
Introduction

Econophysics as a field of research is now 18 years old, if 

we count the Aug 1995 ‘Dynamics of Complex Systems’ 

conference in Kolkata, India as the official start of the field 

(Stanley et al., 1996). Following this conference, the 

inaugural econophysics conference was held in 1998 in 

Budapest, Hungary. In 2005, the first Econophysics 

Colloquium was held in Canberra, Australia, while the first 

Econophys-Kolkata meeting was held in Kolkata, India. 

Both have since grown into annual events, with the latest 

edition of the former held in Pohang, Korea, 29–31 July 

2013, and the latest edition of the latter held in Kolkata, 

India 8–12 November 2012. With the growing interest  

in econophysics in Asia, the International Conference  

on Econophysics and the Asia-Pacific Econophysics 

Conference were also launched in June 2011 and September 

2012 respectively. In 2014, we will see at least three econo-

physics meetings in Asia: Econophys-Kolkata in March, 

the International Conference on Econophysics in June, and 

the Econophysics Colloquium in November. Besides the 

proliferation of conferences, we can judge from the number 

of econophysics papers published every year that the  

field has matured. Looking especially at the recent papers 
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(Moat et al., 2013; Preis, Moat, & Stanley, 2013), it is also 

clear that many exciting research themes have emerged, 

waiting for the econophysics community to explore in 

detail.

In an opinion paper published in 2006, Gallegati  

et al. expressed worries about the state of econophysics 

at that time (Gallegati, Keen, Lux, & Omerod, 2006). 

Econophysicists were not paying enough attention to the 

economics literature, not sufficiently rigorous in their sta-

tistical analysis, overselling the notion of universality in 

human activities and organizations, and overconfident in 

statistical physics models based on energy conservation.  

In the years following, this situation has certainly changed. 

Even though econophysicists are still not publishing in  

the most prestigious economics journals, they are slowly 

penetrating finance journals (Bouchaud, Gefen, Potters, & 

Wyart, 2004). More importantly, there are increasing col-

laborations between economists and econophysicists, who 

are traditionally from nuclear physics, nonlinear physics, 

and statistical physics. This is a very encouraging trend.

Clearly, financial markets and economies are complex. 

More mathematical sophistication, not less, is needed to 

understand them. Nonlinear approaches, in addition to lin-

ear approaches, will be needed. After the Global Financial 
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Crisis of 2007–2009, part of the economics community 

realized these urgent needs, and called for more efforts 

devoted into developing the field of complexity economics 

(Arthur, 1999; Durlauf, 2005; Gallegati & Kirman, 2012). 

The Institute for New Economic Thinking (INET), created 

in late 2009 by a US$50 million seed funding by business 

magnate and philanthropist George Soros, now stands as 

the beacon for this movement within economics. However, 

there are also many economists, including very influential 

ones, who are reluctant to move on from equilibrium ideas 

about the economy. Financial institutions and regulators 

will obviously not wait for this academic debate to con-

clude. They need answers, and they need them now, how-

ever imperfect they may be, so long as they are more 

relevant to the problems they wrestle with day in day out.

This presents a fantastic opportunity to the econophysics 

community. Continuing the trend before the Subprime 

Crisis (The Economist, 2007), US undergraduates continue 

to pursue a major in economics (The Brown Daily Herald, 

2013; University of Wisconsin-Madison, 2013). Although 

no systematic study has been done in Europe and Asia, we 

believe that interest in economics and finance is also 

growing. This is to be expected, when news media devote 

so much space to talking about the global financial crisis. 

At the bachelor’s level, we are also inclined to believe an 

economics major training will not adequately prepare 

graduates to cope with economics and finance problems in 

the real world. Most of these graduates simply do not have 

the requisite mathematical sophistication. Econophysics 

graduates, on the other hand, trained in the mathematical 

methods of classical and quantum particles and fields, and 

also receive dedicated instruction to bridge the cultural 

divide between physical and social sciences, may be much 

better placed for growing employment opportunities in 

banks as well as government.

With these considerations at the back of our mind, we 

started an econophysics advanced undergraduate course, 

PH4410 Econophysics, in the Physics and Applied  

Physics degree programmes in the Nanyang Technological 

University, Singapore. In the spirit of encouraging under- 

graduates to take on a more interdisciplinary view of the 

real world, this course is also open to students from the 

Business Management (Banking and Finance), Computer 

Science, Economics, Mathematical Sciences, and Mathe- 

matics and Economics degree programmes, offered by the 

Nanyang Business School, the School of Computer Engi- 

neering, the School of Humanities and Social Sciences, 

and the School of Physical and Mathematical Sciences. 

With this course as the core, we also aim to build up an 

econophysics concentration consisting of two Physics and 

Applied Physics courses, and one course each from the 

Nanyang Business School (Banking and Finance) and the 

School of Humanities and Social Sciences (Economics). 

Eventually, when we are certain the demand is there, and 

the graduates are well received in the job market, we will 

propose an Econophysics degree programme, with an 

enrolment of 50 to 100 students every year.

In the sections to follow, we will give a brief introduc-

tion to the history of the Nanyang Technological University, 

its current academic makeup, and a brief description of its 

teaching and research. We will then describe the design of 

the econophysics course, giving an outline of the topics 

covered, its experimental participatory course structure, 

the learning objectives and how students are assessed. 

Finally, we will present outcomes from running this course 

the very first time, how we plan to fine tune it the second 

time round, before we conclude.

The Nanyang Technological University

The Nanyang Technological University (NTU) occupies a 

200-hectare main campus in the west of Singapore. It is 

one of the four publicly funded universities in Singapore, 

the other three being the National University of Singapore, 

the Singapore Management University, and the Singapore 

University of Technology and Design (in collabora- 

tion with the Massachusetts Institute of Technology and 

Zhejiang University). The university started out as Nanyang 

University in 1955 with donations of money and land from 

Singaporean Chinese philanthropists. In this original incar-

nation, all courses were taught in Chinese. In 1980,  

the Singapore government ordered it to be merged with  

the Singapore University to form the National University of 

Singapore, because of the increasing difficulty for Chinese-

educated university graduates to find employment.

At the same time, Singapore was rapidly growing its 

manufacturing industry, and needed a large number of 

engineers. The large engineering cohort received founda-

tional instructions in the National University of Singapore 

for the first year, and in their second year, part of this  

cohort remained in the Faculty of Engineering in the 

National University of Singapore, while the rest continued 

their engineering education in the campus of the former 

Nanyang University, now renamed the Nanyang Tech- 

nological Institute. Later, recognizing that a purely engi-

neering campus with mostly young men posed a social 

problem that would be difficult to solve later on, Accounting 

and Business Management with mostly young women 
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undergraduates were moved from the National University 

of Singapore to the Nanyang Technological Institute in 

1987. Then in 1991, the National Institute of Education 

merged with the Nanyang Technological Institute to form 

NTU. In the same year, the Wee Kim Wee School of 

Communications and Information was also created.

In 2002, the International Academic Advisory Panel 

commissioned by the Singapore Ministry of Education 

reviewed the higher education scene in Singapore, and 

among other things recommended to make NTU a compre-

hensive university. This led to the creation of a new School 

of Biological Sciences, a new School of Art, Design  

and Media, a new school of Physical and Mathematical  

Sciences, a new School of Humanities and Social Sciences, 

and the S. Rajaratnam School of International Studies. 

Starting last year, our university also became home to the 

Lee Kong Chian School of Medicine, which is a joint  

venture between NTU and Imperial College. At present, the 

various schools are organized into the College of Business, 

the College of Engineering, the College of Humanities,  

Arts and Social Sciences, the College of Science, National 

Institute of Education, S. Rajaratnam School of International 

Studies, and the Lee Kong Chian School of Medicine.

