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Alfred H. Barr, Jr. (1902-1981), an American 
art historian and the first director of the Mu-
seum of Modern Art (MoMA) in New York City, 
was one of the most influential forces in the 
development of popular attitudes towards 
modern art. This 1936 chart by Barr uses a 
network framework to illustrate the devel-
opment and crosscurrents of modern art. It 
appeared on the dust jacket of the catalogue 
for Cubism and Abstract Art, the movement’s 
first major exhibit at MoMA.
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SECTION 6.1

Founded six years after birth of the World Wide Web, Google was a 

latecomer to search. By the late 1990s Alta Vista and Inktomi, two search 

engines with an early start, have dominated the search market. Yet, the 

third mover Google soon not only became the leading search engine, but 

acquired links at such an incredible rate that by 2000 became the biggest 

hub of the Web as well [1]. But it didn’t last: In 2011 Facebook, a youngster 

with Google’s standards, took over as the Web’s biggest node. 

The Web’s competitive landscape highlights an important limitation of 

our modeling framework: None of the network models we encountered so 

far are able to account for it. Indeed, in the Erdős-Rényi model the identity 

of the biggest node is driven entirely by chance. The Barabási-Albert mod-

el offers a more realistic picture, predicting that each node increases its 

degree following k(t) ∼ t1/2. This means that the oldest node always has the 

most links, a phenomena called the first mover’s advantage in the business 

literature. It also means that a late node can never become the largest hubs. 

In reality the growth rate of a node does not depend on its age alone. 

Instead webpages, companies, or actors have intrinsic qualities that influ-

ence the rate at which they acquire links. Some show up late and never-

theless grab an extraordinary number of links within a short timeframe. 

Others rise early yet never quite make it. The goal of this chapter is to un-

derstand how the differences in the node’s ability to acquire links affect 

the network topology. Going beyond this competitive landscape, we also 

explore how other processes, like node and link deletion (Figure 6.1) or the 

aging of nodes, phenomena frequently observed in real networks, change 

the way networks evolve and alter their topology. Our goal is to develop a 

self-consistent theory of evolving networks that can be adjusted at will to 

predict the dynamics and the topology of a wide range of real networks.

INTRODUCTION

EVOLVING NETWORKS

Figure 6.1
Garment District

The Garment District is a Manhattan neigh-
borhood located between Fifth and Ninth Ave-
nue, from 34th to 42nd Street. Since the early 
20th century it has been the center for fash-
ion manufacturing and design in the United 
States. The Needle threading a button and the 
Jewish Tailor, two sculptures located in the 
heart of the district, pay tribute to the neigh-
borhood’s past.

The garment industry of New York City offers 
a prominent example of a declining network, 
helping us understand how the loss of nodes 
shapes a network’s topology (BOX 6.5). Uncov-
ering the impact of processes like node and 
link loss on the network topology is one of the 
goals of this chapter. 
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THE BIANCONI-BARABÁSI
MODEL

SECTION 6.2

Some people have a knack for turning each random encounter into a 

lasting social link; some companies turn each consumer into a loyal part-

ner; some webpages turn visitors into addicts. A common feature of these 

successful nodes is some intrinsic property that propels them ahead of the 

pack. We will call this property fitness. 

Fitness is an individual’s gift to turn a random encounter into a last-

ing friendship; it is a company’s knack to acquire consumers relative to 

its competition; it is a webpage’s ability to bring us back on a daily basis 

despite the many other pages that compete for our attention. Fitness may 

have genetic roots in people, it may be related to innovativeness and man-

agement quality in companies and may depend on the content offered by 

a website. 

In the Barabási-Albert model we assumed that a node’s growth rate is 

determined solely by its degree. To incorporate the role of fitness we as-

sume that preferential attachment is driven by the product of a node’s fit-

ness, η, and its degree k. The resulting model, called the Bianconi-Barabási 
or the fitness model, consists of the following two steps [2, 3]:

• Growth 

In each timestep a new node j with m links and fitness ηj is added to 

the network, where ηj is a random number chosen from a fitness dis-
tribution ρ(η). Once assigned, a node’s fitness does not change.

• Preferential Attachment 

The probability that a link of a new node connects to node i is propor-

tional to the product of node i’s degree ki and its fitness ηi,

In (6.1) the dependence of Πi on ki captures the fact that higher-degree 

nodes have more visibility, hence we are more likely to link to them. The de-

EVOLVING NETWORKS

The movie shows a growing network in which 
each new node acquires a randomly chosen fit-
ness parameter at birth, indicated by the color 
of the node. Each new node chooses the nodes 
it links to following generalized preferential 
attachment (6.1), making a node’s growth rate 
proportional to its fitness. The node size is pro-
portional to its degree, illustrating that with 
time the nodes with the highest fitness turn 
into the largest hubs. Video courtesy of Dashun 
Wang.

Online Resource 6.1

The Bianconi-Barabási Model
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pendence of Πi on ηi implies that between two nodes with the same degree, 

the one with higher fitness is selected with a higher probability. Hence, (6.1) 
assures that even a relatively young node, with initially only a few links, 

can acquire links rapidly if it has larger fitness than the rest of the nodes.

DEGREE DYNAMICS
We can use the continuum theory to predict each node’s temporal evo-

lution. According to (6.1), the degree of node i changes at the rate

Let us assume that the time evolution of ki follows a power law with a 

fitness-dependent exponent β(ηi ) (Figure 6.2),

Inserting (6.3) into (6.2) we find that the dynamic exponent satisfies (AD-
VANCED TOPICS 6.A)

with

In the Barabási-Albert model we have β = 1/2, hence the degree of each 

node increases as a square root of time. According to (6.4), in the Bian-

coni-Barabási model the dynamic exponent is proportional to the node’s 

fitness, η, hence each node has its own dynamic exponent. Consequently, 

a node with a higher fitness will increase its degree faster. Given suffi-

cient time, the fitter node will leave behind nodes with a smaller fitness 

(Figure 6.2). Facebook is a poster child of this phenomenon: a latecomer 

with an addictive product, it acquired links faster than its competitors, 

(a) In the Barabási-Albert model all nodes in-
crease their degree at the same rate, hence the 
earlier a node joins the network, the larger is 
its degree at any time. The figure shows the 
time dependent degree of nodes that arrived 
at different times (ti = 1,000, 3000, 5000), 
demonstrating that the later nodes are unable 
to pass the earlier nodes [4, 5].

(b) Same as in (a) but in a log-log plot, demon-
strating that each node follows the same 
growth law (5.7) with identical dynamical ex-
ponents β = 1/2.

(c) In the Bianconi-Barabási model nodes in-
crease their degree at a rate that is determined 
by their individual fitness. Hence a latecomer 
node with a higher fitness (purple symbols) 
can overcome the earlier nodes.

(d) Same as in (c) but on a log-log plot, demon-
strating that each node increases its degree 
following a power law with its own fitness-de-
pendent dynamical exponent β, as predicted 
by (6.3) and (6.4).

In (a)-(d) each curve corresponds to average 
over 100 independent runs using the same fit-
ness sequence.

Figure 6.2

Competition in the Bianconi-Barabási Model
(a)

(c)

(b)

(d)
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eventually becoming the Web’s biggest hub.

DEGREE DISTRIBUTION
The degree distribution of the network generated by the Bian-

coni-Barabási model can be calculated using the continuum theory 

(ADVANCED TOPICS 6.A), obtaining

Equation (6.6) is a weighted sum of multiple power-laws, indicating 

that pk depends on the precise form of the fitness distribution, ρ(η). To 

illustrate the properties of the model we use (6.4) and (6.6) to calculate 
β(η) and pk  for two fitness distributions:

•  Equal Fitnesses

When all fitnesses are equal, the Bianconi-Barabási model reduc-

es to the Barabási-Albert model. Indeed, let us use ρ(η) = δ(η − 1), 

capturing the fact that each node has the same fitness η = 1. In this 

case (6.5) yields C = 2. Using (6.4) we obtain β = 1/2 and (6.6) predicts 

pk ∼ k−3, the known scaling of the degree distribution in the Barabá-

si-Albert model. 

