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SECTION 1

INTRODUCTION

This book aims to help teach network science to an inter-
disciplinary audience. Many of the choices I made in pre-
senting the material were guided by the desire to offer an
enjoyable, yet systematic introduction to the field. I kept in
mind that those entering the field are just as interested in
learning about the genesis of the concepts network science
introduced, as the tools they can use to study real networks
and interpret the obtained results.

Several over-arching themes are present in this book,
helping to offer an effective introduction:

(i) Given the empirical roots of network science, there is
strong emphasis on empirical data. We have therefore
assembled a set of ‘canonic’ databases, representing net-
works that are frequently analyzed in network science to
test various network characteristics. Whenever possible,
we use these datasets to illustrate the tools we introduce.

(ii) Given the potential diversity of the students interested
in the field that may be familiar with one domain of inqui-
ry but not other, we devote special sections to each data-
set. The goal is to offer some degree of familiarity with the
range of datasets explored in network science, and through
this diversity to learn about the issues pertaining to data
collection and curation.

This book is not a finished product but a work in progress.
Hence we continue to update it, adding additional chap-
ters as they are finished.

There is a dedicated website to this project (Image 1.1),
http://barabasilab.com/metworksciencebook

that contains not only the chapters, but also the slides I
used in my classes to teach the material. Those who are in-
terested in teaching any part of the book are welcome to
use these slides. The website also offers tools to provide
feedback on the material, from comments to suggestions
for improvement.
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The power of network science, the
beauty of network visualization.

Welcome to our Network Science Book Project, aimed at producing
2n interactive textbook for network science. It is a work in progress,
as we add chapters as they are finalized. Currently you will find
Chapter 1-2. It is freely available under the Crative Commons
licence for iPad and in pdf, together with the slides to teach the
material. Feel free to offer feedback and follow its development on
Facebook, Twitter or by signining up to our mailing list, so that we
‘can notify you of new chapters and developments.

51 oo W

ﬂ Download SLIDES

I Mauro Martino and 98 others like this. - Admin Page - Insights

Tl o 3 OB BethGon B RIHBRF T mdw\dua\s shaping everymmg from content (Laszlo Barabasi) to visualizations and
interactive tools (Mauro Martino), simulations and data analysis (Mrion Pésfai)

Follow us

Email project coordinators Sarah Morrison (s weiss@new edu)

@ @networksciencebook

B htp://www.facebook. com/NetworkScienceBook

B http://barabasilab.neu.edu/networksciencebook/

Updates about the Network Science Book will be regularly published on barabasilab.neu.edu/networksciencebook/.
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SECTION 2

FROM SADDAM HUSSEIN TO NETWORKTHEORY

American forces encountered relatively little military re-
sistance as they took control of Iraq during the invasion
that started in March 19, 2003. Yet, many of the regime’s
high ranking officials, including Saddam Hussein, avoid-
ed capture.

Hussein was last spotted kissing a baby in Baghdad some
time in April 2003, and then his trace went cold. To aid
awareness of the officials they sought, the coalition forc-
es designed a deck of cards, each card engraved with the
image of one of the 55 most wanted. It worked. By May
1st 15 men on the cards were captured and by the end of
the month another 12 were under custody. Yet, the ace of
spades (Image 1.2a), i.e. Hussein himself, remained at
large.

Intelligence officials hoped that some of the high ranking
officials would surely know Hussein's whereabouts. Yet,
it was not to be. This became painfully obvious after the
capture of Saddam’s trusted personal secretary and the ace
of diamonds. Newspapers trumpeted his mid-June cap-
ture as the war’s biggest feat, as this could lead to Sadd-
am’s whereabouts. Yet, the dictator parted ways with his
ally soon after the invasion, sending a clear signal to the
investigators: relying on the traditional lines of power was
of little help in trying to find him. Instead, they decided to
turn to a tool that had little presence in military thinking
before: network theory [1].

In 2003 network theory was an already burgeoning re-
search field, but the soldiers in the war zone had little ac-
cess to the exploding advances in this area. Instead, they
arrived to it through a healthy dose of common sense and
intuition. Col. James Hickey, in charge of a series of raids
known as Operation Desert Scorpion, wanted to know the
relationship between everyone killed or captured. The task
fell to Lt. Col. Steve Russell, who was in direct charge of the
raids, and Brian Reed, the operations officer under Hick-
ey, who was exposed to social networks during his studies
at West Point. Reed started to systematically reconstruct
the social network of Saddam’s inner circle. He did not rely
on government documents and decrees, but rather gossip
and family trees. As they meticulously pieced together an
extensive diagram of who is related to whom in the Tikrit
region, where Saddam was from, they started to use net-

Image 1.2a
The network
of Saddam Hussein.
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Ace of Spades. One of the 55 cards
the US military has handed out to the
coalition forces in Iraq, each listing a
top official to be captured following
the country's 2003 invasion. The card
shows the ace of spades, with the im-
age of Saddam Hussein, Iraq's deposed
president and dictator, the top prize of
the hunt.

SADDAM HUSAYN AL-TIKRITI
President

v
\4

Sulwan Ibrahim

Khalll Ibrahim Musslit

Musslit

Mohammad Khudayr
Basim Latif
Rudman Ibrahim

- \ Mussiit
L

Nasir Yasin

Mohammad Ibrahim Musslit
Musslit

Kharallah Talfah
Musslit

Faris Yasin
Musslit

Barxan Ibrahim
Sabha Talfah L,m

H Musslit
-
Saddam H"‘E“I" Ibrahim Hasan

uday Husseln Khatab

=~

Vs
Qusay Hussein Abid Hamid

Image 1.2b
The network of Saddam Hussein.

The Social Network. A small region of the social network reconstructed by
the US forces in the process of searching for Saddam Hussein. The map
represents the relationship between individuals in Saddam's inner circle.

work diagrams to guide the raids. In one of those raids they
found over $8 million in US currency, about $1 million in
Iraqi currency, jewelry worth over $2 million, rifles, and
ammunition. Yet, the biggest prize was Saddam’s family
photo album, providing the faces of those that the family
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trusted, filling with intimate details of their growing net-
work diagram.

The maps consistently pointed to two individuals, Rud-
man Ibrahim and Mohammed Ibrahim (Image 1.2b). Not
high in the government hierarchy, they were Saddam’s sec-
ond-level bodyguards, serving as his driver, cook, or me-
chanic. Yet, Rudman had a heart attack and died within
a few hours of his capture, without having a chance to re-
veal his secrets. Next the investigators turned to their net-
work diagram to identify individuals who could know the
whereabouts of Mohammad, dubbed the fat man. He was
not a major player in the regime’s power structure, hence
while Saddam’s whereabouts were handled with fear, Mo-
hammed’s social ties were not as protected. Sure enough,
once they found someone to turn Mohammad Ibrahim in,
he revealed the spider hole that hid the dictator at a farm
near the Tigris river. The capture of Saddam Hussein illus-
trates many issues that we will encounter as we delve into
network theory:

- It shows the predictive power of networks, allowing even
non experts to extract crucial information from them, as
the soldiers did using Saddam’s social network.

« It underlines the need for accurate maps of the networks
we study, and the often heroic difficulties encountered
during the mapping process.

« It demonstrates the remarkable stability of these net-
works: the capture of Hussein was not based on fresh in-
telligence, but rather on his pre-invasion social links, un-
earthed from old photos stacked in his family album.

- It shows that the choice of network we focus on makes a
huge difference: it took months for the military to realize
that the hierarchical network that described the official or-
ganization of the Iraqi government was of no use when it
came to Saddam Hussein’s whereabouts.

In many ways the network building exercise by the US mil-
itary, deployed to capture Saddam Hussein, was a primi-
tive one driven more by intuition and guesswork than hard
science. The purpose of this book is to turn these insights
into a robust theory and methodology, so that we can fully
and repeatedly unleash their predictive power.

4 | NETWORK SCIENCE



SECTION 3

VULNERABILITY DUE TO INTERCONNECTIVITY

Detroit

Cleveland

/"

Columbus

2003 North American blackout.

Uper Panel

Satellite image of August 13, 2003: 9:29pm EDT 20 hours before.
Lower Panel

Satellite image of August 14, 2003: 9:14pm EDT 5 hours after.

