assume that the correlations
of price increments on two different intervals of size T are negligible.> When
correlations are small, the information on future movements based on the study
of past fluctuations is weak. In this case, no systematic trading strategy can be
more profitable (on the long run) than holding the market index — of course, one
can temporarily ‘beat’ the market through sheer luck. This property corresponds to
the efficient market hypothesis.®

It is interesting to translate this property into more formal terms. Let us suppose
that at time #, = nt, an investor has a portfolio containing, in particular, a quantity
¢n(x,) of the asset X, quantity which can depend on the price of the asset x,, =
x(t,) at time ¢, (this strategy could actually depend on the price of the asset for all
previous times: ¢, (X;. X1, Xp—2, .. .)). Between t, and ,4,, the price of X varies
by dx,. This generates a profit (or a loss) for the investor equal to ¢, (x,)éx,. Note
that the change of wealth is not equal to §(¢x) = @dx + xd¢, since the second
term only corresponds to converting some stocks in cash, or vice versa, but not
to a real change of wealth. The wealth difference between time t+ = 0 and time

4 A weaker hypothesis is that the statistical ‘texture’ of the markets (i.e. the shape of the probability
distributions) is stable over time. but that the parameters which fix the amplitude of the fluctuations can
be time dependent —see Sections 1.7, 2.4 and 4.3.4.

The presence of small correlations on larger time scales is however difficult to exclude, in particular on
the scale of several years., which might reflect economic cycles for example. Note also that the “volatility”
fluctuations exhibit long-range correlations —cf. Section 2.4.

The existence of successful systematic hedge funds, which have consistently produced returns higher than the
average for several years, suggests that some sort of ‘hidden’ correlations do exist, at least on certain markets.
But if they exist these correlations must be small and therefore are not relevant for our main concerns: risk
control and option pricing.

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 145

http://site.ebrary.com/id/10014876?ppg=145

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



132 Futures and options: fundamental concepts

ty = T = Nrt, due to the trading of asset X is, for zero interest rates, equal to:

N-1
AWy = Z ‘p}r(x}r)axn- (42)
n=0
Since the trading strategy ¢,(x,) can only be chosen before the price actually
changes, the absence of correlations means that the average value of AWy (with
respect to the historical probability distribution) reads:

N—-1 N—1
(AWx) = (@) (8x,) = T Y~ (xPu(x0), 43)
n=0 n=>0

where we have introduced the average return m of the asset X, defined as:
0Xy = Ny mt = (n,). 4.4)

The above equation (4.3) thus means that the average value of the profit is fixed
by the average return of the asset, weighted by the level of investment across the
considered period. We shall often use, in the following, an additive model (more
adapted on short time scales, cf. Section 2.2.1) where éx, is rather written as dx, =
nnxo. Correspondingly, the average return over the time interval t reads: m; =
(6x) = mtxp. This approximation is usually justified as long as the total time
interval T corresponds to a small (average) relative increase of price: mT < 1. We
will often denote as m the average return per unit time: m = n, /.

Trading in the presence of temporal correlations

It is interesting to investigate the case where correlations are not zero. For simplicity, we
shall assume that the fluctuations 8x,, are stationary Gaussian variables of zero mean

(my = 0). The correlation function is then given by (8x,6xy) = Cpg. The Cn_kl 's are
the elements of the matrix inverse of C. If one knows the sequence of past increments
8xp, ..., 8xy_1, the distribution of the next 8x, conditioned to such an observation is

simply given by:
C—l
P(8xy) = Nexp— ;” [8xy — mp]%, (4.5)

n— -1
i Ciy 8x;
m,,z—iz*_o —n (4.6)
C.FIH

where N is a normalization factor, and m,, the mean of 8x,, conditioned to the past, which
is non-zero precisely because some correlations are present.” A simple strategy which
exploits these correlations is to choose:

Ou (X, Xp_1....) = sign(m,), 4.7)

7 The notation my has already been used in Chapter | with a different meaning. Note also that a general formula
exists for the distribution of dx,4, for all & = 0, and can be found in books on optimal filter theory. see
references.
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4.2 Futures and forwards 133

which means that one buys (resp. sells) one stock if the expected next increment is positive
(resp. negative). The average profit is then obviously given by {|my|} = 0. We further
assume that the correlations are short ranged, such that only C;,;! and C .i;rl—l are Hon-zero.
The unit time interval is then the above correlation time t. If this strategy is used during

the time T = N, the average profit is given by:

C—l
(AWy) = Na{|bx|) where a = %‘I' , (4.8)
nn

{a does not depend on n for a stationary process). With typical values, T = 30 min,
(16x]) = 1073 xo, and a of about 0.1 (cf. Section 2.2.2), the average profit would reach
50% annual!® Hence, the presence of correlations (even rather weak) allows in principle
one to make rather substantial gains. However, one should remember that some transaction
costs are always present in some form or other (for example the bid-ask spread is a form
of transaction cost). Since our assumption is that the correlation time is equal to T, it
means that the frequency with which our trader has to ‘flip’ his strategy (i.e. ¢ — —¢)
is T='. One should thus subtract from Eq. (4.8) a term on the order of —Nvxy, where v
represents the fractional cost of a transaction. A very small value of the order of 10~
is thus enough to cancel completely the profit resulting from the observed correlations
on the markets. Interestingly enough, the ‘basis point’ (10~%) is precisely the order of
magnitude of the friction faced by traders with the most direct access to the markets. More
generally, transaction costs allow the existence of correlations, and thus of ‘theoretical’
inefficiencies of the markets. The strength of the ‘allowed’ correlations on a certain time T
is on the order of the transaction costs v divided by the volatility of the asset on the scale
of T.

At this stage, it would appear that devising a “theory” for trading is useless: in the
absence of correlations, speculating on stock markets is tantamount to playing the
roulette (the zero playing the role of transaction costs!). In fact, as will be discussed
in the present chapter, the existence of riskless assets such as bonds, which yield
a known return, and the emergence of more complex financial products such as
futures contracts or options, demand an adapted theory for pricing and hedging.
This theory turns out to be predictive, even in the complete absence of temporal
correlations.

4.2 Futures and forwards
4.2.1 Setting the stage

Before turning to the rather complex case of options, we shall first focus on the
very simple case of forward contracts, which allows us to define a certain number
of notions (such as arbitrage and hedging) and notations. A forward contract F
amounts to buying or selling today an asset X (the ‘underlying’) with a delivery

5 A strategy that allows one to generate consistent abnormal returns with zero or minimal risk is called an
‘arbitrage opportunity”.
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134 Futures and options: fundamental concepts

date T = Nt in the future.” What is the price F of this contract, knowing that it
must be paid at the date of expiry?'” The naive answer that first comes to mind is
a ‘fair game’ condition: the price must be adjusted such that, on average, the two
parties involved in the contract fall even on the day of expiry. For example, taking
the point of view of the writer of the contract (who sells the forward), the wealth
balance associated with the forward reads:

AWp = F — x(T). (4.9)

This actually assumes that the writer has not considered the possibility of simul-
taneously trading the underlying stock X to reduce his risk, which of course he
should do, see below.

Under this assumption, the fair game condition amounts to set (AWg) = 0,
which gives for the forward price:

Fp={x(T)) = fo(x, T |xp, 0) dx, (4.10)

if the price of X is xp at time t = 0. This price, that can we shall call the ‘Bachelier’
price, is not satisfactory since the seller takes the risk that the price at expiry x(T')
ends up far above (x(7)), which could prompt him to increase his price above
I, B

Actually, the Bachelier price Fp is not related to the market price for a simple
reason: the seller of the contract can suppress his risk completely if he buys now the
underlying asset X at price xp and waits for the expiry date. However, this strategy
is costly: the amount of cash frozen during that period does not yield the riskless
interest rate. The cost of the strategy is thus x,e’’. where r is the interest rate per
unit time. From the view point of the buyer, it would certainly be absurd to pay
more than xpe’”, which is the cost of borrowing the cash needed to pay the asset
right away. The only viable price for the forward contract is thus F = xpe”’ # Fg,
and is, in this particular case, completely unrelated to the potential moves of the
asset X!

An elementary argument thus allows one to know the price of the forward
contract and to follow a perfect hedging strategy: buy a quantity ¢ = 1 of the
underlying asset during the whole life of the contract. The aim of next paragraph is
to establish this rather trivial result, which has not required any maths, in a much
more sophisticated way. The importance of this procedure is that one needs to

9 In practice ‘futures’ contracts are more common than forwards. While forwards are over-the-counter contracts,
futures are traded on organized markets. For forwards there are typically no payments from either side before
the expiration date whereas futures are marked-to-market and compensated every day. meaning that payments
are made daily by one side or the other to bring the value of the contract back to zero.

10" Note that if the contract was to be paid now, its price would be exactly equal to that of the underlying asset
(barring the risk of delivery default).
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4.2 Futures and forwards 135

learn how to write down a proper wealth balance in order to price more complex
derivative products such as options, on which we shall focus in the next sections.

4.2.2 Global financial balance

Let us write a general financial balance which takes into account the trading
strategy of the the underlying asset X. The difficulty lies in the fact that the amount
¢nx, which is invested in the asset X rather than in bonds is effectively costly: one
‘misses’ the risk-free interest rate. Furthermore, this loss cumulates in time. It is
not a priori obvious how to write down the correct balance. Suppose that only two
assets have to be considered: the risky asset X, and a bond B. The whole capital
W, at time t, = nt is shared between these two assets:

Wy = ¢pxy + By, (4.11)

The time evolution of W, is due both to the change of price of the asset X, and to
the fact that the bond yields a known return through the interest rate r:

Wrr+| - Wn = @n (Xp+1 — Xy) + B",O, pP=rT. (4.]2)

On the other hand, the amount of capital in bonds evolves both mechanically,
through the effect of the interest rate (4B, 0), but also because the quantity of
stock does change in time (¢, — ¢,+1), and causes a flow of money from bonds
to stock or vice versa. Hence:

B}r+| — B, = B”,D - xu+](¢n+l - ¢r:]- (4.13)
Note that Eq. (4.11) is obviously compatible with the following two equations. The
solution of the second equation reads:

n

B, =(1+p)"Bo— Y xi(ex — b 1)(1 + p)"*. (4.14)
k=1

Plugging this result in Eq. (4.11), and renaming & — 1 — £ in the second part of
the sum, one finally ends up with the following central result for W,:

n—1

Wi = Wo(l +p)" + W (e — X — px0), (4.15)
k=0
with ¥ = ¢r(1 + )" %=1, This last expression has an intuitive meaning: the

gain or loss incurred between time k and k& + 1 must include the cost of the
hedging strategy —pxy; furthermore, this gain or loss must be forwarded up to
time n through interest rate effects, hence the extra factor (1 + p)"*=1. Another
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136 Futures and options: fundamental concepts

useful way to write and understand Eq. (4.15) is to introduce the discounted prices
#x = x;(1 + p)~*. One then has:

n—1

Wy=(1+p)" (Wot Y dilFisr — ) ) - (4.16)
k=0
The effect of interest rates can be thought of as an erosion of the value of the money
itself. The discounted prices X; are therefore the ‘true’ prices, and the difference
Xj+1 — Xy the “true’ change of wealth. The overall factor (1 + p)" then converts this
true wealth into the current value of the money.
The global balance associated with the forward contract contains two further
terms: the price of the forward F that one wishes to determine, and the price of the
underlying asset at the delivery date. Hence, finally:

N—1
Wy=F—xy+0+p" [ Wo+ )t — 50 . (4.17)
k=0
Since by identity Xy = Z?:u] (Xk+1 — Xx) + xo. this last expression can also be
written as:
N—1
Wy =F+ 1+ )" | Wo—xo+ Y (¢ — D(Er1 — %) | - (4.18)

k=0

4.2.3 Riskless hedge

In this last formula, all the randomness, the uncertainty on the future evolution of
the prices, only appears in the last term. But if one chooses ¢} to be identically
equal to one, then the global balance is completely independent of the evolution of
the stock price. The final result is nof random, and reads:

Wy = F + (1+ p)" (Wo — xo). (4.19)

Now, the wealth of the writer of the forward contract at time T = Nt cannot be,
with certitude, greater (or less) than the one he would have had if the contract had
not been signed, i.e. Wy(1 + p)". If this was the case, one of the two parties would
be losing money in a totally predictable fashion (since Eq. (4.19) does not contain
any unknown term). Since any reasonable participant is reluctant to give away his
money with no hope of return, one concludes that the forward price is indeed given

by:
F = xo(1 + p)¥ =~ xpe'" # Fp, (4.20)

which does not rely on any statistical information on the price of X!
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4.2 Futures and forwards 137

Dividends

In the case of a stock that pays a constant dividend rate § = dt per interval of time 1, the
global wealth balance is obviously changed into:

N—1

Wy =F —xy + Woll + )" + > 9 Gy — 3+ (6 — p)xo). 4.21)
k=0

It is easy to redo the above calculations in this case. One finds that the riskless strategy is
now to hold:
(14+p -V !

N S *22

stocks. The wealth balance breaks even if the price of the forward is set to:
F=xp(1 +p — 8N ~ xpe =T (4.23)

which again could have been obtained using a simple no arbitrage argument of the type
presented below.

Variable interest rates

In reality, the interest rate is not constant in time but rather also varies randomly. More
precisely, as explained in Section 2.6, at any instant of time the whole interest rate curve
for different maturities is known, but evolves with time. The generalization of the global
balance, as given by formula, Eq. (4.17), depends on the maturity of the bonds included
in the portfolio, and thus on the whole interest rate curve. Assuming that only short-term
bonds are included, yielding the (time-dependent) ‘spot’ rate py, one has:

N—1
Wy = F—xn+Wo[[(+m)
k=0
N—I
+ ) (e — e — o), (4.24)
k=0

with: y’/f’ = ¢y ]_[?:,({H (1 4 pg). 1t is again quite obvious that holding a quantity ¢ = 1
of the underlying asset leads to zero risk in the sense that the fluctuations of X disappear.
However, the above strategy is not immune to interest rate risk. The interesting complexity
of interest rate problems (such as the pricing and hedging of interest rate derivatives)
comes from the fact that one may choose bonds of arbitrary maturity to construct the
hedging strategy. In the present case, one may take a bond of maturity equal to that of the
Jorward. In this case, risk disappears entirely, and the price of the forward reads:

F-_X (4.25)
B(O. N)

where B(0, N) stands for the value, at time 0, of the bond maturing at time N.
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138 Futures and options: fundamental concepts

4.2.4 Conclusion: global balance and arbitrage

From the simple example of forward contracts, one should bear in mind the
following points, which are the key concepts underlying the derivative pricing
theory as presented in this book. After writing down the complete financial balance,
taking into account the trading of all assets used to cover the risk, it is quite
natural (at least from the view point of the writer of the contract) to determine
the trading strategy for all the hedging assets so as to minimize the risk associated
to the contract. After doing so, a reference price is obtained by demanding that
the global balance is zero on average, corresponding to a fair price from the point
of view of both parties. In certain cases (such as the forward contracts described
above), the minimum risk is zero and the true market price cannot differ from
the fair price, or else arbitrage would be possible. On the example of forward
contracts, the price, Eq. (4.20), indeed corresponds to the absence of arbitrage
opportunities (AAQ), that is, of riskless profit. Suppose for example that the price
of the forward is below F = xy(1 + p)". One can then sell the underlying asset
now at price xg and simultaneously buy the forward at a price 7' < 7, that
must be paid for on the delivery date. The cash x is used to buy bonds with
a yield rate p. On the expiry date, the forward contract is used to buy back the
stock and close the position. The wealth of the trader is then x,(1 + N — F,
which is positive under our assumption —and furthermore fully determined at time
zero: there is profit, but no risk. Similarly, a price 7' > F would also lead to
an opportunity of arbitrage. More generally, if the hedging strategy is perfect, this
means that the final wealth is known in advance. Thus, increasing the price as
compared to the fair price leads to a riskless profit for the seller of the contract,
and vice versa. This AAO principle is at the heart of most derivative pricing
theories currently used. Unfortunately, this principle cannot be used in the general
case, where the minimal risk is non-zero, or when transaction costs are present
(and absorb the potential profit, see the discussion in Section 4.1.2 above). When
the risk is non-zero, there exists a fundamental ambiguity in the price, since
one should expect that a risk premium is added to the fair price (for example,
as a bid-ask spread). This risk premium depends both on the risk-averseness
of the market maker, but also on the liquidity of the derivative market: if the
price asked by one market maker is too high, less greedy market makers will
make the deal. This mechanism does however not operate for ‘over-the-counter’
operations (OTC, that is between two individual parties, as opposed to through an
organized market). We shall come back to this important discussion in Section 4.6
below.

Let us emphasize that the proper accounting of all financial elements in the
wealth balance is crucial to obtain the correct fair price. For example, we have seen
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4.3 Options: definition and valuation 139

above that if one forgets the term corresponding to the trading of the underlying
stock, one ends up with the intuitive, but wrong, Bachelier price, Eq. (4.10).

4.3 Options: definition and valuation
4.3.1 Setting the stage

A buy option (or ‘call’ option) is nothing but an insurance policy, protecting the
owner against the potential increase of the price of a given asset, which he will
need to buy in the future. The call option provides to its owner the certainty of not
paying the asset more than a certain price. Symmetrically, a ‘put’ option protects
against drawdowns, by insuring to the owner a minimum value for his stock.

More precisely, in the case of a so-called ‘European’ option,'! the contract is
such that at a given date in the future (the ‘expiry date’ or ‘maturity’) t = T, the
owner of the option will not pay the asset more than x; (the ‘exercise price’, or
‘strike” price): the possible difference between the market price at time T, x(T')
and x; is taken care of by the writer of the option. Knowing that the price of the
underlying asset is xp now (i.e. at t = 0), what is the price (or ‘premium’) C of
the call? What is the optimal hedging strategy that the writer of the option should
follow in order to minimize his risk?

The very first scientific theory of option pricing dates back to Bachelier in
1900. His proposal was, following a fair game argument, that the option price
should equal the average value of the pay-off of the contract at expiry. Bachelier
calculated this average by assuming the price increments 8x, to be independent
Gaussian random variables, which leads to the formula, Eq. (4.43) below. However,
Bachelier did not discuss the possibility of hedging, and therefore did not include
in his wealth balance the term corresponding to the trading strategy that we
have discussed in the previous section. As we have seen, this is precisely the
term responsible for the difference between the forward ‘Bachelier price’ Fp (cf.
Eq. (4.10)) and the true price, Eq. (4.20). The problem of the optimal trading
strategy must thus, in principle, be solved before one can fix the price of the
option.'? This is the problem that was solved by Black and Scholes in 1973, when
they showed that for a continuous-time Gaussian process, there exists a perfect
strategy, in the sense that the risk associated to writing an option is strictly zero, as
is the case for forward contracts. The determination of this perfect hedging strategy
allows one to fix completely the price of the option using an AAO argument.
Unfortunately, as repeatedly discussed below, this ideal strategy only exists in

1 Many other types of options exist: "American’, ‘Asian’, ‘Lookback’, 'Digitals’, etc., see [Wilmott]. We will
discuss some of them in Chapter 5.

12 1n practice, however, the influence of the trading strategy on the price (but not on the risk!) is quite small, see
below.
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140 Futures and options: fundamental concepts

a continuous-time, Gaussian world,"? that is, if the market correlation time was
infinitely short, and if no discontinuities in the market price were allowed —both
assumptions rather remote from reality. The hedging strategy cannot, in general, be
perfect. However, an optimal hedging strategy can always be found, for which the
risk is minimal (cf. Section 4.4). This optimal strategy thus allows one to calculate
the fair price of the option and the associated residual risk. One should nevertheless
bear in mind that, as emphasized in Sections 4.2.4 and 4.6, there is no such thing
as a unique option price whenever the risk is non-zero.

Let us now discuss these ideas more precisely. Following the method and
notations introduced in the previous section, we write the global wealth balance
for the writer of an option between timet =0 and f = T as:

Wy = [Wy+CI+p)" —max(xy — x,,0)
N-—1
+ YU G — Xk — P30, (4.26)
k=0

which reflects the fact that:

e The premium C is paid immediately (i.e. at time = 0).

e The writer of the option incurs a loss xy — x5 only if the option is exercised
(xny = Xg).

e The hedging strategy requires that the writer convert a certain amount of bonds
into the underlying asset, as was discussed before Eq. (4.17).