NTU started out with highly disciplinary research. 

However, research funding in Singapore is primarily driven 

by problems rather than scientific disciplines. As such, 

research in our university has evolved to become more 

interdisciplinary in nature. In particular, for energy and 

water research, it has organized its experts into the Energy 

Research Institute at Nanyang (ERI@N) and the Nanyang 

Environment and Water Research Institute (NEWRI), both 

of which are funded by the university and competitive 

research grants from various agencies. The university also 

hosts two highly interdisciplinary National Research 

Foundation (NRF) Research Centres of Excellence, the 

Earth Observatory of Singapore and the Singapore Centre 

of Environmental Life Science and Engineering. The uni-

versity has also recently started a Complexity Programme 

modelled after the Santa Fe Institute, drawing experts from 

the various schools to look into interdisciplinary problems 

related to natural and man-made complex systems. On a 

whole, the university has risen steadily in terms of world 

ranking. As of 2012, it is ranked 86 in the Times Higher 

Education (THE) world university ranking, and 47 in the 

Quacquarelli Symonds (QS) world university ranking. It is 

one of the 10 fastest growing universities in the world.

The Nanyang Technological University offers 54 under-

graduate degree programmes and 58 masters programmes, 

in addition to the PhD degree by research in the 

Interdisciplinary Graduate School as well as all schools 

and institutes. It has 23,500 undergraduate students, 10,000 

graduate students, and 4,200 faculty and staff. Teaching 

remained highly disciplinary until recently, when the uni-

versity started responding quickly to recent developments 

in industry, and regularly offers new degree programmes as 

well as updates to existing programmes at both the under-

graduate and graduate levels. Over the last few years, vari-

ous double degree and double major programmes such as 

Business and Computing, Mathematics and Economics, 

Biology and Psychology have seen strong interests from 

applicants. Besides encouraging schools to abolish tradi-

tional boundaries and mount joint courses and minors  

that will help our graduates develop an interdisciplinary 

edge in their approach to real-world problems, the univer-

sity also has three elite programmes that are by design 

interdisciplinary. These are the C N Yang Scholars Program, 

the Renaissance Engineering Program, and the University 

Scholars Program. Within such a research and teaching 

environment, the development of the econophysics course, 

concentration, as well as degree programme is favoured at 

the highest level of the university administration.

PH4410 Econophysics Course 
Organization

As the course code suggests, my econophysics course is 

targeted at fourth-year advanced Physics and Applied 

Physics undergraduates, taught over a 13-week semester. 

The pre-requisites for this course are PH3201 Statistical 

Mechanics I and PH3502 Chaotic Dynamical Systems. 

These pre-requisites are more suggestive than restrictive, 

and they can be waived for Physics and Applied  

Physics students eager to take PH4410 Econophysics. For 

Computer Science, Business Management (Banking and 

Finance), Economics, Mathematical Sciences, Mathematics 

and Economics students wanting to take the course, these 

pre-requisites can similarly be waived provided they are 

judged to have adequate mathematical and statistical 

background.

Course Outline

The course is organized into three parts: (a) high-frequency 

financial time series (4 weeks); (b) high-frequency finan-

cial time series cross section (5 weeks); and (c) agent-based 

models of markets and economies (4 weeks). There is a 
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two-hour lecture every week, and another contact hour 

every week that is used every other week for tutorials, and 

the rest of the time for lectures. For this first offering of the 

course, I adopted an experimental course structure, based 

on the concept of an open textbook.

I have tentatively planned for the open textbook to have 

seven chapters, in line with the three parts of the course. 

These chapters are as follows:

1. History of Econophysics

2. Preliminaries on Probability and Statistics

3. Properties of High-frequency Financial Time Series

4. Memory in Financial Markets

5. Financial Time Series Cross Section and Random 

Matrix Theory

6. Cross Correlation Filtering and Time Series Clustering

7. Agent-based Models of Financial Markets

In Chapter 1, ‘History of Econophysics’, I aim to 

provide the historical background to the birth of 

econophysics, starting from the beginnings of classical 

physics and classical economics. I explained how the 

mathematization of classical mechanics started in 1687 

with Sir Isaac Newton’s formulation of the laws of motion 

and the development of calculus, was brought to fruition 

by Lagrange and Laplace in the form of analytical 

mechanics. With this, a complete mathematical description 

of the dynamics of point particles was in place, and 

physicists went on to obtain the mathematical description 

of classical fields before quantum physics was discovered. 

Classical economics started later with Adam Smith in 

1776, it became an independent discipline through the 

works of Thomas Malthus and John Stuart Mill, among 

others, and started its mathematization programme in  

1874 with Leon Walras, in a development that parallels 

physics. However, the mathematical trajectories of the two 

disciplines soon parted ways. While physics continued 

using more and more sophisticated mathematical languages 

and methods to describe quantum indeterminism and chaos 

in nonlinear systems, economics continued working with 

linear mathematics and equilibrium.

These two disciplines remained apart for several decades, 

before stock exchanges began computerizing their opera-

tions. This gave rise not only to faster trades (and hence a 

quicker redistribution of wealth), but also to huge volumes 

of transaction data. Physicists like Eugene H. Stanley and 

his collaborators then started looking at these data, drew 

quantitative conclusions about the character of stock  

market returns, and ushered in the era of econophysics.  

In this sense, physics and economics both grew out of  

their philosophical roots when the small amount of data 

that became available drove the mathematization of the 

two disciplines, to build quantitative theories capable of 

explaining such data. The birth of econophysics, on the 

other hand, was driven first by the sudden availability of 

large amounts of data, and then later by the availability  

of computing resources. The large data volume pointed to 

inadequacies behind the standard random walk paradigm, 

whereas computing power led to the development of 

exploratory agent-based models and simulations.

In the second chapter, I very quickly reviewed the pre-

liminaries on probability and statistics that are needed to 

appreciate developments in econophysics. Formally going 

through these mathematical preliminaries is important, 

because the probability and statistics preparations of differ-

ent degree programmes can vary a lot. I started out intro-

ducing the concept of a random variable, the notion of a 

probability distribution, and gave examples of common 

discrete and continuous distribution functions before going 

on to explain how expectation values are computed. I also 

reviewed the concepts behind parameter estimation, using 

linear regression as an example, before reminding students 

what hypothesis testing is all about. Finally, I talked  

about the relation behind information and entropy, and  

how to bring in concepts from equilibrium statistical 

mechanics.

The third and fourth chapters are on individual finan- 

cial time series, and I started off talking about Louis 

Bachelier’s PhD thesis based on the assumption that stock 

returns are generated by a Brownian process, and how  

this assumption lead to the testable hypothesis that stock 

returns should follow a Gaussian distribution. I then 

explained to students that this is indeed observed for 

returns computed on time horizons much longer than a  

day, but show serious discrepancies at shorter time hori-

zons. In particular, returns of real stocks have fat tails that 

fall off asymptotically as power laws. I illustrated this 

using the daily stock prices of Apple Inc downloaded from 

Yahoo! Finance. This illustration is made into a series of 

three YouTube videos (http://www.youtube.com/watch?

v=cRPYF0E47hc, http://www.youtube.com/watch?v=b-P8

NSzhCUc, and http://www.youtube.com/watch?v=QdHX

hg3RC_M).