X

At a first look the two satellite maps of Image 1.3a/b are
indistinguishable: lights shining brightly in highly pop-
ulated areas, and dark spaces marking vast uninhabited
forests and oceans. Yet, upon closer inspection something
strange becomes apparent. The light in several regions,
Toronto, Detroit, Cleveland, Columbus, Long Island have
simply disappeared. This is not a doctored shot from the
next Armageddon movie but represents a real image of the
US Northeast on August 14, 2003, the night of a blackout
that left an estimated 45 million people in eight US states
and another 10 million in Ontario without power. It illus-
trates a much ignored aspect of networks, one that will be

an important theme in this book: vulnerability due to in-
terconnectivity.

The 20073 blackout is a typical example of a cascading fail-
ure. When a network acts as a transportation system, a lo-
cal failure shifts loads to other nodes. If the extra load is
negligible, the rest of the system can seamlessly absorb it,
and the failure remains effectively unnoticed. If the extra
load is too much for the neighboring nodes to carry, they
will either tip or redistribute the load to their neighbors.
Either way, we are faced with a cascading failure, the mag-
nitude of which depends on the network position and ca-
pacity of the nodes that have been removed in the first and
subsequent rounds. Case in point is electricity: as it cannot
be stored, when a line goes down, its power must be shift-
ed to other lines. Most of the time, the neighboring lines
have no difficulty carrying the extra load. If they do, they
will also tip and redistribute their increased load to their
neighbors.

Cascading failures can occur in most complex systems.
They take place on the Internet, when traffic is rerouted to
bypass malfunctioning routers, occasionally creating deni-
al of service attacks on routers that do not have the capacity
to handle extra traffic. We witnessed one in 1997, when the
International Monetary Fund pressured the central banks
of several Pacific nations to limit their credit. There was
a cascading failure behind the 2009-2011 financial melt-
down, when the US credit crisis paralyzed the economy
of the globe, leaving behind scores of failed banks, corpo-
rations, and even bankrupt states. Cascading failures are
occasionally our ally, however. The world wide effort to dry
up the money supply of terrorist organizations is aimed at
crippling terrorist networks, and doctors and researchers
hope to induce cascading failures to kill cancer cells.

The Northeast blackout illustrates an important theme of
this book: we must understand how the network structure
affects the robustness of a complex system. We will there-
fore develop quantitative tools to assess the interplay be-
tween network structure and dynamical processes on net-
works and their impact on failures. Although such failures
may appear chaotic and unpredictable, we will learn that
they follow rather reproducible laws that can be quantified
and even predicted using the tools of network science.



SECTION 4

NETWORKS AT THE HEART OF COMPLEX SYSTEMS

“[ think the next century will be the century of
complexity.”

Stephen Hawking

We are surrounded by systems that are hopelessly com-
plicated, from the society, whose seamless functioning
requires cooperation between billions of individuals, to
communications infrastructures that integrate billions of
cell phones with computers and satellites. Our ability to
reason and comprehend the world around us is guaran-
teed by the coherent activity of billions of neurons in our
brain. Our very existence is rooted in seamless interac-
tions between thousands of genes and metabolites with-
in our cells. These systems are collectively called complex
systems. Given the important role they play in our life, in
science and economy, the understanding, mathematical
description, prediction, and eventually the control of such
complex systems is one of the major intellectual and scien-
tific challenges of the 21st century.

The emergence of network theory, at the dawn of the 21st
century is a vivid demonstration that science can live up to
this challenge. Indeed, behind each complex system, there
is an intricate network that encodes the interactions between
the system’s components:

B The network describing the interactions between
genes, proteins, and metabolites integrates the pro-
cesses behind living cells.

B The wiring diagram capturing the connections be-
tween neural cells holds the key to our understanding
of brain functions.

B The sum of all professional, friendship, and family
ties is the fabric of the society.

B The network describing which communication de-
vices interact with each other, capturing internet
connections or wireless links, is the heart of the mod-

6 | NETWORK SCIENCE

com.plex
[adj., v. kuh m-pleks, kom-pleks; n. kom-pleks]

1) composed of many interconnected parts; compound;
composite: a complex highway system

2) characterized by a very complicated or involved arrangement
of parts, units, etc.: complex machinery

3) so complicated or intricate as to be hard to understand
or deal with: a complex problem

Source: Dictionary.com

HSBC X»
Amanah

Image 1.4
The subtle networks behind the economy.

A credit card, selected as the 99th object in the popular exhibition by the
British Museum, entitled The History of the World in 100 Objects. This
card is a vivid demonstration of the interconnected nature of the modern
economy, creating subtle linkages that one normally does not even think
of. The card was issued in the United Arab Emirates in 2009 by the Hong
Kong and Shanghai Banking Corporation, commonly known HSBC, a Lon-
don based bank. The card functions through protocols provided by VISA,
an USA based credit association. Yet, the card adheres to Islamic banking
principles, which operates in accordance with Fighal-Muamalat (Islamic
rules of transactions), most notably eliminating interest or riba. The card
is not limited to muslims in the United Arab Emirates, but it is also offered
to Muslim minorities in non-Muslim countries, and is used by many
non-Muslims who agree with its strict ethical guidelines.



ern communication system.

M The power grid, a network of generators and trans-
mission lines, supplies with energy virtually all mod-
ern technology.

B Trade networks maintain our ability to exchange
goods and services, being responsible for the material
prosperity that an increasing fraction of the world has
enjoyed since WWII (Image 1.4). They also play a key
role in the spread of financial and economic crises.

Networks are at the heart of some of the most revolutionary
technologies of the 21st century, empowering everything
from Google to Facebook, CISCO, and Twitter. At the end,
networks permeate science, technology, and nature to a
much higher degree than may be evident upon a casual in-
spection. Consequently, it is increasingly clear that we will
never understand complex systems unless we gain a deep un-
derstanding of the networks behind them.

The scientific explosion that network science experienced
during the first decade of the 21st century is rooted in the
discovery that despite the apparent differences, the emer-
gence and evolution of different networks is driven by a
common set of fundamental laws and reproducible mecha-
nism. Hence despite the amazing diversity in form, size,
nature, age, and scope characterizing real networks, most
networks observed in nature, society, and technology are
driven by common organizing principles. In other words,
once we disregard the nature of the components and their
interactions, the obtained networks are more similar than
different from each other. In the following sections, we
discuss the forces that have led to the emergence of this
new research field and its impact on science, technology,
and society.

NETWORKS AT THE HEART OF COMPLEX SYSTEMS | 7



SECTION 5

TWO FORCES HELPED THE EMERGENCE

OF NETWORK SCIENCE

Why didn't network science emerge two hundred years
earlier? The networks it explores are by no means new:
metabolic networks date back to the origins of life, with a
history of four billion years, and the Internet is over four
decades old. Furthermore, many disciplines, from bio-
chemistry to sociology, and brain science, have been deal-
ing with their notion of networks. Graph theory, a prolific
subfield of mathematics, has focused on networks since
1735. Why do we dare to call network science the science
of the 21st century?

Something special happened at the dawn of the 21st cen-
tury that transcended individual research fields and cat-
alyzed the emergence of a new discipline (Image 1.5). To
understand why this happened only now, and not two
hundred years earlier, we need to discuss the forces that
have contributed to the emergence of network science.

The emergence of network maps: To describe the be-
havior of a system consisting of hundreds to billions of in-
teracting components, we first need a map of the system’s
wiring diagram. In a social system, this would require
knowing the list of your friends, your friends’ friends, and
so on. In the WWW, this map tells us which webpages
link to each other. In the cell, this corresponds to a detailed
list of binding interactions and reactions that the genes,
proteins, and metabolites participate in. In the past, we ei-
ther lacked the tools to map these networks out, or it was
difficult to keep track of the huge amount of data behind
these maps. The emergence of the Internet, offering effec-
tive and fast data sharing methods, together with cheap
digital storage, fundamentally changed this, allows us to
collect, assemble, share, and analyze data pertaining to
real networks.

While many of the canonical maps studied today in net-
work science were not collected with the purpose of study-
ing networks (Box 2), we witnessed an explosion of map
making at the end of the 1990s. These offered detailed
maps of the networks behind numerous complex system,
from cell to the economy. Examples include the CAIDA or
DIMES project aimed at obtaining an accurate map of the
Internet [8]; the hundreds of millions of dollars spent by
biologists to systematically map out protein-protein inter-
actions in human cells [6], or the Connectome project of

8 | NETWORK SCIENCE

600 N
500 | "™ Erdos-Renyi —
1959
400 + —*Granovetter —
1973
300 o
200
100
0 e
© ©
'96\ '96% ,\6\\ \‘5\6 '9%\ @qg) \"50';\ & q,@\ >
Image 1.5

The emergence of network science.