•  Uniform Fitness Distribution

The model’s behavior is more interesting when nodes have differ-

ent fitnesses. Let us choose η to be uniformly distributed in the 

[0,1] interval. In this case C is the solution of the transcendental 

equation (6.5)

whose numerical solution is C* = 1.255. Consequently, (6.4) predicts 

that each node i has a different dynamic exponent, β(ηi) = ηi /C*. 

Using (6.6) we obtain

predicting that the degree distribution follows a power law with 

degree exponent γ = 2.255. Yet, we do not expect a perfect power 

law, but the scaling is affected by an inverse logarithmic correc-

tion 1/lnk.

Numerical support for the above predictions is provided in Figures 
6.2 and 6.3. The simulations confirm that ki(t) follows a power law for 

each η and that the dynamical exponent β(η) increases with the fit-

ness η. As Figure 6.3a indicates, the measured dynamical exponents 

are in excellent agreement with the prediction (6.4). Figure 6.3b also 

documents an agreement between (6.8) and the numerically ob-

tained degree distribution. 

EVOLVING NETWORKS THE BIANCONI-BARABÁSI MODEL

(6.7)C Cexp( 2 / ) 1 1 /− = −

(a) The measured dynamic exponent β(η) 
shown in function of η for a uniform ρ(η) dis-
tribution. The squares were obtained from 
numerical simulations while the solid line 
corresponds to the analytical prediction β(η) 
= η/1.255. 

(b) Degree distribution of the model obtained 
numerically for a network with m=2 and N = 
106 and fitnesses chosen uniformly from the 
η ∈ [0, 1] interval. The green solid line corre-
sponds to the prediction (6.8) with γ = 2.255. 
The long-dashed line is pk ∼ k−2.255 without 
the logarithmic correction, while the short-
dashed curve correspond to pk ∼ k-3, expected 
if all fitness are equal. Note that the best fit is 
provided by (6.8).

Figure 6.3

Characterizing the Bianconi-Barabási Model
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In summary, the Bianconi-Barabási model can account for the fact that 

nodes with different internal characteristics acquire links at different 

rates. It predicts that a node’s growth rate is determined by its fitness η 
and allows us to calculate the dependence of the degree distribution on 

the fitness distribution ρ(η).

INTRODUCTION7EVOLVING NETWORKS
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MEASURING FITNESS
SECTION 6.3

Measuring a node’s fitness could help us identify web sites that are 

poised to grow in visibility, research papers that will become influential, 

or actors on their way to stardom (BOX 6.1). Yet, our ability to determine 

the fitness is prone to errors. Consider the challenge of assigning fitness 

to a webpage on sumo wrestling: While a small segment of the population 

might find sumo wrestling fascinating, most individuals are indifferent to 

it and some might even find it odd. Hence, different individuals will inevi-

tably assign different fitnesses to the same node. 

According to (6.1) fitness is not assigned by any individual, but reflects 

the network’s collective perception of a node’s importance relative to the 
other nodes. We can, therefore, determine a node’s fitness by comparing 

its time evolution to the time evolution of other nodes in the network. In 

this section we show that if we have dynamical information about the 

evolution of the individual nodes, the quantitative framework of the Bian-

coni-Barabási model allows us to determine the fitness of each node.

To relate a node’s growth rate to its fitness we take the logarithm of  (6.3),

where Bi = ln (m/ti
β(ηi)) is a time-independent parameter. Hence, the slope of 

ln k(t,ti,ηi) is a linear function of the dynamical exponent β(ηi). In turn β(ηi) 

depends linearly on ηi according to (6.4). Therefore, if we can track the time 

evolution of the degree for a large number of nodes, the distribution of the 

dynamical exponent β(ηi) will be identical with the fitness distribution ρ(η). 

The Fitness of a Web Document

Node fitnesses were systematically measured in the context of the 

WWW, relying on a dataset that crawled monthly the links of about 22 

million web documents for 13 months [9]. While most nodes (documents) 

did not change their degree during this time frame, 6.5% of nodes showed 

sufficient changes to determine their dynamical exponent via (6.9). The ob-

tained fitness distribution ρ(η) has an exponential form (Figure 6.4), indicat-

EVOLVING NETWORKS

BOX 6.1
THE GENETIC ORIGINS OF FITNESS

Could fitness, an ability to ac-

quire friends in a social net-

work, have genetic origins? To 

answer this researchers exam-

ined the social network of 1,110 

school-age twins [6, 7], using a 

technique developed to identify 

the heritability of traits and be-

haviors. They found that:

• Genetic factors account for 

46% of the variation in a stu-

dent’s in-degree (i.e. the num-

ber of students that name a 

given student a friend).

• Generic factors are not sig-

nificant for out-degrees (i.e. 

the number of students a 

particular student names as 

friends).

This suggests that an individ-

ual’s ability to acquire links, or 

its fitness, is heritable. In other 

words, in social networks fit-

ness has genetic origins. This 

conclusion is also supported by 

research that associated a par-

ticular genetic trait with varia-

tions in popularity [8].

(6.9)= +( )β Bη tln lni ik(t, ,ti i)
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ing that high fitness nodes are rare. 

The shape of the obtained fitness distribution is somewhat unexpected, 

as one would be tempted to assume that on the web fitness varies widely: 

For example Google is far more attrative to Web surfers than my personal 

webpage. Yet the exponential form of ρ(η) indicates that the fitness of Web 

documents is bounded, varying in a relativelly narrow range. Consequent-

ly, the observed large differences in the degree of two web documents is 

generated by the system’s dynamics: Growth and preferential attachment 

amplifies the small fitness differences, turning nodes with slightly higher 

fitness into much bigger nodes. 

To illustrate this amplification, consider two nodes that arrived at the 

same time, but have different fitnesses η2 > η1. According to (6.3) and (6.4), 
the relative difference between their degrees grows for large t as

While the difference between η2 and η1 may be small, far into the future 

(large t) the relative difference between their degrees can become quite 

significant.

The Fitness of a Scientific Publication

In some networks the nodes follow a more complex dynamics than the 

one predicted by (6.3). To measure their fitness we must first account for 

their precise growth law. We illustrate this procedure by determining the 

fitness of a research publication, allowing us to predict its future impact. 

While most research papers acquire only a few citations, a small num-

ber of publications collect thousands and even tens of thousands of cita-

tions [10]. These impact differences mirror differences in the novelty and 

the relevance of various publications. In general, the probability that a re-

search paper i is cited at time t after publication is [11]

where the paper’s fitness ηi accounts for the perceived novelty and impor-

tance of the reported discovery; ci is the cumulative number of citations 

acquired by paper i at time t after publication, accounting for the fact that 

well-cited papers are more likely to be cited than less-cited contributions 

(preferential attachment). The last term in (6.11) captures the fact that new 

ideas are integrated into subsequent work, hence the novelty of each pa-

per fades with time [11, 12]. Measurements indicate that this decay has the 

log-normal form

By solving the master equation behind (6.11) we obtain the time-dependent 

growth of a paper’s citations

(6.10)k2 − k1
k1

∼ t
η2−η1
C

The fitness distribution obtained by measur-
ing the time evolution of a large number of 
Web documents. The measurements indicate 
that each node’s degree has a power law time 
dependence, as predicted by (6.3). The slope of 
each curve is β(ηj), which corresponds to the 
node’s fitness ηi up to a multiplicative con-
stant according to (6.4). The plot shows the re-
sult of two measurements based on datasets 
recorded three months apart, demonstrating 
that the fitness distribution is time indepen-
dent. The dashed line suggests that the fitness 
distribution is well approximated by an expo-
nential. After [9].

Figure 6.4

The Fitness Distribution of the WWW
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where

is the cumulative normal distribution and m, β, and A are global parame-

ters. 

Equation (6.13) predicts that the citation history of paper i is character-

ized by three parameters: the immediacy μi, governing the time for a paper 

to reach its citation peak and the longevity σi, capturing the decay rate. 

The most important is the relative fitness ηi′  ≡ ηi β/A, which measures a 

paper’s importance relative to other papers and determines its ultimate 

impact (BOX 6.2).

