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In this project, we study the inclusion of asymmetries in the influences of agents in a model of
stochastic opinion formation dynamics proposed by Bartolozzi, Leinweber and Thomas. The model
is based on scale-free complex networks, in which the nodes represent agents that formulate binary
opinions on a particular issue under the influence of their local environment (first neighbors) and
the global behavior of the network. The model is defined in analogy with systems of interacting
spin 1/2 particles in thermal contact with a heat bath. One can interpret the financial agents as
nodes within the network and the two possible states (spin projections) of each agent represent
buying/selling decisions regarding a financial asset. The return of the asset is defined as the instan-
taneous magnetization of the system. The weighting of influences of the agents’ opinions is taken to
be correlated with the degrees of such agents within the network in such a way that nodes of higher
degree have greater influence on their neighbors than nodes of lower degree. Also, we propose a way
to have the model exhibit time correlations by means of volatility clustering. The dependence of
the model on the network topology is studied.

I. INTRODUCTION

The study of social dynamics has been a recent fo-
cus of investigation within the field of complex systems.
The application of the science of complex networks in the
study of real social networks has consistently suggested
the existence of fundamental organization principles in
such systems. Studies of sexual contact networks, the
World Wide Web, the Internet, actor collaboration net-
works, scientific publication networks and financial net-
works have revealed that, even though the natures of
these networks seem unrelated and independent, there
are various common characteristics between them1–4.
Complex networks are ideal substrates not only for

representing networks of social interaction, but also for
studying social dynamics defined on the structure of the
complex networks. In particular, physicists have stud-
ied opinion formation dynamics in social contexts and
have proposed models based on microscopic interaction
rules between individuals and their surroundings. In typ-
ical models, individuals are prone to the influence of their
immediate environment (neighborhood of acquaintances)
and to the global influence of society as whole.
One useful social system with which to compare the

results of these models is a financial market, where a
wealth of information of price histories of financial assets
has been recorded for decades (thanks to the power of
computers). Such statistics are widely available. There-
fore, it is not surprising that microscopic social dynamics
models have been tailored to study these systems.

II. FUNDAMENTAL NOTIONS ON COMPLEX
NETWORKS

A network or graph is defined as a set of elements,
called nodes or vertices, linked by connections or edges.

A connection represents a binary relation between the
pair of nodes it links. Networks have a simple graphical
representation: nodes are represented by a set of points
and the edges are represented by lines linking the points.
Each pair of nodes linked by an edge is called a pair of
neighbor nodes. The degree of connectivity, k, (or simply
the degree) of a node is defined as the number of edges
linked to that node. For the purposes of this project, the
degree of a node coincides with its number of neighbors.

Up until the decade of 1950�1960, the study of net-
works was led by mathematicians in the formal theory of
graphs. The random network model of Hungarian math-
ematicians Paul Erdős and Alfréd Rényi was an impor-
tant advance in the study of real-world networks, which
seemed to have no apparent principles of organization or
laws of construction. However, as technology advanced,
computers allowed for a more thorough study of the prop-
erties of the topologies of real networks. The subsequent
studies of these networks have systematically revealed
the existence of non-trivial topological characteristics.
Phenomena such as small world properties, high clus-
tering probabilities and power law degree distributions
have been identified as key elements in the description of
the topologies of real networks1,2.

In a complex network, not all nodes have the same
number of edges and, hence, not all nodes have the same
degree. To describe and quantify the dispersion of the
degrees of the nodes in a network, we define a degree
distribution function, P (k). This function provides the
probability of finding a node in the network with degree
equal to k.

The probability distribution function (P (k)) of the de-
gree (k) of a node in a real complex network, shows typ-
ical quantitative characteristics in the previously men-
tioned systems (WWW, Internet, collaboration net-
works, etc.). Scale invariant degree distribution func-
tions are ubiquitous (i.e. a power law), at least in the
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tails: P (k) ⇠ k�� . Networks that show this feature are
referred to as scale-free5.
Due to the ubiquitous appearance of scale-free degree

distributions in social complex networks, it is reasonable
to use these topologies for the underlying financial net-
works in simulations of microscopic market dynamics6,7.
To this end, we use the Barabási-Albert model, which is
a stochastic network construction algorithm for scale-free
networks.
The Barabási-Albert model generates scale-free net-

works with degree distribution:

P (k) = 2m2k�� (1)

with � = 3. The algorithm is based on two fundamen-
tal mechanisms: network growth and preferential attach-
ment1–4. Starting with a small network, a new node with
m connections is added at each time step; this is what
we mean by network growth. The new node will connect
to m of the previously existing nodes in the network,
according to a probabilistic criterion called preferential
attachment, given by the following rule: The new node
will link to the i- th node of the network with probability
⇧(i) = k

i

/⌃
j

k
j

.
Fig. (1) shows a scale-free complex network, con-

structed using the Barabási-Albert algorithm, for N =
200 nodes and m = m0 = 5, using Monte Carlo simu-
lations. m0 is number of nodes in the initial network
(before implementing the Barabási-Albert algorithm).
Fig. (2) shows the power law degree distributions of equa-
tion (1), obtained by Monte Carlo simulations of the
Barábasi-Albert algorithm, for a set of 100 networks of a
total of 2000 nodes each.