While the study of networks has a long history from graph theory to
sociology, the modern chapter of network science emerged only during the
first decade of the 21st century, following the publication of two seminal
papers in 1998 [2] and 1999 [3]. The explosive interest in network science
is well documented by the citation pattern of two classic network papers,
the 1959 paper by Paul Erdés and Alfréd Rényi that marks the beginning
of the study of random networks in graph theory [4] and the 1973 paper
by Mark Granovetter, the most cited social network paper [5]. Both papers
were hardly or only moderately cited before 2000. The explosive growth
of citations to these papers in the 21st century documents the emergence
of network science, drawing a new, interdisciplinary audience to these
classic publications.

the US National Institute of Health that aims to trace the
neural connection in mammalian brains [7].

The universality of network characteristics: It is easy
to list the differences between the various networks we
encounter in nature or society: the nodes of the metabol-
ic network are tiny molecules and the links are chemical
reactions governed by quantum mechanics; the nodes of
the WWW are web documents and the links are URLs
maintained by computer algorithms; the nodes of the so-
cial network are individuals, the links representing fam-
ily, professionals, friendship, and acquaintance ties. The
processes that shape these networks also differ greatly:
metabolic networks are shaped by billions of years of evo-



lution; WWW is collectively built by the actions of mil-
lions of individuals; social networks are shaped by social
norms whose roots go back thousands of years. Given this
diversity in size, nature, scope, history, and evolution, one
would not be surprised if the networks behind these sys-
tems would differ greatly. Yet, a key discovery of network
science is that the architecture and the evolution of net-
works emerging in various domains of science, nature, and
technology are rather similar to each other, allowing us to
use a common set of mathematical tools to explore these
systems. This universality is one of the guiding principle of
this book: we will not only seek to uncover specific network
properties, but we will aim to understand its origins, en-
coding the laws that shape network evolution, as well as its
consequences in understanding network behavior.

The origins of network maps

Many of the maps studied today by network scientists were not
generated with the purpose of studying networks:

| The list of chemical reactions that take place in a cell were
discovered over a 150 year period by biochemists and biolo-
gists. In the 1990s they were collected in central databases,
offering the first chance to assemble the networks behind
a cell.

| The list of actors that play in each movie were traditionally
scattered in books and encyclopedias. With the advent of the
Internet, these disparate data were assembled into a cen-
tral database by imdb.com, mainly to feed the curiosity of
movie aficionados. The database offered the first chance for
network scientists to explore the structure of the affiliation
network behind Hollywood.

| The detailed list of authors of millions of research papers
were traditionally scattered in the table of content of thou-
sands of journals, but recently the Web of Science, Google
Scholar, and other sites assembled them into comprehensive
databases, easing the search for scientific information.

In the hands of network scientists these databases turned into the
first science collaboration maps. Hence, much of the early history of
network science relied on the investigators' ingenuity to recognize
and extract the networks from existing datasets. Network science
changed that: today well-funded research collaborations focus on
map making from biology to the Internet.

TWO FORCES HELPED THE EMERGENCE OF NETWORK SCIENCE | 9



SECTION 6

THE CHARACTERISTICS OF NETWORK SCIENCE

Network science is distinguished, not only by its sub-
ject matter, but also by its methodology. In the following
we briefly discuss the key characteristics of the approach
network science adopted to understand complex systems,
helping us better understand the domain we are about to
embark on.

Interdisciplinary nature: Network science offers a lan-
guage through which different disciplines can seamlessly
interact with each other. Indeed, cell biologists and com-
puter scientists alike are faced with the task of character-
izing the wiring diagram behind their system, extracting
information from incomplete and noisy datasets, and the
need to understand their systems’ robustness to failures or
deliberate attacks. To be sure, each discipline brings along
a different set of technical details and challenges, which
are important on their own. Yet, the common character of
the many issues various fields struggle with have led to a
cross-disciplinary fertilization of tools and ideas. For ex-
ample, the concept of betweenness centrality that emerged
in the social network literature in the 1970s, today plays a
key role in identifying high traffic nodes on the Internet;
algorithms developed by computer scientists for graph
partitioning have found novel applications in cell biology.

Empirical, data driven nature: The tools of network
science have their roots in graph theory, a fertile field of
mathematics. What distinguishes network science from
graph theory is its empirical nature, i.e. its focus on data
and utility. As we will see in the coming chapters, we will
never be satisfied with developing the abstract mathemat-
ical tools to describe a certain network property. Each tool
we develop will be tested on real data and its value will be
judged by the insights it offers about a system’s structure
or evolution.

Ouantitative and mathematical nature: To contribute
to the development of network science, it is essential to
master the mathematical tools behind it. The tools of net-
work science borrowed the formalism to deal with graphs
from graph theory and the conceptual framework to deal
with randomness and seek universal organizing principles
from statistical physics. Lately, the field is benefiting from
concepts borrowed from engineering, control and infor-
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mation theory, statistics and data mining, helping us ex-
tract information from incomplete and noisy datasets.

Computational nature: Finally, given the size of many
of the networks we explore, and the exceptional amount of
data behind them, network science offers a series of for-
midable computational challenges. Hence, the field has a
strong computational character, actively borrowing from
algorithms, database management and data mining. A se-
ries of software tools help practitioners with diverse com-
putational skills analyze networks.



SECTION 7

THE IMPACT OF NETWORK SCIENCE
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Image 1.6
The rise of social networking.

2003 2005 2007

2009 01

The popularity of the best known social networks, in terms of the number of users they attracted by the end of 2011 (vertical axis) shown as a function

of their founding year (horizontal axis).

The impact of a new research field is measured both by its
intellectual achievements as well as by the reach and the
potential of its applications. While network science is a
young field, its impact is everywhere around us, as we dis-
cuss below.

Economic Impact: From web search to social net-
working.

Some of the most successful companies of the 21st century,
from Google to Facebook, from Cisco to Apple and Akamai,
base their technology and business model on networks.
Indeed, Google is not only the biggest network mapping
operation, building a comprehensive map of the WWW,
but its search technology relies on the network characteris-
tics of the Web. Networks have gained particular popular-

ity with the emergence of Facebook, the company with the
oft-emphasized ambition to map out the social network of
the whole planet. While Facebook was not the first social
networking site, it is likely also not the last: an extensive
ecosystem of social networking tools, from Twitter to Or-
kut, are attracting an impressive number of users (Image
1.6). The tools developed by network science fuel these
sites, aiding everything from friend recommendation to
advertising.

Health: From drug design to metabolic engineering.

The human genome project, completed in 2001, offered
the first comprehensive list of all human genes 9, 10]. Yet,
to fully understand how our cells function, and the origin
of disease, we need accurate maps that tell us how these

THE CHARACTERISTICS OF NETWORK SCIENCE | 11
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Image 1.7a, 1.7b
Networks in biology and medicine.

a) The cover of two issues of Nature Reviews Genetics, the top review
journal in genetics. The cover from 2004, focuses on network biology [11],
the cover from 2011 discuses network medicine [12].

b) The prominent role networks play in both cell biology and medical
research is illustrated by the fact that the 2004 article on network biology
is the second most cited article in the history of Nature Reviews Genetics.
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The network behind a military engagement.

Stouy S Targeted
o Sifkes.