We fit (6.13) to the citation history of individual papers published by a 

journal to obtain the journal’s fitness distribution (Figure 6.5). The measure-

ments indicate that the fitness distribution of the top cell biology journal, 

Cell, is shifted to the right, indicating that Cell papers tend to have high 

fitness. Not surprisingly, the journal has one of the highest impact factors 

of all journals. By comparison the fitness of papers published in Physical 
Review are shifted to the left, indicating that the journal publishes fewer 

high fitness papers. 

In summary, the framework offered by the Bianconi-Barabási model 

allows us to determine the fitness of individual nodes and the shape of the 

fitness distribution ρ(η). The measurements show that the fitness distribu-

tion is typically exponentially bounded, meaning that fitness differences 

between different nodes are small. With time these differences are mag-

nified, resulting in a power law degree distribution of incoming links in 

the case of the WWW or a broad citation distribution in citation networks.

MEASURING FITNESS

Figure 6.5

The fitness distribution of papers published in 
six journals in 1990. Each paper’s fitness was 
obtained by fitting (6.13) to the paper’s citation 
history for a decade long time interval. Two 
journals are from physics (Physical Review B 
and Physical Review Letters), one from biology 
(Cell) and three are interdisciplinary (Nature, 
Science, and PNAS). 

The obtained fitness distributions are shift-
ed relative to each other, indicating that Cell 
publishes the highest fitness papers, followed 
by Nature, Science, PNAS, Physical Reviews 
Letters and Physical Review B. After [11].
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BOX 6.2
ULTIMATE IMPACT

INTRODUCTION11EVOLVING NETWORKS

Citation counts offer only the historical impact of a research pa-

per. They do not tell us, however, if the paper has already had its 

run, or its impact will continue to grow. To gauge a paper’s true 

impact we need to determine how many citations a paper ac-

quires during its lifetime. The citation model (6.11) and (6.14) allows 

us to predict this ultimate impact. Indeed, by taking the t → ∞ 

limit of (6.13), we obtain [11]

Consequently, despite the myriad of factors that contribute to 

the citation history of a research paper, its ultimate impact is 

determined only by its fitness ηi. As fitness can be determined 

by fitting (6.13) to a paper’s previous citation history, we can use 

(6.15) to predict the ultimate impact of a publication (Figure 6.6).

(6.15)ci = m(e i 1) .

Figure 6.6
Predicting Ultimate Impact

The yearly citation history of the paper re-
porting the first draft of the human genome 
(Venter et al. [13]) and the one reporting the 
discovery of scale-free networks (Barabási 
and Albert [14]). The early impact of the two 
papers cannot be more different: According to 
the Web of Science, two years after publication 
the much anticipated human genome paper 
collected over 1,400 citations; in contrast the 
scale-free network paper was cited only 120 
times. Their long-term citation dynamics is 
also remarkably different: The citations of the 
human genome paper peaked after year two, 
a pattern shared by more than 85% of all re-
search papers. In contrast the yearly citations 
to the scale-free paper continued to increase 
for about a decade. 

The continuous curves corresponding to the 
fit (6.13) to the respective citation history, al-
lowing us to determine the paper’s future ci-
tations and its ultimate impact. The ultimate 
impact corresponds to the total area under 
each curve for t → ∞. According to (6.15) the 
ultimate impact of the human genome paper 
is 13,105, while that of the scale-free paper is 
26,183. Therefore the early citation count of a 
paper is not a strong indicator of its ultimate 
impact. 
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Venter et al,. Ultimate Impact: 13,105 

Ultimate Impact: 26,183
The sequence of the human genome. Science, 2001

Barabási  & Albert, Emergence of scaling in random networks. Science, 1999 
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BOSE-EINSTEIN
CONDENSATION

SECTION 6.4

In the previous section we found that the Web’s fitness distribution 

follows a simple exponential (Figure 6.4), while the fitness of research pa-

pers follows a peaked distribution (Figure 6.5). The diversity of the observed 

fitness distributions raises an important question: How does the network 

topology depend on the shape of ρ(η)? 

Technically, the answer is provided by (6.6) that links pk to ρ(η). Yet, the 

true impact of the fitness distribution was realized only after the discov-

ery that some networks can undergo Bose-Einstein condensation. In the 

section we discuss the mapping that lead to this discovery and its conse-

quences for the network topology [15]. 

We start by establishing a formal link between the Bianconi-Barabási 

model and a Bose gas, whose properties have been extensively studied in 

physics (Figure 6.7):

• Fitness → Energy 

We assign to each node with fitness ηi an energy εi via

In physical systems βT plays the role of the inverse temperature. We 

use the subscript T to distinguish βT from the dynamic exponent β. Ac-

cording to (6.16), each node in a network corresponds to an energy level 

in a Bose gas. The larger the node’s fitness, the lower is its energy.

• Links → Particles 

For each link from node i to node j we add a particle at the energy 

level εj.

• Nodes → Energy levels 

The arrival of a new node with m links corresponds to adding a new 

energy level εj and m new particles to the Bose gas, placed on the en-

ergy levels of the nodes to which the new node links to.

EVOLVING NETWORKS

(6.16)ε
β

η= 1 logi
T

i .

NETWORK BOSE GAS
ε4
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Figure 6.7
Mapping Networks to a Bose Gas

Network 
A network of six nodes, where each node  is 
characterized by a unique fitness ηi indicated 
by the node color. The fitnesses are chosen 
from the fitness distribution ρ(η).

Bose Gas  
The mapping assigns an energy level ε to each 
fitness η, resulting in a Bose gas with random 
energy levels. A link going from a new node i 
to node j corresponds to one particle at level εj.

Growth 
The network grows by adding a new node, like 
the orange node with fitness η6. For m=1 the 
new node connects to the grey node (dashed 
link), chosen following (6.1). In the Bose gas 
this corresponds to the addition of a new en-
ergy level ε6 (dashed line), and the deposition 
of a particle at ε1, the energy level  of node 1 to 
which node η6 links to.
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If we follow the mathematical consequences of this mapping, we find 

that in the resulting gas the number of particles on each energy level fol-

lows Bose statistics, a formula derived by Satyendra Nath Bose in 1924 (BOX 
6.3). Consequently, the links of the fitness model behave like subatomic 

particles in a quantum gas. 

The mapping to a Bose gas is exact and predicts the existence of two dis-

tinct phases [15, 16]:

Scale-free Phase

For most fitness distributions the network displays a fit-gets-rich 

dynamics, meaning that the degree of each node is ultimately deter-

mined by its fitness. While the fittest node inevitably becomes the 

largest hub, in this phase at any moment the degree distribution fol-

lows a power law, indicating that the generated network has a scale-

free topology. Consequently the largest hub follows (4.18), growing 

only sublinearly. This hub is closely trailed by a few slightly smaller 

hubs, with almost as many links as the fittest node (Figure 6.9a). The 

model with uniform fitness distribution discussed in SECTION 6.2 is 

in this scale-free phase. 

Bose-Einstein Condensation

The unexpected outcome of the mapping to a Bose gas is the possibil-

ity of a Bose-Einstein condensation for some fitness distributions. 

In a Bose-Einstein condensate all particles crowd to the lowest ener-

gy level, leaving the rest of the energy levels unpopulated (BOX 6.4). 

In a network Bose-Einstein condensation means that the fittest 

node grabs a finite fraction of the links, turning into a super-hub 

(Figure 6.9b). The resulting network is not scale-free but has a hub-

and-spoke topology. In this phase the rich-gets-richer process is so 

dominant that it becomes a qualitatively different winner takes-all 
phenomenon. Consequently, the network will loose its scale-free na-

ture.

In physical systems Bose-Einstein condensation is induced by lowering 

the temperature of the Bose gas below some critical temperature (BOX 6.4). 

In networks, the temperature βT in (6.16) is a dummy variable, disappearing 

from all topologically relevant quantities, like the degree distribution pk. 