In the fourth chapter, I talked about the other assump-

tion behind the Brownian process model, that is, returns at 

different time lags should be uncorrelated. In actual fact, 

they show qualitatively different autocorrelation at differ-

ent time lags. I defined the autocorrelation, and described 

the general finding that returns have strongly negatively 

autocorrelations at the time scale of minutes, and weak  
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positive autocorrelation at the time scale of days and  

weeks (Cont, 2001; Lewellen, 2002). Such autocorrelation 

manifests itself as momentum or mean reversion in the 

financial market. I also talked about the Hurst exponent, 

another measure of long-range autocorrelation, or memory 

in the market (Alvarez-Ramirez, Alvarez, Rodriguez, & 

Fernandez-Anaya, 2008; Cajueiro & Tabak, 2004; Carbone, 

Castelli, & Stanley, 2004; Di Matteo, Aste, & Dacorogna, 

2003, 2005; Eom, Choi, Oh, Jung, 2008; Feigenbaum & 

Freund, 1996; Grech & Pamula, 2008; Lux, 1996; Peters, 

1989; Matos, Gama, Ruskin, Sharkasi, & Crane, 2008). 

Finally, I talked about nonstationarity in financial time 

series, and how segmentation methods can be useful in 

understanding the distribution and meaning of this non-

stationarity (Cheong et al., 2012; Tóth, Lillo, & Farmer, 

2010; Vaglica, Lillo, Moro, & Mantegna, 2008; Wong, 

Lian, & Cheong, 2009; Zhang et al., 2011).

The fifth and sixth chapters of the planned open text-

book are on financial time series cross section. In the fifth 

chapter, I introduce various cross correlation measures 

between time series, before moving on to the Random 

Matrix Theory (RMT), as a means for discriminating 

between pure noise and real signal in the time series cross 

section (Laloux, Cizeau, Bouchaud, & Potters, 1999; 

Plerou, 2002). In the sixth chapter, we follow up by talking 

about correlation filtering, from naïve threshold filtering 

(Kim & Jeong, 2005), to RMT filtering (Laloux, Cizeau, 

Potters, & Bouchaud, 2000), to filtering through the use of 

a minimal spanning tree (MST) (Mantegna, 1999) or a  

planar maximally filtered graph (PMFG) (Tumminello, 

Aste, Di Matteo, & Mantegna, 2005). I then introduced the 

concept of time series clustering (Liao, 2005), to discover 

the number of independent collective variables that can be 

used to simplify the description of the financial market. 

Various clustering methods were introduced.

Finally, in the last and seventh chapter, I talked about 

agent-based models of financial markets. We started first 

on the history of agent-based models, from both the econo-

mists’ and physicists’ perspective. Economists’ agent-

based models tend to be top-down, and involve many 

assumptions on the behaviour of agents. Although these 

look more realistic, their simulation results are also hard to 

analyze. Here I used the Santa Fe artificial market model 

(Palmer, Arthur, Holland, LeBaron, & Tayler, 1994) as the 

main example. In contrast, physicists’ agent-based models 

tend to be bottom-up, that is, toy models. As a specific 

example, I talked about the Ising model, how to simulate  

it, and how its critical behaviour mirrors the tendency of 

markets to crash.

Course Structure

In this course, students are assessed based on four grading 

components. In the first grading component, students 

attend lectures, and are also divided into groups of three to 

five to read up the primary literature (original research arti-

cles, reviews, monographs) and help me develop chapters 

in the open textbook. I explained to students at the start of 

the course that they are all authors of the open textbook, 

and as instructor I merely play the role of an editor. I also 

explained to them that by reading the primary literature 

and summarizing it into a pedagogical form, they would 

truly learn the knowledge and wisdom contained in the 

econophysics literature. Since this would still be very chal-

lenging, I explained to the students that my lectures serve 

as road maps on what to read, and what level of details to 

read down to. I also dedicated one tutorial hour to explain 

how they can search for papers and reviews using Google 

Scholar and Web of Science using different combinations 

of key words. I told my students to limit their searches to 

highly cited papers. This will introduce biases, but I 

explained that we would fix these biases next year when 

the course runs again, because the students will have to do 

this again. Finally, I explained to them how they could syn-

thesize different readings to produce coherent summaries.

In the second grading component, students develop  

end-of-chapter exercises and their solutions. I explained to 

them that they should develop a few of each category of 

questions. The categories are: (a) conceptual, (b) methodo-

logical, and (c) applications to real data. Again, this is a 

hard task for undergraduates, even if they work in groups. 

Therefore, I devoted one tutorial hour to go through a  

sample exercise shown in Appendix 1. Further, since these 

end-of-the-chapter exercises are not examination ques-

tions, each exercise can be self-contained, and not have too 

many parts.

In the third grading component, students develop 

MATLAB programmes that illustrate some of the methods 

discussed in class. Each group is only required to develop 

one MATLAB programme over the whole semester, per-

taining to the open textbook chapter they are working on. 

Again, I devoted one tutorial hour to talk about this. The 

example used is shown in Appendix 2.

The final grading component is the final examination. 

This is a closed book examination, and students are told 

that there will be one question from each major part of the 

course, and a fourth question integrating more probability 

and statistics calculations. The examination is shown in 

Appendix 3.
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As its structure suggests, this course emphasizes partici-

patory learning by the student, in that they are primarily 

responsible for shaping the materials (textbook, problems, 

MATLAB demos) used in the course, with some guidance 

from me (in the form of roadmap lectures, and dedicated 

workshop-like tutorials). This is not the first time I have 

used such a student-driven course structure: I have made 

students develop lecture notes and exercises and MATLAB 

demos in the two times that I had taught a computational 

physics course previously. However, this is the most ambi-

tious implementation of student-led learning that I have 

attempted, to eventually come up with an open source  

textbook on econophysics.

Outcomes

A total of nine students registered for PH4410 Econo-physics. 

Seven were fourth-year Physics and Applied Physics majors, 

one was third-year Physics and Applied Physics major, while 

the last student was a third-year Economics student on study 

exchange in NTU. Because of the small class, the students 

were organized into two groups for their participatory 

activities.

Open Textbook

In my original vision for the course, after students submit-

ted their first drafts of the chapters in the middle of the 

semester, the open textbook would go live on a WordPress 

or equivalent platform. However, this goal proved to be 

unrealistic, as the students needed more than half a semes-

ter just to get their readings done. Moreover, the students 

chose to develop Chapters 6 and 7, and hence it would look 

weird launching an open textbook with the first five chap-

ters missing. In the end, the students went through only one 

revision of the chapters. When this course runs again next 

year, I will load these two chapters onto a private website 

for the next batch of students, and get them to develop the 

remaining chapters. Should the progress be good, I will 

launch the open textbook. Otherwise, I will have one more 

batch of students work on the open textbook before it is 

made publicly available. In the long run, besides acting as 

the main reference for students taking this course, I will 

continue to involve students in updating the textbook, and 

perhaps developing special topics that are of current  

interest in econophysics research.

For the open textbook chapters, students were told  

to submit a reading list for approval one week after the 

tutorial workshop on literature search. The guideline I gave 

the students was to read only the most highly cited papers 

that are relevant to the two chapters. Further, the students 

were told to read at least 10 papers each. The approved 

reading lists are shown in Appendix 4. After reading these 

monographs, reviews, and papers, students summarized 

them using a pedagogical style into first drafts of the two 

respective chapters. I then commented on the first drafts, 

before the students revised the two chapters. Snippets of 

Chapters 6 and 7 are shown in Appendix 5.