A crucial difference with forward contracts comes from the non-linear nature of
the pay-off, which is equal, in the case of a European option, to ) (xy) = max(xy—
X5, 0). This must be contrasted with the forward pay-off, which is linear (and equal
to xy). It is ultimately the non-linearity of the pay-off which, combined with the
non-Gaussian nature of the fluctuations, leads to a non-zero residual risk.

An equation for the call price C is obtained by requiring that the excess return
due to writing the option, AW = Wy — Wy(1 + p)¥, is zero on average:

N—1
(1+p)"C = | (max(ey —x:.0)) = D (U (tewr — 2 = px)) | (4.27)
k=0

This price therefore depends, in principle, on the strategy ¥ = ¢¥ (1 + p)V =+,

This price corresponds to the fair price, to which a risk premium will in general be
added (for example in the form of a bid-ask spread).
In the rather common case where the underlying asset is not a stock but a forward

13 A property also shared by a discrete binomial evolution of prices, where at each time step, the price increment

dx can only take two values, see Appendix E. However, the risk is non-zero as soon as the number of possible
price changes exceeds two.
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4.3 Options: definition and valuation 141

on the stock, the hedging strategy is less costly since only a small fraction f of the
value of the stock is required as a deposit. In the case where f = 0, the wealth
balance appears to take a simpler form, since the interest rate is not lost while
trading the underlying forward contract:
N-1
C=(+p V| (max(Fy —x,0) = D (Frns —F)) [ (428)
k=0
However, one can check that if one expresses the price of the forward in terms of the
underlying stock, Eqs (4.27) and (4.28) are actually identical. (Note in particular
that Fy = xy.)

4.3.2 Orders of magnitude

Let us suppose that the maturity of the option is such that non-Gaussian ‘tail’
effects can be neglected (T > T*, cf. Sections 1.6.3, 1.6.5, 2.3), so that the
distribution of the terminal price x (T') can be approximated by a Gaussian of mean
mT and variance DT = o2x2T."* If the average trend is small compared to the
RMS /DT, a direct calculation for ‘at-the-money” options gives:'’

X x — xg (x —x9—mT)?
max(x(7T) — x,, 0 = —exp| ————— | dx
e -s0p = [ e (S )

DT mT m+73
— 4+ 0|,/ . 4.2
o + 5 + D (4.29)

Taking T = 100 days, a daily volatility of & = 1%, an annual return of m = 5%,
and a stock such that x, = 100 points, one gets:

[

bT _, M 067 poi 4.30
S = 4points —~ = 0.67 points. (4.30)

In fact, the effect of a non-zero average return of the stock is much less than
the above estimation would suggest. The reason is that one must also take into
account the last term of the balance equation, Eq. (4.27), which comes from the
hedging strategy. This term corrects the price by an amount —{¢}m7T. Now, as
we shall see later, the optimal strategy for an at-the-money option is to hold, on
average (¢p) = % stocks per option. Hence, this term precisely compensates the
increase (equal to mT /2) of the average pay-off, (max(x(7T) — xs, 0)}). This strange
compensation is actually exact in the Black—Scholes model (where the price of
4 we again neglect the difference between Gaussian and log-normal statistics in the following order of

magnitude estimate. See Sections 1.3.2, 2.2.1, Eq. (4.43) and Figure 4.1 below.

15 An option is called ‘at-the-money’ if the strike price is equal to the current price of the underlying stock
{xs = xg), ‘out-of-the-money” if x5 > x( and ‘in-the-money” if x5 < xq.
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142 Futures and options: fundamental concepts

the option turns out to be completely independent of the value of m) but only
approximate in more general cases. However, it is a very good first approximation
to neglect the dependence of the option price in the average return of the stock: we
shall come back to this point in detail in Section 4.5.

The interest rate appears in two different places in the balance equation,
Eq. (4.27): in front of the call premium C, and in the cost of the trading strategy.
For p = rt corresponding to 5% per year, the factor (1 + p)" corrects the option
price by a very small amount, which, for T = 100 days, is equal to 0.06 points.
However, the cost of the trading strategy is not negligible. Its order of magnitude
is ~ (¢)xorT; in the above numerical example, it corresponds to a price increase
of % of a point (16% of the option price), see Section 5.1.

4.3.3 Quantitative analysis — option price

We shall assume in the following that the price increments can be written as:
X1 — Xk = PXg + Oxx, (4.31)

where 8x; is a random variable having the characteristics discussed in Chapter 2,
and a mean value equal to (6x;}) = m; = mrt. The above order of magnitude
estimate suggests that the influence of a non-zero value of m leads to small
corrections in comparison with the potential fluctuations of the stock price. We
shall thus temporarily set m = 0 to simplify the following discussion, and come
back to the corrections brought about by a non-zero value of /m in Section 4.5.

Since the hedging strategy . is obviously determined before the next random
change of price dxi, these two quantities are uncorrelated, and one has:

{(Vidxr) = (¥re)(Sxx) = 0 (m =0). (4.32)

In this case, the hedging strategy disappears from the price of the option, which is
given by the following ‘Bachelier’-like formula, generalized to the case where the
increments are not necessarily Gaussian:

C = (1+p) " (max(xy —x:.0)

(1+ p)‘“’j (x —x)P(x, N

Xo. 0) dx. (4.33)

In order to use Eq. (4.33) concretely, one needs to specify a model for price
increments. In order to recover the classical model of Black and Scholes, let us
first assume that the relative returns are iid random variables and write §x;, =
Nixy, with gy < 1. If one knows (from empirical observation) the distribution
P (nr) of returns over the elementary time scale 7, one can easily reconstruct (using
the independence of the returns) the distribution P(x, N|xp, 0) needed to compute
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4.3 Options: definition and valuation 143

C. After changing variables to x — xp(l + p)"e?, the formula, Eq. (4.33), is
transformed into:

C=x ] (e’ —e”)Py(y)dy, (4.34)

where y, = log(x,/xo[1 + p]V) and Py(y) = P(y. N|0, 0). Note that y, involves
the ratio of the strike price to the forward price of the underlying asset, xo[1 + p]".
Setting x; = xp(1 + p}*e-"*, the evolution of the yi’s is given by:

2
Nk N

Vi+1 — Vi = - = vo =0, 4.35

Vel = Vi = 7 Yo 2 Yo (4.35)

where third-order terms (1°, n%p, . ..) have been neglected. The distribution of the

quantity yy = ?':_0' (O /(1 + p)) — (nf/Z)] is then obtained, in Fourier space,

as.
Py(2) =[P (D]". (4.36)

where we have defined, in the right-hand side, a modified Fourier transform:

= - n _??_2
Pi(z) —]Pu(n)e)cp [14,(—1 np 2)] dn. (4.37)

The Black and Scholes limit

We can now examine the Black—Scholes limit, where P)(n) is a Gaussian of zero
mean and RMS equal to 01 = o./7. Using the above Eqs (4.36) and (4.37) one
finds, for N large:'®

Py(y) =

) 2 /92
O+ Noi/2) ) ' 4.38)

1
7exp( 5
\/2rrNa|2 2No;i

The Black—Scholes model also corresponds to the limit where the elementary time
interval T goes to zero, in which case one of course has N = T/t — o0. As
discussed in Chapter 2, this limit is not very realistic since any transaction takes at
least a few seconds and, more significantly, that some correlations persist over at
least several minutes. Notwithstanding, if one takes the mathematical limit where
t — 0, with N = T/t — oo but keeping the product No{ = To? finite,
one constructs the continuous-time log-normal process, or ‘geometrical Brownian
motion’. In this limit, using the above form for Py (y) and (1 + p)¥ — &7, one

16 1n fact, the variance of Py (y) is equal to NUFI(] + .n)z. but we neglect this small correction which disappears
in the limit T — 0.
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obtains the celebrated Black—Scholes formula:
oo (e.“ _ e_\'_\-) ( (‘, + 0-2T/2)2)
———exp| ————— | dy
v, ~2molT 20T

Vo _ Vi
“ :'D = - — Xy ’TP >( - ) s 439
xoPa (aﬁ) Xs€ G oJT (4.39)

where y+ = log(xs/xp) —rT £ O'ZT/Z and Pg- (1) is the cumulative normal
distribution defined by Eq. (1.68). The way Cgg varies with the four parameters
Xg, Xs. I and o is quite intuitive, and discussed at length in all the books which
deal with options. The derivatives of the price with respect to these parameters are
now called the ‘Greeks’, because they are denoted by Greek letters. For example,
the larger the price of the stock xp, the more probable it is to reach the strike price
at expiry, and the more expensive the option. Hence the so-called ‘Delta’ of the
option (A = 9C/dxy) is positive. As we shall show below, this quantity is actually
directly related to the optimal hedging strategy. The variation of A with x is noted
I' (Gamma) and is defined as: I = 9 A/dxp. Similarly, the dependence in maturity
T and volatility o (which in fact only appear through the combination o /T if r T is
small) leads to the definition of two further ‘Greeks™: @ = —3C/dT = dC/dt < 0
and ‘Vega’ V = 9C/do > 0, the higher o+/T, the higher the call premium.

Cps(xo, %, T) = xo

Bachelier’s Gaussian limit

Suppose now that the price process is additive rather than multiplicative. This
means that the increments dx; themselves, rather than the relative increments,
should be considered as independent random variables. Using the change of
variable x; = (1 + p)k,ﬂ- in Eq. (4.31), one finds that x,y can be written as:
Nl
xv = Xo(1+p)N + Y sxe(1+ )N (4.40)
k=0
When N is large, the difference xy — xo(1 + 2" becomes, according to the CLT,
a Gaussian variable of mean zero (if m = 0) and of variance equal to:
N-l
e(T) =Dt Y (14 p)* ~ DT [1 4+ p(N — 1) + O(p*N?)] (4.41)
=0
where Dt is the variance of the individual increments, related to the volatility
through: D = o2xZ. The price, Eq. (4.33), then takes the following form:

(x — xpe'T)?

Cg(xo, Xs, T :e*”"]
G(Xo, X5, T') g 20,(T)

— Xg) exXp (— ) dx. (4.42)

|
«/2nc3(T)(x

The price formula written down by Bachelier corresponds to the limit of short
maturity options, where all interest rate effects can be neglected. In this limit, the
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above equation simplifies to:

ﬁ exp (—%) dx. (4.43)
This equation can also be derived directly from the Black—Scholes price, Eq. (4.39),
in the small maturity limit, where relative price variations are small: xy /xy — | <
1, allowing one to write y = log(x/xg) =~ (x — xp)/xo. As emphasized in
Section 1.3.2, this is the limit where the Gaussian and log-normal distributions
become very similar.

The dependence of Cs(xp, X5, T) as a function of x¢ is shown in Figure 4.1,
where the numerical value of the relative difference between the Black—Scholes
and Bachelier price is also plotted.

In a more general additive model, when N is finite, one can reconstruct the
full distribution P(x, N|xp, 0) from the elementary distribution P;(dx) using
the convolution rule (slightly modified to take into account the extra factors
(1 + p)¥* 1 in Eq. (4.40)). When N is large, the Gaussian approximation
P(x, N|xp, 0) = Ps(x, N|xo(1 + p)”, 0) becomes accurate, according to the CLT
discussed in Chapter 1.

Cc(xﬂ,xs,T)’—"f (x — xy)
Xy

As far as interest rate effects are concerned, it is interesting to note that both
formulae, Eqs (4.39) and (4.42), can be written as e’ times a function of xe'”,
that is of the forward price JFy. This is quite natural, since an option on a stock and
on a forward must have the same price, since they have the same pay-off at expiry.
As will be discussed in Chapter 5, this is a rather general property, not related to
any particular model for price fluctuations.

Dynamic equation for the option price

It is easy to show directly that the Gaussian distribution:

Po(x. Tl0,0) = — (= 3oy (4.44)
a(x, T'xp,0) = ——exp| ————— | . .
N 2mr DT 2DT
obeys the diffusion equation (or heat equation):
dPG(x, T|x0.0) D d*Pa(x, T|xp. 0
G(V‘ |x0.00 _ D3 G(’f X0, 0) @.45)
aT 2 dx2
with boundary conditions:
Pi(x,0[xg, 0) = 8(x — xp). (4.46)

On the other hand, since Pg(x, T |xo, 0) only depends on the difference x — xg, one has:

37 PG(x. T|x0.0)  8?Ps(x. T|xo.0)

4.47
ax2 E-]_xg ( )
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Fig. 4.1. Price of a call of maturity 7 = 100 days as a function of the strike price x;, in
the Bachelier model. The underlying stock is worth 100, and the daily volatility is 1%.
The interest rate is taken to be zero. Inset: relative difference between the the log-normal,

Black—Scholes price Cps and the Gaussian, Bachelier price (Cg), for the same values of the
parameters.

Taking the derivative of Eq. (4.43) with respect to the maturity T, one finds

dCq(xp, x5, T) _ D 32CG(X(],X5. T)

= , 4.48
aT 2 axg (*48)

with boundary conditions, for a zero maturity option:
Cg(xp, xs, 0) = max(xp — x5, 0). (4.49)
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The option price thus also satisfies the diffusion equation. We shall come back to this point
later, in Section 4.5.2: it is indeed essentially this equation that Black and Scholes derived
using stochastic calculus in 1973.

4.3.4 Real option prices, volatility smile and ‘implied’ kurtosis
Stationary distributions and the smile curve

We shall now come back to the case where the distribution of the price increments
8xi is arbitrary, for example a TLD. For simplicity, we set the interest rate p to
zero. (A non-zero interest rate can readily be taken into account by discounting
the price of the call on the forward contract.) The price difference is thus the
sum of N = T/t iid random variables, to which the discussion of the CLT
presented in Chapter 1 applies directly. For large N, the terminal price distribution
P(x, N|xp, 0) becomes Gaussian, while for N finite, “fat tail” effects are important
and the deviations from the CLT are noticeable. In particular, short maturity options
or out-of-the-money options, or options on very ‘jagged’ assets, are not adequately
priced by the Black—Scholes formula.

In practice, the market corrects for this difference empirically, by introducing
in the Black—Scholes formula an ad hoc ‘implied’ volatility X, different from
the ‘true’, historical volatility of the underlying asset. Furthermore, the value of
the implied volatility needed to price options of different strike prices x; and/or
maturities T properly is not constant, but rather depends both on T and x,. This
defines a ‘volatility surface’ X'(x,, 7). It is usually observed that the larger the
difference between x, and x;, the larger the implied volatility: this is the so-called
‘smile effect’ (Fig. 4.2). On the other hand, the longer the maturity T, the better
the Gaussian approximation; the smile thus tends to flatten out with maturity.

It is important to understand how traders on option markets use the Black—
Scholes formula. Rather than viewing it as a predictive theory for option prices
given an observed (historical) volatility, the Black—Scholes formula allows the
trader to translate back and forth between market prices (driven by supply and
demand) and an abstract parameter called the implied volatility. In itself this
transformation (between prices and volatilities) does not add any new information.
However, this approach is useful in practice, since the implied volatility varies
much less than option prices as a function of maturity and moneyness. The
Black—Scholes formula is thus viewed as a zero-th order approximation that
takes into account the gross features of option prices, the traders then correcting
for other effects by adjusting the implied volatility. This view is quite common
in experimental sciences where an a priori constant parameter of an approxi-
mate theory is made into a varying effective parameter to describe more subtle
effects.
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30 F T T ! | ! | . -

25

20

Zx. T)

10 1 1 1
-10 -5 0 5 10

X; — Xg

Fig. 4.2. ‘Implied volatility” X as used by the market to account for non-Gaussian effects.
The larger the difference between xg and xp, the larger the value of X': the curve has
the shape of a smile. The function plotted here is a simple parabola, which is obtained
theoretically by including the effect of a non-zero kurtosis x1 of the elementary price
increments. Note that for at-the-money options (xy = xg), the implied volatility is smaller
than the true volatility.

However, the use of the Black—Scholes formula (which assumes a constant
volatility) with an ad hoc variable volatility is not very satisfactory from a
theoretical point of view. Furthermore, this practice requires the manipulation
of a whole volatility surface X'(xs, T), which can deform in time—this is not
particularly convenient.

A simple calculation allows one to understand the origin and the shape of the
volatility smile. Let us assume that the maturity T is sufficiently large so that only
the kurtosis «; of P,(8x) must be taken into account to measure the difference
with a Gaussian distribution.” Using the results of Section 1.6.3, the formula,
Eq. (4.34), leads to:

kit |DT (xXg —x0)*7 [ (xg — X0)°
AC X, T) = —— — . -1, 4.50
«Co. % 1) = 27 2 [ 2DT DT (4.50)
where D = 02):3 and AC, = C; — Cy—o.
One can indeed transform the formula
o0
C= ] (x" — xs)P(x', T|xp, 0)dx', (4.51)

17 We also assume here that the distribution is symmetrical (P)(dx) = Pj(—dx)), which is usually justified
on short time scales. If this assumption is not adequate, one must include the skewness 43. leading to an
asymmetrical smile, cf. Eq. (4.56).
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through an integration by parts
(s o]
C= ] P_(x', T|xo, 0) dx’. (4.52)
Xg

After changing variables x' — x' — xq, and using Eq. (1.69) of Section 1.6.3, one gets:

VDT > 1 2
C = Cg+ —/ —— 01 (w)e " 2 du
+ N e N 2
VDT ]m 1 ),
4+ — ——O2(w)e " du 4 - - (4.53)
N u, 2 Q:

where uy = (x; — xp)/~/ DT. Now, noticing that:

2, A3 d? 2,
Q1(uye % = A /2 (4.54)
and
2 ha & o, A3 o,
wye /2 = _ e /e 2 __e7W /= 4.55
22(0) 24 du” 72 dud ( )
the integrations over u are readily performed, vielding:
¢ = corvBTE (1 M2
> = C DT —— 2, + w2 -1
G+ N (6WM+24N(”5 )
.2
A3 4
+ 721{ (ut —6uZ+3)+-- ) , (4.56)

which indeed coincides with Eq. (4.50) for )3 = 0. In general, one has }% <& hgin this
case, the smile remains a parabola, but shifted and centred around xo(1 — 20T A3/ )4).

Note that we refer here to additive (rather than multiplicative) price increments:
the Black—Scholes volatility smile is often asymmetrical merely because of the use
of a skewed log-normal distribution to describe a nearly symmetrical process.

On the other hand, a simple calculation shows that the variation of
Ce—o(x0. x5, T) [as given by Eq. (4.43)] when the volatility changes by a small
quantity D = 20x}d0 is given by:

| T Xs — Xo)°
8C—o(xp, x5, T) = 8o xp > exp [_(}TTO} . (4.57)

The effect of a non-zero kurtosis «; can thus be reproduced (to first order) by
a Gaussian pricing formula, but at the expense of using an effective volatility
Y (x5, T) = 0 4+ 8o given by:

_ iK(T) [ (xs — x0)?
X(.’(S,T]—O'I:l—l- 1 ( DT —])], (4.58)
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Fig. 43. Comparison between theoretical and observed option prices. Each point corre-
sponds to an option on the Bund (traded on the LIFFE in London), with different strike
prices and maturities. The x coordinate of each point is the theoretical price of the option
(determined using the empirical terminal price distribution), while the y coordinate is the
market price of the option. If the theory is good, one should observe a cloud of points
concentrated around the line y = x. The dotted line corresponds to a linear regression, and
gives y = 0.998x 4 0.02 (in basis points units).

with k (T') = «;/N. This very simple formula, represented in Figure 4.2, allows one
to understand intuitively the shape and amplitude of the smile. For example, for a
daily kurtosis of k| = 10, the volatility correction is on the order of §a /o >~ 17%
for out-of-the-money options such that x; — x = 3+/DT, and for T = 20 days.
Note that the effect of the kurtosis is to reduce the implied at-the-money volatility
in comparison with its true value.

Figure 4.3 shows some ‘experimental’ data, concerning options on the Bund
(futures) contract—for which a weakly non-Gaussian model is satisfactory (cf.
Section 2.3). The associated option market is, furthermore, very liquid; this tends
to reduce the width of the bid-ask spread, and thus, probably to decrease the
difference between the market price and a theoretical ‘fair’ price. This is not the
case for OTC options, when the overhead charged by the financial institution
writing the option can in some case be very large, cf. Section 4.4.1 below. In
Figure 4.3, each point corresponds to an option of a certain maturity and strike
price. The coordinates of these points are the theoretical price, Eq. (4.34), along the
x axis (calculated using the historical distribution of the Bund), and the observed
market price along the y axis. If the theory is good, one should observe a cloud
of points concentrated around the line y = x. Figure 4.3 includes points from the
first half of 1995, which was rather ‘calm’, in the sense that the volatility remained
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4.3 Options: definition and valuation 151

roughly constant during that period (see Fig. 4.4). Correspondingly, the assumption
that the process is stationary is reasonable.