Figure 1: Scale free complex network, constructed using
Barabási-Albert algorithm, for N = 200 nodes andm = m0 =
5. Nodes of greater size have a higher degree. Note the pres-
ence of a few nodes of very high degrees (hubs).

The study of opinion formation dynamics in social en-
vironments and its potential applications to the study
of financial market dynamics has recently gained impor-
tance in the field of complex systems. Multiple examples
of microscopic models of opinion formation and finan-
cial market dynamics have been proposed in the past
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Figure 2: Degree distributions for scale-free networks con-
structed using the Barabási-Albert model for di↵erent values
of m. Note that the dashed line corresponds to a power law
given by k�3.

two decades. In particular, the application of models
based on interactions between spin 1/2 particles (Ising-
like systems) to the study of financial market and opinion
formation dynamics has been of considerable interest to
physicists8–11.
In this project, we will include and investigate the ef-

fects of asymmetries in the influences of agents in one
of such spin models, proposed by Bartolozzi, Leinweber
and Thomas9. In order to do so, financial variables (i.e.
return and volatility) are defined within the context of a
stochastic opinion formation model. We shall be inter-
ested in the study of the probability distributions of these
variables. The e↵ects of the previously mentioned asym-
metries will be quantified by a weighting factor, which is
a function of the degrees of the nodes of the underlying
networks. We will explore the behaviour of the tails of
the return distributions, their variances and their kurto-
sis with respect to the weighting factor.
Also, the model will be further modified with the pur-

pose of having it show volatility clustering, an empirical
aspect that is not reproduced by the original model.

III. FINANCIAL VARIABLES TO CONSIDER

Financial markets are complex systems where a great
number of investors (financial agents) interact with one
another and react to to the arrival of external and inter-
nal information with the result of determining the price
for a given asset, such as commodities, stock, derivatives
(for example, futures and options), foreign currency and
bonds.
The concepts of risk and reward are essential in the

context of financial markets. These are quantified typi-
cally in terms of returns and volatility, which are defined
in terms of the price history of the asset.
Let S(t) denote the price of an asset at time t. The
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return of a financial asset is defined in terms of the price
S(t) as:8,12,13

r
⌧

(t) =
S(t+ ⌧)� S(t)

S(t)
(2)

where ⌧ is the time scale between two successive prices
in the time series (for example: seconds, minutes, hours,
days...). Thus, the return is a measure of the relative
change of the price of the asset; specifically, it measures
the percentile increase (r

⌧

(t) > 0) or decrease (r
⌧

(t) < 0)
of the price between 2 instances of time. (If the price does
not change between two successive instances of time, then
r
⌧

(t) = 0).
We define the normalized returns in terms of equation

(2) as:

r̃
⌧

(t) =
r
⌧

(t)� hr
⌧

i
�
⌧

=
r
⌧

� hr
⌧

iphr2
⌧

i � hr
⌧

i2 (3)

where �
⌧

is the standard deviation of the time series of
prices and hr

⌧

i is the average return8. Obviously, the
time series of normalized returns has a zero mean and a
unit variance.
Another quantity of interest in finance is volatil-

ity, which is a measure of investment risk for a given
asset.8,12,13. The volatility of an asset is usually defined
in finance as the standard deviation of the distribution
of returns over a certain time window. Since real return
distributions are typically almost symmetric, negative re-
turns are almost as likely as positive returns and, there-
fore, the standard deviation of the return distribution
is a reasonable measure of the risk of negative returns.
Another definition takes the volatility to be the average
of the absolute values of the returns over a certain time
window. However, for our purposes, the volatility of the
financial asset is defined locally in time as the absolute
value of the returns8:

ṽ
⌧

(t) = |r̃
⌧

(t)| (4)

The standard model of finance is comprised of two
mathematical models that are typically used to describe
the behavior and dynamics of stock shares and the pric-
ing of options8 . In particular, we are talking about Geo-
metric Brownian Motion (which is used to model the dy-
namics of stock) and the Black-Scholes theory of option
pricing, whose underlying asset is stock. The Geometric
Brownian assumption for the modeling of stock behav-
ior predicts two major characteristics of the behavior of
returns: that the distribution of returns is Gaussian and
that returns are not correlated in time.
The perception of validity of the Geometric Brown-

ian Motion in describing the form of empirical return
distributions was well established and undisputed until
1963, when Mandelbrot observed that the actual distri-
bution functions exhibit heavy tails, which depart from
the Gaussian assumption. Eugene Fama confirmed this
observation when studying the return distribution for the

DJIA. It is well known that the actual distributions of re-
turns of real stock, indices, commodities and foreign ex-
change rates fail to conform to this Gaussian prediction8.
This can be seen clearly in Fig. (3).
The presence of heavy tails in return distributions im-

plies that they are leptokurtic, meaning that the kurto-
sis, defined as the fourth cumulant of the distribution, is
greater than the kurtosis of a normal distribution (which
has a kurtosis K

⌧

' 3). The actual form of the tails
has been identified as a power law. This means that the
probability of extreme fluctuations in financial time series
is much greater than predicted by the Gaussian model,
which is reflected in discontinuities or jumps in the real
time series. Many functional forms have been proposed
for the description of the actual return distributions, in-
cluding stable Lévy distributions, truncated Lévy distri-
butions and Student’s -t distributions, although there is
presently no consensus as to the actual true form8,12.
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Figure 3: Return distributions of real financial time series and
a return distribution from the microscopic model. We show
the distribution of daily returns for the DJIA and S&P500
indices, IBM quote and the foreign exchange rate between
the US dollar and the Yen. The yellow curve corresponds
to Monte Carlo simulations of the microscopic model. for
a =  = 2.8 and a total of 2000 nodes. The inner dashed line
is a Gaussian distribution, while the outer dashed line is a
Lorentzian distribution. Both real data and simulations show
heavy tails. The continuous dark line corresponds to a fit of
the model to a Student’s t- distribution. Source of daily price
histories used: Yahoo! Finance.

