HOMEWORK 3

Please submit your homework to xm@bu.edu. Don't forget to attach your figures and code. Feel free to ask me if you have any question. GLHF! -Sean.

Problem 1: autocorrelation

From the course website (http://polymer.bu.edu/hes/PY538Materials.html), you can find a sample dataset, which contains the buy/sell prices of all components of the S&P500 index on Feb 10, 2017. The data were collected with a frequency of five seconds.

- 1. Choose one company from the five hundred components and pre-process your data. Use either buy price or sell price to find the log returns ($\Delta t = 5$ sec). Plot the autocorrelation function of log returns. Can you find any useful short-term correlation, or is it just noise?
- To quantify the autocorrelation of log returns, you should use an autoregressive (AR) model. Try to fit the following equation

$$x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + \dots + a_s x_{t-s} + \epsilon_t$$

where x_t is the log return at time t. The autocorrelation function is determined by the parameters $\{a_0, a_1, \dots, a_s\}$, while the noise is determined by the residual ϵ_t , a Gaussian random variable with variance σ^2 . Choose s = 5 and find the best fit parameters $\{a_0, a_1, \dots, a_s\}$ and σ for your data. Check the validity of your result. (To verify your estimation of the parameters, simply find the mean μ of the log returns and check if it satisfies the equality $\mu = a_0 + (a_1 + a_2 + \dots + a_s)\mu$.)

- 3. Generate a random time series from your AR(5) model. Plot the autocorrelation function and compare it with the autocorrelation of the log returns.
- 4. In your AR(5) model we made an assumption that the strength of fluctuation σ^2 is constant at any time. You already know that this is *not* true. Indeed, an autoregressive conditional heteroskedasticity (ARCH) model is the next step to finish our fitting. First, we need to make sure that our data is unbiased. The first step is to generate

a new data set from the residuals of your AR(5) model by letting $y_t = x_t - (a_0 + a_1x_{t-1} + a_2x_{t-2} + \cdots + a_sx_{t-s})$. One can easily see that y_t has mean zero. Plot the autocorrelation function of the square of y_t (or to say, volatility). Can you find any long-term autocorrelation feature?

5. Try to fit the following equation

$$y_t^2 = \alpha_0 + \alpha_1 y_{t-1}^2 + \alpha_2 y_{t-2}^2 + \dots + \alpha_p y_{t-p}^2$$

The best fit parameters $\{\alpha_0, \alpha_1, \cdots\}$ should tell you the autocorrelation between the squared residuals ϵ_t^2 in your AR(5) model. Choose p = 5 and estimate $\{\alpha_0, \alpha_1, \cdots\}$.

6. Generate a random time series from your ARCH(5) model. Plot the autocorrelation function and compare it with the autocorrelation of the squared log returns.