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Abstract

We investigate multifractal properties of daily price changes in currency rates using
the multifractal detrended fluctuation analysis (MF-DFA). We analyze managed and
independent floating currency rates in eight countries, and determine the changes
in multifractal spectrum when transitioning between the two regimes. We find that
after the transition from managed to independent float regime the changes in mul-
tifractal spectrum (position of maximum and width) indicate an increase in market
e�ciency. The observed changes are more pronounced for developed countries that
have a well established trading market. After shu✏ing the series, we find that the
multifractality is due to both probability density function and long term correla-
tions for managed float regime, while for independent float regime multifractality is
in most cases caused by broad probability density function.
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1 Introduction

The foreign exchange market (FX) is the worlds largest and most liquid finan-
cial market. Its huge trading volume, high degree of liquidity, diversification
of traders, geographical dispersion, amongst other factors make it uniquely
challenging for empirical analysis, forecasting, and model development. The
exchange rate regimes followed by governments across the world are crucial de-
terminants of the foreign-exchange market. After World War II, governments
adopted the Bretton Woods system where currencies were pegged against
the U.S. dollar, which was in turn pegged to gold. Bretton Woods system
helped countries avoid inflation and establish credibility of their currencies,
but also removed their ability to conduct an independent monetary policy.
Consequently, in 1971 the U.S. dollar switched to a floating currency, a move
many major governments followed. Floating currencies are made up of two
exchange-rate regimes: managed float and independent float. Exchange rates
under the independent float regime fluctuate according to the foreign-exchange
market, whereas rates under the managed float regime, (also known as dirty
float), fluctuate on a daily basis and are influenced by government interven-
tion. Transitions from managed to independent float regimes depend on vari-
ous economic, political, and market factors. This brings the question how rate
transitions a↵ect market e�ciency and economic welfare. As an extremely
complex system, the FX market represents an ideal polygon for testing the
usefulness of various methods including fractals, multifractals, and chaos the-
ory, as tools to quantify market dynamics [1–7]. Multifractal properties as a
measure of e�ciency of financial markets were extensively studied [8–11], how-
ever less is known about e�ciency of di↵erent exchange rate regimes [7,12].
In this work we apply the Multifractal Detrended Fluctuation Analysis (MF-
DFA) [13] to compare the properties of the Australian Dollar (AUD), Brazilian
Real (BRL), Malaysian Ringgit (MYR), New Zealand Dollar (NZD), South
Korean Won (KRW), Sweden Krona (SEK), Taiwanese New Dollar (TWD),
and Thai Baht (THB) per US Dollar (USD) exchange rate before and after the
transition from managed to independent float regimes. We analyze logarith-
mic returns of daily closing exchange rates and find parameters that describe
multifractal spectrum: position of maximum ↵0, width of the spectrum W,
and skew parameter r. We also apply the MF-DFA analysis on the shu✏ed
series to identify the e↵ects of long term correlations and probability density
function. This paper is organized as follows: We first describe the data and
present the methodology, then present the results of our analysis, and finally
we draw conclusions.

2



2 Methodology

Multifractal time series are characterized by a hierarchy of scaling exponents
corresponding to di↵erent scaling behavior of many interwoven subsets of a
series [13]. For non-stationary processes several methods have been proposed,
such as the wavelet transform modulus maxima (WTMM) method [14], multi-
fractal detrended fluctuation analysis (MF-DFA) [13], and multifractal moving
average analysis [15]. In this work we use the MF-DFA method which has been
successfully applied in various phenomena such as physiological signals [16],
hydrological processes [17], geophysical data [18], forest fires records [19] and
financial time series [8,9,11].

The MF-DFA method proceeds as follows [13]: (i) Integrate the original tem-
poral series x(i), i = 1, . . . , N to produce y(k) =

P
k

i=1 [x(i)� hxi], where hxi
is the mean value of x(i), k = 1, . . . , N . (ii) Divide the integrated series y(k)
into N

n

= int(N/n) non-overlapping segments of length n. Calculate the lo-
cal trend y

i

(k) from a mth order polynomial regression in each segment and
subtract it from y(k) to detrend the integrated series. (iii) Calculate the de-
trended variance of each segment (by subtracting the local trend) and average
over all segments to obtain the qth order fluctuation function:
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where q can take any real value except zero. (iv) Repeat this calculation to
find the fluctuation function F

q

(n) for many di↵erent box sizes n. If long-
term correlations are present, F

q

(n) should increase with n as a power law
F

q

(n) ⇠ n

h(q), where the scaling exponent h(q) (also called generalized Hurst
exponent) is calculated as the slope of the linear regression of logF

q

(n) versus
log n.