Hence, the presence or the absence of Bose-Einstein condensation depends 

only on the form of the fitness distribution ρ(η). For a network to undergo 

Bose-Einstein condensation, the fitness distribution needs to satisfy the 

condition

A fitness distribution that leads to a Bose-Einstein condensation is

					         ,

BOSE-EINSTEIN CONDENSATION

BOX 6.3
FROM FITNESS TO A BOSE GAS

In the context of the Bose gas 

(Figure 6.7) the probability that a 

particle lands on level i is

Hence, the rate at which the en-

ergy level εi accumulates parti-

cles is [15]

where ki(εi, t, ti) is the occupation 

number of level i and

is the partition function. The 

solution of (6.18) is

where f(ε) = e−βT (ε−μ) and μ is the 

chemical potential satisfying

Here, deg(ε) is the degeneracy 

of the energy level ε. Equation 
(6.20) suggests that in the limit 

t → ∞ the occupation number, 

representing the number of 

particles with energy ε, follows 

the Bose statistics

This mapping of the fitness 

model to a Bose gas proves that 

the node degrees in the Bian-

coni-Barabási model follow Bose 

statistics.

(6.21)n( )= 1
e T ( µ ) 1

.

(6.20)deg( ) 1
e T ( µ ) 1

=1 .

(6.19)ki (εi ,t,ti )= m
t
ti

⎛

⎝
⎜
⎞

⎠
⎟

f (εi )

Zt
j=1

t

te T j k j ( i ,t,t j )

(6.18)ki ( i ,t,ti )
t

= m e T i ki ( i ,t,ti )
Zt

(6.17)
i = e T i ki

j

e T j kj

.

∫
ηmin

ηmax
ηρ(η)
1−η

dη <1

( ) = (1 )(1   ζ) (6.22)
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BOX 6.4
BOSE-EINSTEIN CONDENSATION

In classical physics the kinetic energy of a moving particle, E= 

mv2/2, can have any value between zero (at rest) and an arbitrarily 

large E, when it moves very fast. Furthermore, an arbitrary num-

ber of particles can have the same energy E, if they have the same 

velocity v. In quantum mechanics energy is quantized, meaning 

that it can only take up discrete (quantized) values. Furthermore, 

in quantum mechanics we encounter two different classes of par-

ticles. Fermi particles, like electrons, are forbidden to have the 

same energy within the same system. Hence, only one electron 

can occupy a given energy level (Figure 6.8a). In contrast Bose par-

ticles, like photons, are allowed to crowd in arbitrary numbers on 

the same energy level (Figure 6.8b). 

At high temperatures, when thermal agitation forces the particles to 

take up different energies, the difference between a Fermi and a Bose 

gas is negligible (Figure 6.8a,b). The difference becomes significant at 

low temperatures when all particles are forced to take up their lowest 

allowed energy. In a Fermi gas at low temperatures the particles fill 

the energy levels from bottom up, just like pouring water fills up a 

vase (Figure 6.8c). However, as any number of Bose particles can share 

the same energy, they can all crowd at the lowest energy level (Figure 
6.8d). In other words, no matter how much “Bose liquid” we pour into 

the vase, it will stay at the bottom of the vessel, never filling it up. This 

phenomenon is called a Bose-Einstein condensation and it was first 

proposed by Einstein in 1924. Experimental evidence for Bose-Ein-

stein condensation emerged only in 1995 and was recognized with 

the 2001 Nobel prize in physics.

INTRODUCTION14

Figure 6.8
Bose and Fermi Statistics

In a Fermi gas (a,c) only one particle is allowed 
on each energy level, while in a Bose gas (b,d) 
there is no such a restriction. At high tem-
peratures it is hard to notice any difference 
between the two gases. At low temperatures, 
however, each particle wants to occupy the 
lowest possible energy and the difference be-
tween the two gases becomes significant.
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whereby varying ζ we can induce a Bose-Einstein condensation (Figure 6.9). 

Indeed, whether (6.20) has a solution depends on the functional form of the 

energy distribution, g(ε), which is determined by the shape of ρ(η). Specifi-

cally, if (6.22) has no non-negative solution for a given g(ε), a Bose-Einstein 

condensation emerges, and a finite fraction of the particles agglomerate at 

the lowest energy level.

In summary, the precise shape of the fitness distribution determines the 

topology of a growing network. While fitness distributions like the uniform 

distribution lead to a scale-free topology, some ρ(η) allow for Bose-Einstein 

condensation. If a network undergoes a Bose-Einstein condensation, then 

one or a few nodes grab most of the links.  Hence, the rich-gets-richer pro-

cess responsible for the scale-free state turns into a winner-takes-all phe-

nomenon. The Bose-Einstein condensation has such an obvious impact on a 

network’s structure that, if present, it is hard to miss: it destroys the hierar-

chy of hubs characterizing a scale-free network, forcing the network into a 

star-like hub-and-spoke topology (Figure 6.9).

BOSE-EINSTEIN CONDENSATION

,

The movie shows the time evolution of a grow-
ing network in which one node (purple) has a 
much higher fitness than the rest of the nodes.
This high fitness node attracts most links, 
forcing the system to undergo a Bose-Einstein 
condensation. Video courtesy of Dashun Wang.

Bose-Einstein Condensation in Networks

>

Online Resource 6.2
>
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EVOLVING NETWORKS
SECTION 6.5

The  Barabási-Albert model is a minimal model, designed to capture 

the mechanisms responsible for the emergence of the scale-free property. 

Consequently, it has several well-known limitations (see also SECTION 5.10):

(i)  The model predicts γ = 3, while the experimentally observed degree 

exponents vary between 2 and 5 (Table 4.1).

(ii) The model predicts a power-law degree distribution, while in real sys-

tems we observe systematic deviations from a pure power-law func-

tion, like small-degree saturation or high-degree cutoff (BOX 4.8).

(iii) The model ignores a number of elementary processes that are ob-

viously present in many real networks, like the addition of internal 

links and node or link removal.

These limitations have inspired considerable research, clarifying the 

role of the numerous elementary processes that influence the network to-

pology. In this section we systematically extend the Barabási-Albert model, 

arriving to a family of evolving network models that can capture the wide 

range of phenomena known to shape the topology of real networks.

INITIAL ATTRACTIVENESS
In the Barabási-Albert model an isolated node cannot acquire links, 

as according to preferential attachment (4.1) the likelihood that a new 

node attaches to a k=0 node is strictly zero. In real networks even iso-

lated nodes acquire links. Indeed, each new research paper has a finite 

probability of being cited for the first time; a person that moves to a 

new city quickly acquires acquaintances. To allow unconnected nodes 

to acquire links we add a constant to the preferential attachment func-

tion  (4.1), 

Here the constant A is called initial attractiveness. As Π(0) ∼ A, initial 

EVOLVING NETWORKS

(6.23)Π(k) ∼ A+ k .
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attractiveness is proportional to the probability that a node acquires its 

first link in the next time step. 

Direct measurement of  Π(k) shows that initial attractiveness is present 

in real networks (Figure 6.10). Once present, it has two consequences:

•  Increases the Degree Exponent 

If in the Barabási-Albert model we replace (4.1) with (6.23), the degree 

exponent becomes [17, 18]

Consequently initial attractiveness increases γ, making the net-

work more homogeneous and reducing the size of the hubs. Indeed, 

initial attractiveness adds a random component to the probabili-

ty of attaching to a node. This random component favors the nu-

merous small-degree nodes and weakens the role of preferential 

attachment. For high-degree nodes the initial attractiveness term 

A in (6.23) is negligible.

• Generates a Small-degree Saturation 

The solution of the continuum equation indicates that the degree 

distribution of a network governed by (6.23) does not follow a pure 

power-law, but has the form

Therefore, initial attractiveness induces a small-degree saturation 

for k<A, playing the role of ksat in (4.39). This saturation is rooted in 

the fact that initial attractiveness enhances the probability that 

new nodes link to the small-degree nodes, which pushes the small-k 

nodes  towards higher degrees. For high degrees (k ≫ A) the degree 

distribution continues to follow a power law, as in this range initial 

attractiveness does not alter the attachment probability.

INTERNAL LINKS
In many networks new links do not only arrive with new nodes but 

are added between pre-existing nodes. For example, the vast majority 

of new links on the WWW are internal links, corresponding to newly 

added URLs between pre-existing web documents. Similarly, virtually 

all new social/friendship links form between individuals that already 

have other friends and acquaintances. 