Some social psychologists have asserted that the rea-
sons that explain these heavy tails are rooted in psychol-
ogy of masses. Although it is very likely that the time
evolution of the price will be continuous (i.e.,having small
returns), future expectations are subject to information
flow in the market and herding behavior and may exhibit
big fluctuations that lead to heavy tails8,14.
A question of practical importance in finance is the

one of memory/correlations in financial time series. Let
us define the autocorrelation function of the time series
of normalized returns as:

C
r,⌧

(t� t0) = hr̃
⌧

(t)r̃
⌧

(t)i (5)
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Eugene Fama, one of the fathers of the E�cient Market
Hypothesis, studied these autocorrelation functions of re-
turns empirically for a wide variety of assets, noticing
that relative price changes seem to be uncorrelated in
time. For time scales of observation typically larger than
30 minutes, the autocorrelation functions of return shows
this characteristic lack of correlations8,12,13. Below this
time scale, when analyzing high frequency data, correla-
tions are, in general, no longer vanishing. Fig. (4) shows
autocorrelation functions of returns for several real time
series at a daily time scale, exhibiting the lack of mem-
ory/inertia in the time series.

20 40 60 80 100
t−t’

0

0.2

0.4

0.6

0.8

C r
et

(t
−t
’)

DJIA
S&P500
IBM
USD/JPY
a = κ = 2.0

Figure 4: Autocorrelation functions of real financial time se-
ries of returns. We show the ACF of daily returns for the
DJIA and S&P500 indices, IBM quote and the foreign ex-
change rate between the US dollar and the Yen. The black
curve corresponds to the autocorrelation function of a time se-
ries obtained by Monte Carlo simulations of the microscopic
model, with a =  = 2.0 and a total of 2000 nodes. The graph
clearly shows the lack of temporal correlations in the returns,
both in real financial data (for daily returns) and the simu-
lations Source of daily price histories used: Yahoo! Finance.

We shall define the autocorrelation function of the
volatility as:

C
v,⌧

(t� t0) = hṽ
⌧

(t)ṽ
⌧

(t)i (6)

This second order time correlation function does show
memory in real financial time series. In fact, the long
memory e↵ect is typically of a scale invariant nature,
meaning that there is no typical correlation time in the
system, and therefore the autocorrelation function for the
volatility behaves a power law (with some cut-o↵ at the
tail). The presence of long term correlations in volatility
is a reflection of the volatility clusters that are ubiqui-
tous in financial time series8,12,13. Fig. (5) shows this
explicitly for several real time series.

IV. ISING MODELS AND MEAN FIELDS

The fundamental starting point for the opinion forma-
tion dynamics that we will later define is the statistical
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Figure 5: Autocorrelation functions of real financial time se-
ries of volatilites. We show the ACF of volatilities for the
DJIA and S&P500 indices, IBM quote and the foreign ex-
change rate between the US dollar and the Yen. The dashed
curve corresponds to the autocorrelation function of a volatil-
ity time series obtained by Monte Carlo simulations of the
microscopic model, with a =  = 2.0 and a total of 2000
nodes. The temporal lag t � t0 is shown in a daily scale for
the real financial data. The graph shows the existence of time
correlations of long range in the volatility of real financial time
series. However, the volatility time series generated by micro-
scopic model clearly fails to show long range memory, due to
the model’s inability of producing volatility clusters. Source
of daily price histories used: Yahoo! Finance.

mechanics of spin 1/2 particle in contact with a heat
bath (Ising model). Consider a single spin 1/2 in contact
with a heat bath at temperature T in the presence of a
magnetic field H. The particle has a state � = ±1 that
depends on the probabilities computed in the framework
of the canonical ensemble.
Let E+ and E� be the energies of the particle when

it has spin orientations +1 and �1, respectively. These
energies arise from the interaction of the intrinsic mag-
netic moment (µ± = ±µ

B

, where µ
B

is the Bohr magne-
ton), corresponding to � = ±1, with the magnetic field
H. Therefore, E± = �µ±H = ⌥µ

B

H = ⌥E, where
E = µ

B

H. The partition function for the particle is:

Z = e��E+ + e��E� = e+�E + e��E (7)

where � = 1/k
B

T y k
B

is Boltzmann’s constant. Thus,
the probability p+ that the spin will have orientation +1
is given by the Boltzmann factor is given by15,16:

p+ =
e��E+

Z
=

e�E

e�E + e��E

=
1

1 + e�2�E
(8)