Yps. Domages” 5%”" ‘ FACTIONS

__»&Casualties &

et
pa

N\

NSF. Av > 4 lns-
Under ot el s“ﬁﬁlu]
Control {Afoh
ANSF T Sg:'AN S F ?ﬁi T
\, |nsumuunalwenmnng INSTITUTIONAL " < ins. Provision .‘

\ Perceptior
Cl}dllllull |Ivl9|ll

genes and other cellular components interact with each
other. Most cellular processes, from the processing of food
by our cells to sensing changes in the environment, rely on
molecular networks. The breakdown of these networks is
responsible for most human diseases. This has led to the
emergence of network biology, a new subfield of biology
that aims to understand the behavior of cellular networks.
A parallel movement within medicine, called network
medicine, aims to uncover the role of networks in human
disease (Image 1.7a/b). Networks are particularly import-
ant in drug development. The ultimate goal of network
pharmacology is to develop drugs that can cure diseases
without significant side effects. This goal is pursued at
many levels, from millions of dollars invested to map out
cellular networks to the development of tools and databas-
es to store, curate, and analyze patient and genetic data.
Several new companies take advantage of these opportuni-
ties, from GeneGo that aims to collect accurate maps of cel-
lular interactions from scientific literature to Genomatica
that uses the predictive power behind metabolic networks
to identify drug targets in bacteria and humans. Recently
most major pharmaceutical companies have made signifi-
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This diagram was designed during the Afghan war to portray the American strategy in Afghanistan. While it has been occasionally ridiculed in the press,
it portrays well the complexities and the interconnected nature of a military's engagement. (Image from New York Times)

12 | NETWORK SCIENCE



cant investments in network and systems medicine, seeing
it as the path towards future drugs.

Security: Fighting Terrorism.

Terrorism is one of the maladies of the 21st century, ab-
sorbing significant resources to combat it worldwide.
Network thinking is increasingly present in the arsenal of
various law enforcement agencies in charge of limiting ter-
rorist activities. It is used to disrupt the financial network
of terrorist organizations, to map terrorist networks, and
to uncover the role of their members and their capabilities.
While much of the work in this area is classified, several
success stories have surfaced. Examples include the use of
social networks to capture Saddam Hussein or the capture
of the individuals behind the March 11, 2004 Madrid train
bombings through the examination of the mobile call net-
work. Network concepts have impacted military doctrine
as well, leading to the concept of net-war, aimed at fighting
low intensity conflicts and crime waged by terrorist and
criminal networks that employ decentralized flexible net-
work structures [13]. One of the first network science pro-
grams at the college level was started at West Point, the US
Army’s military academy. In 2009 the Army Research Lab
and the Department of Defense devoted over $300 million
to support network science centers across the US.

Epidemics: From forecasting
to halting deadly viruses.

While the HiN1 pandemic was not as devastating as it was
feared at the beginning of the outbreak in 2009, it gained

Dec 28 2009

Predicting the HIN1 epidemic.

The predicted spread of the HIN1 epidemics during 2009, representing
the first successful prediction of a pandemic. The project, relying on the
details of the worldwide transportation networks, foresee that HIN1 will
peak out in October 2009, in contrast with the normal January-February
peaks of influenza. This meant that the vaccines planned for November
2009 were too late, which was indeed the case. The success of this project
shows the power of network science in facilitating advances in areas
affected by networks.

Movie by D.Balcom, B.Gongalves, H.Hu, and A.Vespignani.

a special role in the history of epidemics: it was the first
pandemic whose course and time evolution was accurate-
ly predicted months before the pandemic reached its peak
(Image 1.9) [14]. This was possible thanks to fundamen-
tal advances in understanding the role of networks in the
spread of viruses. Indeed, before 2000 epidemic model-
ing was dominated by compartment models, assuming
that everyone can infect everyone else one word the same
socio-physical compartment. The emergence of a net-
work-based framework has fundamentally changed this,
offering a new level of predictability in epidemic phenom-
ena.

Today epidemic prediction is one of the most active appli-
cations of network science [15, 16]. It is the source several
fundamental results, covered in this book, that are used to
predict the spread of both biological and electronic virus-
es. The impact of these advances are felt beyond biological
viruses. In January 2010 network science tools have pre-
dicted the conditions necessary for the emergence of virus-
es spreading through mobile phones [17]. The first major
mobile epidemic outbreak that started in the fall of 2010
in China, infecting over 300,000 phones each day, closely
followed the predicted scenario.

Brain Research: Mapping neural network.

The human brain, consisting of hundreds of billions of
interlinked neurons, is one of the least understood net-
works from the perspective of network science. The reason
is simple: we lack maps telling us which neurons link to
each other. The only fully mapped neural map available for
research is that of the C.Elegans worm, with only 300 neu-
rons. Should detailed maps of mammalian brains become
available, brain research could become the most prolific
application area of network science. Driven by the poten-
tial impact of such maps, in 2010 the National Institutes
of Health has initiated the Connectome project, aimed at
developing the technologies that could provide an accurate
neuron-level map of mammalian brains.

Management: Uncovering the internal structure
of an organization.

While traditionally management uses the official chain of
command to understand the inner structure of an organi-
zation, it is increasingly evident that the informal network,
capturing who really communicates with whom, matters
even more for the success of a company. Accurate maps of
this network can expose lack of communication between
key units, can identify individuals who play an outsize role
in bringing different departments and products together,



and help higher management diagnose diverse organiza-
tional issues. Furthermore, there is increasing evidence in
the management literature that the position of an employ-
ee within this network correlates with his/her productivity

[18].

Therefore, several dozen consulting companies have
emerged with expertise to map out the true structure of
an organization. Established consulting firms, from IBM
to SAP, have added social networking capabilities to their
consulting business. These companies offer a host of ser-
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Image 1.10a
Understanding the inner workings of an organization.

vices, from identifying opinion leaders to preventing em-
ployee churn and from identifying optimal groups for a
task to modeling product diffusion (Image 1.10a/b/c/d).
Hence lately network science tools are increasingly indis-
pensable in management and business, enhancing pro-
ductivity and boosting innovation within an organization.

Network science can therefore offer a microscope for high-
er management, helping them improve the company’s ef-
fectiveness by uncovering the true network behind any or-
ganization.
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The workforce of a Hungarian company with three main locations, one on Budapest, whose employees are shown in purple, and two manufacturing
sites outside of the city, shown in yellow and blue. The company had a major internal communication problem: information that reached the workers
about the intentions of the higher management often had nothing do to with the management's real plans. Seeking to understand the source of this
discrepancy, and looking for ways to embrace information flow within the company, the management turned to Maven 7, a social networking consulting

company that applies network science in diverse organizational setting.
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Image 1.10b
Understanding the inner workings of an organization.

Having the list of the workers and their role in the company, together with the official hierarchy is not sufficient to understand how an organization
works. For that we need to know who listens to whom, who is asking for advice from whom, eventually uncovering the paths through which knowledge
and information travels within the organization. Hence Maven 7 developed an online platform to ask each employee whom do they turn to for advice
when it comes to decisions impacting the company, from restructuring to advancement. This allowed them to build the map shown above, where two
individuals are connected if one nominated the other as his/her source of information on organizational and professional issues.

The map identifies several highly influential individuals that are the hubs of the organization. The problem was that none of the hubs were part of the
leadership.

" N\

. 1&?.}0«_,’,.
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Directors/CEO *

—
croup Leaders T T
woces THREE

HIERARCHY

Image 1.10c
Understanding the inner workings of an organization.

The position of the leadership within the company's informal network is illustrated on this map, where we colored the nodes based on their company
rank within the company. None of the company directors, including the CEQ, shown in red, are hubs. Nor are the top managers, shown in blue. The hubs
are managers, group leaders and associates, or workers. The biggest hub, hence the most influential individual, is an associate, shown as a gray node in
the center.

THE IMPACT OF NETWORK SCIENCE | 15



1
2 .

22 LINKS

Image 1.10d
Understanding the inner workings of an organization.

The image indicates that a significant fraction of employees are one to two links from the biggest hub. It turns out that he is the safety and environmen-
tal expert in the company, whose job is to visit each location and talk with most employees. There is only one part of the company he has no links to: the
directors or the top management. With little access to the management and their intentions, he passes on information that he collects along his trail,
effectively running a gossip center.

How does one remedy this situation? Fire the biggest hub? He is not the problem and firing him would probably make the problem even more acute.
The real issue is that higher management failed to put in place proper channels of communication, leaving behind a structural hole, which was natural-
ly filled by the environmental and safety manager. Offering him and the few other hubs access to the true information can fundamentally change the
reliability of information within the company. Network science can therefore offer a potent microscope for higher management, helping them improve
the company's effectiveness by uncovering the true network behind an organization.
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SECTION 8

SCIENTIFIC IMPACT
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Image 1.11
Complexity and network science.