Measurements show that in collaboration networks the internal links 

follow double preferential attachment, i.e. the probability for a new 

internal link to connect nodes with degrees k and k’ is [20]

The cumulative preferential attachment 
function (5.21) for the citation network, cap-
turing the citation patterns of research pa-
pers published from 2007 to 2008. The π(k) 
curve was measured using the methodology 
described in SECTION 5.6. The continuous line 
corresponds to initial attractiveness A ∼ 7.0, 
while the dashed line corresponds to A = 0, i.e. 
the case without initial attractiveness. A = 7 
implies that the probability of a new paper to 
be cited for the first time is comparable to the 
citation probability of a paper with seven cita-
tions. After [19].

Figure 6.10

Initial Attractiveness
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(6.24)γ = 3+ A
m

.

(6.25)pk =C(k + A )
−γ.
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To understand the impact of internal links we explore the limiting 

cases of (6.26):

•  Double Preferential Attachment (A=0) 

Consider an extension of the Barabási-Albert model, where in each 

time step we add a new node with m links, followed by n internal 

links, each selected with probability (6.26) with A=0. Consequently 

the likelihood that a new link emerges is proportional to the degree 

of the nodes it connects. The degree exponent of the resulting net-

work is [21, 22]

indicating that γ is between 2 and 3. This means that double

preferential attachment lowers the degree exponent from 3 to 2, 

hence increasing the network’s heterogeneity. Indeed, by preferen-

tially connecting the hubs to each other, internal links make both 

hubs larger at the expense of the smaller nodes.

• Random Attachment (B=0) 

In this case the internal links are blind to the degree of the nodes 

they connect. Consequently the internal links are added between 

randomly chosen node pairs. Let us again consider the Barabási-Al-

bert model, where after each new node we add n links between ran-

domly selected nodes. The degree exponent of the obtained network 

is [22]

Hence we have γ ≥ 3 for any n and m combination, indicating that 

the resulting network will be more homogenous than the network 

without internal links. Indeed, randomly added internal links mim-

ic the process observed in random networks, making the node de-

grees more similar to each other.

NODE DELETION
In many real systems nodes and links can disappear. For example, 

nodes are deleted from an organizational network when employees 

leave the company or from the WWW when web documents are re-

moved. At the same time in some networks node removal is virtually 

impossible (Figure 6.11).

To explore the impact of node removal, we start from the Barabási-Al-

bert model. In each time step we add a new node with m links and 

with rate r we remove a node. Depending on r, we observe  three dis-

tinct scaling regimes [25-30]:

• Scale-free Phase 

For r<1 the number of removed nodes is smaller than the number 

of new nodes, hence the network continues to grow. In this case the 

network is scale-free with degree exponent

The citation history of a research paper by Jan 
Hendrik Schön published in Science [23] illus-
trates how difficult it is to remove a node from 
the citation network. Schön rose to promi-
nence after a series of breakthroughs in the 
area of semiconductors. His productivity was 
phenomenal: In 2001 he has coauthored one 
research paper every eight days, published by 
the most prominent scientific journals, like 
Science and Nature. 

Soon after Schön published a paper reporting 
a groundbreaking discovery on single-mol-
ecule semiconductors, researchers noticed 
that he reported for two experiments, carried 
out at different temperatures, identical noise 
[24]. The ensuing questions prompted Lu-
cent Technologies, which ran Bell Labs where 
Schön worked, to start a formal investigation. 
Eventually Schön admitted falsifying data. 
Several dozens of his papers, like the one 
whose citation pattern is shown in this figure, 
were retracted.

While the papers’ formal retraction lead to 
a dramatic drop in citations, the papers con-
tinue to be cited after their official “deletion” 
from the literature, as seen in the figure above. 
This indicates that it is virtually impossible to 
remove a node from the citation network.

Figure 6.11

The Impossibility of Node Deletion
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Hence, random node removal increases γ, homogenizing the network.

• Exponential Phase 

For r=1 nodes arrive and are removed at the same rate, hence the 

network has a fixed size (N=constant). In this case the network will 

loose its scale-free nature. Indeed, for r→1 we have γ → ∞ in (6.29).

•  Declining Networks 

For r > 1 the number of removed nodes exceeds the number of new 

nodes, hence the network declines (BOX 6.5). Declining networks 

emerge in several areas. For example, Alzheimer’s research focuses 

on the progressive loss of neurons with age and ecology explores 

the role of gradual habitat loss [31-33]. A classical example of a 

declining network is the telegraph, that dominated long distance 

communication in the second part of the 19th century and early 

20th century. It was once a growing network: In the United States 

the length of the telegraph lines grew from 40 miles in 1846 to 

23,000 in 1852. Yet, following the second World War, the telegraph 

gradually disappeared.

The behavior of a network can be rather complex if node removal 

coexists with other elementary processes. This is illustrated in Figure 
6.12, indicating that the joint presence of initial attractiveness and 

node deletion induces phase transitions between scale-free and expo-

nential networks. Finally, note that node removal is not always ran-

dom, but can depend on the removed node’s degree (BOX 6.5).  

In summary, in most networks nodes can disappear. Yet as long as 

the network continues to grow, its scale-free nature can persist. The 

degree exponent depends, however, on the details governing the node 

removal process.

ACCELERATED GROWTH
In  the models discussed so far the number of links increased linearly 

with the number of nodes. In other words, we assumed that L=⟨k⟩N/2, 

where ⟨k⟩ is independent of time. This is a reasonable assumption for 

many real networks. Yet, for some real networks the number of links 

grows faster than N, a phenomena called accelerated growth. For ex-

ample the average degree of the Internet increased from ⟨k⟩=3.42 in 

November 1997 to 3.96 by December 1998 [34]; the WWW increased 

its average degree from 7.22 to 7.86 during a five month interval [35, 

36]; in metabolic networks the average degree of the metabolites 

grows approximately linearly with the number of metabolites [37]. 

To explore the consequences of accelerated growth let us assume that 

in a growing network the number of links arriving with each new 

node follows [38-41]
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Figure 6.12
Phase Transitions Induced by Node Removal

The coexistence of node removal with oth-
er elementary processes can lead to inter-
esting topological phase transitions. This 
is illustrated by a simple model in which 
the network’s growth is governed by (6.23), 
and we also remove nodes with rate r 
[30]. The network displays three distinct 
phases, captured by the phase diagram 
shown above, whose axes are the node re-
moval rate r and initial attractiveness A:

Subcritical Node Removal: r < r*(A) 
If the rate of node removal is under a crit-
ical value r*(A), shown as the white line on 
the figure, the network will be scale-free.

Critical Node Removal: r=r*(A) 
Once r reaches a critical value r*(A), the 
degree distribution turns into a stretched 
exponential (SECTION 4.A).

Exponential Networks: r> r*(A) 
The network looses its scale-free nature, 
developing an exponential degree distri-
bution. 

Therefore, the coexistence of multiple el-
ementary processes in a network can lead 
to sudden changes in the network topol-
ogy. To be specific, a continuous increase 
in the node removal rate leads to a phase 
transition from a scale-free to an expo-
nential network.
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a

BOX 6.5
DECLINING FASHION NETWORKS

The New York City garment industry offers a prominent example of 

a declining network (Figure 6.1). Its nodes are designers and contrac-

tors that are connected to each other by the annual coproduction of 

lines of clothing. As the industry decayed, the network has persistently 

shrunk: The network’s largest connected component collapsed from 

3,249 nodes in 1985 to 190 nodes in 2003. Interestingly, the network’s 

degree distribution remained unchanged during this period. The anal-

ysis of the network’s evolution uncovered several properties of declin-

ing networks [25]:

• Preferential Attachment 

While overall the network was shrinking, new nodes continued to ar-

rive. The measurements indicate that the attachment probability of 

these new nodes follows Π(k) ∼kα with α=1.20 ± 0.06 (Figure 6.13a), of-

fering evidence of superlinear preferential attachment (SECTION 5.7).

• Link Deletion 

The probability that a firm lost a link follows k(t)−η with η = 0.41 ± 

0.04, i.e. it decreased with the firms’ degree (Figure 6.13b). This doc-

uments a weak-gets-weaker phenomenon, when the less connected 

firms are more likely to loose links. (a) Preferential attachment. The probabili-
ty that a newcomer firm added at time 
t connects to an incumbent firm with k 
links, relative to a random link addition. 
The dashed line has slope α=1.2. If link 
addition were to be random, we would 
expect this quantity to be ≈1.