The agreement between theoretical and observed prices is however much less
convincing if one uses data from 1994, when the volatility of interest rate markets
has been high. The following subsection aims at describing these discrepancies in
greater details.

Non-stationarity and ‘implied’ kurtosis
A more precise analysis reveals that the scale of the fluctuations of the underlying
asset (here the Bund contract) itself varies noticeably around its mean value; these
‘scale fluctuations’ are furthermore correlated with the option prices. More precisely, one
postulates that the distribution of price increments 5x has a constant shape, but a width yy

which is time dependent (cf Section 2.4), i.e.:'

1 Sxp
Py(8x;) = — P (—) , (4.59)
Yk Yk
where Py is a distribution independent of k, and of width (for example measured by the
MAD) normalized to one. The absolute volatility of the asset is thus proportional to yy.
Note that if Po is Gaussian and time is continuous, this model is known as the stochastic
volatility Brownian motion.'® However, this assumption is not needed, and one can keep
Pyo arbitrary.

Figure 4.4 shows the evolution of the scale y (filtered over 5 days in the past) as a
function of time and compares it to the implied volatility X (x; = xp) extracted from
at-the-money options during the same period. One thus observes that the option prices
are rather well tracked by adjusting the factor y; through a short-term estimate of the
volatility of the underlying asset. This means that the option prices primarily reflects the
quasi-instantaneous volatility of the underlying asset itself, rather than an ‘anticipated’
average volatility on the life time of the option.

It is interesting to notice that the mere existence of volatility fluctuations leads to a non-
zero kurtosis ky of the asset fluctuations (see Section 2.4). This kurtosis has an anomalous
time dependence (cf. Eq. (2.17)), in agreement with the direct observation of the historical
kurtosis (Fig. 4.6). On the other hand, an ‘implied kurtosis’ can be extracted from the
market price of options, using Eq. (4.58) as a fit to the empirical smile, see Figure 4.5.
Remarkably enough, this implied kurtosis is in close correspondence with the historical
kurtosis —note that Figure 4.6 does not require any further adjustable parameter.

As a conclusion of this section, it seems that market operators have empirically corrected
the Black—Scholes formula to account for two distinct, but related effects:

o The presence of market jumps, implying fat tailed distributions (x > 0) of short-term
price increments. This effect is responsible for the volatility smile (and also, as we shall
discuss next, for the fact that options are risky).

e The fact that the volatility is not constant, but fluctuates in time, leading to an
anomalously slow decay of the kurtosis (slower than 1/N) and, correspondingly, to
a non-trivial deformation of the smile with maturity.

This hypothesis can be justified by assuming that the amplitude of the market moves is subordinated to the
volume of transactions, which itself is obviously time dependent.

In this context, the fact that the volatility is time dependent is called ‘heteroskedasticity”. ARCH models { Auto
Regressive Conditional Heteroskedasticity) and their relatives have been invented as a framework to model
such effects. See Section 2.9.
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Fig. 4.4. Time dependence of the scale parameter y. obtained from the analysis of the
intra-day fluctuations of the underlying asset (here the Bund), or from the implied volatility
of at-the-money options. More precisely, the historical determination of ¥ comes from the
daily average of the absolute value of the 5-min price increments. The two curves are then
smoothed over 5 days. These two determinations are strongly correlated, showing that the
option price mostly reflects the instantaneous volatility of the underlying asset itself.

It is interesting to note that, through trial and errvors, the market as a whole has evolved
to allow for such non-trivial statistical features—at least on most actively traded markets.
This might be called ‘market efficiency’; but contrarily to stock markets where it is difficult
to judge whether the stock price is or is not the ‘true’ price (which might be an empty
concept), option markets offer a remarkable testing ground for this idea. It is also a nice
example of adaptation of a population (the traders) to a complex and hostile environment,
which has taken place in a few decades!

In summary, part of the information contained in the implied volatility surface
X (xs. T) used by market participants can be explained by an adequate statistical
model of the underlying asset fluctuations. In particular, in weakly non-Gaussian
markets, an important parameter is the time-dependent kurtosis, see Eq. (4.58). The
anomalous maturity dependence of this kurtosis encodes the fact that the volatility
is itself time dependent.

4.4 Optimal strategy and residual risk
4.4.1 Introduction

In the above discussion, we have chosen a model of price increments such that the
cost of the hedging strategy (i.e. the term (;dx;)) could be neglected, which is
justified if the excess return m is zero, or else for short maturity options. Beside the
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Fig. 4.5. Implied Black—Scholes volatility and fitted parabolic smile. The circles corre-
spond to all quoted prices on 26th April, 1995, on options of 1-month maturity. The error
bars correspond to an error on the price of &1 basis point. The curvature of the parabola
allows one to extract the implied kurtosis x (T') using Eq. (4.58).

tact that the correction to the option price induced by a non-zero return is important
to assess (this will be done in the next section), the determination of an ‘optimal’
hedging strategy and the corresponding minimal residual risk is crucial for the
following reason. Suppose that an adequate measure of the risk taken by the writer
of the option is given by the variance of the global wealth balance associated to the
operation, i.e.:?

R =V (AW?[¢]). (4.60)

As we shall find below, there is a special strategy ¢* such that the above quantity is
reaches a minimum value. Within the hypotheses of the Black—Scholes model, this
minimum risk is even, rather surprisingly, strictly zero. Under less restrictive and
more realistic hypotheses, however, the residual risk R* = /(AW?[¢*]) actually
amounts to a substantial fraction of the option price itself. It is thus rather natural
for the writer of the option to try to reduce further the risk by overpricing the option,
adding to the “fair price” a risk premium proportional to R* —in such a way that the
probability of eventually losing money is reduced. Stated otherwise, option writing
being an essentially risky operation, it should also be, on average, profitable.
Therefore, a market maker on option markets will offer to buy and to sell options
at slightly different prices (the ‘bid—ask’ spread), centred around the fair price C.
The amplitude of the spread is presumably governed by the residual risk, and is

20 The case where a better measure of risk is the loss probability or the value-at-risk will be discussed below.
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Fig. 4.6. Plot (in log-log coordinates) of the average implied kurtosis Kimp (determined
by fitting the implied volatility for a fixed maturity by a parabola) and of the empirical
kurtosis ky (determined directly from the historical movements of the Bund contract), as
a function of the reduced time scale N = T/t, t = 30 min. All transactions of options
on the Bund future from 1993 to 1995 were analysed along with 5 minute tick data of
the Bund future for the same period. We show for comparison a fit with xy =~ N—%42
(dark line), as suggested by the results of Section 2.4. A fit with an exponentially decaying
volatility correlation function is however also acceptable (dash line).

thus £AR*, where A is a certain numerical factor, which measures the price of
risk. The search for minimum risk corresponds to the need of keeping the bid—ask
spread as small as possible, because several competing market makers are present.
One therefore expects the coefficient A to be smaller on liquid markets. On the
contrary, the writer of an OTC option usually claims a rather high risk premium
k.

Let us illustrate this idea by Figures 4.7 and 4.8, generated using real market
data. We show the histogram of the global wealth balance AW, corresponding
to an at-the-money option, of maturity equal to 3 months, in the case of a bare

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 168

http://site.ebrary.com/id/10014876?ppg=168

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.



Lh
]

4.4 Optimal strategy and residual risk 1

0.5 T T

03 i

P(AW)

02 - b

0.1 b

LTI H e T

3.0 2.0 -1.0 0.0 1.0
AW

Fig. 4.7. Histogram of the global wealth balance AW associated with the writing of an
at-the-money option of maturity equal to 60 trading days. The price is fixed such that on
average (AW) is zero (vertical line). This figure corresponds to the case where the option
is not hedged (¢ = 0). The RMS of the distribution is 1.04, to be compared with the
price of the option C = 0.79. The ‘peak’ at 0.79 thus corresponds to the cases where
the option is not exercised, which happens with a probability close to % for at-the-money
options.

position (¢ = 0), and in the case where one follows the optimal strategy (¢ = ¢*)
prescribed below. The fair price of the option is such that {AW}) = 0 (vertical thick
line). It is clear that without hedging, option writing is a very risky operation. The
optimal hedge substantially reduces the risk, though the residual risk remains quite
high. Increasing the price of the option by an amount AR* corresponds to a shift
of the vertical thick line to the left of Figure 4.8, thereby reducing the weight of
unfavourable events.
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Fig. 4.8. Histogram of the global wealth balance AW associated to the writing of the same
option, with a price still fixed such that {AW) = 0 (vertical line), with the same horizontal
scale as in the previous figure. This figure shows the effect of adopting an optimal hedge
(¢p = ¢*), recalculated every half-hour, and in the absence of transaction costs. The RMS
R* is clearly smaller (= 0.28), but non-zero. Note that the distribution is skewed towards
AW < 0. Increasing the price of the option by AR* amounts to diminishing the probability
of losing money (for the writer of the option), P(AW < 0).

Another way of expressing this idea is to use R* as a scale to measure the
difference between the market price of an option Cy and its theoretical price:

_Cu-C
-2

An option with a large value of X is an expensive option, which includes a large

A (4.61)

risk premium.
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4.4 Optimal strategy and residual risk 157

4.4.2 A simple case

Let us now discuss how an optimal hedging strategy can be constructed, by
focusing first on the simple case where the amount of the underlying asset held in
the portfolio is fixed once and for all when the option is written, i.e. atf = 0. This
extreme case would correspond to very high transaction costs, so that changing
one’s position on the market is very costly. We shall furthermore assume, for
simplicity, that interest rate effects are negligible, i.e. p = 0. The global wealth
balance, Eq. (4.28), then reads:
N-1
AW =C —max(xy — %, 0) + ¢ Y _ dx. (4.62)
k=0
In the case where the average return is zero ({dx;) = 0) and where the increments
are uncorrelated (i.e. (8x;8x;) = Dtd; ), the variance of the final wealth, R> =
(AW?) — (AW)?, reads:

R* = ND1¢p? — 2¢((xy — xo) max(xy — x5, 0)) + Rg, (4.63)
where R is the intrinsic risk, associated to the ‘bare’, unhedged option (¢ = 0):
Ra = (max(xy — X, 0)2) — (max(xy — Xxs. 0))2. (4.64)

The dependence of the risk on ¢ is shown in Figure 4.9, and indeed reveals the
existence of an optimal value ¢ = ¢* for which R takes a minimum value. Taking
the derivative of Eq. (4.63) with respect to ¢,

dr =0 (4.65)
d¢’ G=o* ' '

one finds:
1

*__
¢_DrN

f (x —x)(x —xp) P(x, N|xg, 0)dx, (4.66)

thereby fixing the optimal hedging strategy within this simplified framework.
Interestingly, if P (x, N|xg, 0) is Gaussian (which becomes a better approximation
as N = T/t increases), one can write:

(x —xp)?
Xg)(x — xo) exp 3T dx (4.67)

f‘x ;(r_r}iex [_w]dx
. vazor . Y OP|TTapr |V

giving, after an integration by parts: ¢* = P, or else the probability, calculated
from 1 = 0, that the option is exercised at maturity: P = f:‘ P(x, N|xp,0)dx.

1 = 1
- 7():_
DT /a A2 DT
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-1.0 0.5 0.0 ¢* 0.5 1.0

Fig. 4.9. Dependence of the residual risk R as a function of the strategy ¢, in the simple
case where this strategy does not vary with time. Note that R is minimum for a well-defined
value of ¢h.

Hence, buying a certain fraction of the underlying allows one to reduce the risk
associated to the option. As we have formulated it, risk minimization appears as a
variational problem. The result therefore depends on the family of ‘trial’ strategies
¢. A natural idea is thus to generalize the above procedure to the case where the
strategy ¢ is allowed to vary both with time, and with the price of the underlying
asset. In other words, one can certainly do better than holding a certain fixed
quantity of the underlying asset, by adequately readjusting this quantity in the
course of time.

4.4.3 General case: ‘A’ hedging

If one writes again the complete wealth balance, Eq. (4.26), as:

N—-1
AW =C(1+ p)" —max(xy —x:,0) + > ¥ (x)8x, (4.68)
k=0

the calculation of {AW?) involves, as in the simple case treated above, three types
of terms: quadratic in 1/, linear in ¥, and independent of . The last family of
terms can thus be forgotten in the minimization procedure. The first two terms of

R? are:
N-1 ) N—1 ‘
Y @Y Ex7) — 2 ) (i Sxp max (xy — x5, 0)), (4.69)
k=0 k=0
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4.4 Optimal strategy and residual risk 159

where we have used (8x;) = 0 and assumed the increments to be of finite variance
and uncorrelated (but not necessarily stationary nor independent):'

(8x18x1) = (8x0) k.. (4.70)

We introduce again the distribution P (x, k|xo, 0) for arbitrary intermediate times
k. The strategy 1,{'},“_’\? depends now on the value of the price x;. One can express the
terms appearing in Eq. (4.69) in the following form:

(()?) (8x7) = f [V (01 P (x, k|xo, 0)(8x7) dx, (4.71)

and

(¥ 8x1 max(xy — xs, 0)) = / U (x) P (x, k|xo, 0) dx (4.72)

+o0
x f ‘:.6):!()(.r..k}—»(.r',r\"](JCF - xs)P(sz Nlx, k) dx’:
X
where the notation (8xg) (k) ..~y Mmeans that the average of dx; is restricted to
those trajectories which start from point x at time k and end at point x’ at time
N. Without this restriction, the average would of course be (within the present
hypothesis) zero.

The functions 1};{\"(1}, for k = 1.2,..., N, must be chosen so that the risk R
is as small as possible. Technically, one must ‘functionally’ minimize Eq. (4.69).
We shall not try to justify this procedure mathematically; one can simply imagine
that the integrals over x are discrete sums (which is actually true, since prices
are expressed in cents and therefore are not continuous variables). The function

V(x) is thus determined by the discrete set of values of ¥} (/). One can then
take vsual derivatives of Eq. (4.69) with respect to these lj/,j_v (i). The continuous
limit, where the points i become infinitely close to one another, allows one to
define the functional derivative 8/81!/'(_\'(.7(), but it is useful to keep in mind its
discrete interpretation. Using Eqs (4.71) and (4.73), one thus finds the following
fundamental equation:

IR
v, (x)
—2P(x, k

=2, (x) P(x, k|xo, 0)(8x7) (4.73)

x, k)ydx’.

+oo
X0, 0) j (8x6) ey (X — X)) P(x', N
X

As

Setting this functional derivative to zero then provides a general and rather explicit

expression for the optimal strategy ¥{'*(x), where the only assumption is that the

2 - - . . . -
2! The case of correlated Gaussian increments is considered in [Bouchaud and Sornette].
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increments 8x; are uncorrelated (cf. Eq. (4.70)):%

7 l
Y (x) = ST

+0oo
_/ (8xk) x by oo (8 — x5) P(x', N|x, k) dx'. (4.74)
{8xic) Js

Xs

This formula can be simplified in the case where the increments dx; are identically
distributed (of variance Dt) and when the interest rate is zero. As shown in
Appendix D, one then has:

X' —x
N —k
The intuitive interpretation of this result is that all the N — k increments §x; along

the trajectory (x, k) — (x', N) contribute on average equally to the overall price
change x" — x. The optimal strategy then finally reads:

<3xk>(.\'.k}—»(_1",i\"! = (4.75)

+o0 !
N r—x ! d !
Hx) = ———(x' —x ) P(x', N|x, k) dx". 4.76
o (x) f By TP Nk dx (4.76)
We leave to the reader to show that the above expression varies monotonically
from c;bf"*(—oo} = 0to qbi.v*(—i—oc) = 1; this result holds without any further
assumptionon P(x’, N|x, k). If P(x', N|x, k) is well approximated by a Gaussian,
the following identity then holds true:

x' —x , _ 0Ps(x", Nx, k)
) Po(x', Nix, k) = —

The comparison between Eqs (4.76) and (4.33) then leads to the so-called ‘Delta’
hedging of Black and Scholes:

(4.77)

; 0Cgs[x, xs, N — k
o =x) = sl > ]
ax

= A(xp, N —k). - (4.78)

One can actually show that this result is true even if the interest rate is non-zero
(see Appendix D), as well as if the relative returns (rather than the absolute returns)
are independent Gaussian variables, as assumed in the Black—Scholes model.
Equation (4.78) has a very simple (perhaps sometimes misleading) interpreta-
tion. If between time k and & + 1 the price of the underlying asset varies by a small
amount dx, then to first order in dx;, the variation of the option price is given
by A[x, x5, N — k] dx; (using the very definition of A). This variation is therefore
exactly compensated by the gain or loss of the strategy, i.e. ¢ *(x = x;) dx;. In
other words, ¢{'* = A(xi, N —k) appears to be a perfect hedge, which ensures that
22 This is true within the variational space considered here. where ¢ only depends on x and t. If some volatility

correlations are present, one could in principle consider strategies that depend on the past values of the
volatility.
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4.4 Optimal strategy and residual risk 161

the portfolio of the writer of the option does not vary at all with time (cf. below,
when we will discuss the differential approach of Black and Scholes). However, as
we discuss now, the relation between the optimal hedge and A is not general, and
does not hold for non-Gaussian statistics.

Cumulant corrections to A hedging

More generally, using Fourier transforms, one can express Eq. (4.76) as a cumulant
expansion. Using the definition of the cumulants of P, one has:

e—i;(r —Xx) dZ

(x'—x)P(x',N|x,0) = ]—jﬁN(z)

2 d(—iz)

IRy . 3}r—|

n=2

where log }SN (z) = Ef:‘lz(iz)” cn N /nl. Assuming that the increments are independent,
one can use the additivity property of the cumilants discussed in Chapter 1, i.e.: ¢y y =
Ncy 1, where the ¢, are the cumulants at the elementary time scale t. One finds the
following general formula for the optimal strategy:2

1 i Cn.1 aﬂ_IC[X,)CS‘ N]

N _
O = G g

, (4.80)
n=2

where ¢, = Drt, ¢4 = k1lea 113, ete. In the case of a Gaussian distribution, cp | = 0
for all n = 3, and one thus recovers the previous ‘Delta’ hedging. If the distribution of the
elementary increments Sxy is symmetrical, c3,1 = 0. The first correction is then of order
ca1/caq % (/4 DTN)? = k[N, where we have used the fact that C[x, x5, N] typically
varies on the scale x >~ /Dt N, which allows us to estimate the order of magnitude of its
derivatives with respect to x. Equation (4.80) shows that in general, the optimal strategy
is not simply given by the derivative of the price of the option with respect to the price of
the underlying asset.

It is interesting to compute the difference between ¢* and the Black—Scholes strategy
as used by the rrfders, ¢4 which takes into account the implied volatility of the option
Yx, T = N1):*
dC[x, x5, T]

x, X)) = .
qf)M(x ) dx o=X

(4.81)

If one chooses the implied volatility X in such a way that the ‘correct’ price (cf. Eq. (4.58)
above) is reproduced, one can show that:

¢$(x}_¢$ (x E}_f_g(‘xb_xo) ex _(XS_XU)Q (4 82}
VM T T 0| 20T | '

where higher-order cumulants are neglected. The Black—Scholes strategy, even calculated

23 This formula can actually be generalized to the case where the volatility is time dependent, see Appendix D
and Section 5.2.3,

24 Note that the market does not compute the total derivative of the option price with respect to the underlying
price, which would also include the derivative of the implied volatility.
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162 Futures and options: fundamental concepts

¢(x)

Fig. 4.10. Three hedging strategies for an option on an asset of terminal value xp
distributed according to a truncated Lévy distribution, of kurtosis 5, as a function of
the strike price xs. ¢* denotes the optimal strategy, calculated from Eq. (4.76), ¢n is
the Black—Scholes strategy computed with the appropriate implied volatility, such as to
reproduce the correct option price, and P~ is the probability that the option is exercised
at expiry, which would be the optimal strategy if the fluctuations were Gaussian. These
three strategies are actually quite close to each other (they coincide at-the-money, and deep
in-the-money and out-the-money). Note however that, interestingly, the variations of ¢*
with the price are slower (smaller I').

with the implied volatility, is thus not the optimal strategy when the kurtosis is non-zero.

