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This paper presents an overview of a study of connections between stocks in
a simple economic model, under different conditions and changing parameters.
The fluctuating psychological factors influencing stock prices are taken into
account in a novel way, by assigning certain rules for distributing stock prices.

Introduction
It is difficult to generate a faithful model of
the stock market that is easy to simulate, due
to the dependence of stock prices on a huge
number of variable factors. There may be sev-
eral approaches to the problem, and there have
been studies that treat investors as percolation
clusters to find the statistics of price variations
[2]. In general, models of the stock market tend
to be highly complex, and there is a need to
establish a model that captures the essential be-
havior in a minimalistic form, while reducing the
explicit inclusion of the microscopic details that
make these systems so chaotic. Constructing
such a model in order to examine the dynamics
of a small system of stocks is the primary aim
of the present discussion. The behavior of the
system can be analyzed to study the effects
of inter-stock correlations, by establishing an
underlying directional network of pushes and
pulls between the stocks, which influences their
interactions in the model. The ultimate goal
is to carry out an exhaustive analysis of real
world data from the stock market to test the
efficacy of this skeletal model to predict market
instabilities.

Motivation for the Model
The details of the model and simulation will
be introduced in the next section, but the idea
that the market follows some sort of self organi-
zation is pertinent to the discussion. It seems
worthwhile to explore the connection between
self organized criticality as observed in sandpile
models and the OFC model for earthquakes [1]
and stock market cascades. One can think of
the system as being composed of a number of
nodes, or clusters of nodes, that each represent a

stock. Within this system of stocks, there exist
external and internal stimuli that tend to push
prices of individual stocks up or down based
on the response of investors to these stimuli.
Modeling the changes in prices while accounting
for the effects of these stimuli can be done by
introducing a blanket parameter known as the
degree of undesirability (DOU) of a particular
stock. This parameter essentially includes all
sorts of external stimuli that may negatively
impact the demand for a certain stock in the
market. There are a number of events such as
natural disasters, political instability, economic
crises, social movements, or any other conceiv-
able eventuality, local or global, that can change
the trading inclinations of buyers and sellers.
The implicit assumption is that these stimuli
are inextricably tied up with the behavior of
traders, and their effects may be re-interpreted
in terms of psychological factors underpinning
the rise and fall of stock prices.

Relevance of the DOU
Since the 1960s, Eugene Fama’s Efficient Mar-
ket Hypothesis (EMH) has been influential in
studies of the stock market. It asserts that
financial markets are ‘informationally efficient’.
In consequence of this, one cannot consistently
achieve returns in excess of average market
returns on a risk-adjusted basis, given the
information available at the time the investment
is made. The EMH assumes that psychological
behaviors ‘cancel out’overall, which might bring
into question the requirement of a parameter
like the DOU which accounts for psychological
biases. However, there has been significant
evidence that these biases may result in statis-
tically anomalous stock price movements. For
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instance, stocks with low price to earnings (and
similarly, low price to cash-flow or book value)
outperform other stocks [5] [4]. Alternative
theories have proposed that cognitive biases
cause these inefficiencies, leading investors to
purchase overpriced growth stocks rather than
value stocks [3]. Psychological research has
demonstrated that people are predisposed to
seeing patterns, and often will perceive a pattern
in what is, in fact, just noise. In the present
context this means that a succession of good
news items about a company may lead investors
to overreact positively, which would correspond
to a decrease in the stock DOU (unjustifiably
driving the price up).
In normal times the market behaves like a
game of roulette; the probabilities are known
and largely independent of the investment
decisions of the different players. In times
of market stress, however, the game becomes
more like poker, with herding behavior and
group dynamics taking over. The players now
must give heavy weight to the psychology of
other investors and how they are likely to react
psychologically. It seems, therefore, that an
inclusion of the effects of psychological factors
in the form of the DOUs is justified.

