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We have applied the method of Principal Component Analysis to two di↵erent markets, one
consisting of stocks only, and one consisting of bonds only. We have tried to find the number
of relevant dimensions for each of those markets, and inspected the eigenvectors corresponding to
those dimensions. By using R2 factor as a measure of goodness of our approximations by dimension
reduction, we inspected the usefulness of PCA as a tool for analyzing di↵erent markets.

PACS numbers:

INTRODUCTION

A simple model for the market from the point of view
of an investor is such that the market consists of N se-
curities and an investment period ⌧ . In general those
securities can be a combination of bonds, commodities,
mutual funds, currencies etc. One can build a time series
out of the prices of such securities sampled at specific
times. For a market with N such securities the prices up
to a time t0 will form a T ⇥ N dimensional matrix Pt0 ,
where T is the length of the time series for the price for
one of the securities. The question is then, to determine
the multivariate matrix Pt0+⌧ which will give the prices
of the securities at the end of the investment period.
This general procedure is not a simple one. We have

to apply several approximations to be able to get a rea-
sonable estimation for Pt0+⌧ . One of the approximations
that can be applied is called Dimension Reduction. Al-
though the multivariate matrix Pt0+⌧ has N columns, in
general those N securities are not independent. There-
fore, by looking at the structure of the covariance matrix
built by using the matrix Pt0 we can reduce the num-
ber of its dimension by projecting it onto a space which
represents the most of the information in our matrix.
One method for applying Dimension Reduction is

called Principal Component Analysis (PCA). The idea
behind PCA is to find the subspace with most amount
of information by looking at the eigenvalues of the co-
variance matrix constructed from Pt0 . In the following
sections I’ll go over the general procedure of constructing
the covariance matrix from Pt0 , and then I’ll apply PCA
to two di↵erent covariance matrices that represents two
di↵erent markets. Those markets are the following:

• 26 stocks from Dow-Jones Index.

• US National Treasury Bonds.

THEORY

The first step in analyzing the market is to choose
our parameters. The matrix Pt0 is a matrix of

prices, however the price of a security is not a use-
ful parameter when we are trying build a model. If
we consider our parameters to be stochastic vari-
ables, we require them to be time homogenous in-
variants. With this requirement the distribution
of our invariants will not depend on time. This
is essential for making future predictions by look-
ing at past data. In order to find out if a variable
satisfies the above requirement we can look at the
lagged correlation of a given time series. For time
homogenous invariants that distribution should be
a circular cloud. This is easy to see by looking at
two di↵erent time series for stocks. First time se-
ries to consider is the price of a stock Pt, the second
one is the logarithmic (compounded) returns of the
same stock Xt,t0 . Where:

Xt,t0 = ln
Pt

Pt�t0
(1)

It is easy to see that the price is not a time homoge-
nous invariant, whereas compounded return is.

FIG. 1: Lagged correlation of the price of a stock.

The same relation applies to the price of a bond
and the di↵erence of yield to maturity for the same
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FIG. 2: Lagged correlation of the compounded returns of a
stock.

bond. Once again the price of the bond is not an
invariant, however the di↵erence in yield rates is.
Assume that the price of a bond at time t which
will expire at time t+ v is given by Z

t+v
t , the yield

rate and the di↵erence in yield rates are given by:

Y

v
t = �1

v

lnZt+v
t (2)

X

v
t,t0 = Y

v
t � Y

v
t�t0 (3)

In general, for a market with both bonds and stocks
the multivariate matrix that is important would be
the combination of the invariants defined above.
Therefore, for a market with N securities we will
have a T ⇥N matrix X which includes the invari-
ants for all our securities.

The next step in a general market analysis is to ana-
lyze the parameterXt0 up to time t0, and make pre-
dictions for a later time Xt0+⌧ . Finally one should
convert the parameter Xt0+⌧ to the prices of the
securities. Here I will only focus on the analysis of
Xt0 by using PCA.

First we have to construct the covariance matrix
using X. The covariance matrix for N securities is
an N ⇥ N matrix given by the following equation
where T is the number of rows in the matrix X:

C =
1

T

X

T
X (4)

The idea behind PCA is to find the eigenvalues and
eigenvectors of C and try to extract information
from them. Pictorially one can plot the location-
dispersion ellipsoid by using C, and the eigenvec-
tors of C are the principal axes of this ellipsoid.