However, the difference between the two reaches a maximum when x; — xo = /DT, and
is equal to:

S* ~ 0.0’2% T = Nt. (4.83)

For a daily kurtosis of k1 = 10 and for N = 20 days, one finds that the first correction to
the aptimal hedge is on the order of 0.01, see also Figure 4.10. As will be discussed below,
the use of such an approximate hedging induces a rather small increase of the residual
risk.

4.4.4 Global hedging/instantaneous hedging

It is important to stress that the above procedure, where the global risk associated
to the option (calculated as the variance of the final wealth balance) is minimized is
equivalent to the minimization of an ‘instantaneous’ hedging error —at least when
the increments are uncorrelated. The latter consists in minimizing the difference of
value of a position which is short one option and ¢ long in the underlying stock,
between two consecutive times kt and (k + 1)z. This is closer to the concern
of many option traders, since the value of their option books is calculated every
day: the risk is estimated in a ‘marked to market” way. If the price increments are
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4.4 Optimal strategy and residual risk 163

uncorrelated, we show below that the optimal strategy is indeed identical to the
‘global’ one discussed above.

The change of wealth between times k and k + 1 is, in the absence of interest rates, given
by:

Wy = Cr — Cry1 + ¢ (xp)8xp- (4.84)

The global wealth balance is simply given by the sum over n of all these 8 Wy. Let us now
calculate the part of (8 Wf} which depends on ¢.. Using the fact that the increments are
uncorrelated, one finds:

@ () DT — 200 (xp) (Chs18x%). (4.85)

Using now the explicit expression for Cp4:
oc
Ci+1 :] (x" = x)P(x', N|xgs1. b+ 1 dx', (4.86)
Xg
one sees that the second term in the above expression contains the following average:
j(xk+1 — xk) P (xk1, k + Uk, Y P(x, N|xk+1, k + 1) dxg+1. (4.87)

Using the methods of Appendix D, one can show that the above average is equal to (x' —
xi/N — k)P (x', N|xi, k). Therefore, the part of the risk that depends on ¢y is given by:

¢t () DT —2¢k(x,\-)] (Jf—i‘;)w

p P(x', N|xp. k)dx'. (4.88)

Taking the derivative of this expression with respect to ¢y finally leads to the optimal
strategy, Eq. (4.76), above.

4.4.5 Residual risk: the Black—Scholes miracle

We shall now compute the residual risk R* obtained by substituting ¢ by ¢* in Eq.
(4.69). One finds:

N—1
RZ=R§— Dty f P(x, k|x0, ) [ (x)] d, (4.89)
k=0

where R is the unhedged risk. The Black—Scholes ‘miracle’ is the following: in the
case where P is Gaussian, the two terms in the above equation exactly compensate
in the limit where T — 0, with Nt = T fixed.”

25 The ‘zero-risk’ property is true both within an ‘additive’ Gaussian model and the Black—Scholes multiplicative
model, or for more general continuous-time Brownian motions. This property is more easily obtained using
Ito’s stochastic differential calculus, see below. The latter formalism is however only valid in the continuous-
time limit (t = 0).
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164 Futures and options: fundamental concepts

This ‘miraculous’ compensation is due to a very peculiar property of the Gaussian
distribution, for which:

Pg(x1, T|xp. 0)(x; — x2) — Pg(xy, T|xp. 0) Pg(x2, T|xp,0) =

T . .
Po(x1, T|x, 1) 8 Pg(x2, T|x, £
D] fPG(x,rp-o,O)d G“}'}' .0 8Pe (2 T gy, (4.90)
0 X

0x
Integrating this equation with respect to x| and x3 after multiplication by the correspond-
ing payoff functions, the left-hand side gives R As for the right-hand side, one recognizes

the limit of E]L_ol f P(x, k|xp, 0)[@’)??* (Jr)]2 dx when = 0, where the sum becomes an
integral.

Therefore, in the continuous-time Gaussian case, the A-hedge of Black and
Scholes allows one to eliminate completely the risk associated with an option, as
was the case for the forward contract. However, contrarily to the forward contract
where the elimination of risk is possible whatever the statistical nature of the
fluctuations, the result of Black and Scholes is only valid in a very special limiting
case. For example, as soon as the elementary time scale r is finite (which is
the case in reality), the residual risk /%* is non-zero even if the increments are
Gaussian. The calculation is easily done in the limit where 7 is small compared
to T: the residual risk then comes from the difference between a continuous
integral Dt [dt’ [ Pg(x,1|xg, 0)¢**(x,1") dx (which is equal to R}) and the
corresponding discrete sum appearing in Eq. (4.89). This difference is given by
the Euler—McLaurin formula and is equal to:

R*:N%P(l —P)+ O(7), (4.91)

where P is the probability (at # = 0) that the option is exercised at expiry (t = T').%°
In the limit T — 0, one indeed recovers R* = 0, which also holds if P —
0 or 1, since the outcome of the option then becomes certain. However, Eq. (4.91)
already shows that in reality, the residual risk is nor small. Take for example an
at-the-money option, for which P = % The comparison between the residual risk
and the price of the option allows one to define a ‘quality’ ratio Q for the hedging
strategy:

with N = T/r. For an option of maturity 1 month, rehedged daily, N ~ 25.
Assuming Gaussian fluctuations, the quality ratio is then O ~ 0.2. In other words,
the residual risk is one-fifth of the price of the option itself. Even if one rehedges
every 30 min in a Gaussian world, the quality ratio is already @ 2~ 0.05. If the

2 . - Py . " . . -
26 The above formula is only correct in the additive limit, but can be generalized to any Gaussian model, in
particular the log-normal Black—-Scholes model.
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4.4 Optimal strategy and residual risk 165

increments are not Gaussian, then R* can never reach zero. This is actually rather
intuitive, the presence of unpredictable price ‘jumps’ jeopardizes the differential
strategy of Black—Scholes. The miraculous compensation of the two terms in
Eq. (4.89) no longer takes place. Figure 4.11 gives the residual risk as a function
of 7 for an option on the Bund contract, calculated using the optimal strategy
¢*, and assuming independent increments. As expected, R* increases with t,
but does nof tend to zero when t decreases: the theoretical quality ratio saturates
around @ = 0.17. In fact, the real risk is even larger than the theoretical estimate
since the model is imperfect. In particular, it neglects the volatility fluctuations,
i.e. that of the scale factor y;. (The importance of these volatility fluctuations
for determining the correct price was discussed above in Section 4.3.4.) In other
words, the theoretical curve shown in Figure 4.11 neglects what is usually called
the ‘volatility’ risk. A Monte-Carlo simulation of the profit and loss associated
to an at-the-money option, hedged using the optimal strategy ¢* determined
above leads to the histogram shown in Figure 4.8. The empirical variance of
this histogram corresponds to Q =~ (.28, substantially larger than the theoretical
estimate.

The ‘stop-loss’ strategy does not work

There is a very simple strategy that leads, at first sight, to a perfect hedge. This
strategy is to hold ¢ = 1 of the underlying as soon as the price x exceeds the strike
price x5, and to sell everything (¢ = 0) as soon as the price falls below x;. For
zero interest rates, this ‘stop-loss’ strategy would obviously lead to zero risk, since
either the option is exercised at time T, but the writer of the option has bought
the underlying when its value was x;, or the option is not exercised, but the writer
does not possess any stock. If this were true, the price of the option would actually
be zero, since in the global wealth balance, the term related to the hedge perfectly
matches the option pay-off!

In fact, this strategy does not work at all. A way to see this is to realize
that when the strategy takes place in discrete time, the price of the underlying
is never exactly at x, but slightly above, or slightly below. If the trading time
is T, the difference between x; and x; (where k is the time in discrete units)
is, for a random walk, of the order of V'Dt. The difference between the ideal
strategy, where the buy or sell order is always executed precisely at x;, and
the real strategy is thus of the order of N /Dt, where N, is the number of
times the price crosses the value x, during the lifetime T of the option. For an
at-the-money option, this is equal to the number of times a random walk returns
to its starting point in a time 7. The result is well known, and is N, o /T/t
for T > 1. Therefore, the uncertainty in the final result due to the accumulation
of the above small errors is found to be of order /DT, independently of 7, and
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0.5 T T

04 r

03 -

R*(7)

— — - Black—Scholes world

02 —— Stationary approximation

01 / .

Fig. 4.11. Residual risk R* as a function of the time 1 (in days) between adjustments of
the hedging strategy ¢*, for at-the-money options of maturity equal to 60 trading days.
The risk R* decreases when the trading frequency increases, but only rather slowly: the
risk only falls by 10% when the trading time drops from 1 day to 30 min. Furthermore,
R* does not tend to zero when T — 0, at variance with the Gaussian case (dotted line).
Finally, the present model neglects the volatility risk, which leads to an even larger residual
risk (marked by the symbol ‘M.C."), corresponding to a Monte-Carlo simulation using real
price changes.

therefore does not vanish in the continuous-time limit 7 — 0. This uncertainty is
of the order of the option price itself, even for the case of a Gaussian process.
Hence, the ‘stop-loss’ strategy is not the optimal strategy, and was therefore
not found as a solution of the functional minimization of the risk presented
above.
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4.4 Optimal strategy and residual risk 167

Residual risk to first order in kurtosis

It is interesting to compute the first non-Gaussian correction to the residual risk, which is
induced by a non-zero kurtosis k| of the distribution at scale t. The expression of IR* [0k
can be obtained from Eq. (4.89), where two types of term appear: those proportional to
0P /0k), and those proportional to 0¢* [0k . The latter terms are zero since by definition
the derivative of R* with respect to ¢* is nil. We thus find:

aR*Z
3!(1

:j (x — x9)[(x — x5) — 2{max(x(N) — x5, 0))]

dP(x, N|xo, 0) fHP(x’.klxo,O) NesZ 2 s
Xde—Derj — gl Ta. @93)

Now, to first order in kurtosis, one has (cf. Chapter 1):

AP klx0, 0) _ (D1)? 8*Po(x", k|xp, 0)
8!(1 - 4! dxg

. (4.94)

which allows one to estimate the extra risk numerically, using Eq. (4.93). The order of
magnitude of all the above terms is given by 9R**/dk| =~ Dt /4\. The relative correction
to the Gaussian result, Eq. (4.91), is then simply given, very roughly, by the kurtosis k.
Therefore, tail effects, as measured by the kurtosis, constitute the major source of the
residual risk when the trading time t is small.

Stochastic volatility models

It is instructive to consider the case where the fluctuations are purely Gaussian, but where
the volatility itself is randomly varying. In other words, the instantaneous variance is given
by Dy = D+8Dy, where § Dy, is itself a random variable of variance (8 D)2. If the different
d Dy ’s are uncorrelated, this model leads to a non-zero kurtosis (cf. Eq. (2.17) and Section
1.7.2) equal to k| = 3(5 D)zfﬁz.

Suppose then that the option trader follows the Black—Scholes strategy corresponding to
the average volatility D. This strategy is close, but not identical to, the optimal strategy
which he would follow if he knew all the future values of 8 Dy (this strategy is given in
Appendix D). If 8Dy < D, one can perform a perturbative calculation of the residual
risk associated with the uncertainty on the volatility. This excess risk is certainly of order
(6D)? since one is close to the absolute minimum of the risk, which is reached for 8D = 0.
The calculation does indeed yield a relative increase in risk whose order of magnitude is
given by:

§R*  (8D)?
T o 52 .

(4.95)

If the observed kurtosis is entirely due to this stochastic volatility effect, one has §R* /R* oc
k1. One thus recovers the result of the previous section. Again, this volatility risk can
represent an appreciable fraction of the real risk, especially for frequently hedged options.
Figure 4.11 actually suggests that the fraction of the risk due to the fluctuating volatility is
comparable to that induced by the intrinsic kurtosis of the distribution.
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4.4.6 Other measures of risk—hedging and VaR (")

It is conceptually illuminating to consider the model where the price increments
dx; are Lévy variables of index j© < 2, for which the variance is infinite. Such
a model is also useful to describe extremely volatile markets, such as emergent
countries (like Russial), or very speculative assets (cf. Chapter 2). In this case, the
variance of the global wealth balance AW is meaningless and cannot be used as a
reliable measure of the risk associated to the option. Indeed, one expects that the
distribution of AW behaves, for large negative AW, as a power-law of exponent
.

In order to simplify the discussion, let us come back to the case where the
hedging strategy ¢ is independent of time, and suppose interest rate effects
negligible. The wealth balance, Eq. (4.28), then clearly shows that the catastrophic
losses occur in two complementary cases:

e Either the price of the underlying soars rapidly, far beyond both the strike price
x5 and xo. The option is exercised, and the loss incurred by the writer is then:

[ AW, | =xn(1 — @) — xs + dxo —C ~ xn(l — ¢). (4.96)

The hedging strategy ¢, in this case, limits the loss, and the writer of the option
would have been better off holding ¢p = 1 stock per written option.

e Or, on the contrary, the price plummets far below x,. The option is then not
exercised, but the strategy leads to important losses since:

|AW_| :qb(xg—xN)—C:—tf)x,a\.-. (497)
In this case, the writer of the option should not have held any stock at all (¢ = 0).

However, both dangers are a priori possible. Which strategy should one follow?
Thanks to the above argument, it is easy to obtain the tail of the distribution of AW
when AW — —oo (large losses). Since we have assumed that the distribution of
Xy — Xxg decreases as a power-law for large arguments,

Al
X.0) ~ o HAx (4.98)

-ﬂv—.\'?—s +oo |xN — XU| I+ 7

P(JL‘N, N

it is easy to show, using the results of Appendix C, that:

AW
P(ﬂW} AWE—QC &r{fﬁ A{.{/‘;Jt = Ai(] — ¢,)M + A"iqb“, (4.99)

The probability that the loss | AW]| is larger than a certain value is then proportional
to AW, (cf. Chapter 3). The minimization of this probability with respect to ¢ then
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4.4 Optimal strategy and residual risk 169
leads to an optimal ‘value-at-risk” strategy:

_ AL (=t
AL+ A° p—1

o (4.100)
forl <p <22 Forp < 1,¢*isequal to0if A_ > A, orto | in the opposite
case. Several points are worth emphasizing:

e The hedge ratio ¢* is independent of moneyness (x; — Xg). Because we are
interested in minimizing extreme risks, only the far tail of the wealth distribution
matters. We have implicitly assumed that we are interested in moves of the stock
price far greater than |x; — xp/, i.e. that moneyness only influences the centre of
the distribution of AW,

e It can be shown that within this value-at-risk perspective, the strategy ¢* is
actually time independent, and also corresponds to the optimal instantaneous
hedge, where the VaR between times k and k + 1 is minimum.

e Even if the tail amplitude AW, is minimum, the variance of the final wealth is
still infinite for u < 2. However, AW{ sets the order of magnitude of probable
losses, for example with 95% confidence. As in the example of the optimal
portfolio discussed in Chapter 3, infinite variance does not necessarily mean that
the risk cannot be diversified. The option price, fixed for © = 1 by Eq. (4.33),
ought to be corrected by a risk premium proportional to AW;. Note also that
with such violent fluctuations, the smile becomes a spike!

¢ Finally, it is instructive to note that the histogram of AW is completely asym-
metrical, since extreme events only contribute to the loss side of the distribution.
As for gains, they are limited, since the distribution decreases very fast for
positive AW.% In this case, the analogy between an option and an insurance
contract is most clear, and shows that buying or selling an option are not at all
equivalent operations, as they appear to be in a Black—Scholes world. Note that
the asymmetry of the histogram of AW is visible even in the case of weakly
non-Gaussian assets (Fig. 4.8).

As we have just discussed, the losses of the writer of an option can be very large
in the case of a Lévy process. Even in the case of a ‘truncated” Lévy process (in
the sense defined in Chapters 1 and 2), the distribution of the wealth balance AW
remains skewed towards the loss side. It can therefore be justified to consider other
measures of risk, not based on the variance but rather on higher moments of the
distribution, such as Ry = ({AW*))!/*#, which are more sensitive to large losses.
The minimization of R4 with respect to ¢(x, t) can still be performed, but leads
27 Note that the above strategy is still valid for 4 = 2, and corresponds to the optimal VaR hedge for power-law-

tailed assets, see below.
2 . -
28 For at-the-money options, one can actually show that AW = C.
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170 Futures and options: fundamental concepts

to a more complex equation for ¢p*, which has to be solved numerically. One finds
that this optimal strategy varies more slowly with the underlying price x than that
based on the minimization of the variance, which is interesting from the point of
view of transaction costs.”

Another possibility is to measure the risk through the value-at-risk (or loss
probability), as is natural to do in the case of the Lévy processes discussed above.
If the underlying asset has power-law fluctuations with an exponent ¢t > 2, the
above computation remains valid as long as one is concerned with the extreme
tail of the loss distribution (cf. Chapter 3). The optimal VaR strategy, minimizing
the probability of extreme losses, is determined by Eq. (4.100). This strategy is
turthermore time independent, and therefore is very interesting from the point of
view of transaction costs.

4.4.7 Hedging errors

The formulation of the hedging problem as a variational problem has a rather
interesting consequence, which is a certain amount of stability against hedging
errors. Suppose indeed that instead of following the optimal strategy ¢*(x, ¢), one
uses a suboptimal strategy close to ¢*, such as the Black—Scholes hedging strategy
with the value of the implied volatility, discussed in Section 4.4.3. Denoting the
difference between the actual strategy and the optimal one by d¢ (x, t), one can
show that for small 8¢, the increase in residual risk is given by:

N—-1

SR* = Dt Z/[Sqﬁ(r, PP, k
k=0

Xo, 0) dx, (4.101)

which is quadratic in the hedging error §¢, and thus, in general, rather small. For
example, we have estimated in Section 4.4.3 that within a first-order cumulant
expansion, 8¢ is at most equal to 0.02xy, where « is the kurtosis corresponding
to the terminal distribution. (See also Fig. 4.10.) Therefore, one has:

SR? <4107%} DT. (4.102)
For at-the-money options, this corresponds to a relative increase of the residual risk
given by:
R o210 (4.103)
= =L 0% .

For a quality ratio @ = 0.25 and xy = 1, this represents a rather small relative
increase equal to 2% at most. In reality, as numerical simulations show, the increase
in risk induced by the use of the Black—Scholes A-hedge rather than the optimal

29 This has been shown in the PhD work of Farhat Selmi (2000), unpublished.
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4.5 Does option price depend on the mean return? 171

hedge is indeed only of a few per cent for | -month maturity options. This difference
however increases as the maturity of the options decreases.

4.4.8 Summary

In this part of the chapter, we have thus shown that one can find an optimal
hedging strategy, in the sense that the risk (measured by the variance of the
change of wealth) is minimum. This strategy can be obtained explicitly, with
very few assumptions, and is given by Egs (4.76), or (4.80). However, for a
non-linear pay-off, the residual risk is in general non-zero, and actually represents
an appreciable fraction of the price of the option itself. The exception is the
Black—Scholes model where the risk, rather miraculously, disappears. The theory
presented here generalizes that of Black and Scholes, and is formulated as a
variational theory. Interestingly, this means that small errors in the hedging strategy
increases the risk only in second order.

4.5 Does the price of an option depend on the mean return?
4.5.1 The case of non-zero excess return

‘We should now come back to the case where the excess return m; = (§x;) = mt is
non-zero. This case is very important conceptually: indeed, one of the most striking
result of Black and Scholes (besides the zero risk property) is that the price of the
option and the hedging strategy are totally independent of the value of m. This
may sound at first rather strange, since one could think that if m is very large
and positive, the price of the underlying asset on average increases fast, thereby
increasing the average pay-off of the option. On the contrary, if m is large and
negative, the option should be worthless.

This argument actually does not take into account the impact of the hedging
strategy on the global wealth balance, which is proportional to m. In other
words, the term max(x(N) — x,,0), averaged with the historical distribution
P, (x, N|xp, 0), such that:

Pm (JC, N|x0- D} = Rr::()(x - le! N|-rU: 0): (4104)

is indeed strongly dependent on the value of m. However, this dependence is partly
compensated when one includes the trading strategy, and even vanishes in the
Black—Scholes model.

