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In our class project we have explored foreign exchange data. We analyze daily and hourly returns
for the five major currencies, US dollar, Euro, Japanese yen, British pound, and the Swiss franc.
The data can be best fitted by a q-Gaussian but we have not been able to model this behavior yet.
We start investigating some traits of the distribution, like correlation and time dependence, to open
the door for further analysis that hopefully can lead to a better understanding of the FX market in
the future.
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INTRODUCTION

We consider the fluctuation in foreign exchange rates.
Unlike stock prices, foreign exchange rates are strongly
influenced by policies of countries or currency unions.
They are not only strongly tied to macroeconomic fac-
tors such as inflation and unemployment but also have
a direct impact on any other markets because essentially
any price is expressed in terms of currencies. Further-
more, a given set of currencies is a closed system in which
no overall net gain can be achieved: The rise of one cur-
rency compared to a second implies the fall of the second
currency compared to the first.

Figure 1: Top: Typical time series for currency exchange rate.
Bottom: Returns calculated based on this time series..

Foreign exchange markets are considered to be the
most liquid market of all. Given the large amount of
research dedicated to equity markets, findings about for-
eign exchange markets can be used to crosscheck findings
about stock prices. For example, the distinct power-law
tails of stock price returns are hypothesized to be linked
to a lack of liquidity in the market. This means that one
should not expect them to be present in returns of cur-
rencies. In addition, it has been shown in literature that
the power-law distribution is Lévy-unstable since for suf-
ficiently large lag time (i.e. time step dt) it will converge
to a Gaussian [3, 4]. Thus, it is of importance to look into
the foreign exchange rate distribution to see how it differs
from that for the well-identified form of stock market.
We will start our investigation by quantitatively ex-

amine the returns on foreign exchange markets. We con-
sider the following currencies: US dollar (USD), Euro
(EUR), Japanese yen (JPY), Pound sterling (GBP), and
Swiss franc (CHF). These are, with exception of the Aus-
tralian dollar, the most frequently traded currencies by
value, and thus they are most suitable for a quantitative
analysis. We will look at the changes in foreign exchange
rates over different time horizons from one hour to one
day.
Despite the large liquidity present in foreign exchange

markets, trade is not evenly distributed across the 24
hours of a day. Instead, the business hours of mostly the
European market and the US market appear to be the
most liquid periods of the day. We will look into this,
investigating the influence of this on the return distribu-
tion.
Ultimately, we consider the the relationship between

fluctuations of the exchange rate during a certain period
and the realized price change within that period.

METHODOLOGY

The basis of analysis is data that spans from Jan 3,
2001, to Mar 28, 2014. For each of the currencies used
in this analysis we use hourly data that also contains in-
formation about the low and high during each hour. The
data has been filtered such that for every hour the data
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is complete. As a consequence, 67 out of 81, 007 trad-
ing hours have been neglected. Since the data comprises
opening and closing price for each hour, this does not
pose a problem for computing the returns.

The returns are calculated the well-established way,

rk(t+ dt) = ln Sk(t+ dt)
Sk(t) , (1)

where rk(t) describes the return of currency k at time
t, Sk(t) is the currency exchange rate for currency k at
time t, and dt is the time step. A typical time series for
S and r is shown in figure 1.

The data analysis has been performed with Wolfram
Alpha and MatLab.

DATA ANALYSIS

Daily Data

We start our analysis with looking at the daily return
of the major currency pairs, in total 10 currency pairs
and, thus, 20 return rate time series. Regardless of the
currency pair, we calculate the daily return for each of
the 24 hours of the day. This yields a list of return values
that we bin to investigate the distribution.

However, the binning on the x-axis is not linearly but
exponentially spaced; this is to take into account the an-
ticipated result that low changes are much more likely
than much larger changes. In praxis, we fix the number
of bins that we want to investigate in divide the x-axis
into bins that grow exponentially as the price change
grows. This allows us to occupy each bin a little more
evenly. As for the position on the x-axis of the bin: As
long as the bin size is small enough compared to the re-
gion of price changes investigated, the midpoint of the
interval is a very good approximation.

The result for this analysis is shown in figure 2. In this
log-plot we see no clear functional form; instead the curve
seems to has dents and inflection points. For very small
price changes, the form shows indications of a parabola,
only to bend away for higher price changes into what
looks like an exponential tail. We will further pursue
this analysis in the hourly data, where we look at some
of the characteristics of the distribution.

Hourly Data

We investigate the hourly returns of the above men-
tioned currencies, which yields 10 currency pairs and,
thus, 20 return rates. Consequently, any distribution will
be symmetric around the origin then. Therefore we gen-
erally restrict ourselves to plotting only the positive tail
of the distribution.