Bi-Directional Network of Stocks
Having characterized each stock using the
DOUs, the next task is to establish the mean-
ing of the directional network connecting the
stocks/nodes. The nodes are connected to
each other with links of variable strength,
which signify inter-connectedness based on their
specific functionalities. This network dictates
how changes in the DOU of one of the stocks
affects others connected with it, depending
on the weight and the sign of the connecting
link. Therefore, we are able to account for
the fact that two stocks can be correlated
positively (with an increase(decrease) in the
DOU for one stock causing a corresponding
increase(decrease)in the DOU for the second
stock) or negatively (with an increase(decrease)
in the DOU for one stock causing a correspond-
ing decrease(increase)in the DOU for the second
stock).

Model Setup
Our model is roughly inspired from the Olami-
Feder-Christensen (OFC) model for earthquakes
[1]. We begin with a 1D lattice of n stocks, each
stock i having a certain DOU value Di assigned
to it (analogous to stresses on earthquake sites).
Simultaneously, there is a small residual value
of DOUs Dres

i assigned to every stock, while the
threshold value Dmax

i of each stock is set to 1.
There is also another parameter which governs
stress/DOU transfer, the directional network C
set up connecting each stock i to every other
stock j with a Cij value between −1 and 1.

FIG. 1: Stock network heat map

The idea is that any stock that goes beyond
this value can be thought of as having crashed
(or equivalently, being supercritical), and must
relieve its DOUs to the other stocks. This can be
thought of as a fully connected long range model,
since each supercritical stock relieves its DOUs
to every other stock, based on the directional
network (C); e.g., if a stock i becomes supercrit-
ical, it will transfer some fraction (α) of its DOU
to the jth stock in the following way:

Dj = Dj + Cijα(Di−Dres
i ); i 6= j = 1 . . . n

(1)
and then be set to its residual value Di = Dres

i .
α is usually fixed at the beginning of the sim-
ulation, and physically it represents the DOU
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losses to the system occurring during transfers.
Having assigned the initial D and C values,
the first market cycle (m = 1) can begin. A
small random noise is added in the beginning to
each Di. This might represent general temporal
fluctuations. The stock with the maximum
DOU is then found, and if subcritical even after
adding noise, is taken to criticality (i.e., set
equal to 1) (referring to an external undesirable
event thaat strongly affected a single susceptible
stock). Its excess DOU value is then dissipated
to every other stock, based on equation (1).
This DOU release to the other stocks might
in turn cause some more stocks to fail, which
would then release their excess DOUs to all
stocks in the same way. So, this cascade effect
continues until every stock becomes subcritical
again. At this point, a single market cycle has
concluded, and the next one can begin with the
addition of noise. Each market cycle represents
the rearrangement of a supercritical system
back to a pseudo-equilibrium state, where the
stocks are relatively stable. The simulation is
continued for m market cycles.
Note that since some Cij values are negative too,
the Dis might go lower than the residual values.
In that case, those DOUs are set equal to Dres

i s.
In this way, the DOUs are always maintained be-
tween 0.25 and 1 at the end of each market cycle.

Simulation Details
Fixed parameters:
α = 0.9
Dmax

i = 1; Dres
i = 0.25± 0.05

Cij = (−1,−1]

Changing parameters:
Di = [Dres

i , Dmax
i ]

(drawn from a uniform distribution at step 0)

Di ≥ Dres
i in the subsequent steps

Number of Market Cycles (m)
= 104, 5× 104, 105, 106

Number of Stocks (n) = 64, 100

(a)

(b)