End-of-Chapter Exercises

As mentioned in the ‘Course Structure’ section, after a 

tutorial workshop on how to develop problems that would 

clarify and reinforce the econophysics concepts and meth-

ods covered, students also developed end-of-chapter exer-

cises for the chapters they are responsible for. Examples of 

these are shown in Appendix 6.

MATLAB Demos

After a tutorial workshop on how to develop MATLAB 

programmes that can help illustrate important econophys-

ics concepts, students spent two to three weeks developing 

MATLAB demos for the open textbook chapters they are 

working on. These demos are listed in Appendix 7.

Conclusions

To conclude, I taught an experimental econophysics course 

in Semester II (January–April 2013) for the 2012/2013 aca-

demic year in the NTU’s Physics and Applied Physics 

degree programme. NTU values interdisciplinarity in  

teaching, and thus PH4410 Econophysics is open to 

Business Management (Banking and Finance), Computer 

Science, Economics, Mathematical Sciences, Mathematics 

and Economics majors, in addition to Physics and Applied 

Physics majors. This course forms the core of the Econo- 

physics concentration that we are currently offering, and in 

future may seed several courses for an Econophysics degree 

programme.

Nine students completed this course, and gave very pos-

itive feedbacks. In this first offering of the course, students 

were exposed to a participatory learning format, where 

they are guided by lectures to read up the original research 

papers in the field, to produce pedagogical materials for an 
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open textbook that we plan to eventually create. They also 

developed end-of-chapter exercises for this open textbook, 

as well as MATLAB demos to better illustrate some of the 

methods discussed in class. Unfortunately, because only 

the last two chapters (out of seven planned) were devel-

oped, the open textbook project could not go live. I am now 

planning a second offering of PH4410 Econophysics in 

Semester II of the 2013/2014 academic year, where I will 

again engage students in developing the remaining chap-

ters of the open textbook. Should enough materials be 

developed, I hope to launch the open textbook at the end of 

April 2014.

Appendix 1. Sample Exercise Shown in 
Tutorial

The Pearson cross correlations between the 10 Dow Jones US 

Industry Sector indices during a particular period are given below.

BM CY EN FN HC IN NC TC TL UT

BM 0.872 0.825 0.898 0.726 0.900 0.789 0.818 0.709 0.832
CY 0.753 0.898 0.826 0.915 0.876 0.856 0.768 0.835
EN 0.750 0.663 0.776 0.720 0.745 0.607 0.759
FN 0.771 0.889 0.845 0.827 0.741 0.814
HC 0.827 0.913 0.804 0.772 0.770
IN 0.861 0.877 0.808 0.842
NC 0.852 0.783 0.819
TC 0.769 0.783
TL 0.729
UT

Draw the minimal spanning tree (MST) of these cross 

correlations.

Solution. Since we get the same MST whether we work with the 

ultrametric distances D Cij ij= −2 1( ) and start adding links from 

the one with the minimum distance, or we work directly with the 

cross correlations C
ij
 and start adding links from the one with the 

maximum correlation, let us work with C
ij
.

From the table above, we see that the maximum correlation is 

C
ij
 = 0.915, between IN and CY. We therefore connect these two 

industry sectors, as shown below.

%;
�����

+0

From the table above, we see that the next largest correlation 

is C
ij
 = 0.913, between HC and NC. Since these two industry sec-

tors are new to the MST, no cycles are possible, and we therefore 

connect these two industry sectors, as shown below.

%;
�����

+0 0%
�����

*%

At this point, the four sectors are not all connected yet. From 

the table above, we see that the next largest correlation is  

C
ij
 = 0.900, between IN and BM. This link connects an existing 

industry sector, IN, to a new industry sector, BM, and hence  

there can be no cycles. We therefore draw a link between these 

two industry sectors, as shown below.

+0 %;
����� �����

0% *%
�����

$/

Next, we see from the table above that the next largest correla-

tion is C
ij
 = 0.898. However, there are two pairs of industry sec-

tors with this cross correlation. The first is FN and BM, and the 

second is FN and CY. In both pairs, only FN is new to the MST. 

Both BM and CY have already been added to the MST in previ-

ous iterations. We see also that we can add the FN-BM link or the 

FN-CY link, but not both, as doing so would introduce a cycle to 

the MST. In rare cases like this, we can choose to link FN and 

BM, or FN and CY. At the level of the MST, this choice is not 

particularly important, and we shall see elsewhere in the course 

that both links would be included if we decide to draw the planar 

maximally filtered graph (PMFG) of the cross correlations. With 

this in mind, we find the still incomplete MST shown below.
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We are now more than halfway through the MST construction, 

and only four more industry sectors (EN, TC, TL, UT) need to be 

added. From the table above, we see that the next largest cross 

correlation is C
ij
 = 0.889, having already ignore the cross correla-

tion C
ij
 = 0.898 between FN and BM because a cycle will be 

formed. The next largest cross correlation is between IN and FN, 

but we cannot draw a link between them, because a cycle will 

again be formed if we do.

Going further down, we find C
ij
 = 0.877, between TC and IN. 

IN is already in the incomplete MST, but TC is new, and thus no 

close cycle will be formed by drawing a link between these two 

industry sectors. We therefore accept the link, to get the updated 

MST shown below.
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Continuing, we find the next largest correlation to be  

C
ij
 = 0.876, between CY and NC. Both industry sectors are not 

new to the MST, but they are in disconnected subgraphs, and 

hence no cycle will be formed if we draw a link between them. 
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Accepting this CY-NC link, we now have the incomplete MST 

shown below.
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The incomplete MST is now a fully connected graph. 

However, we are still missing three more industry sectors, EN, 

TL, and UT. We continue descending the cross correlations,  

but the next five correlations (C
ij
 = 0.872 between BM and CY, 

 
C

ij
 = 0.861 between IN and NC, C

ij
 = 0.856 between CY and TC, 

C
ij
 = 0.852 between NC and TC, and 

 
C

ij
 = 0.845 between FN and 

NC) lead to cycles if we accept the links. Thus, we have to reject 

these links.

From the table above, we see that the next largest correlation 

after these is C
ij
 = 0.842 between IN and UT. Since UT is new to 

the MST, adding a link between it and IN will not result in a cycle. 

We therefore accept the link to get the incomplete MST shown 

below.
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Since we are now missing only EN and TL, we no longer need 

to systematically go through all cross correlations. Instead, we 

can just focus on the cross correlations involving EN and TL. EN 

is most strongly correlated with IN, with C
ij
 = 0.776, while TL is 

most strongly correlated with IN, with C
ij
 = 0.808. Adding these 

two links, the completed MST looks like that shown below.
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Appendix 2. Sample MATLAB Demo 
Shown in Tutorial

Write a MATLAB programme to simulate a one-dimensional 

Ising market model

H Js s hsi i i
i

N

= − ++
=
∑ 1

1

on a periodic chain with N spins s
i
 = ±1, where J is the coupling 

between neighbouring spins (how strongly a trader is influenced 

by traders he/she knows), and h is the external magnetic field 

(how strongly past successes influence present actions) using the 

Metropolis algorithm.

Solution. Before we start coding, we should understand that 

within the Metropolis algorithm, in each Monte Carlo step, we 

pick a random spin si
 and flip it. This trial move is accepted with 

unit probability if ∆E = E
f
 – E

i
 < 0, and accepted with probability 

exp(– β∆E) if ∆E = E
f
 – E

i
 > 0. Here, β = 1/T is the inverse tem-

perature of the simulation. The lower the temperature, the more 

rational traders are in the market.

Since only s
i
 is flipped, we have ∆E = +2Js

i
 (s

i–1
 + s

i+1
) – 2hs

i
.