The impact of network science can be put into perspective by looking at
the citation patterns of the most cited papers in complexity. The study of
complex systems in the 70s and 80s was dominated by Edward Lorenz's
1963 classic work on chaos [19], Kenneth G. Wilson's renormalization
group [20], and Mitchell Feigenbaum's discovery of the bifurcation dia-
gram [21]. In the 1980s the community has shifted its focus on pattern
formation, following Benoit Mandelbrot's book on fractals [22] and
Thomas Witten and Len Sander's introduction of the diffusion limited
aggregation mode [23]. Equally influential was John Hopfield's paper on
neural networks [24] and Per Bak, Chao Tang and Kurt Wiesenfeld's paper
on self-organized criticality [25]. These papers are continuing to define
our understanding of complex systems, each of them writing a separate
chapter in modern statistical mechanics. The video compare their citation
pattern with the citations of the two most cited papers in this area [2,3].

Nowhere is the impact of network thinking more evident
than in the scientific community. The most prominent sci-
entific journals, from Nature and Science to Cell and PNAS,
have devoted special issues, reviews, or editorials address-
ing the impact of networks on various topics from biology
to social sciences. During the past decade, each year several
dozen international conferences, workshops, summer and
winter schools have focused exclusively on network sci-
ence. A successful network science meeting series, called
NetSci, attracts the field’s practitioners since 2005. Several
general-interest books, making the bestseller lists in many
countries, have brought network science to the public.
Most major universities offer network science courses, at-
tracting a diverse student body. Finally, Science Magazine

has devoted a special issue to networks, marking the ten-
year anniversary of the paper that reported the discovery of
scale-free networks [3] (Image 1.12).

The relative impact of network science can be put into per-
spective by looking at the citation patterns of the most cited
papers in the area of complex systems (Image 1.11). Each
of these papers are citation classics, cuamulatively amassing
anywhere between 2,000 and 5,000 citations, continuing
to gather anywhere between 50 to 300 citations a year. To
see how the interest in network science compares to these
classic discoveries, in Movie 3 we also show the citation
patterns of the two most cited network science papers: the
1998 paper on small-world phenomena by Duncan Watts
and Steve Strogatz [2] and the 1999 Science paper report-
ing the discovery of scale-free networks by Albert-Laszlo
Barabasi and Réka Albert[3]. As one can see, the growth in
citations to these papers unparalleled in the area of com-
plex systems.

Image 1.12
Complex systems and networks.

Science

Special issue of Science magazine

on Complex Systems and Networks,
published on July 24, 2009, marking the
10th anniversary of the 1999 discovery of
scale-free networks [3].

Several other metrics indicate that network science is im-
pacting in a defining manner particular disciplines. For
example, several research fields witnessed network papers
become some of the most cited papers in their leading
journals:

B  The 1998 paper by Watts and Strogatz in Nature on
small world phenomena [2] and the 1999 paper by
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STRATEGY ron s ARMY CENTER o
NETWORK SCIENCE, TECHNOLOGY,
wo EXPERIMENTATION

Image 1.13
National Research Council Reports.

The two National Research Council Reports on network science have
not only documented the emergence of a new discipline, but have also
explained their long-term impact on a number of research fields, as well
as national competitiveness and the military. They have urged dedicated
support for the field, leading to the establishment of a series of network
science centers in US and the network science program within NSF.

Barabési and Albert in Science on scale-free net-
works [3] were identified by ISI as the top ten most
cited papers in physics during the decade after their
publications. Furthermore, currently (2011) the
Watts-Strogatz paper is the second most cited of all
papers published by Nature in 1998, and the Baraba-
si-Albert paper is the most cited paper among all pa-
pers published in Science in 1999.

B Four years after its publication, the SIAM review of
Mark Newman on network science became the most
cited paper of any journal published by the Society of
Industrial Mathematics [26].

B  Reviews of Modern Physics, published continuous-
ly since 1929, is the physics journal with the highest
impact factor. Currently the most cited paper of the
journal is Chandrasekhar classic 1944 review that
summarized the author’s work that led to his Nobel
in physics, entitled Stochastic Problems in Physics and
Astronomy [27]. During over 60 years since its publi-
cation, the paper gathered over 5,000 citations. Yet, it
will soon be taken over by a paper published only in
2001 entitled Statistical Mechanics of Complex Net-
works, the first review of network science [28].

B The paper leading to the discovery that in scale-free
networks the epidemic threshold is zero, by Pas-
tor-Satorras and Vespignani [29], is the most cited
paper among the papers published in 2001 by Physi-
cal Review Letters, a position the paper is sharing with
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a paper on quantum computing.

B The paper by Michelle Girvan and Mark Newman
on community discovery in networks [30] is the most
cited paper published in 2002 by Proceedings of the
National Academy of Sciences.

B The 2004 review entitled Network Biology, by Baraba-
si and Oltvai [11], is the second most cited paper in
the history of Nature Reviews Genetics, the top review
journal in genetics.

Given this extraordinary response by the scientific com-
munity, network science was examined by the Nation-
al Research Council (NRC), the arm of the US National
Academies in charge of offering policy recommendation
to the US government. NRC has assembled two panels,
resulting in two publications [31], defining the field of
network science (Image 1.13). They not only document the
emergence of a new research field, but highlight the field’s
vital importance to national competitiveness and security.
Following these reports, the National Science Foundation
(NSF) in the US established a network science directorate
and a series of network science centers were established by
the Army Research Labs.

General Audience

The results of network science have excited the public as
well. This was fueled partly by the success of several gener-
al audience books, like Linked: The New Science of Networks
by Albert-Laszl6 Barabasi, Nexus by Mark Buchanan, and
Six Degrees by Duncan Watts, each being translated in
many of languages. Newer books, like Connected by Nich-
olas Christakis and James Fowler, were also exceptionally
successful (Image 1.15). An award-winning documenta-
ry, Connected, by Australian filmmaker Annamaria Talas,
has brought the field to our TV screen, being broadcasted
all over the world and winning several prestigious prizes
(Image 1.14). Networks have inspired artists as well, lead-
ing to a wide range of network science research inspired
art-project, and even an annual symposium series that

Image 1.14
Connected.

The trailer of the
award winner docu-
ment Connected, di-
rected by Annamaria
Talas, focusing on
network science.
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Image 1.15
Wide impact.

Four widely read books are bringing network science to the public.

brings together, on a yearly basis, artists and scientists [32].
Fueled by successful movies like The Social Network, and a
series of novels and short stories, from science fiction to
novels exploiting the network paradigm, today networks

have permeated popular culture.
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SECTION 9

SUMMARY

While the emergence of the scientific interest in networks
was rather sudden, the enthusiasm for the field was re-
sponding to the emergence of a wider social awareness
of the importance of networks. This is illustrated in Im-
age 1.16, where we show the usage frequency of the words
that represent two important scientific revolutions of the
past two centuries: evolution, capturing the most common
term to refer to Darwin’s theory of evolution, and quantum,
the most frequently used term when one refers to quan-
tum mechanics. The use of evolution increases only after
the 1859 publication of Darwin’s On the Origins of Species.
The word quantum, first used in 1902, is virtually absent
until the 1920s, when quantum mechanics gains promi-
nence. The use of the word network has increased dramat-
ically following the 1980s. While the word has many uses
(as do evolution and quantum), its dramatic rise captures
the extraordinary awareness of networks in the society at
large. Indeed, evolution and quantum mechanics are just
as important as core scientific fields, as they are as en-
abling platforms: the current revolution in genetics is built
on evolutionary theory, and quantum mechanics offers a
platform for a wide range of advances in contemporary
science, from chemistry to wireless communications. In
a similar fashion, network science is an enabling science,
offering new tools and perspective for a wide range of sci-
entific fields from social networking to drug design. Given
the wide importance and impact of networks, we need to
develop the tools to study and quantify them. The rest of
this book is devoted to this worthy subject.
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Image 1.16
The rise of networks.

The frequency of the use of the words evolution and quantum represents
the major scientific advances of the 19th and 20th century, namely Dar-
win's theory of evolution and quantum mechanics. The plot indicates the
exploding awareness of networks in the last decades of the 20th century,
preparing a fertile ground for the emergence of network science. The plots
were generated by using the ngram platform of Google: http://books.
google.com/ngrams.
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SECTION 1

THE BRIDGES OF KONIGSBERG

Image 2.1
The bridges of Konigsberg.

From the contemporary map of Kénigsberg (now Kaliningrad, Russia) to Euler's graph. The graph constructed by Euler consists of four nodes (A, B, C,
D), each corresponding to a patch of land, and seven links, each corresponding to a bridge. Euler showed in 1736 that there is no continuous path that
would cross seven the bridges while never crossing the same bridge twice. The people of Kénigsberg agreed with him, gave up their fruitless search and
in 1875 they built a new bridge between B and C, increasing the number of links of these two nodes to four. Now only one node was left with an odd

number of links and it became rather straightforward to find the desired path.

