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Introduction
Percolation Theory

Coffee is poured on top of some porous material. Will the liquid be able to 
make its way from hole to hole and reach the bottom?

A site (bond) is occupied with probability 𝒑 or 
empty with probability 𝟏 − 𝒑.



Thermodynamic Limit: Size -> ∞

Does an infinite open cluster exist? “Connectivity”

There is a critical probability 𝒑𝒄, below which 
such an infinite cluster does not exist (with 
unitary probability) while above which such 
a cluster most surely exists.

Order parameter: 𝑃∞(𝑝)/σ𝑠𝑃𝑠(𝑝).

The fraction of occupied sites that belong to the infinite cluster; goes from 0 to 1 as 𝑝
increases.
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Size -> 𝟏𝟎𝟎 × 𝟏𝟎𝟎 sites

𝑝 = 0.3
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Size -> 𝟏𝟎𝟎 × 𝟏𝟎𝟎 sites

𝑝 = 0.6

Introduction
Infinite Cluster



Size -> 𝟏𝟎𝟎 × 𝟏𝟎𝟎 sites

𝑝 = 0.9
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Quantum Percolation Theory

Main difference: Each site 𝑗 is not only “0” or “1”, but has a complex amplitude 𝑎𝑗! 

Hamiltonian (tight-band model)

Two different sites 𝐴 and 𝐵 with energies 𝐸𝐴 and 𝐸𝐵 are placed randomly on the grid 
with fractions 𝑝 and 1 − 𝑝, respectively.

Interaction between nearest neighbors is 𝑉.

If 𝐸𝐵 is much larger than 𝐸𝐴, then eigen-functions with non-zero amplitude on 𝐵 sites 
should have much larger eigen-energies which belong to a higher energy band (𝐵
subband); while we are only interested in the 𝐴 subband.

Set 𝐸𝐴 = 0 and 𝑉 = 1, the Hamiltonian can be written as

𝐻 = σ𝑗,𝑘 |𝑗 >< 𝑘| , 𝑗, 𝑘 are nearest neighbors only on 𝐴 sites.

Now we see 𝑯 is the adjacent matrix of the grid (network)!
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Quantum Percolation Theory

𝑖 ሶ𝑎𝑗 = σ𝑘 𝑎𝑘 , 𝑗, 𝑘 are nearest neighbors (on 𝐴 sites);

determine how wave (information) transmits.

Classical Percolation Theory
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Anderson Localization

Given 𝑖 ሶ𝑎𝑗 = σ𝑘 𝑎𝑘. What will happen to 𝑎0 𝑡 if we put 𝑎0 0 = 1 at 𝑡 = 0? Can the 

amplitude spread infinitely long?

Essential condition: there exists an infinite open cluster!

But that’s not enough…

There must exist an eigenstate which is not localized!
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Localized states exist even in the infinite cluster.

Quantum phase transition: extended states appear when 𝒑 > 𝒑𝒒;

Quantum critical probability: 𝒑𝒒 (one must have 𝒑𝒒 > 𝒑𝒄).



Anderson Localization

In 1958, Anderson proved that all eigenstates are localized in disordered grids when 𝒅 ≤ 𝟐, 
which means 𝒑𝒒 = 𝟏.
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Density of states of a 𝑑 > 2 disordered system.



Anderson Localization

𝜸 = 𝒎𝒂𝒙 𝑬𝒊 − 𝑬𝒊−𝟏, 𝑬𝒊+𝟏 − 𝑬𝒊 /𝒎𝒊𝒏 𝑬𝒊 − 𝑬𝒊−𝟏, 𝑬𝒊+𝟏 − 𝑬𝒊 𝒊, 
𝑬𝒊−𝟏, 𝑬𝒊, 𝑬𝒊+𝟏 are three consecutive energy levels.
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Energy level spacing: Wigner-Dyson distribution vs. Poisson distribution

𝜸 ≈ 𝟎. 𝟓𝟑: extended states exist; 
𝜸 < 𝟎. 𝟓: only localized states;



Results
2D Grid

𝒑 = 𝟎. 𝟗𝟗 𝒑 = 𝟏. 𝟎𝟎



Results
2D Grid

𝒑 = 𝟎. 𝟗𝟗, 𝑬𝒈 ≈ −𝟒. 𝟎
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𝒑 = 𝟏. 𝟎𝟎, 𝑬𝒈 ≈ −𝟒. 𝟎
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𝒑 = 𝟎. 𝟗𝟗, 𝑬𝒆 ≈ 𝟒. 𝟎
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𝒑 = 𝟏. 𝟎𝟎, 𝑬𝒆 ≈ 𝟒. 𝟎



BA model with 𝑁 = 104,
𝑘 = 4 × 104.

𝑝 ≈ 0.3, 𝐸𝑔 ≈-8.7.
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Connectivity

Results
2D Grid

2D Grid with 𝑁 = 104. 𝑝𝑐 ≈ 0.6



Connectivity

Results
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3D Grid with 𝑁 = 10,648. 𝑝𝑐 ≈ 0.35



Connectivity
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BA model with 𝑁 = 104, 𝑘 = 4. 𝑝𝑐 ≈ 0.15



Connectivity

Results
Barabasi-Albert Model

BA model with 𝑁 = 104, 𝑘 = 6. 𝑝𝑐 ≈ 0.08



Connectivity

Results
Scale-Free Model

SF model with 𝑁 = 104, 𝑘 ≈ 4, 𝛾 = 6. 𝑝𝑐 ≈ 0.2



Connectivity
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Scale-Free Model

SF model with 𝑁 = 104, 𝑘 ≈ 6, 𝛾 = 6. 𝑝𝑐 ≈ 0.15



Wave Localization

Results
2D Grid

2D Grid with 𝑁 = 104. 𝑝𝑞 ≈ 1.0



Wave Localization

Results
3D Grid

3D Grid with 𝑁 = 10,648. 𝑝𝑞 ≈ 0.44



Wave Localization
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BA model with 𝑁 = 104, 𝑘 = 4. 𝑝𝑞 ≈ 1.0



Wave Localization
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BA model with 𝑁 = 104, 𝑘 = 6. 𝑝𝑞 ≈ 0.70



Results
Scale-Free Model

SF model with 𝑁 = 104, 𝑘 ≈ 4, 𝛾 = 6. 𝑝𝑞 ≈ 1.0Wave Localization



Results
Scale-Free Model

SF model with 𝑁 = 104, 𝑘 ≈ 6, 𝛾 = 6. 𝑝𝑞 ≈ 0.65Wave Localization



Summary
Conclusion & Future Work

Conclusion

 Wave transmission can be blocked even if the network is fully connected.

 Compared with grids, scale-free networks are more connectable with

classical percolation, but less connectable with quantum percolation.

Future Work

 Critical exponents.

 Quantum entanglement network: dimension of Hilbert space 𝒏 → 𝟐𝒏.

 Open system dynamics: stability of hubs of networks.
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