The MATLAB programme that we can use to simulate this at 

β = 1 is shown below.

% number of traders
N = 1000;
% duration of simulation
T = 1000000;
% simulation parameters
J = 1.0;
h = 0.5;
beta = 1.0;
% initial state
s = 2*(rand(1, N) < 0.5) – 1;
% Metropolis simulation
for t = 1:T
 % pick random trader
 i = floor(N*rand( )) + 1;
 % calculate energy change
 if i == 1
   dE = 2*J*s(i)*(s(N) + s(i + 1)) – 2*h*s(i);
 else
  if i == N
   dE = 2*J*s(i)*(s(i – 1) + s(1)) – 2*h*s(i);
  else
   dE = 2*J*s(i)*(s(i – 1) + s(i + 1)) – 2*h*s(i);
  end
 end
 % accept flip?
 if dE < 0
  s(i) = –s(i);
 else
  if rand( ) < exp(–beta*dE)
   s(i) = –s(i);
  end
 end
end
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Appendix 3. Final Examination for 
PH4410 Econophysics in Semester II,  
AY 2012/2013

The final examination for PH4410 Econophysics consists of four 

questions to be answered within two and a half hours. The ques-

tions are:

1. A pedestrian guide to random matrix theory.

Random matrix theory, first developed in nuclear physics, has  

led to exciting developments in wave optics, condensed matter 

physics, as well as number theory and statistics. There are several 

universal families of random matrices. A random symmetric  

2 × 2 matrix

A =
⎡

⎣
⎢

⎤

⎦
⎥

a a

a a
11 12

12 22

is a member of one such family, the Gaussian orthogonal ensem-

ble (GOE), if it satisfies three conditions:

1. for any 2 × 2 orthogonal transformation OOT = 1 = OTO, 

A′ = OAOT is also a member of the GOE;

2. the matrix elements a
11

, a
12

, and a
22

 are statistically inde-

pendent; and

3. the probability density P(A) dA, where dA = da
11

 da
12

 da
22

 
is given by

  P(A) dA ∝ exp(–a TrA2 + b TrA + c ) dA, (1)

 where a > 0, b, and c are real numbers.

 a.  Compare P(A) in (1) with the normal distribution 

    P(x) = − −⎡

⎣
⎢

⎤

⎦
⎥

1
2 22

2

2πσ
µ
σ

exp ( ) ,x
 

	 	 and	explain	the	significance	of	a, b, and c.

 (3 marks)

 b.  Random matrix theory predicts that, while a
11

, a
12

, 

and a
22 

 are statistically independent, the eigenvalues 

λ
1
 and λ

2
 are strongly correlated. To see this, let us 

write P(A) da
11

 da
12

 da
22

 = Q(λ
1
, λ

2
, θ)dλ

1
 dλ

2
 dθ in 

terms of the eigenvalues λ
1
 and λ

2
. θ is the angle the 

normalized eignvector u
1
 makes with the x axis (see 

Figure 1).

   (i)  Show that the independent matrix elements of A can 

be written as

  a
11

 = λ
1
 cos2 θ + λ

2
 sin2 θ,

  a
12

 = (λ
1
 – λ

2
)

 
cos θ sin θ,

  a
22

 = λ
1
 sin2 θ + λ

2
 cos2 θ

   in terms of λ
1
, λ

2
, and θ.

 (7 marks)

  (ii)  Write down the Jacobian ||J|| associated with the 

change of integration variables from (a
11

, a
12

, a
22

) to 

(λ
1
, λ

2
, θ), and show, without explicitly evaluating 

the determinant, that || J || ∝ | λ
1
 – λ

2
|. 

 (10 marks)

  (iii)  Hence, or otherwise, show that the joint probability 

distribution function for λ
1
 and λ

1
 is

 

R d d Q d d d

a

( , ) ( , , )

exp[ (

λ λ λ λ λ λ θ λ λ θ

λ λ λ λ

π

1 2 1 2 1 2 1 20

2

1 2 1
2

2

=

− − +
∫

∝| | 22
1 2 1 2) ( )] .+ +b d dλ λ λ λ

 (5 marks)

2. Minimal spanning tree and minimal spanning forest.

The minimal spanning tree (MST) is a very convenient tool to 

visualize the cross correlations between different financial 

instruments.

a. Describe how you would construct the MST of N stocks, 

starting from their Pearson cross correlations –1 ≤ C
i j
 ≤ 1.

 (10 marks)

b. Figure 2 shows the MST of the 36 Nikkei 500 industries 

constructed from their indices in the second half of 2007. 

The thickness of the link between two industries i and j is 

proportional to the cross correlation C
i j
 between them. The 

number beside each link tells us the order in which the 

links were added to the MST.

	 	 Explain	the	significance	of	the	hubs	NELI	and	NMAC,	
in relation to peripheral nodes like NFIN and NAIR.

 (5 marks)

c. Sketch the minimal spanning forest of the 36 Nikkei 500 

industries.

 (10 marks)

3. Price formation through a double auction market.

Consider a simple model of price formation through a double auc-

tion market with two groups of traders: one which puts in bid 

orders uniformly distributed between the limits p
1
 and p

3
, and 

another which puts in ask orders uniformly distributed between 

the limits p
2
 and p

4
, with p

1
 < p

2
 < p

3
 < p

4
.

(a) If we simulate such a model to generate a price time series 

p(t), what is the average price < p > that we should expect?

 (5 marks)

(b)	What	 is	 the	variance	we	expect	 to	find	in	 the	price	 time	
series?

 (5 marks)

(c)	 What	is	the	average	bid-ask	spread	we	expect	to	find?
 (5 marks)

W���
–sin�T

EQU�T

T

W���
EQU�T

UKP�T

Z

[

Figure 1. 
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(d)	What	 is	 the	 variance	 we	 expect	 to	 find	 for	 the	 bid-ask	
spread?

 (5 marks)

(e) Will this model produce volatility clustering in the price 

time series? Explain.

 (5 marks)

4. Agents with bounded rationality.

The economist Herbert Simon proposed that the rationality of 

individuals is limited to the information they have, the cognitive 

resources they can muster, and the time available to make deci-

sions. Because bounded rationality is still a mode of decision 

making, most economists focused on building models of the  

decision process. Such an approach makes the development of 

agent-based models (ABM) extremely challenging.

In contrast, econophysicists consider simple agents whose 

rationality is bounded by the amount of information it can inte-

grate from its neighbours. A toy model of bounded rationality is 

the Ising model

H J s s h sij i j i i
ii j

= − +∑∑
( , )

on a square lattice shown in Figure 3. In this model, an agent can 

buy (s
i
 = +1) or sell (s

i
 = –1), and it arrives at this decision by 

considering what its neighbours are doing (–∑
(i, j)

 J
ij 
s
i
s

j
) and also 

its own decision (h
i 
s

i
).

a. Describe how you would simulate such a model at inverse 

temperature β = T–1, using the Metropolis algorithm. 

 (10 marks)

b. Elaborate on how this toy model provides a stylized expla-

nation	of	booms	and	busts	in	the	financial	markets.
 (10 marks)

c. In real markets, traders do not just buy and sell. They 

sometimes decide to hold. We can incorporate this  
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behaviour into the model by going from s
i
 = ±1 to s

i
 = 

–1, 0, +1, keeping the Hamiltonian H the same.

  Describe the most important differences between the 

dynamics	 of	 this	 modified	 Ising	 model	 and	 that	 of	 the	
original Ising model.