Few research fields can trace their birth to a single moment
and place in history. Graph theory, the mathematical scaf-
fold behind network science, can. Its roots go back to 1736
to Konigsberg, the capital of Eastern Prussia and a thriving
merchant city of its time. The trade supported by its busy
fleet of ships allowed city officials to build seven bridges
across the river Pregel that surrounded the town. Five of
these connected the elegant island Kneiphof, caught be-
tween the two branches of the Pregel, to the mainland; two
crossed the two branches of the river (Image 2.1). This pe-
culiar arrangement gave birth to a contemporary puzzle:
Can one walk across all seven bridges and never cross the
same one twice? Despite many attempts, no one could find
such path. The problem remained unsolved until 1735,
when Leonard Euler, a Swiss born mathematician, offered
a rigorous mathematical proof that such path does not ex-
ist.
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Euler represented each of the four land areas separated by
the river with letters A, B, C, and D. (Image 2.1). Next he
connected with lines each piece of land that had a bridge
between them. He thus built a graph, whose nodes were
pieces of land and links were the bridges. Then Euler made
a simple observation: if there is a path crossing all bridg-
es, but never the same bridge twice, then nodes with odd
number of links must be either the starting or the end point
of this path. Indeed, if you arrive to a node with an odd
number of links you may eventually have no unused link
for you to leave it. A continuous path that goes through all
bridges can have only one starting and one end point. Thus
such a path cannot exist on a graph that has more than two
nodes with an odd number of links. The Konigsberg graph
had three nodes with an odd number of links, B, C, and D,
so no path could satisfy the problem.

Euler’s proof was the first time someone solved a mathe-



matical problem by turning it into a graph. For us the proof
has two important messages: the first is that some prob-
lems become simpler and more treatable if they are rep-
resented as a graph. The second is that the existence of the
path does not depend on our ingenuity to find it. Rather,
it is a property of the graph. Indeed, given the structure of
the Konigsberg graph, no matter how smart we are, we will
never find the desired path. In other words, networks have

properties hidden in their structure that limit or enhance
their behavior. To fully understand how networks affect the
properties of a system, we need to become familiar with
graph theory, a branch of mathematics that grew out of Eu-
ler’s proof, offering a formalism that will be used through-
out this book.
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SECTION 2

NETWORKS AND GRAPHS

If we want to understand a complex system, we first need
a map of its wiring diagram. A network is a catalog of a
system’s components often called nodes or vertices and
the direct interactions between them, called links or edg-
es (Box2.1).

The network representation offers a common language to
study systems that may differ greatly in nature, appearance,
or scope. Indeed as shown in Image 2.3, three rather differ-
ent systems have exactly the same network representation.

Networks or graphs?

In the scientific literature the terms network and graph are used
interchangeably. Yet, there is a subtle distinction between the two
terminologies: the network, node, and link combination often re-
fers to real systems: the WWW is a network of web pages con-
nected by URLs; society is a network of individuals connected by
family, friendship or professional ties; the metabolic network is the
sum of all chemical reactions that take place in a cell. In contrast,
we use the terms graph, vertex, and edge when we talk about the
mathematical representation of these networks: we talk about the
web graph, the social graph (a term made popular by Facebook), or
the metabolic graph. Yet, this distinction is rarely made, so these
two terminologies are often used as synonyms of each other.

Network Science Graph Theory

network graph
node vertex
link edge

Image 2.3 also introduces two basic network parameters:

Number of nodes, which we denote with IV, represent-
ing the number of components in the system. We will of-
ten call N the size of the network.

Number of links, which we denote with L, representing
the total number of interactions between the nodes.

The networks shown in Image 2.1 all have N = 4 and L = 4.
To distinguish the nodes, we label them i =1, 2, ..., N. The
links are rarely labeled, as they can be identified through
the nodes they connect. For example, the (2, 4) link con-
nects nodes 2 and 4.
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Image 2.3
Real systems of quite different nature can have the same
network representation.

Marlon Brando

In the figure we show a small subset of (a) the Internet, where routers
(specialized computers) are connected to each other; (b) the Hollywood
actor network, where two actors are connected if they played in the same
movie; (c) a protein-protein interaction network, where two proteins are
connected if there is experimental evidence that they can bind to each
other in the cell. While the nature of the nodes and the links differs wide-
ly, each network has the same graph representation, consisting of N= 4
nodes and L= 4 links, shown in (d).

The links of a network can be directed or undirected. Some
systems have directed links, like the WWW, whose uni-
form resource locators (URL) point from one web docu-
ment to the other, or phone calls, where one person calls
the other. Other systems display undirected links, like ro-
mantic ties: if [ date Janet, Janet also dates me, or trans-
mission lines on the power grid, on which the electric cur-
rent can flow in both directions.

A network is called directed (or digraph) if all of its links
are directed or undirected if all of its links are undirected.
Some networks simultaneously have directed and undi-
rected links. For example in the metabolic network some
reactions are reversible (i.e. bidirectional or undirected)
and others are irreversible, taking place in only one direc-
tion (directed).

Throughout this book we will use ten networks to illustrate
the tools of network science. These networks, listed in Ta-
ble 2.1, were selected having diversity in mind, spanning
social systems (mobile call graph or email network), col-
laboration and affiliation networks (science collaboration



network, Hollywood actor network), information systems
(WWW), technological and infrastructural systems (In-
ternet and power grid), biological systems (protein inter-
action and metabolic network), and reference networks
(citations). They differ widely in their sizes, from as few
as N =1,039 nodes and L = 5,802 links in the E. coli me-
tabolism, to almost half million nodes and five million
links in the citation network. They cover several of the ar-

eas where networks are actively applied, representing ‘ca-
nonical’ datasets, often used by researchers in the field of
network science to illustrate key network properties. In the
coming chapters we will discuss in detail the nature and
the characteristics of each of these datasets, turning them
into the guinea pigs of our journey to understand complex
networks.

DIRECTED/

NETWORK NAME NODES LINKS UNDIRECTED N L <K>
Internet routers Internet Connections Undirected 192,244 609,066 2.67

WWwWw webpages links Directed 325,729 1,497,134 4.60

Power Grid power plants, transformers cables Undirected 4,941 6,594 2.67
Mobile-Phone Calls subscribers calls Directed 36,595 91,826 2.51
Email email addresses emails Directed 57,194 103,731 1.81

Science Collaboration scientists co-authorships Undirected 23,133 186,936 16.16
Actor Network actors co-acting Undirected 212,250 3,054,278 28.78
Citation Network papers citations Directed 449,673 4,707,958 10.47

E. coli Metabolism metabolites chemical reactions Directed 1,039 5,802 5.84
Yeast Protein Interactions proteins binding interactions Undirected 2,018 2,930 2.90

Table 2.1
Network maps and their basic properties.

The basic characteristics of the networks that we use throughout this book to illustrate the use of network science. This table lists the nature of their
nodes and links, indicating if links are directed or undirected, the number of nodes (N) and links (L), and the network's average degree. For directed net-
works the average degree equals the average in- and out-degrees as b = <k, >=<k_ >.

Choosing the proper network representation.

The choices we make when we represent a complex system as a network will determine our ability to use network science successfully. For ex-
ample, the way we define the links between two individuals dictates the nature of the questions we can explore:

By connecting individuals that regularly interact with each other in the context of their work, we obtain the professional network, that

By linking friends to each other, we obtain the friendship network, that plays an important role in the spread of ideas, products and habits

By connecting individuals that have an intimate relationship, we obtain the sexual network, of key importance for the spread of sexually

|
plays a key role in the success of a company or an institution, and it is of major interest to organizational research.
|
and is of major interest to sociology, marketing and health sciences.
|
transmitted diseases, like AIDS, and of major interest for epidemiology.
|

By using phone and email records to connect individuals that call or email each other, we obtain the acquaintance network, capturing a

mixture of professional, friendship or intimate links, of importance to communications and marketing.