Figure 2: Distribution for the daily foreign exchange rate re-
turns for all currency pairs. This is a log-plot.

Figure 3: Distribution for the hourly foreign exchange rate
returns for all currency pairs. The y-axis is logarithmically
scaled.

Figure 3 shows the distribution of the return rates in
the hourly data. We recognize that it decays slower than
an exponential function, which have yielded a straight
line. However, figure 4 reveals that we do not find a power
law either. For a power law, we would require to be able
to fit a straight line to the data in this representation over
several orders of magnitude – a task obviously impossible
here.
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Figure 4: Distribution for the hourly foreign exchange rate
returns for all currency pairs. Both axes are logarithmically
scaled.

While we expect our result to be more general, it is
worthwhile to investigate the distribution from figure 3
further for different currencies. In figure 5 we compare
three pairs of currencies. Particularly outstanding is the
role of the Swiss franc compared to other currencies, par-
ticularly the Euro. As the Swiss government has imposed
an exchange rate peg against the Euro, we observe differ-
ent behavior: Small changes are much more likely than
big ones, yielding a much steeper curve.

In general the distribution of foreign exchange is dif-
ferent from Gaussian and to our best knowledge no exact
theory is present so far to give it a functional form. It has
been argued that the model of a random walk would not
be consistent with theoretical framework of foreign ex-
change rates [2]. However, recently it has been proposed
that the empirical data in, say, financial returns in the
New York Stock Exchange and NASDAQ, should rather
be interpreted as q-gaussian, which, from the physics
point of view, stems from the principles of maximizing
Tsallis entropy under appropriate constraints [5, 6].

This formalism was first introduced with an attempt
to explain the non-Gaussian fluctuations in the options
of stock prices and indeed it closely fits the empirically
observed distribution for many financial time series quite
well [7]. However, the q-Gaussian model can only imply
how much the distribution deviates from the ideal normal
in some of stock market scenarios, a theory that more
appropriately describes the foreign exchange market is
still lacking. As a result, we would like to pause here and
instead comment on the effect of time steps (dt) on the
distributions.

Figure 5: Distribution for the hourly foreign exchange rate
returns for all currency pairs. Both axes are logarithmically
scaled.

As the time step grows, that is the length of the pe-
riod for which the currency pair has been traded before
assessing its new price, we expect the distribution to be-
come flatter. A flatter distribution implies more larger
price changes.
To investigate the time effect, we have revisited the

data every dt and calculated the returns, such that be-
tween every quota there has exactly dt passed. In fig-
ure 6, the result of this analysis is shown for dt =
2, 4, 6, 8, 10, 12h. As expected, the distribution becomes
flatter. Remarkably, there appears to be a cross-over
point for the different time scales. To show this cross-over
point better, figure 7 provides a close-up of the region.
We have also examined the peak of the distribution to

further analyze its scaling behavior. In a first approach,
we compare the first point in the binned distribution for
each time step with one another. We find that the peak
scales as 1/

√
2 when doubling the time step length.

These observations open room for a more detailed anal-
ysis of the time series’ return distributions.
The data set with which we are working not only pro-

vides opening and closing prices, but also the highs and
lows of that particular hour. As a proxy, we use this
to analyze the fluctuation of the price compared to the
realized price changes. We introduce the parameter ξ,
defined as follows:

ξk(t) =
log

(
Smax

k (t)/Smin
k (t)

)
rk(t) . (2)

Smax
k (t), Smin

k (t) are the maximum and minimum value
of the currency k in the interval [t − dt, t], respectively.
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Figure 6: The distribution of price changes for different lengths of the time step dt, ranging from dt = 2h to dt = 12h. We see
that the distribution becomes flatter and identify a potential cross-over point for low price changes.

Figure 7: Zooming in on the potential cross-over point in the
distribution for different time-steps.

rk(t) is the return in this same time interval.
The larger ξ, the more the price has been fluctuating

compared to its final return. A value of ξ = 1 implies
that the price has been fluctuation between opening and
closing price only. The parameter, however, does not let
us infer any information on the size of the fluctuations
themselves. One could further analyze how ξ scales with
the actual price change for this.

Figure 8 shows the distribution of the parameter ξ.
This can be very well fitted to a power law with an expo-

nential cut-off. The log-representation nicely illustrates
the exponential tail for large fluctuations.
We have started comparing this parameter to the typ-

ical behavior for stock prices. First analyses hint that
there is no exponential cut-off in stock-prices. Before we
interpret this, however, we will have to extend the data
pool for stock price data to see if this holds if we improve
our statistics.

Figure 8: Distribution of the parameter ξ, which describes
the fluctuation around the realized return rate.
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