 (5 marks)

Appendix 4. Approved Reading Lists for 
Open Textbook Chapters
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Appendix 5. Snippets from Chapters 6 
and 7 of the Open Textbook

Chapter 6

After our discussion in part A about correlation filtering and 

MST, we can now start using them to make stocks clusters. There 
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are different methods on doing time series clustering for  

stocks. In this chapter we will only discuss some of them; hierar-

chical clustering, k-means clustering, spectral clustering, and 

many others. Next, we will try to discuss more in depth each of 

them.

Hierarchical Clustering

Hierarchical structures exist in different complex systems, and 

the financial market is no exception. A hierarchical structure is 

defined as the organization of the elements into clusters each con-

sisting of subclusters and so on up to a certain level (Simon, 

1962). We can observe this hierarchy by mapping the hierarchical 

tree from the correlation matrix that we studied in the previous 

part. The hierarchical tree is based on the correlation between 

stocks, therefore a correlation matrix, an MST, or a PMFG would 

suffice to make a hierarchical tree. Different correlation based 

network can be associated with the same hierarchical tree.

Now let us consider the triangular version of the 4 × 4 correla-

tion matrix that we have in the previous section.

C =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 00 0 13 0 90 0 81
1 00 0 57 0 34

1 00 0 71
1 00

. . . .
. . .

. .
.

Suppose we name each stock based on its index such as stock 

1, 2, 3, and 4. From this correlation matrix, we can proceed to 

make a hierarchical tree with two methods, average linkage clus-

ter analysis (ALCA) and single linkage cluster analysis (SLCA). 

The example below is about making SLCA. This algorithm is 

based on Mantegna’s research on 2008.

1. Set a matrix B = C = 

1 00 0 13 0 90 0 81
1 00 0 57 0 34

1 00 0 71
1 00

. . . .
. . .

. .
.

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2. Choose the maximum correlation b
hk

 in the correlation 

matrix B. In this case we choose h and k to be a simple 

cluster of one element each while they can actually be 

larger clusters. In this case, the maximum correlation b
hk

 =  

0.90 where h = 1 and k = 3. For all i ∈ h and j ∈ k, sets the 

elements pij
<
 of the matrix CSLCA

<  as p p bij ji hk
< <= = .

3. Merge cluster h and k into a single cluster q. The merging 

operation	 identifies	a	node	 in	a	rooted	 tree	connecting	h 

and k at the correlation b
hk

. So the merged index will be the 

stock corresponding to the indices 3 and 4. Note that after 

merger the matrix size will be (M – 1) × (M – 1) instead of 

M × M.

4.	 Redefine	the	matrix	B:

b Max b b j h and j k
b b otherwise
q j hj kj

ij ji

= ∉ ∉
=

⎧
⎨
⎪

⎩⎪

[ , ],
,

After the first implementation of algorithm B changed as 

shown as below:

B =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 00 0 57 0 81
1 00 0 34

1 00

. . .
. .

.

  The above matrix B corresponds to:

1/3 2 4
1/3 1.00 0.57 0.81
2 0.57 1.00 0.34
4 0.81 0.34 1.00

 1/3 represents the cluster made of stock 1 and 3. Following 

the algorithm, we get each element of the matrix to be the 

highest correlation of the element with the new cluster. 

Note that stock 1 and stock 3 are connected in the hierar-

chical tree at correlation 0.90 which was the largest  

correlation between stock 1 and stock 3.

  If we continue the procedure, we will get the corre-

sponding matrix:

B = ⎛
⎝
⎜

⎞

⎠
⎟

1 00 0 57
0 57 1 00
. .
. .

  Where now the cluster 1/3 is merged with stock 4 at 

correlation 0.81. Applying the procedure one more time, 

we get the cluster 1/3/4 to be connected with stock 2 at 

correlation 0.57. At this point the matrix size is 1, and thus 

we can make the corresponding hierarchical tree shown 

below:

  Whereas the corresponding matrix associated with  

SLCA is

 

CSLCA
< =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 00 0 57 0 90 0 81
1 00 0 57 0 57

1 00 0 81
1 00

. . . .
. . .

. .
.

⎟⎟

 ALCA will later be encountered in the exercise problem.

This hierarchical structure might be useful to extract meaning-

ful economic taxonomy. In our dummy correlation matrix, this 

tree might not be very useful. However, if we are analyzing con-

siderably more stocks we might arrive to some interesting conclu-

sive. For example, Mantegna detected that ores companies are 

affected differently than aluminium and copper companies which 

traditionally classified as raw materials companies according to 

0.51

0.81

0.90

1 3 4 2

Figure 1. Hierarchical tree representing the 
correlation matrix, not drawn to scale.
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Forbes. In his research he found that ore companies form differ-

ent cluster than the two other kinds of companies based on the 

hierarchical tree. 

Hierarchical clustering can thus be visualized better with 

using colour map. Consider colour map of S&P 100 in no particu-

lar order.

By using the algorithm presented by the Matlab demo, we can 

apply SLCA to obtain the corresponding hierarchical tree. Sorting 

the stocks according to their hierarchy will result on the colour 

map below.

After the stocks are ordered according to the SLCA, some  

yellowish squares started to appear. Those squares signify  

clusters since it means that highly correlated stocks are placed 

nearly located to each other in the hierarchical tree. The arrow 

shows where the cluster is. The more stocks we include in the 

calculation, the more obvious the clusters can be seen.

Chapter 7

Genetic Algorithm

The technique employed for the agents to adapt and evolve is 

called the Genetic Algorithm (GA). This was applied to the SFI 

Market model. GA is a stochastic search algorithm based on the 

mechanics of natural selection (Darwin, 1897) and population 

genetics (Mettler et al., 1988). It is modelled after natural genetic 

operators that enable biological populations to effectively and 

robustly adapt to their environment and to changes in their 

environment. 

Since the algorithm is based on biological evolution, it makes 

sense to first describe the process from the biological point of 

view, before we take on the financial perspective. Evolution 

occurs in organic entities capable of encoding the structure of  

living organisms. These entities are known as chromosomes. 

Chromosomes transform due to mutations and crossovers. The 

objective of mutation is to introduce diversity into the population, 

whereas a crossover enhances the schemata[13]. The diagram 

below illustrates a reproduction process of the cell (agent) after 

the genetic operator modifies the offspring’s string, or introduces 

new strings into the system. 

Now that you have some sense of how a GA works, we are 

going to introduce the rules of GA as they were conceived by 

John Holland[13]. There are four basic elements:

1. Chromosome: different types of decisions, resources,  

etc. 

2. Creator: generalize by an operator that starts by generating 

an initial pool of chromosomes.

3. Evaluator: rates each chromosome by giving the highest 

rating to those that are able to solve their task most of the 

time. 

4. Generator: uses mutate and crossover operations to 

randomly	 reconfigure	 the	 solutions	 specified	 by	 the	
chromosomes. 

The elements are an example of how an organism evolves into 

an effective system, and also a process of natural selection of the 

fittest chromosome. This selection process consists of a few mod-

ules, namely, population, interaction, evaluation, reproduction 

Figure 2. The colours represent correlations between 
stocks where lighter colours have more correlation than 
darker colours.

Figure 3. Ordered colour map with SLCA.

(1 2 3 4 5 6 7 8 9)

(1 0 0 0 0 0 0 0 1)

(1 2 3 4 5 0 0 0 1)

(1 0 0 0 0 6 7 8 9)
Crossover

Figure 4. Cross-over operator.
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and modification[13]. The sequence of a genetic algorithm is as 

follows:

1.	 We	first	initialize	a	number	of	traders
2. Each trader has a string that acts as their strategies during 

the interactions.