Let us first present a perturbative calculation, assuming that m is small, or
more precisely that (mT)?>/DT <« 1. Typically, for T = 100 days, mT =
5%100/365 = 0.014 and /DT =~ 1%+/100 ~ 0.1. The term of order m? that
we neglect corresponds to a relative error of (0.14) ~ 0.02.
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The average gain (or loss) induced by the hedge is equal to:*
N-1
(AWS) = +m, Zf P (x, klxg, 0)p " (x) dx. (4.105)
k=0

To order m, one can consistently use the general result Eq. (4.80) for the optimal
hedge ¢*, established above for m = 0, and also replace P, by Pp=o:

N-1

(AWs) = —m, ZfPu(x,klxu,O) (4.106)
k=0

+oo , ] oo (_}HC”‘] 3117] P | N ‘ k d’d
. ! _AS)ZDf(n—l)zaxm—l plaa b7k e diys

n=2

where Py is the unbiased distribution (m = 0).
Now, using the Chapman—Kolmogorov equation for conditional probabilities:

[ Py(x', N|x, k) Py(x, k|xp, 0)dx = Py(x’, N|xo, 0), (4.107)

one easily derives, after an integration by parts, and using the fact that
Py(x’, N|xg, 0) only depends on x” — x;, the following expression:

+00
(AWs) = m|N[[ Pu(x”N|x0,0)dx; w109
s
- an—3
Cn,1 a
+ P, X, Nlx, 0)
= Dr(n— Dl oxg™ (x5, Nlxo

On the other hand, the increase of the average pay-off, due to a non-zero mean
value of the increments, is calculated as:

(max(x(N) — x5, 0)}, = f (x" = x) P (x', N|xg, 0) dx’ (4.109)

oo

= f (x" 4+ m N — x,)Po(x’, N|xo, 0) dx’,
xg—m N

where in the second integral, the shift x, — Xx; 4+ m k allowed us to remove the

bias m, and therefore to substitute P, by Py. To first order in m, one then finds:

(max(x(N) — x5, )}y = {max(x(N) — x5, 0))o +
M|N/ Pu(x’,NH(].O}er. (41]0)

0 In the following., we shall again stick to an additive model and discard interest rate effects, in order to focus
on the main concepts.
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4.5 Does option price depend on the mean return? 173

Hence, grouping together Eqs (4.108) and (4.110), one finally obtains the price of
the option in the presence of a non-zero average return as:

mT & ¢y o3
Cﬂr =Cp— — — P, 'S,N
°" Dt Z (n — 1! gxi—3 ol

n=3

Xg. 0). (4.111)

Quite remarkably, the correction terms are zero in the Gaussian case, since all the
cumulants ¢, | are zero for n > 3. In fact, in the Gaussian case, this property holds
to all orders in m (cf. below). However, for non-Gaussian fluctuations, one finds
that a non-zero return should in principle affect the price of the options. Using
again Eq. (4.79), one can rewrite Eq. (4.111) in a simpler form as:

Cn =Co+mT [P — ¢] (4.112)

where P is the probability that the option is exercised, and ¢* the optimal strategy,
both calculated at # = 0. From Fig. 4.10 one sees that in the presence of ‘fat tails’, a
positive average return makes out-of-the-money options less expensive (P < ¢*),
whereas in-the-money options should be more expensive (P > ¢*). Again, the
Gaussian model (for which P = ¢*) is misleading:3! the independence of the
option price with respect to the market ‘trend’ only holds for Gaussian processes,
and is no longer valid in the presence of ‘jumps’. Note however that the correction
is usually numerically quite small: for xo = 100, m = 10% per year, T = 100
days, and |P — ¢*| ~ 0.02, one finds that the price change is of the order of 0.05
points, while C 2~ 4 points.

‘Risk neutral’ probability
1t is interesting to notice that the result, Eq. (4.111), can alternatively be rewritten as:

s}
Con =/ (x — x5)Q(x, Nlxp, 0) dx, (4.113)
Xs

with an ‘effective probability’ (called ‘risk neutral probability’, or ‘pricing kernel’ in the
mathematical literature) Q defined as:

Q0. Njx0.0) = Pylx, N|xg.0) (4.114)
- i;’”‘r P P, Mo, 0
_— olx . X0, ,
Dt &= (n — 1)! Hx(’j_l

which satisfies the following equations:

fQ(x. N|xp, 0)dx = 1, (4.115)

f(_r — x0)Q(x, N|xo. 0) dx = 0. (4.116)

31 The fact that the optimal strategy is equal to the probability 7 of exercising the option also holds in the
Black—Scholes model. up to small o2 correction terms.
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174 Futures and options: fundamental concepts

Note that the second equation means that the evolution of x under the ‘probability’ Q is
unbiased, i.e. (x)|g = xo. This is the definition of a martingale process (see, e.g. [Baxter]).
Equation (4.113), with the very same Q, actually holds for an arbitrary pay-off function
Vixw), replacing max(xy — x5,0) in the above equation. Using Eq. (4.79), Eq. (4.114)
can also be written in a more compact way as:

mi
Q(x, Nl|xp,0) = Po(I.NIXU.O)—E(I—XO)PU(X‘NIXU.O)

dPy(x, N|xg.0
N o( |x0 )_

4.117
Bxg ( )

+m

Note however that Eq. (4.113) is rather formal, since nothing ensures that Q(x, N|xp, 0) is
everywhere positive, except in the Gaussian case where Q(x, N|xp, 0) = Py(x, N|xg, 0).

As we have discussed above, small errors in the hedging strategy do not
significantly increase the risk. If the followed strategy is not the optimal one
but, for example, the Black—Scholes ‘A’-hedge (i.e. ¢ = A = dC/dx), the fair
game price is given by Eq. (4.113) with Q(x, N|xq,0) = Po(x, N|xp,0), and
is now independent of m and positive everywhere.>? The difference between this
‘suboptimal’ price and the truly optimal one is then, according to Eq. (4.112), equal
to 6C = mT (¢* — P). As already discussed, the above difference is quite small,
and leads to price corrections which are, in most cases, negligible compared to the
uncertainty in the volatility and to the residual risk R*.

Optimal strategy in the presence of a bias

We now give, without giving the details of the computation, the general equation satisfied
by the optimal hedging strategy in the presence of a non-zero average return m, when the
price fluctuations are arbitrary but uncorrelated. Assuming that (8x;.6x¢) — m% = D1ér.e,
and introducing the unbiased variables yp = x; — mk, one gets for the optimal strategy
¢ () the following (involved) infegral equation:

¥ x' = x
Drtﬁf(.x)*f (XJ*XS)N kPo(x’,MX,k)dX’:
As -
o0
—m; l (x" = x)[Po(x". Nlxo. 0) — Po(x'. N|x. k)] dx’
X
T [[x -
+ > j[ - +m|]¢?(x’)Pn(x'.ﬁlxsk}dx’

£=k+1

k—1 ' ’ ’
X=X v o Polx's € x0. O Po(x. klx' &) |,
+ +m (x") d

;j[ k-1 I:I‘;bf X Po(. k| xo. 0) X

—mlﬂ, (4.118)

32 If ¢ = A, the result Q = Fj is in fact correct (as we show in Appendix F) beyond the first order in m.
However, the optimal strategy is not, in general, given by the option A, except in the Gaussian case.
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4.5 Does option price depend on the mean return? 175

with y; = xg — m N and

N—1
=) f¢;(x’)Po(x-’,k|xu,0)dx’. (4.119)
k=0
In the limit m| = 0, the right-hand side vanishes and one recovers the optimal strategy

determined above. For small m, Eq. (4.118) is a convenient starting point for a perturbative
expansion in mj.

Using Eq. (4.118), one can establish a simple relation for ¢*, which fixes the correction
to the ‘Bachelier price’ coming from the hedge: C = {max(xy — x5, 0)) — m¢*.

N-1

oo !
& = " XL Py NIy k) Pox kLo, 0) dy!
¢ éf (X" = xs) g5 Polx> N1x. k) Po(x.. k|0, 0) dx
N=1 X' —x
—my Y /—(f;;f(x-“)P[.(X’.e|xU,0)dx’. (4.120)
N t—k
e=k+1
Replacing ¢ (x") by its corresponding equation m\ = 0, one obtains the correct value of

(ﬁ_"‘ to order m1, and thus the value of C to order m% included.

4.5.2 The Gaussian case and the Black—Scholes limit
In the continuous-time Gaussian case, the solution of Eqs (4.118) and (4.119) for
the optimal strategy ¢* happens to be completely independent of m (cf. next section
on the Tto calculus). Coming back to the variable x, one finds:
~ 1 , d (x' —x)?
—_— (X' —x)—exp| ———
w A2 D(T —1) dx’ 2D(T —1)

The average profit induced by the hedge is thus:

¢ (x, 1) = — ]dx-*. (4.121)

_ T 1 (x —xo —mt)?
* = — "1 - |dxdt. 4.122
m¢ mju j 23rDr¢ (r,r)exp[ 2D ] x df ( )

Performing the Gaussian integral over x, one finds (setting u = x' —x; and ug = xop —x;):
T o0 : 2
— u a (4 — up — mt)
myp* = —m — —exp| —————— | dudt
\ /0 .[0 J27DT p[ 2DT ]

frfm u 0 ( — g —mt)?
= — —exp| ————— | dudt,
o Jo 2mDT 0t 2DT

i ]OC u (t —up —mT)?
m = —lexp| ——r————
0o 2rDT 2DT

IRY
— exp [_%” du. (4.123)

or else:
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The price of the option in the presence of a non-zero return m s 0 is thus given, in
the Gaussian case, by:

Cp(x0, x5, T) = fmuex ,M du — m@*
miXo, Xs, = ) W P DT 1
fm u [ (u— M())z] d
= - exp|————— | du
o ~2xDT P 2DT
= Cp=ol(xo, Xs, T) (4124)

(cf. Eq. (4.43)). Hence, as announced above, the option price is indeed independent
of m in the Gaussian case. This is actually a consequence of the fact that the trading
strategy is fixed by ¢* = 9C,,/dx, which is indeed correct (in the Gaussian case)
even when m # 0. These results, rather painfully obtained here, are immediate
within the framework of stochastic differential calculus, as originally used by Black
and Scholes. It is thus interesting to pause for a moment and describe how option
pricing theory is usually introduced.

Ito calculus™

The idea behind Ito’s stochastic calculus is the following. Suppose that one has to consider
a certain function f(x,t), where x is a time-dependent variable. If x was an ‘ordinary’
variable, the variation Af of the function [ between time t and t + T would be given, for
small T, by:

of(x.t) _ df(x.1) 192 f(x, 1)
Af = STt A A (4.125)
with Ax = (dx/dt)t. The order 12 in the above expansion looks negligible in the limit
© — 0. However, if x is a stochastic variable with independent increments, the order of
magnitude of x (1) — x(0) is fixed by the CLT and is thus given by o) /I]T &, where £ is a
Gaussian random variable of width equal to 1, and o) is the RMS of Ax.

If the limit T — 0 is to be well defined and non-trivial (i.e. such that the random variable
& still plays a role), one should thus require that oy x \/T. Since oy is the RMS of (dx /di)T,
this means that the order of magnitude of dx /dt is proportional to 1/ \/T. Hence the order
of magnitude of Ax? = (dx /d0)>t? is not ©2 but T: one should therefore keep this term in
the expansion of Af to order t.

The crucial point of Ito's differential calculus is that if the stochastic process is a
continuous-time Gaussian process, then for any small but finite time scale T, Ax is already
the result of an infinite sum of elementary increments. Therefore, one can rewrite Eq.
(4.125), choosing as a new elementary time step v’ < 1, and sum all these T/t equations
to obtain Af on the scale t. Using the fact that for small T, 3f/dx and 9% f/3x* do not
vary much, one finds:

T/t T/t

Ax =) Ax; A=) Ax’ (4.126)

i=1 i=1

B The following section is obviously not intended to be rigorous.
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4.5 Does option price depend on the mean return? 177

Using again the CLT between scales ' < v and T, one finds that Ax is a Gaussian
variable of RMS o /T. On the other hand, since Ax? is the sum of positive variables, it
is equal to its mean a{zrﬁ’ plus terms of order /T /1, where Ul’z is the variance of Ax'.
For consistency, GF must be of order t'; we will thus set 01’2 = D1’

Hence, in the limit " — 0, with T fixed, Ax?in Eq. (4.125) becomes a non-random

variable equal to D1, up to corrections of order \/t'/t. Now, taking the limit T — 0, one

finally finds:

_Af df of (x, 1) af(x,t)dx Dfi:f(x,.f)

im 2L =Y A LA 4.127

rino T dt at * dx  dt 2 9x? ( )
where lim; g Ax/t = dx/dt. Equation (4.127) means that in the double limit T — 0,
'/t — O

o The second-order derivative term does not fluctuate, and thus does not depend on the
specific realization of the random process. This is obviously at the heart of the possibility
of finding a riskless hedge in this case.>*

o Higher-order derivatives are negligible in the limit T = 0.

e FEquation (4.127) remains valid in the presence of a non-zero bias m.

Let us now apply the formula, Eq. (4.127) to the difference d f/df between dC /dr
and ¢ dx/dt. This represents the difference in the variation of the value of the
portfolio of the buyer of an option, which is worth C, and that of the writer of the
option who holds ¢ (x, t) underlying assets. One finds:

daf qbdx BC(.r,xS,T—r)+BC(x,x5,T—I)dx
dr T ar dx dr
D3 C(x.x,, T —1)
ET]‘ (4.128)

One thus immediately sees that if ¢ = ¢* = 9C(x, x5, T — t)/0x, the coefficient
of the only random term in the above expression, namely dx/df, vanishes. The
evolution of the difference of value between the two portfolios is then known with
certainty! In this case, no party would agree on the contract unless this difference
remains fixed in time (we assume here, as above, that the interest rate is zero). In
other words, d f /dt = 0, leading to a partial differential equation for the price C:
C(x x, T —1) _ 79326(;;,;;5,1"—:), 4.129)
ot 2 dx2
with a ‘final” boundary condition: C(x, x5, 0) = max(x — x5, 0), i.e. the value of the
option at expiry, see Eq. (4.48). The solution of this equation is the above result,
Eq. (4.43), obtained for r = 0, and the Black—Scholes strategy is obtained by
taking the derivative of the price with respect to x, since this is the condition under
which dx /dt completely disappears from the game. Note also that the fact that the

M Itis precisely for the same reason that the risk is also zero for a binomial process, where dx; can only take
two values, see Appendix E.
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178 Futures and options: fundamental concepts

average return /n is zero or non-zero does not appear in the above calculation. The
price and the hedging strategy are therefore completely independent of the average
return in this framework, a result obtained after rather cumbersome considerations
above.

4.5.3 Conclusion. Is the price of an option unique?

Summarizing the above section, the Gaussian, continuous-time limit allows one
to use very simple differential calculus rules, which only differ from the standard
one through the appearance of a second-order non-fluctuating term— the so-called
‘Ito correction’. The use of this calculus rule immediately leads to the two main
results of Black and Scholes, namely: the existence of a riskless hedging strategy,
and the fact that the value the average trend disappears from the final expressions.
These two results are however not valid as soon as the hypothesis underlying
Ito’s stochastic calculus are violated (continuous-time, Gaussian statistics). The
approach based on the global wealth balance, presented in the above sections, is
by far less elegant but more general. It allows one to understand the very peculiar
nature of the limit considered by Black and Scholes.

As we have already discussed, the existence of a non-zero residual risk (and
more precisely of a negatively skewed distribution of the optimized wealth balance)
necessarily means that the bid and ask prices of an option will be different, because
the market makers will try to compensate for part of this risk. On the other hand,
if the average return m is not zero, the fair price of the option explicitly depends
on the optimal strategy ¢*, and thus of the chosen measure of risk (as was the case
tor portfolios, the optimal strategy corresponding to a minimal variance of the final
result is different from the one corresponding to a minimum value-at-risk). The
price therefore depends on the operator, of his definition of risk and of his ability
to hedge this risk. In the Black—Scholes model, the price is uniquely determined
since all definitions of risk are equivalent (and are all zero!). This property is often
presented as a major advantage of the Gaussian model. Nevertheless, it is clear
that it is precisely the existence of an ambiguity on the price that justifies the very
existence of option markets!*> A market can only exist if some uncertainty remains.
In this respect, it is interesting to note that new markets continually open, where
more and more sources of uncertainty become tradable. Option markets correspond
to a risk transfer: buying or selling a call are not identical operations (recall the
skew in the final wealth distribution), except in the Black—Scholes world where

35 This ambiguity is related to the residual risk, which, as discussed above, comes both from the presence of
price ‘jumps’, and from the very uncertainty on the parameters describing the distribution of price changes
{ “volatility risk’}).
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4.6 Conclusion of the chapter 179

options would actually be useless, since they would be equivalent to holding a
certain number of the underlying asset (given by the A).

4.6 Conclusion of the chapter: the pitfalls of zero-risk

The traditional approach to derivative pricing is to find an ideal hedging strategy,
which perfectly duplicates the derivative contract. Its price is then, using an
arbitrage argument, equal to that of the hedging strategy, and the residual risk
is zero. This argument appears as such in nearly all the available books on
derivatives and on the Black—Scholes model. For example, the last chapter of
[Hull], called ‘Review of Key Concepts’, starts by the following sentence: The
pricing of derivatives involves the construction of riskless hedges from traded
securities. Although there is a rather wide consensus on this point of view, we
feel that it is unsatisfactory to base a whole theory on exceptional situations: as
explained above, both the continuous-time Gaussian model and the binomial model
are very special models indeed. We think that it is more appropriate to start from
the ingredient which allow the derivative markets to exist in the first place, namely
risk. In this respect, it is interesting to compare the above quote from Hull to the
following disclaimer, found on most Chicago Board Options Exchange documents:
Option trading involves risk!

The idea that zero risk is the exception rather than the rule is important for a
better pedagogy of financial risks in general; an adequate estimate of the residual
risk —inherent to the trading of derivatives —has actually become one of the major
concern of risk management (see also Sections 5.2, 5.3). The idea that the risk is
zero is inadequate because zero cannot be a good approximation of anything. It
turthermore provides a feeling of apparent security which can prove disastrous on
some occasions. For example, the Black—Scholes strategy allows one, in principle,
to hold an insurance against the fall of one’s portfolio without buying a true Put
option, but rather by following the associated hedging strategy. This is called an
‘insurance portfolio’, and was much used in the 1980s, when faith in the Black—
Scholes model was at its highest. The idea is simply to sell a certain fraction of the
portfolio when the market goes down. This fraction is fixed by the Black—Scholes
A of the virtual option, where the strike price is the security level below which the
investor does not want to plummet. During the 1987 crash, this strategy has been
particularly inefficient: not only because crash situations are the most extremely
non-Gaussian events that one can imagine (and thus the zero-risk idea is totally
absurd), but also because this strategy feeds back onto the market to make it crash
turther (a drop of the market mechanically triggers further sell orders). According
to the Brady commission, this mechanism has indeed significantly contributed to
enhance the amplitude of the crash (see the discussion in [Hull]).
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4.7 Appendix D: computation of the conditional mean

On many occasions in this chapter, we have needed to compute the mean value
of the instantaneous increment 8x;, restricted on trajectories starting from x; and
ending at x,. We assume that the dx;’s are identically distributed, up to a scale
factor y;. In other words:

1 X
Pl (8xy) = EP]U( W) . (4.130)

The quantity we wish to compute is then:

P(xn, N|xp, K){8Xk) (o )= (ry. Ny = (4.131)
N-1 N—1
Sx;\ ddx;
/5%,{-3(,‘{1«:—.“\-—23){}') l_lfr')](‘](ﬁ)i
J=k =k Vil Vi

where the & function insures that the sum of increments is indeed equal to x, —
Xi. Using the Fourier representation of the § function, the right-hand side of this
equation reads:

I N-1

Wiy Pl | [T Polzry) | dz. (4.132)

27 J=k+1

e In the case where all the y;’s are equal to ), one recognizes:

L [ L p e a: (4.133)
27 N —kaz - - '
Integrating by parts and using the fact that:
1 o) -
P(xy, N|xp. k) = 5 je"'“”_"“[P.o(zyo)]“ —*dz, (4.134)
2w
one finally obtains the expected result:
xl\" - xi
(08) (k)= (e V) = Nk (4.135)

e In the case where the y;’s are different from one another, one can write the result
as a cumulant expansion, using the cumulants ¢, ; of the distribution Py,. After
a simple computation, one finds:

P(xy, NIX, K)(8X) () (ov) =

o0 —1

(_Vk )”Cn.l E)"
Z W 9y ! Pxy. N
I dxy,

n=2

X k), (4.136)

which allows one to generalize the optimal strategy in the case where the
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4.8 Appendix E 181

volatility is time dependent. In the Gaussian case, all the ¢, for n = 3 are zero,
and the last expression boils down to:

VE(J-'A-' — X)
N-T 2
Z;‘:k Y

This expression can be used to show that the optimal strategy is indeed

the Black—Scholes A, for arbitrary Gaussian increments in the presence of a
non-zero interest rate. Suppose that

(axk}f.\'k.k}—» (xn.N) = (4137)

Xip1 — X = pXg + dxg, (4.138)

where the §x; are identically distributed. One can then write xy as:

N—1

xy = xo(L+ )Y + ) dx(1+ o)V (4.139)
k=0

The above formula, Eq. (4.137), then reads:

sz(xN — (1 + p)VNh

: (4.140)
N—1 _ =1
Z,f:k Yy

{0k ) (g by — (e N) =

with y = (1 4+ p)¥*-1.

