

Quantum Percolation Theory: Wave Localization on Topological Structures

Xiangyi Meng

Department of Physics, Boston University

Outline Outline

Introduction

- Percolation Theory
- Infinite Cluster
- 1. Critical phenomena
- **Quantum Percolation**
- 1. Hamiltonian
- 2. Implementation
- 3. Anderson Localization

Results

D 2D Grid

3D Grid

- Barabasi-Albert Model
- **Given Scale-Free Model**

Summary

- **Conclusion**
- **D** Future Work

Coffee is poured on top of some porous material. Will the liquid be able to make its way from hole to hole and reach the bottom?

A site (bond) is occupied with probability p or empty with probability 1 - p.

bond percolation

site percolation

Infinite Cluster

Thermodynamic Limit: Size -> ∞

Does an infinite open cluster exist?

"Connectivity"

There is a critical probability p_c , below which such an infinite cluster does **not** exist (with unitary probability) while above which such a cluster most surely exists.

Order parameter: $P_{\infty}(p) / \sum_{s} P_{s}(p)$.

The fraction of occupied sites that belong to the infinite cluster; goes from 0 to 1 as p increases.

Size -> 100×100 sites

$$p = 0.3$$

Size -> 100×100 sites

p = 0.6

Infinite Cluster

Size -> 100×100 sites

p = 0.9

Quantum Percolation Theory

Main difference: Each site j is not only "0" or "1", but has a complex amplitude a_i !

Hamiltonian (tight-band model)

Two different sites A and B with energies E_A and E_B are placed randomly on the grid with fractions p and 1 - p, respectively.

Interaction between nearest neighbors is V.

If E_B is much larger than E_A , then eigen-functions with non-zero amplitude on B sites should have much larger eigen-energies which belong to a higher energy band (B subband); while we are only interested in the A subband.

Set $E_A = 0$ and V = 1, the Hamiltonian can be written as

 $H = \sum_{j,k} |j\rangle \langle k|$, j, k are nearest neighbors only on A sites.

Now we see *H* is the adjacent matrix of the grid (network)!

C	lassi	ical	Perco	lation	Theory
---	-------	------	-------	--------	--------

A "static" system with a_j constants.

Quantum Percolation Theory

 $i a_j = \sum_k a_k$, j, k are nearest neighbors (on A sites); determine how wave (information) transmits.

A complex feedback dynamic system.

Material Science

Statistical

Epidemiology

Physics

Anderson Localization

Given $i\dot{a}_j = \sum_k a_k$. What will happen to $a_0(t)$ if we put $a_0(0) = 1$ at t = 0? Can the amplitude spread infinitely long?

Essential condition: there exists an infinite open cluster!

But that's not enough...

There must exist an eigenstate which is not localized!

Localized states exist even in the infinite cluster.

 $B = \frac{B}{1/2} = 0$ $B = \frac{1}{2} = 0$

Quantum phase transition: extended states appear when $p > p_q$;

Quantum critical probability: p_q (one must have $p_q > p_c$).

Anderson Localization

In 1958, Anderson proved that all eigenstates are localized in disordered grids when $d \leq 2$, which means $p_q = 1$.

Density of states of a d > 2 disordered system.

Anderson Localization

$$\begin{split} \gamma &= \langle max\{E_i - E_{i-1}, E_{i+1} - E_i\} / min\{E_i - E_{i-1}, E_{i+1} - E_i\} \rangle_i, \\ E_{i-1}, E_i, E_{i+1} \text{ are three consecutive energy levels.} \end{split}$$

Energy level spacing: Wigner-Dyson distribution vs. Poisson distribution

Results 2D Grid

p = 0.99

$$p=0.99, E_g pprox -4.0$$

ionoi 유급 0000-0 **g**eneros ide B ene iana-a DOCOC C

$p=0.99, E_e \approx 4.0$

Results 2D Grid

p=1.00 , $E_epprox 4.0$ scenene féeee ene 000 0 . 0000 ē 0.00 ē ogenegenegenegenegenegenegenegenegen **D**enenco 808 8 101 prereaspresseren en construction de la construction de la construction de la construction de la construction de 000000 -------00000000

Results Barabasi-Albert Model

BA model with $N = 10^4$, $\langle k \rangle = 4 \times 10^4$. $p \approx 0.3$, $E_g \approx$ -8.7.

Results 2D Grid

Results 3D Grid

Results Barabasi-Albert Model

Results Barabasi-Albert Model

Results Scale-Free Model

Results Scale-Free Model

Results 2D Grid

Results 3D Grid

Results Barabasi-Albert Model

Results Barabasi-Albert Model

Results Scale-Free Model

Conclusion

□ Wave transmission can be blocked even if the network is fully connected.

□ Compared with grids, scale-free networks are more connectable with classical percolation, but less connectable with quantum percolation.

Future Work

Critical exponents.

Quantum entanglement network: dimension of Hilbert space $n \rightarrow 2^n$.

Open system dynamics: stability of hubs of networks.

Thank you