If all of our N securities are perfectly independent
of each other, the location-dispersion ellipsoid will
be spherical. However if there are some dependent
securities, the ellipsoid might have a pancake-like
distribution. For such a market we can apply PCA
to find the irrelevant directions in our ellipsoid, and
reduce the dimension of the ellipsoid by projecting
it out of the irrelevant directions.

FIG. 3: Location-dispersion ellipsoid and the principal axes.

This approximation is only a good one if the princi-
pal axes that we are projecting onto correspond to
nearly the entire variation in our system. A good
way to measure this is comparing the relative size of
the first k eigenvalues starting from the largest one,
to the sum of all the eigenvalues. The parameter
R

2 is defined as following:

R

2 =

Pk
i=1 �iPN
i=1 �i

(5)

If R2 ⇡ 1 for k < N we can project the ellipsoid
onto the subspace given by the first k eigenvectors
without much error.

In the following sections, I will try to look at a
market that consists of stocks, and a market that
consists of bonds to see if we can get some dimen-
sion reduction by using PCA.

STOCK MARKET

Assume that our market consists of 26 stocks which
are all in Dow-Jones Industrial Average Index. We
take daily close price data from: 1/1/1990 up to:
4/20/2015. We calculate the compounded returns
and the covariance matrix of compounded returns,
by using the definitions that are given above. The
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eigenvalues and the R

2 value that we obtain by
using the first k eigenvalues is given in Fig. 4 and
Fig. 5.

FIG. 4: Eigenvalues of the stock market.

FIG. 5: R2 if we include the first k eigenvalues.

As we can see, apart from the first one or two eigen-
values, all the eigenvalues have similar magnitudes.
Therefore the value of R

2 does not become close
to unity before including nearly all the eigenval-
ues. This means that the location-dispersion ellip-
soid does not have any irrelevant directions, and
we cannot reduce the number of dimensions of this
market without introducing significant errors.

However, we might be able to get some information
by looking at the eigenvectors that correspond to
the first few eigenvalues. If we plot the contribution
from all the stocks to the first eigenvector (Fig. 6)
we see that it has similar contributions from all
the stocks in our market. This principal axis is
usually called the market mode. The market, and
the prices of all the stocks in it tend to change in the
same way, and this is by far the biggest contribution
in the change of price of any individual stock.

Another information that we can get from the

FIG. 6: Contribution of companies to the eigenvector with
the largest eigenvalue.

eigenvectors is the relations between di↵erent
stocks. These relations will usually be between
companies in the same industry, or similar sectors.
If we look at the eigenvalue that corresponds to the
third largest eigenvalue (Fig. 7), we can see that
the contributions from all the stocks are close to
zero except for two huge contributions from stocks
labeled as 11 and 18. Those two companies are In-
tel, and Microsoft respectively, which are in similar
sectors. The other contributions to this eigenvec-
tor mainly come from company 1 which is Apple,
company 17 which is Merck & Co.,and company 20
which is Pfizer where the last two companies are
both pharmaceutical companies.

FIG. 7: Contribution of companies to the eigenvector with
the third largest eigenvalue.

BOND MARKET

In this section we will look into a bond market.
Assume that our market consists of several bonds
with di↵erent maturities. We take the zero coupon
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bond prices for each maturity, and calculate the
di↵erence in yield rates. Then we construct the
covariance matrix as explained above. The covari-
ance matrix between two bonds with maturity v

and v + p is in the form:

C(v, p) = Cov(Xv
, X

v+p) (6)

In general for bond markets, this matrix has the
following properties:

C(v + dv, p) ⇡ C(v, p+ dv) (7)

C(v, 0) ⇡ C(v + ⌧, 0) (8)

C(v, p) ⇡ C(v + ⌧, p) (9)

The above equations mean that our covariance ma-
trix is only a function of one parameter, which is
the di↵erence in maturities of the two bonds. It is
also a real, symmetric matrix which is smooth in
this one argument, mostly diagonal, and constant
along its diagonal. These special matrices are called
a Toeplitz Matrix.

The infinite dimensional case of a Toeplitz Matrix
is called a Toeplitz Operator and the solution for
its eigenvalues and eigenvectors is given in Fig. 8.