4.8 Appendix E: binomial model

The binomial model for price evolution is due to Cox, Ross and Rubinstein, and
shares with the continuous-time Gaussian model the zero risk property. This model
is very much used in practice [Hull], due to its easy numerical implementation.
Furthermore, the zero risk property appears in the clearest fashion. Suppose indeed
that between f; = kt and f;4;, the price difference can only take two values:
dx = 8x) ». For this very reason, the option value can only evolve along two paths
only, to be worth (at time #;4) C{‘t]. Consider now the hedging strategy where
one holds a fraction ¢ of the underlying asset, and a quantity B of bonds, with a
risk-free interest rate p. If one chooses ¢ and B such that:

¢k (% + 8x1) + Be(1 + p) = CFT1, (4.141)
¢ (xi + 8x2) + Be(1 + p) = G5, (4.142)
or else:
Ck-H _ CE-H Sx C!\'+I — Sx ck+|
=" Bl+p)=—" = (4.143)
§I| — (sz 3Jf| —(sz
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182 Futures and options: fundamental concepts

one sees that in the two possible cases (dx; = dx;»), the value of the hedging
portfolio is strictly equal to the option value. The option value at time # is thus
equal to C¥(x;) = ¢rxr + By. independently of the probability p [resp. 1 — p]
that 8x; = 8x, [resp. 8x2]. One then determines the option value by iterating this
procedure from time k+1 = N, where CV is known, and equal to max(xy —x;, 0).
It is however easy to see that as soon as éx; can take three or more values, it is
impossible to find a perfect strategy.>®

The Ito process can be obtained as the continuum limit of the binomial tree.
But even in its discrete form, the binomial model shares some important properties
with the Black—Scholes model. The independence of the premium on the transition
probabilities is the analogue of the independence of the premium on the excess
return m in the Black—Scholes model. The magic of zero risk in the binomial model
can therefore be understood as follows. Consider the quantity 52 = (§x; — {8x;))%:
52 is in principle random, but since changing the probabilities does not modify the
option price one can pick p = 1, making s? non-fluctuating (s> = (8x, — 8x,)%/4).
The Ito process shares this prol:;erty: in the continuum limit quadratic quantities do
not fluctuate. For example, the quantity

Tjt—1
52 = lim (x((k + 1) — x(k1) — m1)2, (4.144)
lim ;}l k+1) (

is equal to DT with probability one when x(#) follows an Ito process. In a sense,
continuous-time Brownian motion represents a very weak form of randomness
since quantities such as S? can be known with certainty. But it is precisely this
property that allows for zero risk in the Black—Scholes world.

4.9 Appendix F: option price for (suboptimal) A-hedging

If ¢ = A, the ‘risk neutral’ probability Q(x, N|xp, 0) is simply equal to
Py(x, N|xg, 0), for N large, beyond the first order in m, as we show now. Taking
¢ = 9C/dx leads to an implicit equation for C:

C(xp, xs, N) = / Vx' —x)P,(x', N|xg, 0) dx’ (4.145)

N-1 o
C(x, x,, N — k)
—mlgf TP,,,(X.!(

36 For a recent analysis along the lines of the present book, see E. Aurell. 5. Simdyankin, Pricing Risky Options
Simply, International Journal of Theoretical and Applied Finance, 1, 1 (1998). See also M. Schweizer., Risky
options simplified, Infernational Journal of Theoretical and Applied Finance, 2, 59 (1999).

xg, 0) dx,
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4.9 Appendix F 183
with ) representing the pay-off of the option. This equation can be solved by
making the following ansatz for C:

Cix,x. N —k)= [ Q' —x, N—k)P,(x', N|x, k) dx’ (4.146)

where £2 is an unknown kernel which we try to determine. Using the fact that the
option price only depends on the price difference between the strike price and the
present price of the underlying, this gives:

f 2(x" — xs, N)Py(x', N|xg, N)dx' = (4.147)

N—1

jy(.r’—.rh-)Rn(xZleﬂ.U}dX’er.ZjPm(x,lifu,O)
k=0

d
X

X ]Q(x’—xs.N — k)P (x', N|x, k) dx'dx.

Now, using the Chapman—Kolmogorov equation:
jP,,, (x', N|x, k)P (x, k|xg, 0)dx = P,(x’, N|xg, 0), (4.148)

one obtains the following equation for £2 (after changing k — N — k):

N . r
, 02 (x" — xg, k)
.Q(x 7A\,N)+mIZTJS
k=1

=YV —xy). (4.149)

The solution to this equation is £2(x" — x5, k) = Y(x' — x5 — m k). Indeed, if this
is the case, one has:

02(x" — x, k) . 1 92" —x,, k)
— T Tw (4.150)
and therefore:
N .
"_ ) ij(.xr_xs_-'ﬂ]k] —~ ot .
Vix —M—mlN)—Z T ~ P — xg) (4.151)

k=1

where the last equality holds in the small t, large N limit, when the sum over k can
be approximated by an integral.*” Therefore, the price of the option is given by:

C= j Yx' —x,—mN)P,(x', N|xp, 0) dx’. (4.152)

37 The resulting error is of the order of mzr;'D.
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184 Futures and options: fundamental concepts

Now, using the fact that P, (x', N|xp, 0) = Po(x" —m N, N|xp, 0), and changing
variable from x" — x" — m N, one finally finds:

C= f V(x' — x)Py(x', N|xg, 0)dx’, (4.153)

thereby proving that the pricing kernel Q is equal to P, if the chosen hedge is
the A. Note that, interestingly, this is true independently of the particular pay-off
function V: Q thus has a rather general status.
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S

Options: some more specific problems

This chapter can be skipped at first reading.
(J.-P. Bouchaud. M. Potters. Theory of Financial Risks.)

5.1 Other elements of the balance sheet

We have until now considered the simplest possible option problem, and tried
to extract the fundamental ideas associated to its pricing and hedging. In reality,
several complications appear, either in the very definition of the option contract (see
next section), or in the elements that must be included in the wealth balance — for
example dividends or transaction costs —that we have neglected up to now.

5.1.1 Interest rate and continuous dividends

The influence of interest rates (and continuous dividends) can be estimated using
different models for the statistics of price increments. These models give slightly
different answers; however, in a first approximation, they provide the following
answer for the option price:

Cxgsx. T, 1) =e " TC(xpe’ T, x, T, r = 0), (5.1)

where C(xg, xs. T.r = 0) is simply given by the average of the pay-off over the
terminal price distribution. In the presence of a non-zero continuous dividend d,
the quantity xpe’” should be replaced by xpe” 7, i.e. in all cases the present
price of the underlying should be replaced by the corresponding forward price — see
Eq. (4.23).

Let us present three different models leading to the above approximate formula;
but with slightly different corrections to it in general. These three models offer
alternative ways to understand the influence of a non-zero interest rate (and/or
dividend) on the price of the option.

186
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5.1 Other elements of the balance sheet 187
Systematic drift of the price

In this case, one assumes that the price evolves according to x;4, —x; = (p —
8)x; + 8x;, where 8 is the dividend over a unit time period 7: § = dt and 8x; are
independent random variables. Note that this ‘dividend’ is, in the case of currency
options, the interest rate corresponding to the underlying currency (and p is the
interest rate of the reference currency).

This model is convenient because if (§x;) is zero, the average cost of the hedging
strategy is zero, since it includes the terms xz+; — xx — (0 — &)xx. However, the
terminal distribution of x5 must be constructed by noting that:

N—1
xy =xo(1+p =N+ dx(1+p — V1 (5.2)
k=0

Thus the terminal distribution is, for large N, a function of the difference x(7') —
xoe" =T Furthermore, even if the 8x; are independent random variables of
variance D, the variance c;(7T") of the terminal distribution is given by:

_ D 2r—d)T _
c(T) = 20— a’)[e 1], (5.3)

which is equal to ¢o(T) = DT (1l + (r — d)T) when (r — d)T — 0. There is
thus an increase of the effective volatility to be used in the option pricing formula
within this model. This increase depends on the maturity; its relative value is, for
T = 1year,r —d = 5%, equal to (r —d)T /2 = 2.5%. (Note indeed that ¢;(T)
is the square of the volatility). Up to this small change of volatility, the above rule,
Eq. (5.1) is therefore appropriate.

Independence between price increments and interest rates—dividends

The above model is perhaps not very realistic since it assumes a direct relation
between price changes and interest rates—dividends. It might be more appropriate
to consider the case where x;,|, — x; = dx;, as the other extreme case; reality is
presumably in between these two limiting models. Now the terminal distribution is
a function of the difference xy — xp, with no correction to the variance brought
about by interest rates. However, in the present case, the cost of the hedging
strategy cannot be neglected and reads:

N—1

(AWs) = —(p = 8) D _ (™ (xa)). (5.4)
k=0
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188 Options: some more specific problems

Writing x; = xp + Zﬁ;(], 8x;, we find that (AWy) is the sum of a term proportional
to xp and the remainder. The first contribution therefore reads:
N-1

(AWs), = —(p — 8)xg Zf P (x, k|xp, 0)pp* (x) dx. (5.5)
k=0

This term thus has exactly the same shape as in the case of a non-zero average
return treated above, Eq. (4.105), with an effective mean return mer = —(p —
8)xp. If we choose for ¢* the suboptimal A-hedge (which we know does only
induce minor errors), then, as shown above, this hedging cost can be reabsorbed in
a change of the terminal distribution, where xy — xoy becomes xy — xg — m N, or
else, to first order: xy — xyexp[(p — 8)N]. To order (p — §)N, this therefore again
corresponds to replacing the current price of the underlying by its forward price.
For the second type of term, we write, for j < k:

. : Xk —Xj Ly
(Sx; 0 (x0)) = f P(x;. jlxo,0) dx;-/ P(x klxy. j) ;_jf $ " () dxg.
(5.6)
This type of term is not easy to calculate in the general case. Assuming that the

process is Gaussian allows us to use the identity:

WXk — X o P (x. klxj, j)
P(xg, k|x;, =-Dr——— - 5.7
(x, klxg. j) K T o (5.7)
one can therefore integrate over x; to find a result independent of j:
. d :
(/81" () = Dr=— f P (3. klxo. 0)7" (1) dx. 5.8)
X0

or, using the expression of (j);\"*(xk} in the Gaussian case:

X0, 0)dx" = DTt P(xs, N[xp,0). (5.9)

, 9 e
(Bx PN (o)) = Dra‘_ruf P(xX',N

The contribution to the cost of the strategy is then obtained by summing over k and
over j < k, finally leading to:
N2
{AWs), —?(p — 8)Dt P(x,, N|xp, 0). (5.10)

This extra cost is maximum for at-the-money options, and leads to a relative
increase of the call price given, for Gaussian statistics, by:

e _n 8) = ! d 5.11
F_E(p_ )_E(r_ ). (5.11)
which is thus quite small for short maturities. (For r = 5% annual, d = 0, and

T = 100 days, one finds 8C/C < 1%.)
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5.1 Other elements of the balance sheet 189

Multiplicative model

Let us finally assume that x; .| —x; = (p—3841;)x;, where the n;’s are independent
random variables of zero mean. Therefore, the average cost of the strategy is zero.
Furthermore, if the elementary time step t is small, the terminal value xy can be
written as:

N—1 N—1

Xn

1og(_") =Y logl+p—8+nm) = N(p—8)+y:  y=3 e (512)
Xo k=0 k=0

thus xy = xee” 9"+ Introducing the distribution P(y), the price of the option
can be written as:

Clxg.x.. T.r.d) = e_’Tf P (y) max(xoe" DT — x,, 0) dy, (5.13)

which is obviously of the general form, Eq. (5.1).

We thus conclude that the simple rule, Eq. (5.1), above is, for many purposes,
sufficient to account for interest rates and (continuous) dividends effects. A more
accurate formula, including corrections of order (r — )T depends somewhat on
the chosen model.

5.1.2 Interest rates corrections to the hedging strategy

It is also important to estimate the interest rate corrections to the optimal hedging strategy.
Here again, one could consider the above models, that is, the systematic drift model,
the independent model or the multiplicative model. In the former case, the result for a
general terminal price distribution is rather involved, mainly due to the appearance of the
conditional average detailed in Appendix D, Eq. (4.140). In the case where this distribution
is Gaussian, the result is simply Black—Scholes’ A hedge, i.e. the optimal strategy is the
derivative of the option price with respect to the price of the underlying contract (see Eq.
(4.78)). As discussed above, this simple rule leads in general to a suboptimal strategy, but
the relative increase of risk is rather small. The A-hedge procedure, on the other hand, has
the advantage that the price is independent of the average return (see Appendix F).

In the ‘independent’ model, where the price change is unrelated to the interest rate and/or
dividend, the order p correction to the optimal strategy is easier to estimate in general.
From the general formula, Eq. (4.118), one finds:

N —d
oi(x) = (1+P)I+A7A¢ff0(x)—r xC(x, x5, N — k)
r—d x—x P(x.klx . OP( U[x0.0) Lo , .,
r-d 0 g
T D x;] k—¢ Pi ko 0) 0 Od
r—d X —x ! ! 04,7 '
+ 55 ;] N PO g d (5.14)

where qu".‘o is the optimal strategy forr =d = 0.
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190 Options: some more specific problems

Finally, for the multiplicative model, the optimal strategy is given by a much simpler
expression:
(1+ p)tth=n

i (x) xo2(N —k)

(5.15)

!

~ ot X ! k o
e . (x' — x5) log W P(x', N|x,k)dx".

5.1.3 Discrete dividends

More generally, for an arbitrary dividend d (per share) at time f;, the extra term in
the wealth balance reads:

N
AWp =" ¢ ()di. (5.16)

k=1
Very often, this dividend occurs once a year, at a given date ko: dr = dodi k-

In this case, the corresponding share price decreases immediately by the same
amount (since the value of the company is decreased by an amount equal to dy
times the number of outstanding shares): x — x — dy. Therefore, the net balance
dy + 8x; associated to the dividend is zero. For the same reason, the probability
Py (x, Nlxg, 0) is given, for N > ko, by Py—o(x + do. N|x, 0). The option price
is then equal to: Cy,(x, Xs, N) = C(x, X; + dy, N). If the dividend d;, is not known
in advance with certainty, this last equation should be averaged over a distribution
P(dy) describing as well as possible the probable values of dy. A possibility is
to choose the distribution of least information (maximum entropy) such that the
average dividend is fixed to d, which in this case reads:

1

P(do)zj

exp(—dy/d). (5.17)

5.1.4 Transaction costs

The problem of transaction costs is important: the rebalancing of the optimal hedge
as time passes induces extra costs that must be included in the wealth balance as
well. These ‘costs” are of different nature —some are proportional to the number of
traded shares, whereas another part is fixed, independent of the total amount of the
operation. Let us examine the first situation, assuming that the rebalancing of the
hedge takes place at every time step 7. The corresponding cost in then equal to:

Wk = vidp,, — &l (5.18)

where v is a measure of the transaction costs. In order to keep the discussion simple,
we shall assume that:
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5.1 Other elements of the balance sheet 191

e the most important part in the variation of ¢/ is due to the change of price of the
underlying, and not from the explicit time dependence of ¢ (this is justified in
the limit where T <« T);

e $x; is small enough such that a Taylor expansion of ¢* is acceptable;

e the kurtosis effects on ¢* are neglected, which means that the simple Black—
Scholes A hedge is acceptable and does not lead to large hedging errors.

One can therefore write that:

Wy = v (5.19)

dPf (x dgy (x
SX;(—( ¢.R( ) = |"|6-’(R|—‘ ¢,{( },
0x ax
since d¢; (x)/dx is positive. The average total cost associated to rehedging is then,
after a straightforward calculation:'
N-1

(AWu) = (D 8Wak ) = v{|8x )N P(xs, N
k=0

X0, 0). (5.20)

The order of magnitude of (|dx|) is given by oyx¢: for an at-the-money option,

P(x,, N|xg.0) =~ (O’|x0«/ﬁ}_l; hence, finally, (AW,) =~ vo/N. Tt is natural to
compare {AW;) to the option price itself, which is of order C =~ o1 X0 N:
AW,
(AW v (5.21)
C a1Xp

This part of the transaction costs is in general proportional to xq: taking for example
v = 10"%, 7 = 1 day, and a daily volatility of oy = 1%, one finds that the
transaction costs represent 1% of the option price. On the other hand, for higher
transaction costs (say v = 107 2xp), a daily rehedging becomes absurd, since the
ratio, Eq. (5.21), is of order 1. The rehedging frequency should then be lowered,
such that the volatility on the scale of T increases, to become smaller than v.

The fixed part of the transaction costs is easier to discuss. If these costs are equal
to v’ per transaction, and if the hedging strategy is rebalanced every t, the total
cost incurred is simply given by:

AW, =NV (5.22)
Comparing the two types of costs leads to:

AW/ ' N
SR S I_ (5.23)
(AWU') v

showing that the latter costs can exceed the former when N = T/t is large, i.e.
when the hedging frequency is high.

! One should add to the following formula the cost associated with the initial value of the hedge qﬁs,
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192 Options: some more specific problems

In summary, the transaction costs are higher when the trading time is smaller.
On the other hand, decreasing of t allows one to diminish the residual risk (Fig.
4.11). This analysis suggests that the optimal trading frequency should be chosen
such that the transaction costs are comparable to the residual risk.

5.2 Other types of options: ‘Puts’ and ‘exotic options’
5.2.1 ‘Put—call’ parity

A “Put’ contract is a sell option, defined by a pay-off at maturity given by max(x; —
X, 0). A put protects its owner against the risk that the shares he owns drops below
the strike price x;. Puts on stock indices like the S&P 500 are very popular. The
price of a European put will be noted C'[xo, x5, T] (we reserve the notation P
for a probability). This price can be obtained using a very simple ‘parity’ (or no
arbitrage) argument. Suppose that one simultaneously buys a call with strike price
X5, and a put with the same maturity and strike price. At expiry, this combination is
therefore worth:

max(x(7T) — x5, 0) — max(xs — x(T),0) = x(T) — x,. (5.24)

Exactly the same pay-off can be achieved by buying the underlying now, and selling
a bond paying x; at maturity. Therefore, the above call+put combination must be
worth:

Clxo, X5, T1 — C'[x0, x5, T] = x0 — x5~ 7T, (5.25)

which allows one to express the price of a put knowing that of a call. If interest rate
effects are small (rT < 1), this relation reads:

CIT[xUs Xs, T] = C[x‘)s Xs» T] + Xs — Xp. (5'26)

Note in particular that at-the-money (x; = xg), the two contracts have the same
value, which is obvious by symmetry (again, in the absence of interest rate effects).

5.2.2 ‘Digital’ options
More general option contracts can stipulate that the pay-off is not the difference
between the value of the underlying at maturity xy and the strike price x;, but rather
an arbitrary function ) (xy) of xy. For example, a ‘digital’ option is a pure bet, in
the sense that it pays a fixed premium )}, whenever xy exceeds x;. Therefore:

Vixy) = (y > x0): Yixy) =0 (xy <x). (5.27)

The price of the option in this case can be obtained following the same lines as
above. In particular, in the absence of bias (i.e. for m = 0) the fair price is given
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5.2 Other types of options 193
by:
Cy(xo, N) = (V(xn)) /J/(Y)Po(’f N|xo, 0) dx, (5.28)

whereas the optimal strategy is still given by the general formula, Eq. (4.33). In
particular, for Gaussian fluctuations, one always finds the Black—Scholes recipe:
dCy[x, N]
P = L0 (5.29)

0x

The case of a non-zero average return can be treated as above, in Section 4.5.1. To first
order in m, the price of the option is given by:

mT Chl gn—1
Cym =Cym=0— ( " | Tfy ——— Po(x', N|x,0)dx’, (5.30)
n=3 n-—= )

which reveals, again, that in the Gaussian case, the average return disappears from the
Jinal formula. In the presence of non-zero kurtosis, however, a (small) systematic correction
to the fair price appears. Note that Cy ,, can be written as an average of Y (x) using the
effective, ‘risk neutral’ probability Q(x) introduced in Section 4.5.1. If the A-hedge is
used, this risk neutral probability is simply Py (see Appendix F).