The probability, p�, that the spin has a state �1 is p� =
1� p+. If there are N spin 1/2 in the presence of a heat
bath, the magnetization, M , of the system is given by :

M =
1

N

NX

i=1

µ
B

�
i

(9)
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where �
i

is the state of the i�th spin. In what follows,
we normalize the magnetic moment: µ

B

⌘ 1. Thus,
M =

P
i

�
i

/N .
The Ising model proper does consider interactions be-

tween spins, which modify the total Hamiltonian of the
system. Interaction energies or exchange energies are
given by the Hamiltonian:

�H(�) =
X

hiji

J
ij

�
i

�
j

+ h
X

i

�
i

(10)

for a spin configuration (�), where h is the external field
in units of the Bohr magneton (h = H/µ

B

) and J
ij

is the
magnitude of the coupling between spins i, j. The sum
in the first term is taken over first neighbors (indicated
by hiji). Here the spins occupy the nodes of a complex
network and the first neighbors of the i- th spin are lo-
cated in nodes which are linked to it. In terms of the
Hamiltonian (10), the expression for the total partition
function in terms of all possible spin configurations; {�};
is given by:

Z =
X

{�}

exp[��H(�)] (11)

Nevertheless, the opinion formation model we shall
present, which is based on spin 1/2 systems, does not
conform strictly to the Ising model for N spins. Instead,
the model is defined as a sort of mean field approxima-
tion. For each spin, �

i

, there is a local field given by
I
i

. I
i

is defined as a contribution of 2 terms: one global
interaction term (due to the average spin in the network)
and a local interaction term (due to the average of neigh-
bouring spins). Thus the state of spin, �

i

, is computed
in terms of the Hamiltonian of a one spin 1/2 particle in
presence of an external magnetic field, which is given by
I
i

, requiring the use of the one particle partition function
given by (7).

V. OPINION FORMATION MODEL OF
BARTOLOZZI, LEINWEBER AND THOMAS

The microscopic opinion formation model that we will
deal with has been proposed by Bartolozzi, Leinweber
and Thomas9. It studies the influences of social inter-
actions with first neighbors (local interactions) and with
the society as a whole (global interaction) in the process
of opinion formation of individuals. This discrete time
model represents individuals as nodes on a scale free net-
work of N nodes. The mechanisms of opinion forma-
tion are assumed to be stochastic heat bath dynamics
with feedback. Each individual is forced to assume one
of two possible states or opinions (spin orientations) at
each time step.
Let �

i

(t) = ±1 represent the two possible states (opin-
ions) of the i-th individual at time t. At each time step,
the opinion of each individual is updated according to
the following probabilistic prescription: �

i

(t + 1) = +1,

with probability p
i

, and �
i

(t+1) = �1, with probability
1�p

i

. These probabilities are calculated in analogy with
the statistical mechanics of spin 1/2 particles in ther-
mal equilibrium with a heat bath, whose temperature is
formally defined as T ⌘ k�1

B

, where k
B

is Boltzmann’s
constant. Therefore, recalling (8), we have:15,16

p
i

(t) =
1

1 + exp[�2I
i

(t) ]
(12)

Let k
i

= N
i

be the number of first neighbors (degree)
of the i -th node. The quantities I

i

(t) are calculated
individually for every agent according to:

I
i

(t) = a⇠(t)
1

N
i

NiX

j=1

�
j

(t) + h
i

⌘
i

(t)r(t) (13)

The quantities ⇠(t) and ⌘
i

(t) are uniformly distributed
random variables in the interval [�1, 1], without any cor-
relation in time or in the topological structure of the
network.
The first term in (13) represents the degree of convic-

tion with which the i -th node responds to the influences
or decisions of his first neighbors. This is clear from the
presence of the local average opinion over the N

i

neigh-
bors of node i. In the first term, ⇠(t) has the same value
for every node in the network.
In the model, the parameter a is constant in time and

is the same for all the network. It represents the strength
or amplitude of the interactions or influences exerted by
the first neighbors of the node in question and, therefore,
it is referred to as the local interaction parameter.
The second term in (13) represents the degree of con-

viction with which the i -th node responds the global ori-
entation or average opinion (r(t)) of the network. This
global orientation of the network (i.e., the “magnetiza-
tion”) is given by:

r(t) =
1

N

NX

i=1

�
i

(t) (14)

In the global interaction term in Eq. 13, h
i

is chosen
individually for the i -th node as a uniformly distributed
random variable in the interval [0,].  is constant in
time and it represents the strength of the influences ex-
erted by the global orientation of the network on the
node; hence, it is referred to as the global interaction
parameter.
Thus, a and  are the fundamental parameters of the

system and define the local and global degrees of influ-
ence, respectively.
As seen before, the microscopic model includes two

sources of uncertainty in the dynamics of decision mak-
ing. First, the opinion formation dynamics are explicitly
stochastic, since the state of each individual changes ac-
cording to a probabilistic rule. Second, the probabilities
themselves are stochastic, since they depend on the ran-
dom variables, ⇠(t), ⌘

i

(t) and h
i

. These multiple sources
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of stochasticity are justified by the authors of the model
as necessary to mimic the intrinsic uncertainties and the
complex human nature of opinion formation in social
backgrounds.
In the context of finance, the nodes may be interpreted