FIG. 8: Eigenvalues, R2, and first three eigenvectors of a
Toeplitz Operator.

Apparently our stock market example did not have
the above given properties, and we did not see a
similar pattern for the stock market. However our
bond market example might have a similar eigen-
value and eigenvector composition even though
they are finite dimensional. The first thing that
we can check is the representation of the covari-
ance matrix of a bond market to a stock market.
As we can see in Fig. 9 the covariance matrix of

our stock market is not a smooth function at all.
However, it can be seen in Fig. 10 that for the US
Treasury Bond Market the covariance matrix looks
like a smooth two dimensional function. The other
properties other than smoothness are not really vis-
ible, therefore we have to find the eigenvalues for
ourselves and see if they have the same form as a
Toeplitz Operator.

FIG. 9: Representation of the covariance matrix of the stock
market.

FIG. 10: Representation of the covariance matrix of the bond
market.

US Treasury Bond Market

In this bond market example we will look into the
bond market of US Treasury Bonds. We take the
daily prices from: 2/9/2006 up to: 4/20/2015, cal-
culate the di↵erence in yields and the covariance
matrix. The eigenvalues and the R

2 value that we
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obtain by using the first k eigenvalues is given in
Fig. 11 and Fig. 12.

FIG. 11: Eigenvalues of US bond market.

FIG. 12: R2 if we include the first k eigenvalues.

We can see that the eigenvalues are completely
dominated by the first four eigenvalues, and that
the R

2 goes above 0.95 if we include the first four
eigenvalues. This means that the US Treasury
bond market is not really 11 dimensional as our in-
variants suggest, but it is in fact close to being four
dimensional. Looking at the contributions to the
first four eigenvectors, we can see that the eigen-
vectors resemble the eigenvectors of the Toeplitz
Matrix solution (Fig 13). However due to the co-
variance matrix being not an exact Toeplitz Matrix
we can see that the eigenvectors are not exactly the
oscillatory solutions we see in the exact case.

Now the last step is to actually reduce the number
of dimensions by projecting our invariants in the
direction of our eigenvectors. By doing this we are
basically mixing our bonds in such a way that our
invariant matrix now consists of our eigenvectors
instead of our bonds. By doing this we can see
the di↵erent things happening in our market more

FIG. 13: Contributions to the first four eigenvectors.

easily than the previous case. By looking at the
time series of the first three eigenvectors, we can
see that there are some points where the values
change dramatically (Fig. 14, Fig. 15, Fig. 16). In
this case the location of these jumps (around day
500 in our time series) happens to be around the
year 2008. We can see that the market has some
unusual price changes around that period.

FIG. 14: Time series of the first eigenvector.

CONCLUSION

I have applied the method of Principal Component
Analysis to an example of a stock market and an
example of a bond market. For both cases the
method is useful in having a better understanding
of the market. However the information gathered
from PCA is di↵erent for the two examples that are
given here.

For the stock market PCA does not help in reducing
the number of relevant dimensions in our market.
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FIG. 15: Time series of the second eigenvector.

FIG. 16: Time series of the third eigenvector.

It is possible that for markets with greater num-
ber of stock than 26 that I have used here, PCA
might give some dimension reduction, however it
was not the case here. The usefulness of PCA in
stock market example was to get an understand-
ing of underlying connections between the prices of
stocks of di↵erent companies.

For the bond market, PCA helped us identify the
relevant directions in the location-dispersion ellip-
soid. For the US Treasury Bond Market, the num-
ber of relevant dimensions was 4 out of a total
number of 11 di↵erent bonds. This is a huge di-
mension reduction. Also the plot of eigenvectors
shows that the changes in yield rates of bonds can
be analyzed with a few simple functions. By far the
greatest contributors to the R

2 factor is the first
two eigenvalues. The e↵ect of the first two eigen-
vectors can be understood to be a constant shift in
the bond yield rates (from first eigenvector), and a
skew (from the second eigenvector). These contri-
butions are easy to understand, visualize and use
when trying to understand the behavior of the mar-
ket. The e↵ect of a financial crisis is clearly visible
on the time series of the most important eigenvec-
tors. This information can also be useful in under-
standing the overall behavior of the bond market
during financially unstable periods.
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