While many links in these four networks overlap (some coworkers may be friends or may have an intimate relationship), these networks are not
identical. Other networks may be valid from a graph theoretic perspective, but may have little practical utility. For example, by linking all indi-
viduals with the same first name, Johns with Johns and Marys with Marys, we do obtain a well-defined network, yet its utility is questionable.
Hence in order to apply network theory to a system, careful considerations must precede our choice of nodes and links, ensuring their significance

to the problem we wish to explore.

NETWORKS AND GRAPHS | 27



SECTION 3

DEGREE, AVERAGE DEGREE, AND DEGREE DISTRIBUTION

A key property of each node is its degree, representing the
number of links it has to other nodes. The degree can rep-
resent the number of mobile phone contacts an individual
has in the call graph (i.e. the number of different individ-
uals the person has talked to), or the number of citations a
research paper gets in the citation network.

We denote with k, the degree of the i" node in the network.
For example, for the undirected networks shown in Image
2.3 we have k=2, k=3, k=2, k =1.

In an undirected network total number of links, L, can be
expressed as the sum of the node degrees:

1 N
ngg‘k"

Here the 1/2 factor corrects for the fact that in the sum (1)
each link is counted twice. For example, the link connect-
ing the nodes 2 and 4 in Image 2.3 will be counted once in
the degree of node 1 (k, = 3) and once in the degree of node

4(I<4 =1).

(1)

Brief statistics review.

The average, the standard deviation, and the distribution of random vari-
ables will play a key role throughout this book.
For a sample of Nvalues x,, ..., x, we have:

Average (mean value):

+x, 4.+ 1 &
(== 23, )
i=1
nt" moment:
G N .
()= Ty sz XN=N2x;“ (3)
i=1

Standard deviation (fluctuations around the average):

& 2
c,= N;(xi—@c» (4)

Distribution of x (probability that a randomly chosen value is a):

p= %25 (5)

which yields

przl(J.pxdle) (6)

i
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An important property of a network is its average degree,
which for an undirected network is

1 & 2L
<k>=ﬁ;ki__ (7)

N

In directed networks we distinguish between incoming de-
gree, k", representing the number of links that point node
i, and outgoing degree, k" , representing the number of
links that point from the node i to other nodes and the total
degree, k,, given by

ko= K"+ k" (8)
For example, on the WWW the number of pages a giv-
en document points to represents its outgoing degree, k_,

and the number of other documents that point to it rep-
resents its incoming degree, k. .

The total number of links in a directed network is

N N
L:zklm ZZkiDut

i=1 i=1
The 1/2 factor in Eq. (1), is absent above, as for directed
networks the two sums in (9) separately count the outgo-

ing and the incoming degrees.

(9)

The average degree of a directed network is

(kin)_iikin_(kout)_iikout_i (10)
NG NS N
The degree distribution, p,, provides the probability that a
randomly selected node in the network has degree k. Since

pk >
zpk =1
is a probability, it must be normalized, i.e. ! . For
a fixed network of N nodes the degree distribution is the
normalized histogram (see G allew 2.1),
Y

3

where N, is the number of degree k nodes. Hence the

number of degree k nodes can be obtained from the degree
distributionas N, =N .



The degree distribution has taken a central role in net-
work theory following the discovery of scale-free networks
(Barabasi & Albert, 1999). Another reason for its impor-
tance is that the calculation of most network properties re-
quires us to know p,. For example, the average degree of a
network can be written as

()= ko,

We will see in the coming chapters that the precise func-
tional form of p, determines many network phenomena,
from network robustness to the spread of viruses.
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Image 2.4a

Degree distribution.

The degree distribution is defined as the p = N, /N ratio, where N, denotes
the number of k-degree nodes in a network. For the network in (a) we
have N = 4 and p, = 1/4 (one of the four nodes has degree k, = 1), p, =
1/2 (two nodes have k, =k, = 2), and p, = 1/4 (as k, = 3). As we lack nodes
with degree k > 3, p, = 0 for any k> 3. Panel (b) shows the degree distri-
bution of a one dimensional lattice. As each node has the same degree k =
2, the degree distribution is a Kronecker's delta function p, = & (k - 2).
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In many real networks, the node degree can vary considerably. For exam-
ple, as the degree distribution (a) indicates, the degrees of the proteins in
the protein interaction network shown in (b) vary between k=0 (isolated
nodes) and k=92, which is the degree of the largest node, called a hub.
There are also wide differences in the number of nodes with different
degrees: as (a) shows, almost half of the nodes have degree one (i.e.
p,=0.48), while there is only one copy of the biggest node, hence p,, = 1/
N=0.0005. (c) The degree distribution is often shown on a so-called log-
log plot, in which we either plot log p, in function of log k, or, as we did in
(c), we use logarithmic axes.
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SECTION 4

REAL NETWORKS ARE SPARSE

In real networks the number of nodes (V) and links (L) can
vary widely. For example, the neural network of the worm
C. elegans, the only fully mapped brain of a living organ-
ism, has 297 neurons (nodes) and 2,345 synapses (links),
while a human brain is estimated to have about a hundred
billion (10") neurons, each with an average of 7,000 syn-
aptic connections. The genetic network of a human cell has
about 20,000 genes as nodes; the social network consists
of seven billion individuals (N = 7x10%) and the WWW is
estimated to have over a trillion webpages (N>10"?). These
wide differences in size are noticeable in Table 2.1 where
we list N and L for several network maps. Some of these
maps offer a complete wiring diagram of the system they
describe (like the actor network or the E. Coli metabolism),
others are only samples, representing a subset of a real sys-
tem’s nodes (WWW, mobile call graph).

Table 2.1 indicates that the number of links also varies
widely. In a network of N nodes the number of links is be-
tweenL=oandL_ ,wherel isthe total number oflinks
present in a complete graph (Image 2.5),

N NN -1
a graph in which each node is connected to all other nodes.
In real networks L is much smaller than L, indicating
that real networks are sparse. For example, the WWW
graph in Table 2.1 has about 1.5 million links. Yet, if the
WWW were to be a complete graph, this sample should
have L ~ 10" links according to (11).
Therefore, the web graph has only a 10° fraction of the
links it could have, making it a sparse network. In fact each
network in Table 2.1 has only a tiny fraction of the links it
could have according to (11). As we will see later sparse-
ness has important consequences on the way we explore
and store real networks.
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Image 2.5
Complete graph.

The figure shows a complete graph with N = 16 nodes and L = 120 links,
as predicted by Eq. (11). The adjacency matrix of a complete graph is A=
Tforalljj=1,..Nand A = 0. The average degree of a complete graph is
do=N-1.



SECTION 5

ADJACENCY MATRIX

A full description of a network requires us to keep track of
its links. The simplest way to achieve this is to provide a
complete list of the links. For example, the network of Im-
age 2.1 is uniquely described by the list of its four (i, ) links:

{(1,2),(1,3),(2,3), (2, 4)}-

For mathematical purposes we often represent a network
through its adjacency matrix. The adjacency matrix of a di-
rected network of NV nodes has N rows and IV columns, its
elements being:

A, = 1if there is a link pointing from node j to node i
A, = oif nodes i and j are not connected to each other.

The adjacency matrix of an undirected network has two
entries for each link, e.g. link (1,2) is represented as A =1
and A =1. Hence the adjacency matrix of an undirected
network is symmetric, i.e. A=A, (Image 2.7).

The degree k, of node i can be directly obtained from the el-
ements of the adjacency matrix. For undirected networks a
node’s degree is a sum over either the rows or the columns
of the matrix, i.e.

N N
&:2%:2%
j= i=

For directed networks the sums over the adjacency matrix’
rows and columns provide the incoming and outgoing de-
grees, respectively

‘ N N
K=Y A, kK=Y A, . (13)
J=1 i=1

Given that in an undirected network the number of out-
going links equals the number of incoming links, we have

(12)

N ) N N
L= k"= k" =D A, (19)
i=1 j=1 ij

The number of nonzero elements of the adjacency matrix
is 2L, or twice the number of links. Indeed, an undirected
link connecting nodes i and j appears in two entries:

A, =1, alink pointing from node j to node /, and A, = 1, and
a link pointing from i to j (Image 2.7).

The sparsity of real networks implies that the adjacency
matrices are also sparse. Indeed, a complete network has
A, =1,forall (i j), i.e. each of its matrix elements are equal
to one. In contrast in real networks only a tiny fraction of
the matrix elements are nonzero. This is illustrated in Im-
age 2.6, where we show the adjacency matrix of the pro-
tein-protein interaction network listed in Table 2.1. One
can see that the matrix appears nearly empty. One imme-
diate consequence of the sparseness is that when we store
a large network in our computer, it is better to store only
the list of links (i.e. elements for which A, # 0), rather than
full adjacency matrix, as an overwhelming fraction of Aij
elements are zero.