5.2.3 ‘Asian’ options

The problem is slightly more complicated in the case of the so-called ‘Asian’
options. The pay-off of these options is calculated not on the value of the
underlying stock at maturity, but on a certain average of this value over a certain
number of days preceeding maturity. This procedure is used to prevent an artificial
rise of the stock price precisely on the expiry date, a rise that could be triggered
by an operator having an important long position on the corresponding option. The
contract is thus constructed on a fictitious asset, the price of which being defined
as:

J\"
= Z wix;, (5.31)
k=0

where the {w;}’s are some weights, normalized such that Zi\;:o w; = 1, which
define the averaging procedure. The simplest case corresponds to:
1

Wy =Wy_| == Wy_g+] = E: w, =0 (k<N-—K+1), (532

where the average is taken over the last K days of the option life. One could
however consider more complicated situations, for example an exponential average
(wp o s¥%). The wealth balance then contains the modified pay-oft: max(x —
Xg, 0), or more generally }/(X). The first problem therefore concerns the statistics of
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194 Options: some more specific problems

X. As we shall see, this problem is very similar to the case encountered in Chapter
4 where the volatility is time dependent. Indeed, one has:

N N il N-1
Z wix; = Z w; Zéxg +xp | =x0+ Z Vidxg, (5.33)
k=0 k=0 =0 k=0

where

J\"
ve= Yy wi (5.34)
i=k+1

Said differently, everything goes as if the price did not vary by an amount §x;, but
by an amount dy; = yi8x, distributed as:

1 /w
— P ( "‘) . (5.35)
v '\ %

In the case of Gaussian fluctuations of variance D, one thus finds:>

1 T —x 2
P(&, Nlxo, 0) = 7_8)(]3[—“,710)] (5.36)
v2r DNt 2DNt
where
- D J\"—I 2
D= N ; ye. (5.37)
More generally, P (X, N|xg, 0) is the Fourier transform of
N-l
[ Ao (5.38)
k=0

This information is sufficient to fix the option price (in the limit where the average
return is very small) through:

oo
Cusilx0. x5, N1 = f (X —x)P(X, N|xp, 0)dx. (5.39)
In order to fix the optimal strategy, one must however calculate the following
quantity:
P(X, N|x, k){8x6) | (x by 2.3 (5.40)

conditioned to a certain terminal value for ¥ (cf. Eq. (4.74)). The general calcula-
tion is given in Appendix D. For a small kurtosis, the optimal strategy reads:
¢kr*(x) _ 0Cqi[x, j‘"s: N — ’I\] + k1Dt Q{I}RCasi[xsxh N — k]

ox 6 'k ax3

2 The case of a multiplicative process is more involved: see, e.g. H. Gemam, M. Yor, Bessel processes, Asian
Options and Perpetuities, Mathematical Finance, 3, 349 (1993).

(5.41)
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5.2 Other types of options 195

Note that if the instant of time ‘k’ is outside the averaging period, one has y; = 1
(since Z;}k w; = 1), and the formula, Eq. (4.80), is recovered. If on the contrary
k gets closer to maturity, y diminishes as does the correction term.

5.2.4 ‘American’ options

We have up to now focused our attention on ‘European’-type options, which can
only be exercised on the day of expiry. In reality, most traded options on organized
markets can be exercised at any time between the emission date and the expiry
date: by definition, these are called ‘American’ options. It is obvious that the price
of American options must greater or equal to the price of a European option with
the same maturity and strike price, since the contract is a priori more favourable
to the buyer. The pricing problem is therefore more difficult, since the writer of the
option must first determine the optimal strategy that the buyer can follow in order
to fix a fair price. Now, in the absence of dividends, the optimal strategy for the
buyer of a call option is to keep it until the expiry date, thereby converting de facto
the option into a European option. Intuitively, this is due to the fact that the average
(max(xy — xg, 0)) grows with N, hence the average pay-off is higher if one waits
longer. The argument can be more convincing as follows. Let us define a ‘two-shot’
option, of strike xs, which can only be exercised at times Ny and N> > N, only."
At time N, the buyer of the option may choose to exercise a fraction f (x;) of the
option, which in principle depends on the current price of the underlying x;. The
remaining part of the option can then be exercised at time N>. What is the average
profit (G) of the buyer at time N>?
Considering the two possible cases, one obtains:

+oc
(G) Zf (x2 —.rh-)dng P(x2, Nalx1, ND[1 — f(x)]1P(x1. Nilxo, 0)dx,

—+oa
+ f Fn e — x)e ™M P (x| Nilxo. 0) dxy, (5.42)

Xs

which can be rewritten as:

[e0]
(G) = Clxo, x5, NaJe'™ + f fx1) (5.43)
x P(x1, Ni|x0, 0) (x; — xg — C[xy. X5, N — Ni]) 7NN gy,

The last expression means that if the buyer exercises a fraction f(x;) of his option,
he pockets immediately the difference x; — x, but loses de facto his option, which
is worth C[xy, x,, No — N{].

3 Options that can be exercised at certain specific dates (more than one) are called ‘Bermudan’ options.
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196 Options: some more specific problems

The optimal strategy, such that (G) is maximum, therefore consists in choosing
f(x1) equal to O or 1, according to the sign of x; — x; — C[xy, X5, No — N|]. Now,
this difference is always negative, whatever x| and N; — Nj. This is due to the
put—call parity relation (cf. Eq. (5.26)):

CTlxr, xe, Na— NiT = Clx1. x5, Na— Ni1— () —x) —xs(1—e 770y (5.44)

Since CT = 0, C[x1, x5, No — N1] — (x; — x,) is also greater or equal to zero.

The optimal value of f(x;) is thus zero; said differently the buyer should wait
until maturity to exercise his option to maximize his average profit. This argument
can be generalized to the case where the option can be exercised at any instant
Ni, Na, ..., N, with n arbitrary.

Note however that choosing a non-zero f increases the total probability of
exercising the option, but reduces the average profit! More precisely, the total
probability to reach x, before maturity is twice the probability to exercise the
option at expiry (if the distribution of §x is even, see Section 3.1.3). OTC American
options are therefore favourable to the writer of the option, since some buyers might
be tempted to exercise before expiry.

It is interesting to generalize the problem and consider the case where the two strike

prices x5 and xy> are different at times Ny and Na, in particular in the case where x5 <
Xs2. The average profit, Eq. (5.43), is then equal to (for r = 0):

oc
G) = C[Xu‘xsz.N2]+] fx1)P(xy, N|xo, 0)
% (x1 — x51 — C[x1, X52, N2 — Np])dx;. (5.45)
The equation
x* — X5l —C[x*.xﬂ.Ng —N|]=O (5.46}

then has a non-trivial solution, leading to f(x1) = 1 for x| > x*. The average profit of
the buyer therefore increases, in this case, upon an early exercise of the option.

American puts

Naively, the case of the American puts looks rather similar to that of the calls, and
these should therefore also be equivalent to European puts. This is not the case
for the following reason.* Using the same argument as above, one finds that the
average profit associated to a ‘two-shot’ put option with exercise dates N;, N, is
given by:

Xs
(G") = C'lxo, x5, NaJe™ + f fx)P(x1, Nilxo, 0)
X (xs —x; = C'[x, xg, N> — N.]) e 2= gy (5.47)

4 The case of American calls with non-zero dividends is similar to the case discussed here.
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5.2 Other types of options 197

Now, the difference (x; — x; — CT[xy. x5, N2 — Ni]) can be transformed, using the
put—call parity, as:

xg[1— e "M — Clxy, g, Ny — Ny (5.48)

This quantity may become positive if C[xy, x5, N2 — Ni] is very small, which
corresponds to x; 3> x| (Puts deep in the money). The smaller the value of r, the
larger should be the difference between x; and x;, and the smaller the probability
for this to happen. If r = 0, the problem of American puts is identical to that of the
calls.

In the case where the quantity (5.48) becomes positive, an ‘excess’ average profit
3@ is generated, and represents the extra premium to be added to the price of the
European put to account for the possibility of an early exercise. Let us finally note

that the price of the American put C,, is necessarily always larger or equal to x;—x

(since this would be the immediate profit), and that the price of the ‘two-shot’ put
is a lower bound to C],

am*

The perturbative calculation of §G (and thus of the ‘two-shot’ option) in the limit of small
interest rates is not very difficult. As a function of N1, 8G reaches a maximum between
N2/2 and N. For an at-the-money put such that N> = 100, r = 5% annual, o = 1%
per day and xo = xs = 100, the maximum is reached for N\ == 80 and the corresponding
8G ~ 0.15. This must be compared with the price of the European put, which is CT ~ 4.
The possibility of an early exercise leads in this case to a 5% increase of the price of the
option.

More generally, when the increments are independent and of average zero, one can
obtain a numerical value for the price of an American put CIm by iterating backwards
the following exact equation:

C;rm[x, Xso N + 1] = max (xs —x,e 7 ] P (ﬁx)C;m[x +éx, xs, N]dé‘x) . (5.49)

This equation means that the put is worth the average value of tomorrow’s price if it is
not exercised today (C:{m = Xy — x), or xg — x if it is immediately exercised. Using this
procedure, we have calculated the price of a European, American and ‘two-shot’ option
of maturity 100 days (Fig. 5.1). For the ‘two-shot’ option, the optimal value of N| as a
function of the strike is shown in the inset.

5.2.5 ‘Barrier’ options

Let us now turn to another family of options, called ‘barrier’ options, which are such that if
the price of the underlying x;. reaches a certain ‘barrier’ value xp, during the lifetime of the
option, the option is lost. (Conversely, there are options that are only activated if the value
Xp is reached.) This clause leads to cheaper options, which can be more attractive to the
investor. Also, if xp > x5, the writer of the option limits his possible losses to xp — xs. What
is the probability Py(x, N|xp, 0) for the final value of the underlying to be at x, conditioned
to the fact that the price has not reached the barrier value xp?
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Fig. 5.1. Price of a European, American and ‘two-shot’ put option as a function of the
strike, for a 100-days maturity and a daily volatility of 1% and r = 1%. The top curve is
the American price, while the bottom curve is the European price. In the inset is shown the
optimal exercise time N as a function of the strike for the ‘two-shot’ option.

In some cases, it is possible to give an exact answer to this question, using the so-called
method of images. Let us suppose that for each time step, the price x can only change by
an discrete amount, =1 tick. The method of images is explained graphically in Figure 5.2:
one can notice that all the trajectories going through xp between k = 0 and k = N has a
‘mirror’ trajectory, with a statistical weight precisely equal (for m = 0) to the one of the
trajectory one wishes to exclude. It is clear that the conditional probability we are looking
for is obtained by subtracting the weight of these image trajectories:

Py(x, N|xg,0) = P(x, N|xg,0) — P(x, N|[2xp — x0. 0). (5.50)

In the general case where the variations of x are not limited to 0, =+ 1, the previous
argument fails, as one can easily be convinced by considering the case where 8x takes the
values £1 and £2. However, if the possible variations of the price during the time T are
small, the error coming from the uncertainty about the exact crossing time is small, and
leads to an error on the price Cp, of the barrier option on the order of {|8x|) times the total
probability of ever touching the barrier. Discarding this correction, the price of barrier
options reads:

oc
Cplxo, x5, N1 = f (x — x)[P(x, N|xp,0) — P(x, N|2xp — xp, 0)] dx

= Clxo. %, N] = C[2xp — Xo. Xs. N] (5.51)
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N
Fig. 5.2. Illustration of the method of images. A trajectory, starting from the point xg = =5
and reaching the point xop = —1 can either touch or avoid the "barrier’ located at x; = 0.

For each trajectory touching the barrier, as the one shown in the figure (squares), there
exists one single trajectory (circles) starting from the point xg = 45 and reaching the same
final point—only the last section of the trajectory (after the last crossing point) is common
to both trajectories. In the absence of bias, these two trajectories have exactly the same
statistical weight. The probability of reaching the final point without crossing x5 = 0 can
thus be obtained by subtracting the weight of the image trajectories. Note that the whole
argument is wrong if jump sizes are not constant (for example when §x = =1 or £2).

(xp < xq), or
b
Cplxg, x5, N] = f (x — xg) [P(x, Nl|xg, 0) — P(x, N|2xp — xp, 0)]dx, (5.52)
X

(xp = x5); the option is worthless whenever xp < xp < xs.

One can also find ‘double barrier’ options, such that the price is constrained to remain
within a certain channel X, <Xx < x;_ , or else the option vanishes. One can generalize
the method of images to this case. The images are now successive reflections of the starting
point Xo in the two parallel ‘mirrors’ x, x;’.

Other types of option

One can find many other types of option, which we shall not discuss further.
Some options, for example, are calculated on the maximum value of the price
of the underlying reached during a certain period. It is clear that in this case, a
Gaussian or log-normal model is particularly inadequate, since the price of the
option is governed by extreme events. Only an adequate treatment of the tails of
the distribution can allow us to price this type of option correctly.
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5.3 The ‘Greeks’ and risk control

The ‘Greeks’, which is the traditional name given by professionals to the derivative
of the price of an option with respect to the price of the underlying, the volatility,
etc., are often used for local risk control purposes. Indeed, if one assumes that the
underlying asset does not vary too much between two instants of time ¢ and 1 + 7,
one may expand the variation of the option price in Taylor series:

1
5C = Adx + ;F(é.r)z + Vo + @, (5.53)

where dx is the change of price of the underlying. If the option is hedged by
simultaneously selling a proportion ¢ of the underlying asset, one finds that the
change of the portfolio value is, to this order:

SW = (A — ¢)dx + %F(ax)2 + Véo + O. (5.54)

Note that the Black—Scholes (or rather, Bachelier) equation is recovered by setting
¢* = A, o = 0, and by recalling that for a continuous-time Gaussian process,
(8x)®> = Dt (see Section 4.5.2). In this case, the portfolio does not change with
time (5W = 0), provided that ® = —DI"/2, which is precisely Eq. (4.51) in the
limit t — 0.

In reality, due to the non-Gaussian nature of dx, the large risk corresponds to
cases where I"(8x)* > |@t|. Assuming that one chooses to follow the A-hedge
procedure (which is in general suboptimal, see Section 4.4.3 above), one finds that
the fluctuations of the price of the underlying leads to an increase in the value of
the portfolio of the buyer of the option (since I" > 0). Losses can only occur if the
implied volatility of the underlying decreases. If 6x and o are uncorrelated (which
is in general not true), one finds that the ‘instantaneous’ variance of the portfolio is
given by:

(BW)?) =

#rz(axzﬁ +V2(802), (5.55)

where « is the kurtosis of dx. For an at-the-money option of maturity T, one has:

1
r p—y Y~ xoVT. (5.56)
Typical values are, on the scale of T = one day, x; = 3 and 6 ~ o. The I’
contribution to risk is therefore on the order of oxor/+/T. This is equal to the
typical fluctuations of the underlying contract multiplied by /t/T, or else the
price of the option reduced by a factor N = T /r. The Vega contribution is much
larger for long maturities, since it is of order of the price of the option itself.
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5.4 Value-at-risk — general non-linear portfolios 201

5.4 Value-at-risk for general non-linear portfolios (*)

A very important issue for the control of risk of complex portfolios, which involves
many non-linear assets, is to be able to estimate its value-at-risk reliably. This is
a difficult problem, since both the non-Gaussian nature of the fluctuations of the
underlying assets and the non-linearities of the price of the derivatives must be dealt
with. A solution, which is very costly in terms of computation time and not very
precise, is the use of Monte-Carlo simulations. We shall show in this section that
in the case where the fluctuations of the “explicative variables’ are strong (a more
precise statement will be made below), an approximate formula can be obtained
for the value-at-risk of a general non-linear portfolio.

Let us assume that the variations of the value of the portfolio can be written
as a function éf (ey, e, ..., ey) of a set of M independent random variables ¢,,
a = 1,..., M, such that (e;) = 0 and {e,ep) = 3”_,50(;2. The sensitivity of the
portfolio to these ‘explicative variables’ can be measured as the derivatives of the
value of the portfolio with respect to the e,. We shall therefore introduce the A’s
and [’s as:

of 9 f

= Er b= .
deg degdep

(5.57)

a

We are interested in the probability for a large fluctuation §f* of the portfolio.
We will surmise that this is due to a particularly large fluctuation of one explicative
tactor, say @ = 1, that we will call the dominant factor. This is not always true,
and depends on the statistics of the fluctuations of the e,. A condition for this
assumption to be true will be discussed below, and requires in particular that the tail
of the dominant factor should not decrease faster than an exponential. Fortunately,
this is a good assumption in financial markets.

The aim is to compute the value-at-risk of a certain portfolio, i.e. the value §f*
such that the probability that the variation of f exceeds §f* is equal to a certain
probability p: P.(8f*) = p. Our assumption about the existence of a dominant
factor means that these events correspond to a market configuration where the
fluctuation Je; is large, whereas all other factors are relatively small. Therefore,
the large variations of the portfolio can be approximated as:

M M
1
Sf(é’l, €3, ..., EM) = ‘Sf(el) + ; Aaea + 5 HJJZZZ EJ.Iuefae.‘)- (5.58)
where §f (e;) is a shorthand notation for 8f(e;, 0, ..., 0). Now, we use the fact

that:

M
:D,,(éf*):/P(e.,ez,...,e,u)@ [Sf(e],eg,...,eM}—(Sf*]l_[deﬂ. (5.59)

a=]
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where @(x > 0) = | and &(x < 0) = 0. Expanding the & function to second
order leads to:

M 1 M
(’:‘)((Sf(ﬁ) - ‘Sf*) + [Z Ageq + 5 Z E:h‘?aebi| 3(5_)(({’]) - é\f*)

a=2 a=2

| M ’
+ 5 D Aadveaerd' (5] (e1) = 5f). (5.60)
a,b=2
where 4’ is the derivative of the §-function with respect to df. In order to proceed
with the integration over the variables e, in Eq. (5.59), one should furthermore note
the following identity:

_ 1
$(8f(er) =487 = 58(61 —e), (5.61)
|

where e] is such that §f (e]) = 8f*, and A] is computed for ¢; = e, €41 = 0.
Inserting the above expansion of the @ function into Eq. (5.59) and performing the
integration over the e, then leads to:

M F* 0.2 M A*ZUZ F]*I
P_(8f*) = P-(e}) + 22 L P(e}) — 2| Pe}) + —=Ple]) ).
L(8f") = P-(e}) ; 2o DD “;MT_( €D+ (.})
(5.62)
where P(e)) is the probability distribution of the first factor, defined as:
M
Ple)) = f P(ey.es. ..., ﬂaw)l_[dé‘av (5.63)
a=2

In order to find the value-at-risk §f*, one should thus solve Eq. (5.62) for e} with
P.(6f*) = p, and then compute 5f (e}, 0,...,0). Note that the equation is not
trivial since the Greeks must be estimated at the solution point ef.

Let us discuss the general result, Eq. (5.62), in the simple case of a linear
portfolio of assets, such that no convexity is present: the A,’s are constant and

the I', ,’s are all zero. The equation then takes the following simpler form:
M a2 2
5 A 0 ! E3
Poe) = )_ S5 Pleh =p. (5.64)
a=2 1

Naively, one could have thought that in the dominant factor approximation, the
value of e} would be the value-at-risk value of e for the probability p, defined as:

P.(e1var) = p. (5.65)

However, the above equation shows that there is a correction term proportional to
P’(e7). Since the latter quantity is negative, one sees that e is actually larger than
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5.4 Value-at-risk — general non-linear portfolios 203

€1.v.r. and therefore §f* > §f(e1 var). This reflects the effect of all other factors,
which tend to increase the value-at-risk of the portfolio.