3. During the ‘Market Period’, the Traders interact with the 

system:

	 (a)	 	The	algorithm	evaluates	the	fitness	of	the	population.	
e.g., wealth of the agent.

	 (b)	 	System	 removes	 agents	 based	 on	 the	 fitness	 of	 the	
agents.	Traders	that	did	not	make	as	much	profit	as	the	
rest would be remove from the model.

 (c)  The agents reproduce with the probability that is pro-

portional	to	their	fitness	criterion.	With	this,	the	sub-

sequent generation will contain strategies that will 

make	them	‘fitter’	through	the	trading	process.
	 (d)	 	Perform	modification	 to	 the	 ‘newly	 created	 traders’	

using genetic operators.

4. Outputs the end result for the ‘Market cycle’ and loop the 

process

In general, we are trying to evolve the population, or rather 

teach the agents such that they are best adapted to the environ-

ment. However, with only this process, the agents do not evolve 

over time and the agents left behind after going through GA will 

be one of the agents we created at the start. 

Classifier System

The classifier system (CS) is an adaptive rule-based system which 

learns syntactically simple string rules, called classifiers, as intro-

duced by Holland and Reitman (1978). It has the ability to learn 

to classify messages from the environment into general sets. This 

is similar to the feedback process in control system in many 

respects. The mechanism of the CS works with rules as condition/

action rules—each rule is a simple message as the message act as 

conditions to the other rules. When more than one rule is trig-

gered by a condition, the one with the highest strength will win. 

Figure 5. An illustration of agents interacting in on a lattice.

Source: http://www.scidacreview.org/0802/html/abms.html
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Therefore the mechanism requires a certain form of strength to be 

calculated. This is done with the Bucket-Brigade Algorithm. 

When a rule wins, it pays the condition money in terms of strength 

and when it triggers other rules, the winner pays him. This covers 

as a useful measure to the rules contribution to the system. 

By coupling the CS and the GA, the GA will act to revise the 

rules and reproduces by the strength of the rule. The complex 

system simulated by these 2 mechanism causes clusters and hier-

archies of rules to emerge.

Appendix 6. End-of-Chapter Exercises

Chapter 6

Ex. 6.1. (Ian Beng Hau Tan)

In this exercise, you will be guided through the process of gener-

ating the correlation matrix in MATLAB. You will then be guided 

through methods to generate the MST using either MATLAB or 

Gephi, an open source visualization software for networks. 

1. Use the Historical Stock Data utility written by Josiah 

Renfree on the MATLAB File Exchange website, which 

automatically downloads stock prices to the MATLAB 

array structure price (i). For this part of the exercise, read 

the documentation on the Historical Stock Data utility and 

download the daily returns for the Dow Jones 30 over a 

period of two years. 

	 	 We	will	use	 the	Pearson	correlation	coefficient,	given	
by

ρij
i j j

i i j j

YY Y Y

Y Y Y Y
=

−

−( ) −( )
i

2 2 2 2

 where Y is the log return of a stock, Y
i
 = ln P

i
 (t) – ln P

i

(t – ∆t). For this exercise, use P, the closing price of a 

stock i at the end of an interval t. We denote ∆t as the time 
horizon.  

2. For each stock i in the Dow Jones 30, generate the time 

series P
i
 in MATLAB using a time horizon of 1 trading 

day.  

3. Generate the log return series Y
i
.  

4. Generate the correlation matrix, using the command z = 

corr(y).

5. Generate the MST: 

   With MATLAB. First, create a linkage tree by using 

the linkage function (requires MATLAB Statistics 

Toolbox), or generate your own matrix of unique 

links and convert it into a tree structure. Next, use this 

linkage tree as an input into graphminspantree 

(requires MATLAB Bioinformatics Toolbox). Those 

who do not have access to either toolbox may try  

the free MatlabBGL toolbox on the MATLAB File 

Exchange. 

   Without MATLAB. Use the open source software 

Gephi, available for Mac, Windows and Linux plat-

forms. Generate a matrix of unique links, as shown in 

Section 6.1.3. The matrix of unique links can be saved 

in	UCINET	DL	or	CSV	formats	with	a	slight	modifi-

cation (see the online documentation in the Gephi 

web	site).	Import	this	DL	or	CSV	file	into	Gephi	and	
the software will do the rest. 

  Bonus: generating the PMFG
   The steps are similar to that for the MST. The easiest 

way to generate the PMFG in MATLAB is to use the 

(free) PMFG routine developed by Tomaso Aste in 

MATLAB File Exchange. This routine requires the 

(also free) MatlabBGL toolbox, also available on 

MATLAB File Exchange. Alternatively, generate the 

matrix of unique links and input this into Gephi. 

Chapter 7

Ex. 7.4. (Henry Pui Loong Lee & Boon Kin Teh)

In this exercise, we will demonstrate how to write a basic pro-

gramme that simulates the agent-based Ising model using the 

Metropolis algorithm, which is given below.

Agent based Ising model (Metropolis algorithm) 

(a) A trader is randomly drawn from the square lattice say 

trader i, and try to flip the decision made.

S
i
	→	–S

i

(b) Calculate the energy difference flipping, H(t) and after 

flipping, H(t
+
) as

∆H = H(t
+
) – H(t) = 2a S t S t beS ti j ij NN

( ) ( ) ( ).+
=∑ 2�

(c) Then decide the flip is accepted or not

∆
∆ ∆
H
H

always accept
k H

<
> −

⎧
⎨
⎪

⎩⎪

0
0 Accept with probabily exp( )

(d) Iterate steps (i) to (iii).

1. First, we need to have a N × N lattice, in which the spins 

point up or down randomly. Write a programme that will 

generate a N × N square lattice with random decision, 

which are either buy or sell. 

2. The Metropolis algorithm is a stochastic process, as it 

picks a trader randomly from the lattice in step (b). Write 

a programme that does this.

3. In the real world, there are a large number of traders in the 

financial	market.	However,	 to	simulate	such	a	 large	sys-
tem we require a lot of computational power. We therefore 

impose periodic boundary conditions on the system. In 

periodic boundary condition, the boundaries of each end 

are connected to the opposite end. You can imagine the 

square lattice lying on the surface of a torus. 

  After picking a trader, we have to decide whether the 

trial	flip	is	accepted,	according	to	the	detail	balance	rule	
stated in step (c). 
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  Write a programme that calculates the energy difference 

as in steps c) in the algorithm, ensuring periodic boundary 

conditions.

4. Now you have all the pieces to simulate the agent based-

Ising model, write an iterative programme that combines 

all the code. 

Appendix 7. MATLAB Demos

Chapter 6

%  File: hiertree.m
%  Authors: Tan Beng Hau
%
%  Description:  A dendrogram is constructed based on a given 
%    clustering method. The dendrogram sorts accord-
%    ing to the ultrametric distance. This sorting is 
%   used to create a colour map of the clustering.
%    For more distinct clusters, use more stocks in the 
%   portfolio.
%  Requires: Matlab Statistics Toolbox
%
%  Acknowledgements:
%  hist_stock_data.m downloader from Matlab File Exchange
%  Kenneth Lee for advice 

%  Download the stock prices for the stocks from a text file
labels = importdata(‘TICKERS100.txt’); % S&P 100
price =  hist_stock_data(‘01012010’,‘31122011’,  

‘TICKERS100.txt’);

for i = 1:numel(labels)
 price2(:,i) = [price(i).AdjClose(end:-1:1)];
 % other ways may result in structtodouble error.
end

y = diff(log(price2)); %log returns

%  Initialise the correlation matrix
z = corr(y);

D = pdist(z,‘correlation’);
%  Sornette’s metric distance
%  Another approach is to define your own distance. 
ds = sqrt(2*D);

%  Linkage options given by the Statistics Toolbox are:
%  single, average, ward, complete, weighted, median, centroid, 

ward
%  If the linkage option is not defined, carries out SLCA by 

default.
%  I believe centroid clustering is k-means, where k can be 

defined in 
%  cluster(tree,k).