as financial agents and the two possible states for each
agent �

i

= +1[�1] represent intentions of buying or sell-
ing a unit of a certain financial asset, such as a share of
stock.
The interactions and influences between agents, both

locally and globally, are taken from the previously de-
fined model. Thus, a financial agent is subject to the
influence of his immediate environment (first neighbors)
in deciding whether to buy or sell a share of stock. And
he is also subject to the influence of the global orienta-
tion of the market as whole. The tendency to imitate his
neighbors (or not) is a↵ected by the amplitude and sign
of the stochastic coupling constant ⇠(t), which controls
the nature of the local interaction, making it ferromag-
netic or antiferromagnetic.
The law of supply and demand is included in the model

by defining the average opinion of the agents within the
financial network (r(t)) as the return of the asset at time
t. Recalling (2), we will take take the return between two
successive times, in this discrete time microscopic model,
to be:

r(t) =
S(t+ 1)� S(t)

S(t)
(15)

It is in this sense that we say that the law of supply and
demand is included in the model, since the average opin-
ion in the network quantifies the demand for the asset at
any given time, which moves the price of the asset.
Likewise, the normalized returns are now, according to

(3):

r̃(t) =
r(t)� hri

�
=

r � hriphr2i � hri2 (16)

where � is the standard deviation of the time series of
prices and hr

⌧

i is the average return. The volatility of the
financial asset is defined locally in time as the absolute
value of the returns:

ṽ(t) = |r̃(t)| (17)

The general behavior of a typical return distribution
produced by this model is shown in Fig. 3, where it is
clear that the real financial distributions compare quite
well to the ones produced by the model, showing heavy
tails. The distribution can be reasonably fitted by a Stu-
dent’s t- distribution which exhibits power laws in its
tails.

VI. THE EFFECT OF TOPOLOGY

In this section, we explore the e↵ect that the under-
lying topology of the network has on the return distri-
butions of the simulated time series of the model. In

particular, we generate networks of di↵erent topologies
by varying the ‘preferential attachment’ probability in
the Barabasi-Albert model by making it non-linear. The
probability that a new node will attach to node i with
degree k

i

will now be

⇧(i) = k↵
i

/⌃
j

k↵
j

(18)

where ↵ is a tunable parameter that changes the attrac-
tiveness of nodes in the network to new nodes in the
growth process. The original Barabasi-Albert model is
recovered when ↵ = 1.
The e↵ect of this non-linear preferential attachment on

the degree distributions is shown in Fig. (6). Clearly the
degree distribution is very sensitive to the exponent ↵1.
The only case where a power law distribution is present
is for ↵ = 1. For ↵ < 1 (sublinear regime), the degree
distribution progressively loses its tail as ↵ is reduced to
0 and hubs disappear from the network. In this case,
↵ = 0, the new nodes attach randomly to previously
existing nodes and there is no preferential attachment
and the degree distribution is a decreasing exponential
function1: P (k) = (e/m) exp(�k/m) .
For ↵ > 1 (superlinear regime), the degree distribution

develops hubs of ever increasing degree as ↵ increases.
For ↵ > 2, the immense majority of the nodes have very
small degree (equal to m) and are connected to very few
gel nodes, which are hubs that are connect to the rest of
the nodes in the network.
Now we examine the e↵ect of the topology of the net-

work on the response of the opinion formation model de-
fined in the previous section by doing Monte Carlo sim-
ulations of the dynamics of the systems for di↵erent val-
ues of ↵. For each ↵, 100 di↵erent networks with m = 5
were generated and for each of them the dynamics of
the model was simulated for 10000 time steps each with
a =  = 2.5. The return distributions obtained from the
model are shown in Fig. (7).
From this figure, it is clear that system’s dynamics are

sensitive to the underlying topology of the network. The
dependence of the shape of the return distribution on the
topology is striking.
In the superlinear regime, the spread of the return

distribution increases with increasing ↵, which seems to
suggest that the presence of these very few but extremely
highly connected individuals in the network is highly con-
ducive to the presence of large scale synchronizations in
the orientations of all the individuals in the network. In-
deed, this can be seen in Fig. (8), where we plot the
variance of the return distribution for di↵erent values of
↵.
In the sublinear regime, we see that there is little

change in the variance of the distribution of returns. In-
deed, the return distributions for ↵ = 0.25 and ↵ = 1
are qualitatively and quantitatively very similar to one
another. So, at least in this range of values, the system’s
dynamics seems to be indi↵erent to the underlying net-
work structure. However, there seems to be an important
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Figure 6: Degree distributions for di↵erent values of ↵. The
red histograms correspond to the scale-free networks of the
original Barabasi-Albert model ↵ = 1 and serve as a reference
to compare with networks that exhibit non-linear preferential
attachment (shown in black). For each ↵, 100 networks were
generated with 20000 nodes each. The blue curve is an expo-
nential distribution (theoretically predicted).
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Figure 7: Return distributions for variations in the preferen-
tial attachment exponent (↵).

qualitative and quantitative change in the return distri-
bution in the case when ↵ = 0, as can be seen from
Fig. (7).