(b) Link deletion. The probability of deleting 
a link from a degree-k node, relative to 
random link removal. The dashed line 
has slope η=0.41. If link loss were to be 
random the relative probability should 
be ≈1 for any k. 

Figure 6.13

The Decline of the Garment Industry
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For θ=0 each new node has the same number of links; for θ>0, howev-

er, the network follows accelerated growth. 

The degree exponent of the Barabási-Albert model with accelerated 

growth (6.30) is

Hence, accelerated growth pushes the degree exponent beyond γ=3, 

making the network more homogenous. For θ=1 the degree exponent 

diverges, leading to hyper-accelerating growth [39]. In this case ⟨k⟩ 

grows linearly with time and the network looses its scale-free nature.

AGING
In many real systems nodes have a limited lifetime. For example, actors 

have a finite professional life span, defined as the period when they act 

in movies. So do scientists, whose professional lifespan typically cor-

responds to the time frame during which they continue to publish sci-

entific papers. In these networks nodes do not disappear abruptly, but 

fade away through a slow aging process, gradually reducing the rate at 

which they acquire new links [42-45]. Capacity limitations can induce a 

similar phenomena: If nodes have finite resources to handle links, once 

they approach their limit, they will stop accepting new links [43].

To understand the impact of aging we assume that the probability that 

a new node connects to node i is Π(ki,t−ti), where ti is the time node i was 

added to the network. Hence, t−ti is the node’s age. Aging is often mod-

eled by choosing [42] 

where ν is a tunable parameter governing the dependence of the at-

tachment probability on the node’s age. Depending on the value of ν we 

can distinguish three scaling regimes:

•  Negative ν 
If ν <0, new nodes will link to older nodes. Hence, a negative ν en-
hances the role of preferential attachment. In the extreme case ν 
→ −∞ each new node connects to the oldest node, resulting in a 

hub-and-spoke topology (Figure 6.14a). The calculations show that 

the scale-free state persists in this regime, but the degree exponent 

drops under 3 (Figure 6.14e). Hence ν < 0 makes the network more 

heterogeneous.

•  Positive ν 

In this case new nodes are encouraged to attach to younger nodes. 

In the extreme case ν → ∞ each node will connect to its immedi-

EVOLVING NETWORKS

(a-d) A schematic illustration of the expected 
network topologies for various aging expo-
nents ν in (6.32). In the context of a growing 
network we assume that the probability 
to attach to a node is proportional to kτ−ν, 
where τ is the age of the node. For negative 
ν nodes prefer to link to the oldest nodes, 
turning the network into a hub-and-spoke 
topology. For positive ν the most recent 
nodes are the most attractive. For large ν 
the network turns into a chain, as the last 
(i.e. the youngest) node is always the most 
attractive for the new node. The network is 
shown for m=1 for clarity but the degree ex-
ponent is independent of m.

(e) The degree exponent γ vs. the aging expo-
nent ν predicted by the analytical solution 
of the aging model. The purple symbols are 
the result of simulations, each represent-
ing a single network with N=10,000 and 
m=1. Redrawn after Ref. [42].

Figure 6.14

The Impact of Aging
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ate predecessor (Figure 6.14d). We do not need a very large ν to ex-

perience the impact on aging: The degree exponent diverges as we 

approach ν=1 (Figure 6.14e). Hence gradual aging homogenizes the 

network by shadowing the older hubs.

•  ν > 1 

In this case the aging effect overcomes the role of preferential at-

tachment, leading to the loss of the scale-free property (Figure 6.14d).

In summary, the results discussed in this section indicate that a wide range 

of elementary processes can affect the structure and the dynamics of a 

growing network (Figure 6.15). These results highlight the true power of the 

evolving network paradigm: It allows us to address, using a mathemati-

cally self-consistent and predictive framework, the impact of various pro-

cesses on the network topology and evolution.
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           Elementary Processes Affecting the Network Topology
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SUMMARY
SECTION 6.6

As we showed in this chapter, rather diverse processes, from fitness 

to internal links and aging, can influence the structure of real networks. 

Through them we learned how to use the theory of evolving networks to 

predict the impact of various elementary events on a network’s topology 

and evolution. The discussed examples allow us to draw a key conclusion: 

if we want to understand the structure of a network we must first get its 
dynamics right. The topology is the bonus of this approach.

The developed tools allow us to reflect on a number of issues that we 

encountered in the past chapters, from the correct fit to the degree distri-

bution to the role of the different modeling frameworks. Next we briefly 

discuss some of these issues.

TOPOLOGICAL DIVERSITY
In CHAPTER 4 we discussed the difficulties we encounter when we at-

tempt to fit a pure power law to the degree distribution of a real network. 

The roots of this problem became obvious in this chapter: If we account for 

the real dynamical processes that contribute to the evolution of a network, 

we expect systematic deviations from a pure power law. Indeed, we pre-

dicted several analytical forms for the degree distribution:

• Power-Law 

A pure power-law emerges if a growing network is governed by lin-

ear preferential attachment only, as predicted by the Barabási-Albert 

model. It is rare to observe such a pure power law in real systems. This 

idealized model represents the starting point for understanding the 

degree distribution of real networks.

• Stretched Exponential

If preferential attachment is sublinear, the degree distribution 

follows a stretched exponential (SECTION 5.7). A similar degree-dis-

tribution can also appear under node removal at the critical point 

(Figure 6.12).

EVOLVING NETWORKS
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• Fitness-induced Corrections 

In the presence of fitness the precise form of pk depends on the fitness 

distribution ρ(η), which determines pk via (6.6). For example, a uniform 

fitness distribution induces a logarithmic correction in pk as predicted 

by (6.8). Other forms of ρ(η) can lead to rather exotic forms for pk.

•  Small-degree Saturation 

Initial attractiveness adds a random component to preferential at-

tachment. Consequently, the degree distribution develops a small-de-

gree saturation, as seen in (6.24).

•  High-degree Cutoffs

Node and link removal, present in many real systems, can induce 

exponential high-degree cutoffs in the degree distribution. Further-

more, random node-removal can deplete the small-degree nodes, in-

ducing a peak in pk.

In most real networks several of the elementary processes discussed in 

this chapter appear together. For example, in the scientific collaboration 

network we have sublinear preferential attachment with initial attractive-

ness and the links can be both external and internal. As researchers have 

different creativity, fitness also plays a role, hence an accurate model re-

quires us to know the appropriate fitness distribution. Therefore, the de-

gree distribution is expected to display small degree saturation (thanks to 

initial attractiveness), stretched exponential cutoff at high degrees (thanks 

to sublinear preferential attachment), and some unknown corrections due 

to the particular form of the fitness distribution ρ(η).  

In general if wish to obtain an accurate fit to the degree distribution, we 

first need to build a generative model that analytically predicts the func-

tional form of pk. Yet, in many systems developing an accurate theory for 

pk may be an overkill. It is often sufficient, instead, to establish if we are 

dealing with an exponentially bounded or a heavy tailed degree distribu-

tion (SECTION 4.9), as the system’s properties will be primarily driven by this 

distinction.

MODELING DIVERSITY
The results of this chapter also allow us to reflect on the role of the 

network models encountered so far. We can categorize these models into 

three main classes (Table 6.1):

Static Models 

The random network model of Erdős and Rényi (CHAPTER 3) and the 

small-world network model of Watts and Strogatz (BOX 3.8) have a 

fixed number of nodes, prompting us to call them static models. They 

both assume that the role of the network modeler is to place the links 

between the nodes using some random algorithm. To explore their 

properties we need to rely on combinatorial graph theory, developed 

by Erdős and Rényi. Both models predict a bounded degree distribu-

tion.
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Generative Models

The configuration and the hidden parameter models discussed in 

SECTION 4.8 generate networks with a predefined degree distribution. 

Hence, these models are not mechanistic, in the sense that they do not 

tell us why a network develops a particular degree distribution. Rath-

er, they help us understand how various network properties, from 

clustering to path lengths, depend on the degree distribution. 