The result obtained above relies on a second-order expansion; when are higher-
order corrections negligible? It is easy to see that higher-order terms involve
higher-order derivatives of P(e;). A condition for these terms to be negligible in
the limit p — 0, or e] — 00, is that the successive derivatives of P (e;) become
smaller and smaller. This is true provided that P(e|) decays more slowly than
exponentially, for example as a power-law. On the contrary, when P(e;) decays
faster than exponentially (for example in the Gaussian case), then the expansion
proposed above completely loses its meaning, since higher and higher corrections
become dominant when p — 0. This is expected: in a Gaussian world, a large
event results from the accidental superposition of many small events, whereas in a
power-law world, large events are associated to one single large fluctuation which
dominates over all the others. The case where P(e;) decays as an exponential is
interesting, since it is often a good approximation for the tail of the fluctuations of
financial assets. Taking P(e,) > «, exp —a, e, one finds that e} is the solution of:

M

. AZ 2.2
e |1-) % = p. (5.60)
=1

a=2

Since one has o2 o &2, the correction term is small provided that the variance of
the portfolio generated by the dominant factor is much larger than the sum of the
variance of all other factors.

Coming back to Eq. (5.62), one expects that if the dominant factor is correctly
identified, and if the distribution is such that the above expansion makes sense, an
approximate solution is given by e = €] var + €, with:

M M 2 4
¢~ Z Fa,agaz _E : Aﬁc:a P'(e1var) + & , (5.67)
2A, — 2A7 \ Pleivar) A

a=2 1 '

a=2

where now all the Greeks at estimated at €] vyr.

In some cases, it appears that a ‘one-factor’ approximation is not enough to
reproduce the correct VaR value. This can be traced back to the fact that there are
actually other different dangerous market configurations which contribute to the
VaR. The above formalism can however easily be adapted to the case where two
(or more) dangerous configurations need to be considered. The general equations
read:

M F,*,af M Ao o [‘;a
Pea =P+ 2P =y S (P' (e) + A—;P(e:;)). (5.68)

*2

b=a a b=a a a

where a = 1, ..., K are the K different dangerous factors. The ¢ and therefore

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 217

http://site.ebrary.com/id/10014876?ppg=217

Copyright © Cambridge University Press. . All rights reserved.

May not be reproduced in any form without permission from the publisher,

except fair uses permitted under U.S. or applicable copyright law.
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df*, are determined by the following K conditions:

ﬁf*(eT):r‘if*(c’;):---:§f*(€j<) p>!+P>2+"'+P>K =p. (5-69)

5.5 Risk diversification (*)

We have put the emphasis on the fact that for real world options, the Black—Scholes
divine surprise—i.e. the fact that the risk is zero—does not occur, and a non-zero
residual risk remains. One can ask whether this residual risk can be reduced further
by including other assets in the hedging portfolio. Buying stocks other than the
underlying to hedge an option can be called an ‘exogenous’ hedge. A related
question concerns the hedging of a ‘basket’ option, the pay-off of which being
calculated on a linear superposition of different assets. A rather common example
is that of ‘spread’ options, which depend on the difference of the price between
two assets (for example the difference between the Nikkei and the S&P 500, or
between the British and German interest rates, etc.). An interesting conclusion is
that in the Gaussian case, an exogenous hedge increases the risk. An exogenous
hedge is only useful in the presence of non-Gaussian effects. Another possibility is
to hedge some options using different options; in other words, one can ask how to
optimize a whole ‘book” of options such that the global risk is minimum.

‘Portfolio’ options and ‘exogenous’ hedging

Let us suppose that one can buy M assets X', i = 1,..., M, the price of which being x}(
at time k. As in Chapter 3, we shall suppose that these assets can be decomposed over a
basis of independent factors E° :

M
x, = Z 0Oiqef. (5.70)
a=1

The EY are independent, of unit variance, and of distribution function P,. The correlation
matrix of the fluctuations, (8x'8x1) is equal to > . 0ia0jq = [00T); -

One considers a general option constructed on a linear combination of all assets, such
that the pay-off depends on the value of

= Zf,-xf (5.71)

and is equal to Y(X) = max(X — x5, 0). The usual case of an option on the asset X !
thus corresponds to f; = 8;.1. A spread option on the difference X' — X corresponds to
fi = 8.1 — 8; 1, etc. The hedging portfolio at time k is made of all the different assets X',
with weight (,f)};. The question is to determine the optimal composition of the portfolio, d)};"‘.

Following the general method explained in Section 4.3.3, one finds that the part of the risk
which depends on the strategy contains both a linear and a quadratic term in the ¢’s. Using
the fact that the E® are independent random variables, one can compute the functional
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5.5 Risk diversification 205

derivative of the risk with respect to all the qf)i({x}}. Setting this functional derivative to
zero leads to:°

3100719/ :f}"‘(z) 154G £0m
i b j
O{'a b ~
x Z 27—, log Pq szjoja dz. (5.72)
a & i

Using the cumulant expansion of P, (assumed to be even), one finds that:
2 3 4

- .z .
TIOSPH ijoja =1Z zj:fjoja *13’(0 zj:f;o;a +---0 (5.73)

The first term combines with

> T (5.74)
w2 [i0ja
to yield:
iz 0ia0jafj = iz[00" - fla, (5.75)
aj
which finally leads to the following simple result:
* = fiPlixi). xs, N = k] (5.76)

where P[{x,{_}. X5, N — k] is the probability for the option to be exercised, calculated at
time k. In other words, in the Gaussian case (k, = 0) the optimal portfolio is such that the
proportion of asset i precisely reflects the weight of i in the basket on which the option is
constructed. In particular, in the case of an option on a single asset, the hedging strategy
is not improved if one includes other assets, even if these assets are correlated with the
Jormer.

However; this conclusion is onf 'y correct in the case of Gaussian fluctuations and does not
hold if the kurtosis is non-zero. 8 In this case, an extra term appears, given by:

IP(E, xes N — k
Zxa[oo 17 OJHZfOM % (5.77)

Jja

This correction is not, in general, proportional to f;, and therefore suggests that, in some
cases, an exogenous hedge can be useful. However, one should note that this correction is
small for at-the-money options (X = x), since d P(x, x5, N — k)/dxs = 0.

5 Inthe following, i denotes the unit imaginary number, except when it appears as a subscript, in which case it
is an asset label.
% The case of Lévy fluctuations is also such that an exogenous hedge is useless.
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Option portfolio
Since the risk associated with a single option is in general non-zero, the global
risk of a portfolio of options (‘book’) is also non-zero. Suppose that the book
contains p; calls of ‘type’ i (i therefore contains the information of the strike x;
and maturity T;). The first problem to solve is that of the hedging strategy. In the

absence of volatility risk, it is not difficult to show that the optimal hedge for the
book is the linear superposition of the optimal strategies for each individual option:

P () =) pig(x,0). (5.78)

The residual risk is then given by:
R* = E pip;Cij, (5.79)
L.J

where the ‘correlation matrix’ C is equal to:

Cy = (max(x(T,-) — X5, 0) max(x(T}) — xy, O))
N-1

—CC; — Dt Z(qb,.*(x, kt)ep} (x. kT)) (5.80)

k=0
where C; is the price of the option i. If the constraint on the p;’s is of the form
Y ; pi = 1, the optimum portfolio is given by:
-1
pr = 2 Cj;
i T = A1
Z:’.j CU

(remember that by assumption the mean return associated to an option is zero).

(5.81)

Let us finally note that we have not considered, in the above calculation, the
risk associated with volatility fluctuations, which is rather important in practice.
It is a common practice to try to hedge this volatility risk using other types
of options (for example, an exotic option can be hedged using a ‘plain vanilla’
option). A generalization of the Black—Scholes argument (assuming that option
prices themselves follow a Gaussian process, which is far from being the case)
suggests that the optimal strategy is to hold a fraction

aC, [IC,

A= ——

— 5.82
do 0o ( )

of options of type 2 to hedge the volatility risk associated with an option of
type 1. Using the formalism established in Chapter 4, one could work out the
correct hedging strategy, taking into account the non-Gaussian nature of the price
variations of options.
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Short glossary of financial terms

Arbitrage A trading strategy that generates profit without risk, from a zero initial
investment.

Basis point Elementary price increment, equal to 10~* in relative value.

Bid-ask spread Difference between the ask price (at which one can buy an asset)
and the bid price (at which one can sell the same asset).

Bond (Zero coupon): Financial contract which pays a fixed value at a given date
in the future.

Delta Derivative of the price of an option with respect to the current price of the
underlying contract. This is equal to the optimal hedging strategy in the
Black—Scholes world.

Drawdown Period of time during which the price of an asset is below its last
historical peak.

Forward Financial contract under which the owner agrees to buy for a fixed price
some asset, at a fixed date in the future.

Futures Same as a forward contract, but on an organized market. In this case,
the contract is marked-to-market, and the owner pays (or receives) the
marginal price change on a daily basis.

Gamma Second derivative of the price of an option with respect to the current
price of the underlying contract. This is equal to the derivative of the
optimal hedging strategy in the Black—Scholes world.

Hedging strategy A trading strategy allowing one to reduce, or sometimes to
eliminate completely, the risk of a position.

Moneyness Describes the difference between the spot price and the strike price of
an option. For a call, if this difference is positive [resp. negative], the option
is said to be in-the-money [resp. out-of-the-money]. If the difference is
zero, the option is at-the-money.

Option Financial contract allowing the owner to buy [or sell] at a fixed maximum
[minimum] price (the strike price) some underlying asset in the future.

209
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210 Short glossary of financial terms

This contract protects its owner against a possible rise or fall in price of
the underlying asset.

Over-the-counter This is said of a financial contract traded off market, say
between two financial companies or banks. The price is then usually not
publicly disclosed, at variance with organized markets.

Spot price The current price of an asset for immediate delivery, in contrast with,
for example, its forward price.

Spot rate The value of the short-term interest rate.

Spread Ditterence in price between two assets, or between two different prices of
the same asset—for example, the bid—ask spread.

Strike price Price at which an option can be exercised, see Option.

Vega Derivative of the price of an option with respect to the volatility of the
underlying contract.

Value at Risk (VaR) Measure of the potential losses of a given portfolio, associ-
ated to a certain confidence level. For example, a 95% VaR corresponds to
the loss level that has a 5% probability to be exceeded.

Volatility Standard deviation of an asset’s relative price changes.
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Index of symbols

A tail amplitude of power-laws: P(x) ~ puA* /x!T ...
A tail amplitude of asseti ......... ...t i
A, tail amplitude of portfoliop ............ ... .. oot
B amount invested in the risk-free asset..................
B(t,8) price, at time 7, of a bond that pays l attimetr +6......

Cn cumulant of order n of a distribution ..................
Cul cumulant of order n of an elementary distribution P, (x)
Cu N cumulant of order n of a distribution at the scale IV,
Px, N
C CoOVAriance MAatriX . ....vvutvreinee e ieannees
Ci element of the covariance matrix......................
Cf;'j: ‘tail covariance” matrix . ........... ..o,
Cc price of a European calloption .......................
c’ price of a European putoption........................
Ca price of a European call in the Gaussian Bachelier theory
Cps price of a European call in the Black—Scholes theory. ...
Cm market price of a Europeancall .......................
C, price of a European call for a non-zero kurtosis k. ......
Cp, price of a European call for a non-zero excess return m . .
Cy price of a European call with dividends................
Casi price of an Asian call option..........................
Cam price of an American calloption . .....................
Cp price of a barrier call option .......... .. ... ... ...
C(9)  yield curve spread correlation function ................
Dt variance of the fluctuations in a time step t in the
additive approximation: D = o2x2.................. ..
D; D coefficientforasset i .......... ... ... ... ... ......

D,t  risk associated with portfoliop.......................
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113
113
135

74

22

22

41

83
123
140
192
144
144
156
148
173
190
194
197
108

76

51
109
109



212 Index of symbols

€a explicative factor (or principal component) ............
Eans mean absolute deviation ............. i,
f(t,6) forward value at time ¢ of the rate at time 1 +-6.........
F forward price ........ . i
g(£)  auto-correlation function of ykz .......................
G, probable gain......... ... ... i
Hurstexponent.......... .o ..
Hurst function .. ... o i
missing information ........... ... .. oo
timeindex (F = kT) ...
n modified Bessel function of the second kind of order n . .
ik generalized kurtosis . ... o
L, Lévy distribution oforder .. ........ ..o

ARSI

Ly truncated Lévy distribution of order je.................
m average return by unittime . .......... ... ... L
m(t,t') interest rate trend at time ¢ as anticipated at time ¢......
H average return on a unittime scale t: my =mt ........
Ht; return Of ASSet i .o vvt it e e e
m, moment of order n of a distribution ...................
mp return of portfoliop .. ... ...
M number of assetina portfolio. .................. ... ...
M effective number of asset in a portfolio................
N number of elementary time steps until maturity:
N* number of elementary time steps under which tail effects
are important, after the CLT applies progressively .. ....
o coordinate change matrix . ............ ... ... ...
Di weight of asseti in portfoliop................oitt.
p portfolio constructed with the weights {p;}.............

Py (8x) or P;(x), elementary return distribution on time scale t
Py distribution of rescaled return §x; /y .. .. ... L
P(x, N)distribution of the sumof Nterms ....................

IS(Z) characteristic functionof P .......... ... ... ...
P(x, t]xo, fp)

probability that the price of asset X be x (within dx) at

time 7 knowing that, at a time #, its price was xp .......
Po(x. t|xo, fo)

probability withoutbias................. ... ... ...
P (x. t]x0, fo)

probability withreturn m........... ... oLl
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118

73
134
68
107
65
65
27
48
14
120
11
14
93
81
102
108

109
103
111

48

29
118
108
109

49

68

21

92
172

171



Pe
Pg
Py
Py

Index of symbols

symmetric exponential distribution............ ... ...
Gaussian distribution . ........... ... ..o
hyperbolic distribution............. ... ... ... o
log-normal distribution .......... ... ... ..o
Student distribution. . ....... ... o o
probability of a given event (such as an option being

EXEICISEA) vttt e e
cumulative distribution: P. =P(X < x)..............
cumulative normal distribution, Pg- (i) = erfc(u/\/i)ﬂ
ratio of the number of observations (days) to the number
Of ASSetS . L oo
or quality ratio of ahedge: Q =R*/C.................

O(x, t]xo, fn)

Qi(u)
r

r(r)
R

R*
s(1)
S(u)
S

T

T

U
%

Wiz

AW

AWy
AW,
x

X

Xk

X5

Xmed
x*

risk-neutral probability .............. ... .o oL
polynomials related to deviations from a Gaussian......
interest rate by unittime: r = p/T ... ... ... .. ...
spot rate: r(1) = f(t, Bmin) - - e
risk (RMS of the global wealth balance) ...............
residual risk . ...
interest rate spread: s(t) = f(f, Onax) — f (. Omin) - - - - -
Cramer function. ...t
Sharpe ratio . .

time scale, e.g. an optlon maturity .. ...
time scale for convergence towards a Gaussian .........
crossover time between the additive and multiplicative
TEZIMES « . vttt ettt ettt e e e e
utility function. . ....... ... oo
“Vega’, derivative of the option price with respect to
volatility ... oo
full-width at half maximum . ceen
global wealth balance, e.g. Ulobal wealth variation
between emission and maturity ............. ... ...
wealth balance from trading the underlying ............
wealth balance from transaction costs . ................
priceof anasset. ... ... ... .. .. i
price at time K ......oovuut i i
= (L D) X
strike price of anoption............ ...
median. . e

most probab]e value ...
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213

15

14
10
15

157

28

41
164

173
29
135
75
153
153
75
30
93
48
61

51
104

144

132
171
190

48

48
136
140



Vi

i
8(x)

A@®)
e
Mk

®
@(x)

Keff
Kimp
KN

Index of symbols

maximum of x in the series x|, x2, ..., XN oo eee e
variation of x betweentimekand k+ 1 ...............
variation of the price of asset i between time k and k + 1
log(xg/x0) —klog(l +P)eeenee
pay-off function, e.g. Y(x) = max(x — x;,0)..........
Fourier variable . ........... ... ... .o i
normalization ......... ..o iiiiit i
persistence function . . . e
exponential decay parameter P(A) ~ exp( ocr)
asymmetry parameter, . e

or normalised covariance bctween an asset and the
market portfolio. ......... ...
scale factor of a distribution (potentially k dependent ) ..
derivative of A with respect to the underlying: 9 A /dx,. .
Kroeneker delta: §;; = 1if i = j, 0 otherwise..........
Dirac delta function .. ....... ... ... ... ... ... ...
derivative of the option premium with respect to the
underlying price, A = dC/dxp, it is the optimal hedge ¢*
in the Black—Scholes model . e

RMS static deformation ofthe yleld CUrve .............
Lagrange multiplier . ...,
return between k and k + 1: xpo) — X = MXg ovoennn ..
maturity of a bond or a forward rate, always a time
difference ...
derivative of the option price with respect to time. ......
Heaviside step-function..................ooiiiinn.
N0 ) F= =T 1
‘effective” Kurtosis ...t
‘implied” Kurtosis . ...
kurtosisatscale N ... ... .o
eigenvalue . .

or d1men510r1]ess parameter modlfymg (for examp]e} the
price of an option by a fraction A of the residual risk . . ..
normalized cumulants: &, = ¢, /0" ....... ... ..l
loss level; Av.r loss level (or value-at-risk) associated to
a given probability Pyvar .. ovv v
exponent of a power-law, or a Lévy distribution . .......
‘product’ variable of fluctuations dx;8x;...............
interest rate on a unit time interval 7 ..................
density of eigenvalues of a large matrix................
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16
48
83
143
140

111
81
14
12

120
68
144
38
128

160
76
27
92

74
144
30

151
151
61
39

154

94

122
135
39



Index of symbols 215

a volatility ... ... 6
(o] volatility on a unit time step: 01 = 0 /T ............... 51
x ‘implied” volatility ........ ... i 147
T elementary time step. . ........cooviiiiiiiii i 48
oY quantity of underlying in a portfolio at time &, for an
option with maturity N ........... .. oo, 135
¢*  optimal hedge ratio. .............oieiiiiiiiiiiiiain, 160
v hedge ratio used by the market........................ 161
¥ hedge ratio corrected for interest rates:
U =L+ )V RN 135
£ random variable of unit variance . ..................... 77
= equals by definition........... .. ... ..ol 4
o~ is approximatelyequal to ............ ... ..o 16
(04 isproportional to........ ... i 23
~ is on the order of, or tends to asymptotically ........... 8
erfc(x) complementary error function ........................ 28
log(x) natural logarithm........... ... .. i, 7
I'(x) gamma function: I'(n+ 1) =nl........ ... .. ... .. 12
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additive—multiplicative crossover, 51

arbitrage opportunity, 133
absence of (AAO), 138

ARCH, 87, 151

asset, 2

basis point, 133

Bachelier formula, 144
bid—-ask spread, 50, 133, 153
binomial model, 181

Black and Scholes formula, 143
bond, 73, 135

Bund, 50

CAPM. 120
central limit theorem (CLT), 23
characteristic function, 6, 21
convolution, 21
correlations
inter-asset, 76, 82, 204
temporal, 36, 53, 66, 132
Crameér function, 30

Index

effective number of asset, 111
efficiency, 130

efficient frontier. 110
eigenvalues, 39, 83, 119
explicative factors, 118, 122
extreme value statistics, 15, 95

fair price, 134, 130
feedback, 87
forward, 133

rate curve (FRC), 73
Futures, 50, 49, 133

gamma, 144, 200
German mark (DEM), 49
Greeks, 144, 200

Heath—Jarrow—Morton model, 73
hedging, 139

optimal, 152, 158, 174
heteroskedasticity, 49, 151
Hull and White model, 79
Hurst exponent, 64, 85

cumulants, 7, 22
image method. 198
delta, 160, 144, 200 independent identically distributed (iid), 16, 36
information, 27, 112
interest rates, 72
Ito calculus, 170

distribution
cumulative, 4, 58

Fréchet, 18
Gaussian. 8 .
Gumbel, 17, 95 kurtosis, 7, 66, 147
hyperbolic, 14 large deviations, 28
Lévy. 11
log-normal, 9 Markowitz, H.. 119
power-law, 8, 122 market crash, 3, 179
Poisson, 14 maturity, 139
stable, 22 mean, 4
Student, 15, 32, 49 mean absolute deviation (MAD), 5
exponential, 15, 17, 115 median, 4
truncated Lévy (TLD). 14, 34, 57 mimetism, 87
diversification, 103, 111 moneyness, 141
dividends, 137, 190
drawdown, 102 non-stationarity, 36, 66, 43, 151
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