We define the kurtosis of the distribution of returns
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Figure 8: Variance of return distributions for variations in the
preferential attachment exponent (↵).
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K
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⌧

i
hr2

⌧

i2 (19)

This is the fourth cumulant (also known as the Binder
cumulant) of the distribution and it measures the weights
of its tails. A Gaussian distribution has no heavy tails
and its kurtosis is equal to 3. Distributions with heavier
tails have greater kurtosis.
In Fig. (9)) we can see the kurtosis of the distribution

plotted for various values of alpha. Again, we see that the
return distribution is insensitive in most of the sublinear
regime (↵ = 0.25 and ↵ = 1). In the superlinear regime,
the kurtosis drops to the level of a Gaussian, even though
the variance increases. So, even though the probability
of high fluctuations is much bigger than in the linear
and sublinear regime, the tails decay exponentially fast.
Consistent with what was said before, the ↵ = 0 case
seems to be very strikingly di↵erent than the rest of the
sublinear regime as far as the kurtosis is concerned.
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Figure 9: Kurtosis of return distributions for variations in
the preferential attachment exponent (↵). The red line corre-
sponds to the evalue of the kurtosis of a Gaussian distribution.
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These features can be appreciated if we plot the his-
togram of the absolute values of the normalized returns,
shown in Fig. (10).
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Figure 10: Distribution of absolute values of normalized re-
turns for di↵erent values of (↵). It is clear the distributions
in the sublinear regime ↵ = 0.25 to ↵ = 1 are all very much
insensitive to ↵. The ↵ = 0, however, is decidedly di↵erent.
The superlinear regime shows distributions which resemble a
Gaussian distribution. A Normal distribution is shown, for
reference in dashed line.

VII. THE WEIGHTING FACTOR

The fields of behavioral finance and social psychol-
ogy use the term herding behavior to describe tenden-
cies of agents to imitate actions or decisions taken by
other agents. This social phenomenon has been identi-
fied as one of the important factors that intervene in fi-
nancial dynamics to explain the existence of bubbles and
crashes in financial markets14,17,18. Individual investors
are prone to buy stock for the simple reason of observing
rising prices and noting that other investors that posses
such assets are obtaining big returns. For these investors,
it is not important that these price increments are jus-
tified or not by fundamental information. In fact, this
herding behavior is not solely observed in the behaviors
of individual non-professional investors.
It is also present in the world of professional investors,

where Hedge-Fund managers are prone to imitate other
fund managers and apply the same investment strategies
in the same stock. According to Hong, Kubick and Stein,
mutual fund managers are more inclined to invest in cer-
tain portfolios if other mutual fund managers, located
in a certain geographic neighborhood, maintain similar
portfolios14,18. These behaviors are consistent with an

epidemic model in which investors spread or disseminate
information regarding stocks and investment strategies
in their close environment, often by spoken word.

According to studies made by Hong, Kubik and Stein,
the most sociable individuals (those who are more prone
to interaction with their neighbors and friends), are much
more prone to invest in stock markets and maintain in-
vestment portfolios than non-sociable individuals. Stud-
ies by Shiller and Pound, regarding the behavior of in-
dividual investors and their stock-picking strategies, re-
veal that personal contacts such as friendships and family
members play an important role in the decision making
of such individuals. Recommendations of these personal
contacts are often su�cient to motivate investors to im-
itate their investment strategies.

In addition to the e↵ects of first-neighbors within
the social networks, behavioral finance states that non-
professional investors (whose number is rapidly increas-
ing due to the accessibility of the Internet) are prone to
the e↵ects of certain specially influential agents in market
dynamics, such as important personalities of investment
institutions, known experts of technical and fundamental
analysis, written or audiovisual media in their spreading
of market news and of investment recommendations to
the general public of investors14,17,18.

These special agents possess great influence potential
over numerous masses or groups of investors. The exis-
tence of these specially influential market agents provides
the opportunity of introducing modifications or variants
to the microscopic model (previously defined in section
V) that take into account the inherent asymmetry of
agents regarding their powers of influence. An agent with
a lower capacity of influence must necessarily be taken
into account with a di↵erent statistical weight than that
of another agent of less influential power.

The specific way of quantifying these asymmetries of
influence in the model of stochastic dynamics of opinion
formation can be formalised by introducing, in the inter-
action fields, weighting factors based on the degrees of
the nodes. We will define the weighting factors in such
a way that greater importance is given to the opinions
or orientations of those neighbors that posses greater de-
grees. The weighting factor of the opinion of the j-th
agent, over the i-th, is defined as:

!
ij

(�) =
k�
jP

Ni

j

0 k�
j

0

(20)

where k
i

is the degree of connectivity of the i-th node.
The summation is taken over the N

i

neighbors (links)
of the i-th agent and the ponderation exponent (�) is a
real positive number. In this variant of the original mi-
croscopic model, the interaction fields of financial agents
are no longer the ones given by equation (13), which takes
assumes uniform weights for the interaction with all the
first neighbors of a given agent. Instead, we will take the
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interaction fields to be:

I
i

(t) = a⇠(t)
NiX

j=1

!
ij

(�)�
j

(t) + h
i

⌘
i

(t)r(t) (21)

where the summations are taken over the first neigh-
bors of the i-th agent. Do note that the distribution
of weights for the i-th node is locally normalized, so thatP