Evolving Network Models

These models capture the mechanisms that govern the time evolution 

of a network. The most studied example is the Barabási-Albert mod-

el, but equally insightful are the extensions discussed in this chapter, 

from the Bianconi-Barabási model to models involving internal links, 

aging, node and link deletion, or accelerated growth. These models 

are motivated by the observation that if we correctly capture all mi-

croscopic processes that contribute to a network’s evolution, then 

the network’s topological characteristics follow from that. To explore 

the properties of the networks generated by them, we need to use dy-

namical methods like the continuum theory and the rate equation ap-

proach.

Each of these modeling frameworks have their important role in net-

work theory. The Erdős-Rényi model allows us to check if a certain net-

work property could be explained by a pure random connectivity

The table summarizes the three main model-
ing frameworks used in network science, to-
gether with their distinguishing features.

Table 6.1
Classes of Models in Network Science

SUMMARY

Erdős–Rényi
Watts-StrogatzStatic Models

Generative Models

• N fixed
• pk exponentially bounded
• Static, time independent topologies

• Arbitrary pre-defined pk
• Static, time independent topologies

• pk is determined by the processes 
that contribute to the network’s 
evolution.
•Time-varying network topologies

Configuration Model
Hidden Parameter Model

Barabási–Albert Model
Bianconi-Barabási Model
Initial Attractiveness Model
Internal Links Model
Node Deletion Model
Accelerated Growth Model
Aging Model

MODEL CLASS EXAMPLES CHARACTERISTICS

Evolving Network Models



pattern. If our interest is limited to the role of the network environ-

ment on some phenomena, like spreading processes or network ro-

bustness, the generative models offer an excellent starting point. If, 

however, we want to understand the origin of a network property, we 

must resort to evolving network models, that capture the processes 

that built the network in the first place.

INTRODUCTION28EVOLVING NETWORKS
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SECTION 6.7

HOMEWORK

6.1. Accelerated Growth

Calculate the degree exponent of the directed Barabási-Albert model 

with accelerated growth, assuming that the degree of the newly arriving 

nodes increases in time as m(t) = tΘ. 

6.2. The t-Party Evolving Network Model

In the t-party gender play no role, hence each newcomer is allowed to 

invite only one other participants to a dance. However, attractiveness plays 

a role: More attractive participants are more likely to be invited to a dance 

by a new participant. The party evolves following these rules:

•	 Every participant corresponds to a node i and is assigned a 

time-independent attractiveness coefficient ηi.

•	  At each time step a new node joins the t-party.

•	  This new node then invites one already partying node to a dance, 

establishing a new link with it.

•	  The new node chooses its dance partner with probability pro-

portional to the potential partner's attractiveness. If there are t 

nodes already in the party, the probability that node i receives a 

dance invitation is

					          ,

where 〈η〉 is the average attractiveness.

(a) Derive the time evolution of the node degrees, telling us how 

many dances a node had.

(b) Derive the degree distribution of nodes with attractiveness η.

(c) If half of the nodes have  η = 2, and the other half η = 1, what is the 

degree distribution of the network after a sufficiently long time?

6.3. Bianconi-Barabási Model

Consider the Bianconi-Barabási model with two distinct fitnesses,  

∏i =
ηi

∑ jη j

= ηi

t〈η〉
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η = a and η = 1. To be specific, let us assume that the fitness follows the 

double delta distribution

								                  

(a)  Calculate the degree exponent, and its dependence on the pa-

rameter a.

(b)  Calculate the stationary degree distribution of the network.

6.4. Additive Fitness

Assume that the growth of a network is governed by preferential at-

tachment with additive fitness 

where a different ηi is assigned to each node, chosen from a ρ(η) fitness 

distribution. Calculate and discuss the degree distribution of the resulting 

network.

a a( ) 1
2

( ) 1
2

( 1) with 0 1ρ η δ η δ η= − + − ≤ ≤

k k( ) ,i i iη +∏
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ADVANCED TOPICS 6.A
ANALYTICAL SOLUTION OF THE 
BIANCONI-BARABÁSI MODEL

SECTION 6.8

The purpose of this section is to derive the degree distribution of the 

Bianconi-Barabási model [2, 15, 16,17]. We start by calculating 

 	               

over all possible realizations of the quenched fitnesses η. Since each node is 

born at a different time t0, we can write the sum over j as an integral over t0

By replacing kη(t, t0) with (6.3) and performing the integral over t0, we obtain

The dynamic exponent β(η) is bounded, i.e. 0<β(η)<1, because a node can 

only increase its degree with time (β(η)>0) and ki(t) cannot increase faster 

than t (β(η)<1). Therefore in the limit t→∞ in (6.35) the term tβ(n) can be ne-

glected compared to t, obtaining

where ε = (1 − maxηβ(η)) > 0 and

Using (6.36) and the notation kη=kη(t, t0, η) we write the dynamic equation 

(6.2) as

which has a solution of the form (6.3), given that

EVOLVING NETWORKS

j
jk j

(6.34)∑
j
η jk j = ∫ dηρ(η)η ∫

1

t

dt0kη (t,t0 )

(6.35)∑
j

η jk j = ∫ dηρ(η)ηm t − t β (η )

1−β(η)
.

(6.37)C = ∫ dηρ(η) η
1−β(η)

.

(6.36)∑
j
η jk j =

t→∞
Cmt(1−O(t −ε )) ,

(6.38)∂kη
∂t

=
ηkη
Ct

,

(6.39)β(η)= η
C

,

.
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confirming the self-consistent nature of the assumption (6.3). 

To complete the calculation we need to determine C from (6.37). After sub-

stituting β(n) with η/C , we obtain

where ηmax is the maximum possible fitness in the system. The integral (6.40) 
is singular. However, since β(η)=η/C< 1 for any η, we have C > ηmax, thus the 

integration limit never reaches the singularity. Note also that since

we have C ≤ 2ηmax.

If there is a single dynamic exponent β, the degree distribution follows the 

power law pk ∼ k−γ with degree exponent γ=1/β+1. In the Bianconi-Barabási 

model we have a spectrum of dynamic exponents β(η), thus pk is a weighted 

sum over different power-laws. 

To determine the degree distribution in the large N limit, we first calculate 

the number of nodes with fitness η  and with degree greater than k, i.e. 

those that satisfy kη(t) > k. Using (6.3) we find that this condition implies

Exactly one node is added at each time step and each node has probability 

ρ(η)dη to have fitness η. Therefore 

N

η

k kη(t) > k

t0 < t
(m
k

)C/η

ρ(η)dη

η t
(
m
k

)C/η
ρ(η)dη

i k

P (k) = P (ki ≤ k) = 1−P (ki > k) ≈ 1−
∫ η

0
t
(
m
k

)C/η
ρ(η)dη

m0 + t
≈ 1−

∫ η

0

(m
k

)C/η

ρ(η)dη,

t

p(k) = P ′(k) =

∫ η

0

C

η
mC/ηk−(C/η+1)ρ(η)dη,

 nodes satisfy condi-

tion (6.42). To obtain the cumulative distribution function (the probability 

that a random node i has degree smaller or equal to k), we write

where the last equation is valid asymptotically, for large t. The probability 

density function for the degree distribution is

recovering (6.6).   

ADVANCED TOPICS 6.A
SOLVING THE FITNESS MODEL

(6.43)

N

η

k kη(t) > k

t0 < t
(m
k

)C/η

ρ(η)dη

η t
(
m
k

)C/η
ρ(η)dη

i k

P (k) = P (ki ≤ k) = 1−P (ki > k) ≈ 1−
∫ η

0
t
(
m
k

)C/η
ρ(η)dη

m0 + t
≈ 1−

∫ η

0

(m
k

)C/η

ρ(η)dη,

t

p(k) = P ′(k) =

∫ η

0

C

η
mC/ηk−(C/η+1)ρ(η)dη,

N

η

k kη(t) > k
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(m
k

)C/η

ρ(η)dη

η t
(
m
k

)C/η
ρ(η)dη

i k

P (k) = P (ki ≤ k) = 1−P (ki > k) ≈ 1−
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0
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m
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mC/ηk−(C/η+1)ρ(η)dη,

(6.41)
j

jkCmt = j max
j

k j = 2mt max

(6.40)1=
0

ηmax

∫ dηρ(η) 1
C
η
−1

,

(6.42)
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k kη(t) > k

t0 < t
(m
k

)C/η

ρ(η)dη

η t
(
m
k

)C/η
ρ(η)dη

i k

P (k) = P (ki ≤ k) = 1−P (ki > k) ≈ 1−
∫ η

0
t
(
m
k

)C/η
ρ(η)dη

m0 + t
≈ 1−

∫ η

0

(m
k

)C/η

ρ(η)dη,

t

p(k) = P ′(k) =

∫ η

0

C

η
mC/ηk−(C/η+1)ρ(η)dη,

.



