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Abstract

In network science, dynamical importance can be used to quantify the importance of nodes and links.

In physical and social sciences, Zipf’s law is found to be able to describe many types of data. In this

article, the distributions of dynamical importance of nodes and links will be analyzed for several types

of undirected networks, i.e. regular network, Erdos Renyi random network, and Barabasi Albert scale

free network. We will show that the distributions of dynamical importance of nodes and links also obey

Zipf’s law.

1 Background

We all know the fact that in a network, some nodes

and links are important, while others are not. It’s

then essential to find a quantity to quantify the im-

portance of nodes and links in a network. It’s tempt-

ing to choose node degree as the quantity we want,

since the most basic property of a node is the degree,

and the type of a network is always defined by its de-

gree distribution. However, a higher degree doesn’t

always mean a higher importance. For example, in

a disassortative network, nodes with high degrees are

important, as expected; but nodes with low degrees

can play a significant role in the network as well, as

they tend to be the only bridges among communities.

Besides, degree is a local property, and hence can’t

reflect the structure of the whole network.

A quantity being able to measure the real impor-

tance of nodes and links is needed, and it should re-

flect the structure of the whole network. Based on

the requirements, a quantity called dynamical impor-

tance was introduced [4]. It has been discussed in

many papers that the largest eigenvalue of the net-

work adjacency matrix, which we call λ, is always a

determinant in the properties of different dynamical

networks [3, 5, 1, 2]. The dynamical importance is

then defined as the percentage decrease in λ upon

the removal of the node or the link, i.e. for a node,

Ik ≡ −∆λk
λ , where k is the label of the node; for a

link, Ii,j ≡ −∆λi,j

λ , where i, j are the labels of the

nodes connected by the link.
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2 Simulations of Different Net-

works

As discussed above, the importance that a node or a

link plays could be different, depending on the struc-

ture of the network. What we are interested in here

is the distributions of the dynamical importance of

nodes and links. Simulations are done based on four

types of network models defined in the Python library

named ‘networkx’, i.e. regular graph, Erdos Renyi

random graph, Watts Strogatz small world graph, and

Barabasi Albert scale free graph. For each type of

network, 1000 nodes are generated and connected ac-

cording to its corresponding dynamic properties. The

dynamical importance Ik for each node and Ii,j for

each link are calculated, and then sorted in descend-

ing order.

3 Results of Different Networks

3.1 Regular Graph

For a regular graph, the dynamical importance dis-

tributions are shown in Figure 1. We can see that all

of the nodes or links are of almost the same impor-

tance, which is consistent with our intuition since no

nodes or links have privileges over others in a regu-

lar graph. And the distributions are also plotted in a

log-log scale in Figure 2 for consistency with the fol-

lowing parts. A linear regression is done to the 20%

of nodes or links with larger importance and the slope

is around zero, as expected.

3.2 Erdos Renyi Random Graph

For a random graph, the dynamical importance distri-

butions are shown in Figure 3. They look like power

laws in the linear scale graphs so the distributions are

then plotted in a log-log scale in Figure 4. Similarly

as above, a linear regression is done to the 20% of

nodes or links with larger importance. We can see

that the distributions indeed behave linearly in the

log-log scale graphs, which means they obey power

laws themselves. The regression slope, and thus the

power law exponent, is -0.33 for nodes and -0.30 for

links.

3.3 Watts Strogatz Small World

Graph

For a small world graph, the program calculating the

largest eigenvalue λ doesn’t always converge when

certain nodes or links are removed. We will just skip

this type of network.

3.4 Barabasi Albert Scale Free Graph

For a scale free graph, the dynamical importance dis-

tributions are shown in Figure 5. Similarly as above,

they are plotted in a log-log scale in Figure 6, and a

linear regression is done to the 20% of nodes or links

with larger importance. We can still find power laws

in the distributions of dynamical importance of nodes

and links. The regression slope, and thus the power

law exponent again, is -0.80 for nodes and -0.78 for

links.
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(a) nodes (b) links

Figure 1: the dynamical importance distributions for a regular graph in a linear scale

(a) nodes (b) links

Figure 2: the dynamical importance distributions for a regular graph in a log-log scale

4 Discussion

As Zipf’s law says, “many types of data studied in

the physical and social sciences can be approximated

with a Zipfian distribution, one of a family of related

discrete power law probability distributions.” [6] To

be brief, it means some quantity is in a power law in

terms of its rank. It’s clear from our simulations that

the distributions of dynamical importance of nodes

and links in a network obey perfect Zipf’s law. Zipf’s

law is not only used to describe the behavior of nat-

ural languages, but also valid in other physical and

social fields.

5 Conclusion and Outlooks

In this article, we show that for many different types

of networks, i.e. regular network, Erdos Renyi ran-

dom network, and Barabasi Albert scale free net-

work, the distributions of dynamical importance of

nodes and links obey Zipf’s law. Further efforts will

be made so that more types of networks will be in-

vestigated and importance based on other definitions

can be compared, which we might address in a future

publication.
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(a) nodes (b) links

Figure 3: the dynamical importance distributions for a random graph in a linear scale

(a) nodes (b) links

Figure 4: the dynamical importance distributions for a random graph in a log-log scale
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(a) nodes (b) links

Figure 5: the dynamical importance distributions for a scale free graph in a linear scale

(a) nodes (b) links

Figure 6: the dynamical importance distributions for a scale free graph in a log-log scale

[4] Juan G Restrepo, Edward Ott, and Brian R Hunt. Characterizing the dynamical importance of network

nodes and links. Physical review letters, 97(9):094102, 2006.

[5] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epidemic spreading in real

networks: An eigenvalue viewpoint. In Reliable Distributed Systems, 2003. Proceedings. 22nd International

Symposium on, pages 25–34. IEEE, 2003.

[6] Eric W. Weisstein. Zipf’s law. MathWorld.

5