Ni

j=1 !ij

= 1. Consequently, for � > 0, the influence of
high degree neighbors is greater than that of neighbors
of low degree.
This is the modification that we introduce to the orig-

inal model (which is recovered for � = 0).
We study the dependence of the return and volatility

distributions with respect to the ponderation exponent.
Specifically, we study the dependence of the exponent of
the tails of the return distributions and the kurtosis and
variance of the return distributions with respect to �.
For each value of �, we performed 100 Monte Carlo

simulations of 10000 time steps each, which produced 100
di↵erent time series for returns, volatilities and prices.
Each of the individual simulations utilized a di↵erent
Bárabasi-Albert network with a total of N = 2000 nodes.
The return and volatility histograms were constructed by
taking into account all of the individual time series that
were generated by the simulations for a same group of
parameters. Since the scale-free network of each individ-
ual simulation is unique, it is reasonable to interpret each
return and volatility histogram as the result of a unique
financial system, whose network topology (with its re-
spective adjacency matrix of connections between agents)
is variable in time. The Barabási-Albert networks were
constructed by choosing N = 2000 m = m0 = 5. The
model’s parameters were fixed by choosing a =  = 2.1.
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Figure 11: Return distributions for variations in the ponder-
ation exponent (�).

The return distributions of the simulations are pre-
sented in Fig. 11. It is visually clear that the dispersion
of the distributions increases as � increases. Thus, the
introduction of preferential opinions within the financial
network in terms of the degrees of the agents has a clear

e↵ect on the stochastic dynamics. This qualitative ob-
servation is quantified by the variance of the distribu-
tions, presented in Fig. 12, which increases correspond-
ingly with the increments of �.
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Figure 12: Variance of return distributions for variations in
the ponderation exponent (�).

The weighting of opinions of agents within the network
can be interpreted, in the context of systems of spin 1/2
particles, as the existence of di↵erent magnetic dipole
moments for each particle. Awarding greater importance
and influence to those nodes that have greater degree in-
creases the probability of large scale synchronizations of
opinions within the network and, consequently, increases
the probability of occurrence of extreme events and the
volatility of the time series of returns. This is a clear
manifestation of leadership behavior, since the existence
of special agents of great influence facilitates the ten-
dencies of imitation of their behavior by their neighbors,
leading to collective states large scale synchronization
(i.e., big fluctuations).

If the returns are normalized according to equation (3),
so that their time series exhibit zero mean and unit vari-
ance, their corresponding distributions show deviations
with respect to a Student’s t distribution in their tails,
as can be seen in Fig. 13. These deviations in the tails, in
the histograms for � 6= 0, are better quantified by mea-
suring their respective kurtosis. It is easy to see that the
kurtosis of the return distributions diminish with corre-
sponding increments of the ponderation exponent, as can
be seen in Fig. 14.

Do note that, although there is an important reduc-
tion of the kurtosis with increasing �, the correspond-
ing return distributions do not show kurtosis near 3 and,
consequently, they still remain in the leptokurtic regime.
Recall that a Gaussian distribution has a kurtosis of 3;
hence, the distributions obtained from the numerical sim-
ulations of the stochastic dynamics show heavy tails.
This is understood visually in Fig. 13, where a normal
distribution of zero mean and unit variance is shown.
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Figure 13: Distributions of normalized returns for varia-
tions in the ponderation exponent (�). As a reference, the
dashed line represents a Gaussian distribution of unit variance
and zero mean, corresponding to the prediction of Geometric
Brownian Motion .
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Figure 14: Kurtosis of return distributions for variations in
the ponderation exponent (�). The red line shows the value
of the kurtosis of a normal distribution (corresponding to the
standard model of finance).

VIII. MEMORY AND VOLATILITY
CLUSTERING

An aspect that we have not yet discussed about the
model is the behavior of the autocorrelation functions
of the time series of returns and the time series of the
volatility. We shall now address this issue by looking
at the autocorrelation functions of returns and volatili-
ties, as defined in equations (5) and (6). It is clear from
Fig. (4) that the typical time series produced by the orig-
inal model produces returns that are not correlated in
time, matching the behavior of empirical data and in ac-
cordance with the E�cient Market Hypothesis. This is a
good feature of the model.
However, it is also clear from Fig. (5), that the volatil-

ity time series produced typically by the model do not

match the long memory phenomena associated with
volatility clustering that real financial data clearly show.
Indeed, even though the model produces uncorrelated re-
turns and long tails in the distribution of returns, it con-
sistently fails to produce time series that exhibit volatil-
ity clustering and, therefore, a non-vanishing correlation
time for the volatility.
We shall now introduce a change in the model with the

purpose of having it produce volatility clusters. Several
di↵erent attempts and ideas were implemented with this
objective in mind. Of all the attempts made at changing
the dynamics of the model, the only one that was capable
of achieving volatility clustering consisted in providing
each agent in the network with a memory. This memory
allows them to remember the last global market changes
(returns) within a certain finite time window �T in the
immediate past (i.e., it allows the agents to remember the
last �T returns of the asset in question) and it enters the
model through the ponderation exponent �, previously
defined in eqs. (20) and (21). Specifically, � now becomes
a time dependent function, the dynamics of which are
given by:

�(t) = �
max

1

�T

�TX

t̃=1

|r(t� t̃)| (22)