FIG. 2: System of 64 stocks

Analysis
We ran our simulations on market systems of
various sizes (32, 64, 100, 200), and the graphs
obtained for market sizes 64 and 100 will be dis-
cussed in this section. It seems to be of interest
to plot a frequency size distribution, as well as
a rank size distribution for these markets, in or-
der to explore universality and scaling properties
and investigate the effect of inter-stock correla-
tions on rank size distribution. We will also try
to examine the dynamics of positively and nega-
tively correlated stocks through varying numbers
of market cycles.
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Frequency-Size Plots
The first point of interest is to extract some kind
of a Zipf law from the problem. To this end, the
number of stock crashes per market cycle were
counted, irrespective of the stock label (each
stock can fail multiple times during the course
of a single market cycle). Therefore, for a cer-
tain number of market cycles, information about
the number of stock crashes per market cycle
was recorded and plotted versus the frequency
of occurrence of that particular crash event for
market size 64 and 100.
Figure 2(a) plots the frequency size distribution
with simulations carried out for 104, 5×104, 105

market cycles. The three curves have been
rescaled (division by number of market cycles m)
in 2(b), and collapse to a single curve indicating
universality. Figure 3(a,b) plots the frequency
size distribution on log-log axes. We observe a
bimodality in these plots, with the frequencies
peaking at two distinct crash events.

(a)

(b)

FIG. 3: System of 64 stocks

The frequency size distribution for 100 stocks
is shown in Figures (4) and (5). These plots ex-
hibit behavior that is qualitatively similar to the
64 stock system. However, we note that the bi-
modality is less pronounced for this larger mar-
ket. This indicates the possibility of a change in
behavior of the market as we cross over from the
small market regime to the large market regime.

(a)

(b)

FIG. 4: System of 100 stocks

The bimodality of the frequency size distribu-
tion also seems to be dependent on the number
of market cycles m. As m increases, a plateau ef-
fect is observed, with a large number of different
crash events becoming more and more likely.
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(a)

(b)

FIG. 5: System of 100 stocks

Rank Size Plots
The rank size distribution for market sizes 64
and 100 are shown in Figures (6) and (7). We do
not observe a power law behavior for the entire
distribution. The curve transitions from a slowly
changing region to a regime of sharp decrease.
The tail of the distribution appears to exhibit a
power law, with a similar slope for each of the
curves.

(a)

(b)

FIG. 6: System of 64 stocks
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Discussion of bimodality
The frequency size distribution for markets com-
prising 32, 64, 100 and 200 stocks have been
plotted in Figure (8). The bimodality of crash
events in these distributions becomes progres-
sively weaker as the market size increases, and
this weakening is monotonic from the 32 stock
system to the 200 stock system.

(a)

(b)

FIG. 7: System of 100 stocks

This indicates that larger systems do not ex-
hibit a preference for a few crash events, once
again a plateau is seen with equal likelihood
for many different crash events. On the other
hand, small systems prefer certain distinct crash
events, which have been labeled in the figure.
It would be interesting to determine the market
size cutoff beyond which the bimodality com-
pletely disappears. In some sense, this can be
interpreted as a phase transition for the crash
events.

FIG. 8: Bimodality
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Scope for Further Study
We have considered a fully connected directional
network between stocks, which makes it difficult
to quantify the effects of a positive or negative
correlation between 2 stocks on the evolution of
the DOUs of either stock. Figure (9) shows the
time evolution of DOUs for pairs of strongly con-
nected stocks, and was plotted to detect pat-
terns of pushes or pulls based on whether the
connection is positive or negative. However, the
complexity of the network makes it impossible
to isolate the effects of these correlations, and
the graphs seem very chaotic. A sparse direc-
tional network needs to be considered, for such
an analysis to yield sensible results.
The following are some modifications to our
model that may be considered for further study

1. Consider a sparse correlation matrix to iso-
late the effects of single stock correlations.

2. Examine the effects of generating the cor-
relation matrix from different distributions
on the rank size graph.

3. Quantify the relationship between correla-
tions and stock crashes by establishing a
suitable parameter.

4. Generate labels for stocks by drawing the
corresponding DOUs from different distri-
butions.

(a) Strongly positive correlation

(b) Strongly negative correlation

FIG. 9: Time evolution of DOUs for stock pairs
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