33EVOLVING NETWORKS

[1] A.L. Barabási. Linked: The New Science of Networks. Perseus, Boston, 

2001.

[2] G. Bianconi and A.-L. Barabási. Competition and multiscaling in 

evolving networks. Europhysics Letters, 54: 436-442, 2001.

[3] A.-L. Barabási, R. Albert, H. Jeong, and G. Bianconi. Power-law distri-

bution of the world wide web. Science, 287: 2115, 2000.

[4] P.L. Krapivsky and S. Redner. Statistics of changes in lead node in 

connectivity-driven networks. Phys. Rev. Lett., 89:258703, 2002.

[5] C. Godreche and J. M. Luck. On leaders and condensates in a growing 

network. J. Stat. Mech., P07031, 2010.

[6] J. H. Fowler, C. T. Dawes, and N. A. Christakis. Model of Genetic Vari-

ation in Human Social Networks. PNAS, 106: 1720-1724, 2009.

[7]  M. O. Jackson. Genetic influences on social network characteristics.

PNAS, 106:1687–1688, 2009.

[8] S.A. Burt. Genes and popularity: Evidence of an evocative gene envi-

ronment correlation. Psychol. Sci., 19:112–113, 2008.

[9] J. S. Kong, N. Sarshar, and V. P. Roychowdhury. Experience versus 

talent shapes the structure of the Web. PNAS, 105:13724-9, 2008.

[10] A.-L. Barabási, C. Song, and D. Wang. Handful of papers dominates 

citation. Nature, 491:40, 2012.

[11] D. Wang, C. Song, and A.-L. Barabási. Quantifying Long term scien-

tific impact. Science, 342:127-131, 2013.

[12] M. Medo, G. Cimini, and S. Gualdi. Temporal effects in the growth of 

SECTION 6.9

BIBLIOGRAPHY

EVOLVING NETWORKS



34EVOLVING NETWORKS

networks. Phys. Rev. Lett., 107:238701, 2011.

[13] C. Venter et al. The sequence of the human genome. Science, 

291:1304-1351, 2001.

[14] A.-L. Barabási and R. Albert. Emergence of scaling in random net-

works. Science, 286:509-512, 1999.

[15] G. Bianconi and A.-L. Barabási. Bose-Einstein condensation in com-

plex networks. Phys. Rev. Lett., 86: 5632–5635, 2001.

[16] C. Borgs, J. Chayes, C. Daskalakis, and S. Roch. First to market is not 

everything: analysis of preferential attachment with fitness. STOC’07, San 

Diego, California, 2007.

[17] S. N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin. Structure of 

growing networks with preferential linking. Phys. Rev. Lett., 85: 4633, 2000.

[18] C. Godreche, H. Grandclaude, and J.M. Luck. Finite-time fluctua-

tions in the degree statistics of growing networks. J. of Stat. Phys., 137:1117-

1146, 2009.

[19] Y.-H. Eom and S. Fortunato. Characterizing and Modeling Citation 

Dynamics. PLoS ONE, 6: e24926, 2011.

[20] A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. 

Vicsek. Evolution of the social network of scientific collaborations. Physica 

A, 311: 590-614, 2002.

[21] R. Albert, and A.-L. Barabási. Topology of evolving networks: local 

events and universality. Phys. Rev. Lett., 85:5234-5237, 2000.

[22] G. Goshal, L. Chi, and A.-L Barabási. Uncovering the role of elemen-

tary processes in network evolution. Scientific Reports, 3:1-8, 2013.

[23] J.H. Schön, Ch. Kloc, R.C. Haddon, and B. Batlogg. A superconduct-

ing field-effect switch. Science, 288: 656–8. 2000.

[24] D. Agin. Junk Science: An Overdue Indictment of Government, In-
dustry, and Faith Groups That Twist Science for Their Own Gain. Macmillan, 

New York, 2007.

[25] S. Saavedra, F. Reed-Tsochas, and B. Uzzi. Asymmetric disassembly 

and robustness in declining networks. PNAS, 105:16466–16471, 2008.

[26] F. Chung and L. Lu. Coupling on-line and off-line analyses for ran-

dom power-law graphs. Int. Math., 1: 409-461, 2004.

[27] C. Cooper, A. Frieze, and J. Vera. Random deletion in a scalefree ran-

dom graph process. Int. Math. 1, 463-483, 2004.

BIBLIOGRAPHYEVOLVING NETWORKS



35EVOLVING NETWORKS

[28] S. N. Dorogovtsev and J. Mendes. Scaling behavior of developing 

and decaying networks. Europhys. Lett., 52: 33-39, 2000.

[29] C. Moore, G. Ghoshal, and M. E. J. Newman. Exact solutions for mod-

els of evolving networks with addition and deletion of nodes. Phys. Rev. E, 

74: 036121, 2006.

[30] H. Bauke, C. Moore, J. Rouquier, and D. Sherrington. Topological 

phase transition in a network model with preferential attachment and 

node removal. The European Physical Journal B, 83: 519-524, 2011.

[31] M. Pascual and J. Dunne, (eds). Ecological Networks: Linking Struc-
ture to Dynamics in Food Webs. Oxford Univ Press, Oxford, 2005.

[32] R. Sole and J. Bascompte. Self-Organization in Complex Ecosystems. 

Princeton University Press, Princeton, 2006.

[33] U. T. Srinivasan, J. A. Dunne, J. Harte, and N. D. Martinez. Response 

of complex food webs to realistic extinction sequencesm. Ecology, 88:671–

682, 2007.

[34] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-

ships of the internet topology. ACM SIGCOMM Computer Communication 

Review, 29: 251-262, 1999.

[35] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. 

Stata, and A. Tomkins. Graph structure in the web. Computer Networks, 

33: 309-320, 2000.

[36] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph evolution: Den-

sification and shrinking diameters. ACM TKDD07, ACM Transactions on 

Knowledge Discovery from Data, 1:1, 2007.

[37] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The 

large-scale organization of metabolic networks. Nature, 407: 651–655, 

2000.

[38] S. Dorogovtsev and J. Mendes. Effect of the accelerating growth of 

communications networks on their structure. Phys. Rev. E, 63: 025101(R), 

2001.

[39] M. J. Gagen and J. S. Mattick. Accelerating, hyperaccelerating, and 

decelerating networks. Phys. Rev. E, 72: 016123, 2005.

[40] C. Cooper and P. Prałat. Scale-free graphs of increasing degree. 

Random Structures & Algorithms, 38: 396–421, 2011.

[41] N. Deo and A. Cami. Preferential deletion in dynamic models of 

web-like networks. Inf. Proc. Lett., 102: 156-162, 2007.

BIBLIOGRAPHYEVOLVING NETWORKS



36EVOLVING NETWORKS

[42] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks with ag-

ing of sites. Phys. Rev. E, 62:1842, 2000.

[43] A.N. Amaral, A. Scala, M. Barthélémy, and H.E. Stanley. Classes of 

small-world networks. Proc. National Academy of Sciences USA, 97: 11149, 

2000.

[44] K. Klemm and V. M. Eguiluz. Highly clustered scale free networks. 

Phys. Rev. E, 65: 036123, 2002.

[45] X. Zhu, R. Wang, and J.-Y. Zhu. The effect of aging on network struc-

ture. Phys. Rev. E, 68: 056121, 2003.

BIBLIOGRAPHYEVOLVING NETWORKS