%  Metric information:
%  ‘correlation’ calculates 1 – r_ij, where r_ij is the Pearson 
%  correlation coefficient.

tree = linkage(z,‘single’,‘correlation’); 
%  Scale tree weights to Sornette’s metric distance
for i=1:size(tree,1)
 tree(i,3) = sqrt(2*tree(i,3));
end

%  I didn’t implement this but it should be easy to. 
%  t_cluster = cluster(tree, ‘maxclust’,8);

%  Perform the leaf ordering based on the Sornette metric
leafOrder = optimalleaforder(tree,ds,‘Transformation’,‘inverse’);
[H,T1,outperm] = 
dendrogram(tree,100,‘Reorder’,leafOrder,‘labels’,labels,‘Color 
Threshold’,‘default’,‘Orientation’,‘left’);
xlabel(‘Ultrametric distance’); ylabel(‘Stocks’);
title(‘Dendrogram of the S&P 100’);

% Construct the ‘random’ colour map

figure(2)
colormap(hot); % To reverse gray colormap, use colormap 
(flipud(gray)).
cmin = 0; cmax = 1; % Define the color mapping space
imagesc(z)
caxis([cmin cmax]);
title(‘S&P 100 in no particular order’);

% Reconstruct the matrix from the SLCA ordering
CM_reconst = z(outperm,outperm);

% Construct the SLCA-ordered colour map

figure(3)
colormap(hot); % To reverse gray colormap, use colormap 
(flipud(gray)).
cmin = 0; cmax = 1; % Define the color mapping space
imagesc(CM_reconst)
caxis([cmin cmax]);
title(‘Single linkage cluster analysis of S&P 100’);

Chapter 7

% function [M, E] = Metropolis_Stock(N,J,B,steps)
% to watch the movie, use this code
% Metropolis(250,1,0.001,1000)
% Metropolis_Stock(250,–1,0.001,1000) % market converges to 
%   equilibrium 
% Metropolis_Stock(128,2/3,0,1000) %  noisy normal market
%===========================================
% [M, E] = Metropolis(N,J,B,steps) 
%  Updates a single site at a time. 
%  Choose sites at random to ensure no bias. The 
%  probabilistic part of the algorithm is done using a 
%  random number generator
%
% sigma - Ising Matrix ‘space’
%   Every i,j represents ONE Agent
% N - number of rows and cols
% J - Coupling Constant 
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% B - Magnetic field (1 = all black -1 = all white)
% 
% steps - number of iterations
% dE - Change in Energy
% beta(1/kT) -  inverse temperature times interaction 

strength 
%   (beta >= 0)
%   (critical value = 0.8813736) 
%   beta has no meaning if <=0
%    Beta determines how “much” agents interact 
%   with each other
% E - Higher E → “closer” to equlibrum
%===========================================

figure(1)
set(gcf,‘Position’,[200 50 500 500],‘Color’,‘White’)

N=250; % 128;%250; % no of traders
J=1; % coupling constant 
B=0.01; % 0.5 dissappear %0;%.1; %–0.5:0.5 
steps=1000;
M=zeros(steps);
E=zeros(steps);
randTol = 0.1; 
% The tolerance, dampens the spin flip process rand(‘twister’); 
%  seed rand()
sigma = (–1).^(round(rand(N))); % initial market state 
%  First we generate a random initial configuration→ ‘Ising Space’

%  beta=2*log(1+sqrt(2)); % 2*log(1+sqrt(2)) bring to 
equilibrium 

% state or o.w market cool down –0.5; 
% Beta will be determine by a GA
RandNum = rand(steps,1); 
% get rand first before the for loop. Func called once 

market_mood=2; %randi(4);
% first mood
old_market_mood=market_mood; 
% for first mood
market_cycle=50; 
% how often the market mood changes in steps(time)
behaviour_of_market=randi(4,(steps/market_cycle)+1,1); 
% preallocate number of ‘moods’ needed
current_cycle=1;
% count no of cycles

if ~isinteger(int8(steps/market_cycle))
 disp([‘You have not entered a market cycle divisible 
by’,num2str(steps)])
 market_cycle=100;
end

for i=1:steps
  neighbours = circshift(sigma, [0 1]) + ... 
  % up
  circshift(sigma, [0 –1]) + ... 
  % down

  circshift(sigma, [1 0]) + ... 
  % right
  circshift(sigma, [–1 0]); 
  % left

  dE = (J*(sigma .* neighbours) + B*sigma);  
% Calculates the change in energy of flipping a spin

 % dE = –2 * neighbours + 4 + 2 * B * sigma;
 % if dE <= 0 we make the proposed Change,
 % if dE > 0 we make the change with probability e^(dE/kT)
 % here kT =1

 % beta=stock_market1(neighbours,sigma,N);

  [beta
  market_mood]=stock_market2(neighbours,N, 

market_mood,old_market_mood,RandNum(i,1)); %super 
stock market!

 old_market_mood=market_mood;
  % stock_market returns a NON ZERO market_mood, we 

can keep it

 current_cycle=((i/market_cycle ~= 
 current_cycle)*current_cycle)+(i/market_cycle == 
 current_cycle)*(current_cycle+1);
  % if steps NOT reach use old mood, else change mood of 

market

  market_mood=(i/market_cycle == current_cycle-1)* 
behaviour_of_market(current_cycle);

 % market mood changes every 500 steps←set by user 
 % current_cycle was increase since the first
 % step so i need to -1 to the current_cycle

 %  prob = exp(dE); 
 %  probability whether or not to flip a spin  

prob = exp(-beta.*dE); % change beta to a NxN matrix! 
 % the negative is with the dE term
  transitions = (rand(N) < prob ).*(rand(N) < randTol) * –2 + 

1; % The ‘new’ space

 sigma = sigma .* transitions;
 M(i) = sum(sum(sigma));
 %  E(i) = –sum(sum(dE))/2; 
 % Divide by two because of double counting
  E(i) = sum(sum(dE))/2; 
 % Divide by two because of double counting

 %=======================================
 %===========Output phase===================
 image((sigma+1)*128);
  plot_title = sprintf(‘%dx%d Stock Market variant of 

Metropolis Ising model’,N,N); % converts to string
 title(plot_title);
  xlabel(sprintf(‘J = %0.2f, M = %0.2f, E = %0.2f, i= %d’,  

J, M(i)/N^2, E(i)/N^2 , i));
 %set(gca,’YTickLabel’,[],‘XTickLabel’,[]);
  set(gca, ‘YTickLabel ’ , [] , ‘XTickLabel ’ , [] , ‘XTick’ ,[] , 

‘YTick’,[]); 
 axis square; colormap copper; drawnow;
%===========================================
end %end of for loop!
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figure(2)
set(gcf,‘Position’,[200 50 1800 700],‘Color’,‘White’)
%subplot(1,2,1)
hold on
plot(1:steps,E(:,1),‘–’)
xlim([0 steps])
%ylim([0 2*10^5]) %?????????????????????????????
title([‘Price’]);

%subplot(1,2,2)
%hold on
%plot(1:steps,beta,‘–’)
%xlim([0 steps])
%ylim([–1 1]) %?????????????????????????????
%title([‘beta’]);
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