Equations (20) and (21) still define the dynamics of the
system, but with a time dependent �. �

max

is a tunable
constant parameter.
As is clear from this new change to the dynamics of

the model, the weights of the influences of neighboring
agents will be functions not only of their degrees, but also
of time. Therefore, the leaderships of the agents change
in time in response to what happens in the market in the
recent history. Thus, in a period of extreme fluctuations
(i.e, a ‘crisis’ or a ‘bubble’), the leadership capabilities of
the nodes with highest degree will be much greater than
in calm periods, where influence capabilities are more
likely to be democratically distributed.
The e↵ects of these changes to the dynamics are now

shown. Fig. (15) shows a time series of returns generated
with this new model, compared to those obtained in the
original model. It is clear that the introduction of this
time dependence in � is capable of producing periods of
volatility clusters, as claimed before.
Let us see how the system responds to di↵erent val-

ues of �
max

for a time window of a fixed size. Fig. (16)
shows that, as expected, the autocorrelation function of
the volatility now exhibits memory. As is reasonable
to expect, the bigger the value of �

max

, the more pro-
nounced the e↵ect of the clusters. In the limit �

max

= 0,
we recover the memory absent model of the previous sec-
tions. As seen from the graphs, one can achieve typical
correlation times of the order of
Now, if the �

max

remains fixed and we change the size
of the time window �T , we see the intuitively reason-
able e↵ect that the autocorrelation time of the system
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Figure 15: Time series of returns generated by original and
modified model. The two graphs show time series of nor-
malized returns generated by Monte Carlo simulations of the
model with a 2000 node network, and a =  = 3. The up-
per graph shows a time series that corresponds to the original
model where opinions are not weighted. Clearly, large events
of up to 10 standard deviations are observed, a clear indica-
tion of a heavy tailed return distribution, but these volatile
instances are not clustered. The lower graph shows a time
series that corresponds to the modified model where opin-
ions are weighted and variable in time, with �

max

= 5 and
�T = 20. Clearly, large fluctuations are still present, but
they now appear clustered.
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Figure 16: Autocorrelation functions of volatility time series
generated by Monte Carlo simulations. Each curve is the ACF
of the volatility time series produced by a particular simula-
tion of a 2000 node system, with a =  = 4 and a memory
time window �T = 10 for di↵erent values of �

max

. When
�
max

= 0, we recover the original model, where opinions are
not weighted. It is clear that, as expected, a non-vanishing
ponderation exponent �

max

produces memory in the volatility
time series of the model.

increases, owing to a more pronounced of e↵ect of volatil-
ity clustering. This can be seen in Fig. (17).
A reasonable idea for further exploration is to change

the simple moving average approach used here and trying
other kinds of dependencies on the past, giving more im-
portance to the most recent events than to older events.
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Figure 17: Autocorrelation functions of volatility time series
generated by Monte Carlo simulations. Each curve is the
ACF of the volatility time series produced by a particular
simulation of a 2000 node system, with a =  = 4 and �

max

=
5, for di↵erent memory time windows �T . Intuitively, as the
agents memory capabilities increase, so does the memory of
the volatility.

This possible exploration of di↵erent time dependencies
on the past history of the market is also necessary for
the purpose of finding the one that is most appropri-
ate in retaining the power law tails of the distribution
of returns whilst conserving volatility clustering. This is
important since the particular time series generated thus
far, with the type of explicit time dependence on the past
explained before, exhibit volatility clustering and return
distributions with heavy tails, but said tails do not meet
the requirement of having the particular form of a power
law.
In any case, it is clear that providing each individual

agent in the market (society) with an individual finite
memory of the macroscopic state of a↵airs of the mar-
ket (price history) is su�cient to produce memory in the
volatility time series of the system by means of the pres-
ence volatility clusters.

IX. CONCLUDING REMARKS

In this project we have explored the e↵ects of opinion
weighting and network topology on the stochastic opinion
formation model proposed by Bartolozzi, Leinweber and
Thomas. The stochastic dynamics that rule the model’s
behaviour are sensible to the existence of asymmetries
in the influences of agents, caused by weighting factors
that a↵ect the local fields of interactions by introducing
di↵erences in the powers of influence of each individual
agent. Such weighting factors are defined in terms of
the degrees of the nodes within the networks in such a
way that nodes of high degree have greater influence than
those of low degree.
As the value of the ponderation exponent (�) increases,

the variance of the time series of returns increases corre-
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spondingly, suggesting that the existence of nodes of high
influence serve the role of leaders, due to their abilities of
increasing the frequency of occurrence of extreme events,
associated with large scale synchronizations of opinions
in the social network.
Allowing the agents to have memory of the market be-

havior within a certain time window is a mechanism that
enables volatility clustering to appear in the time series
of the volatilities, while retaining a lack of correlations
in the returns. This has worked by not only allowing
asymmetries in influences of agents, but also letting these

asymmetries vary in time, becoming more relevant and
pronounced in ‘turbulent’ phases.

The dynamics are sensitive to network topology as
well. In the superlinear regime of pref. attachment, the
variance increases, but the kurtosis decreases and the
long tails disappear. In the sublinear regime, the dis-
tribution of returns remains insensitive over a very wide
range of values of ↵. In the absence of preferential attach-
ment, the distribution of returns changes very strongly
and this merits further investigation.
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