The generalized Hurst exponent is a decreasing function of q for multifractal
time series and constant for monofractal processes. For positive (negative)
values of q, exponent h(q) describes the scaling of large (small) fluctuations
[13]. The exponent relates to the classical multifractal exponent defined by the
standard partition multifractal formalism as ⌧(q) = qh(q) � 1, where ⌧(q) is
a linear function for monofractal signals and a nonlinear one for multifractal
signals [13]. Multifractal series are also described by the singularity spectrum
f(↵) through the Legendre transform

↵(q) = d⌧(q)/dq, f(↵) = q↵� ⌧(q) (2)

where f(↵) denotes the fractal dimension of the series subset characterized
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by the Holder exponent ↵. For monofractal signals, the singularity spectrum
produces a single point in the f(↵) plane, whereas multifractal processes yield
a humped function [13].

Multifractality in a time series may be caused by: i) a broad probability density
function for the values of the time series; and ii) di↵erent long-term correlations
for small and large fluctuations. To determine the type of multifractality one
should analyze the corresponding randomly shu✏ed series. The shu✏ed series
from multifractals of type ii) exhibit simple random behavior with h(q) = 0.5
and f(↵) reduced to a single point, while for multifractals of type i) the origi-
nal h(q) dependence (and the width of multifractal spectrum) is not changed.
If the shu✏ed series demonstrates weaker multifractality than the original one,
both kinds of multifractality are present [13]. In order to measure the complex-
ity of the series, we fit the singularity spectra to a fourth degree polynomial

f(↵) = A+B (↵� ↵0) + C (↵� ↵0)
2 +D (↵� ↵0)

3 + E (↵� ↵0)
4 (3)

and calculate the multifractal spectrum parameters: position of maximum ↵0;
width of the spectrum W = ↵

max

� ↵

min

, obtained from extrapolating the
fitted curve to zero; and skew parameter r = (↵

max

� ↵0) / (↵0 � ↵

min

) where
r = 1 for symmetric shapes, r > 1 for right-skewed shapes, and r < 1 for
left-skewed shapes. Roughly speaking, a small value of ↵0 suggests the under-
lying process is more regular in appearance. The width of the spectrum W

measures the degree of multifractality in the series (the wider the range of
fractal exponents, the richer the structure of the series). The skew parameter
r determines which fractal exponents are dominant: fractal exponents that
describe the scaling of small fluctuations for right-skewed spectrum, or fractal
exponents that describe the scaling of large fluctuations for left-skewed spec-
trum. These parameters lead to a method of measuring the complexity of the
series: a signal with a high value of ↵0, a wide range W of fractal exponents,
and a right-skewed shape r > 1 may be considered more complex than one
with opposite characteristics [20].

3 Data and analysis

We analyze the currency rates during the managed float and independent
float regimes of 8 di↵erent countries: Australia, Brazil, Malaysia, New Zealand,
South Korea, Sweden, Taiwan, and Thailand (http://finance.yahoo.com/). For
each currency regime we calculate the logarithmic returns R

i

(t) = lnP
i

(t +
�t) � lnP

i

(t), where P

i

(t) is the daily closing currency rate at time t and i

represents the index of the time series. The time series for the currency rate
returns of the countries listed above are shown in Fig. 1.
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Fig. 1. Currency returns R for managed and independent float regimes of Australia
for the period.

We apply the MF-DFA method to the logarithmic returns of several countries,
fitting the local trends with a second degree polynomial m = 2. We also
perform a fourth order polynomial regression on the singularity spectra f(↵) to
determine the position of maximum ↵0 and the zeroes of the polynomial ↵

max

and ↵

min

. Then we calculate the complexity parameters ↵0,W , r and use them
to determine the multifractal properties of the time series. The multifractal
spectra of all currency rates are shown in Fig. 2.

The measures of complexity (↵0,W, r) are shown in Tab. 1. It is seen from
Figure 2 and Table 1 that after the transitions from managed to indepen-
dent float regime: (i) The position of maximum of f(↵) spectrum approaches
an uncorrelated regime ↵0 ! 0.5, an indicator of increased market e�ciency
where ↵0 approximates the overall Hurst exponent [20]; the exception is Thai-
land currency for which the value of ↵0 shifts slightly away from 0.5. For all
countries, managed floating regime is characterized by week persistence cor-
relations, except for Brazil where anti persistent correlations are observed.
(ii) The width W of the multifractal spectra shortens, which suggests lower
complexity for independent float periods (and lower market risk) with the ex-
ception of Malaysia for which W increases, and South Korea which does not
show significant change inW . (iii) The values of asymmetry parameter r reveal
that for Australia, Brazil, New Zealand and Thailand multifractality is more
influenced by the scaling of large fluctuations (left skewed spectrum) for both
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Fig. 2. Multifractal spectrum f(↵) for currency returns R of the original and shu✏ed
series. The dotted lines represent regression curves to the fourth order polynomial
form.

exchange rate regimes while for Taiwan small fluctuations contribute more to
multifractality (right skewed spectrum) in both periods. For Malaysia (South
Korea) the contribution from large (small) fluctuations in managed floating
is followed by switching to the contribution of small (large) fluctuations in
independent floating. For Sweden managed floating regime is characterized by
the contribution of small fluctuations (right skewed spectrum), followed by
equal contribution of both large and small fluctuations (symmetric spectrum)
after the transition of currency regime. (iv) It seems that developed countries
(Australia, New Zealand, Sweden) experience larger shifts in ↵0 and larger
decrease in W than other countries considered having the emerging markets
likely due to larger trading markets and hence greater economic benefits.

We also shu✏e the time series of currency rate changes and then apply the
MF-DFA analysis for all countries, to determine the type of multifractality of
the series. The shu✏ing procedure performed 1000⇥N transpositions on each
series and was repeated 100 times with di↵erent random number generator
seeds. The multifractal spectra of original and shu✏ed series are shown in
Figure 2. We find that for managed float regime the width of f(↵) spectrum
decreases after shu✏ing, indicating that the multifractality stems from both
broad probability density function and long term correlations. The exception
is Brazil, for which the multifractal spectrum becomes wider after shu✏ing.
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As recently discussed by Barunik et al. [21], the increase of multifractality
after shu✏ing is found in various financial time series and may be caused by
short-memory time correlations in the data. For independent float regime the
multifractal spectrum remains unchanged for developed countries Australia,
New Zealand and Sweden, as well as for Brazil and South Korea, indicating
the broad probability density function as the source of multifractality. For
other emerging countries Malaysia, Taiwan and Thailand, both probability
density function and long term correlations contribute to multifractality, as
indicated by the decrease of the width of the spectrum. In general, after the
transition from managed to independent float regime, developed countries
experience larger shifts in ↵0 toward the uncorrelated regime, larger decrease
in the width of the spectrum W and broad probability density function as the
source of multifractality.

Table 1
Multifractal parameters ↵0, W and r for currency rate returns R

Managed Float Independent Float

country ↵0 W r ↵0 W r

Australia 0.6966 1.028 0.613 0.540 0.535 0.748

Brazil 0.3952 0.922 0.583 0.598 0.652 0.823

Malaysia 0.646 0.776 0.737 0.607 1.122 2.517

New Zealand 0.665 1.153 0.719 0.531 0.503 0.905

South Korea 0.634 0.842 1.354 0.589 0.823 0.722

Sweden 0.653 1.122 1.162 0.526 0.417 1.013

Taiwan 0.937 1.185 1.386 0.688 0.962 1.180

Thailand 0.526 1.040 0.470 0.599 0.829 0.942

4 Conclusion

In this work we apply MF-DFA method to compare multifractal behavior of
various exchange rates during the periods of managed and independent float
regimes. We calculate the multifractal spectra and estimate the complexity
parameters from four degree polynomial fit. We find that in most analyzed
cases after the transition from a managed to independent float regime the
position of maximum of multifractal spectrum shifts towards the uncorrelated
regime ↵0 = 0.5, and the width of the spectrum decreases. This indicates that
the transition from a managed float to independent float exchange rate regime
is followed by an increase in market e�ciency. By comparing the multifractal
spectra of original and shu✏ed data we find that in most cases for managed
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float regime the multifractality is due to both broad probability density func-
tion and long term correlations, whereas it is due only to broad probability
density function during the independent float regime. For developed countries
the transition from managed to independent float regime, leads to larger shifts
in ↵0 toward the uncorrelated regime, larger decrease in the width of the spec-
trum W than for emergent countries and broad probability density function
as the source of multifractality. To confirm our findings, exchange rates from
other countries should be systematically analyzed.
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