Image 2.6
The adjacency matrix is typically sparse.

The adjacency matrix of the yeast protein-protein interaction network,
consisting of 2,018 nodes, each representing a yeast protein (Table 2.1).

A dot is placed on each spot of the adjacent matrix for which A,-,-= 1,
indicating the presence of an interaction. There are no dots for A,-,- =0.The
small fraction of dots underlines the sparse nature of the protein-protein
interaction network.
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Adjacency matrix

Al 1 Al 2 Al 3 Al 4

A — A21 A22 A23 A24

! A31 A32 A33 A34

A41 A42 A43 A44

Undirected network Directed network

O 1 1 O 0 01 0
Ai':1011 Ai-ZIOIO
/ 1 1 0 O / 0O 0 0 O
O 1 0 0 0O 1 0 0

AU = Ajl Au = O i * AJ’ Au = O
RN 2L X . L
L = — A _ — n\ _ out N
A (k== =34, (¢)=()=%
Image 2.7

The adjacency matrix.

Top: The elements of the adjacency matrix. The adjacency matrix of a directed (left column) and an undirected (right column) network. The figure high-
lights the fact that the degree of a node (in this case node 2) can be expressed as the sum over the appropriate column or row of the adjacency matrix.
It also shows a few basic network characteristics, like the total number of links, (L), and average degree, (ck»), expressed in terms of the elements of the

adjacency matrix.
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SECTION 6

WEIGHTED AND UNWEIGHTED NETWORKS

So far we discussed only networks for which all links have
the same weight, i.e. A; = 1. Yet, in many applications we
need to study weighted networks, where each link (i, j) has
aunique weightw, . In mobile call networks the weight can
represent the total number of minutes two mobile phone
users talk with each other on the phone; on the power grid
the weight is the amount of current flowing through a
transmission line.

The value of a network: Metcalfe's Law.

Metcalfe's law states that the value of a network is proportional to the
square of the number of its nodes, i.e. N2 Formulated around 1980 in the
context of communication devices by Robert M. Metcalfe (Gilder, 1993),
the idea behind Metcalfe's law is that the more individuals use a network,
the more valuable it becomes. Indeed, the more of your friends use email,
the more valuable it is to you as well, as the more individuals you can
communicate with.

During the Internet boom of the late 1990s Metcalfe's law was frequently
used to offer a quantitative valuation for Internet companies, supporting
a "build it and they will come" mentality (Briscoe et al., 2006). It suggest-
ed that the value of a service is proportional to the square of the number
of its users, in contrast with the cost that grows only linearly. Hence if
the service attracts sufficient number of users, it will inevitably become
profitable, as N? will surpass N at some sufficiently large N. Hence Met-
calfe's Law offered credibility to growth over profits, fueling the Internet
bubble of 2001.

Metcalfe's law is based on Eq. (11), telling us that if all links of a com-
munication network with N nodes are equally valuable, the total value of
the network is proportional to N(N - 1)/2, that is, roughly, N2 If a network
has N = 10 members, there are L = 45 different possible connections
between them. If the network doubles in size to N = 20, the number of
connections doesn't merely double but roughly quadruples to 190, a phe-
nomenon called network externality in economics.

Two issues limit the validity of Metcalfe's law: (i) most real networks are
sparse, which means that only a very small fraction of the links are pres-
ent. Hence the total value of the network will not grow like N2 but the
growth is often only linear in N. (ii) As the links have weights, not all links
are of equal value; some links are used heavily while the vast majority of
links are rarely utilized.

For weighted networks the elements of the adjacency ma-
trix carry the weight of the link

1j [/ (15)

Most networks of scientific interest are weighted, but we
can not always measure the appropriate weights, hence we
often approximate these networks as unweighted. In this
book we predominantly focus on unweighted networks,
but we will devote a separate chapter to network character-
istics that are unique to weighted networks.

Cost=N

Critical Mass Crossover

Dollars

Value=N?

Devices

Image 2.8

According to Metcalfe's law the cost of network based services and
products increases linearly with the number of nodes (users or devices)
while the benefits or income is driven by the number of links L the
technology makes possible, growing like N°. Hence once the number of
devices exceeds some “critical mass crossover”, the technology becomes
profitable.
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SECTION 7

BIPARTITE NETWORKS

A bipartite graph (or bigraph) is a network whose nodes
can be divided into two disjoint sets U and V such that each
link connects a U-node to a V-node. In other words, if we
color the U-nodes yellow and the V-nodes green, then
each link must connect nodes of different colors (Image

2.9a/b).

Projection U u \Y Projection V

Image 2.9a
Bipartite network.

In a bipartite network we have two sets of nodes, U and V, so that nodes
in the U-set connect directly only to nodes in the V-set. Hence there are
no direct U-U or V-V links. The figure also shows the two projections

we can generate from any bipartite network. Projection Uis obtained by
connecting two U-nodes to each other if they link to the same V~node in
the bipartite representation. Projection Vis obtained by connecting two
V-nodes to each other if they link to the same U-node in the bipartite
network.

We can generate two projections for each bipartite net-
work. The first projection connects two U-nodes to each
other by a link if they are linked to the same V-node in the
bipartite representation; the second projection connects
the V-nodes to each other by a link of they connect to the
same U-node.

In network theory we encounter numerous bipartite net-
works. A well-known example is the Hollywood actor
network, in which one set of nodes corresponds to movies
(U), and the other to actors (V), a movie being connected
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to an actor if the actor plays in that movie. In this network
one projection corresponds to the actor network, in which
two nodes are connected to each other if they played in
the same movie; this is the network characterized in Table
2.1. The other projection is the movie network, in which
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Gene network

Image 2.9b
Bipartite network.

The human diseaseome is a bipartite network, whose nodes are diseases
(U) and genes (), in which a disease is connected to a gene if mutations
in that gene are known to affect the particular disease [4]. One projection
of the diseaseome is the gene network, whose nodes are genes, two genes
being connected if they are associated with the same disease. The second
projection is the disease network, whose nodes are diseases, two diseases
being connected if the same genes are associated with them, indicating
that the two diseases have common genetic origins. The figure shows a
subset of the diseaseome, focusing on cancers. The full human diseaseome
map, connecting 1,283 disorders via 1,777 shared disease genes. (After [4])

two movies are connected if they share at least one actor
in their cast. Another example of bipartite network emerg-
es in medicine, connecting diseases to the genes whose
effects can cause or influence the corresponding disease
(Image 2.9a/b). Finally, one can also define multipartite
networks, like the tripartite recipe-ingredient-compound
network described in Image 2.10 a/b.



Recipes Ingredients Compounds

phenethyl alcohol

|-aspartic acid

Chicken
Marsala
hydrogen sulfide
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Image 2.10a
Tripartite network.

The tripartite recipe-ingredient-compound network, in which one set of
nodes are recipes, like Chicken Marsala, the second set corresponds to
the ingredients each recipe has (like flour, sage, chicken, wine, and butter
for Chicken Marsala), and the third set captures the flavor compounds, or
chemicals that contribute to the taste of a particular ingredient.
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Tripartite network.

A projection of the tripartite network, resulting in the ingredient network, often called the flavor network. Each node denotes an ingredient; the node
color indicating the food category and node size reflects the ingredient prevalence in recipes. Two ingredients are connected if they share a significant
number of flavor compounds, link thickness representing the number of shared compounds between the two ingredients (After [12]).
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SECTION 8

PATHS AND DISTANCES IN NETWORKS

In physical systems the components are characterized by
obvious distances, like the distance between two atoms in
a crystal, or between two galaxies in the universe. In net-
works distance is a challenging concept. Indeed, what is
the distance between two webpages on the WWW, or two
individuals who may or may not know each other? The
physical distance is not relevant here: two webpages linked
to each other could be sitting on computers on the opposite
sides of the globe and two individuals, living in the same
building, may not know each other. In networks physical
distance is replaced by path length. A path is a route that
runs along the links of the network, its length representing
the number of links the path contains. A path can intersect
itself and pass through the same link repeatedly (Image
2.5). In network science paths play a central role, hence
next we discuss some of their most important properties,
many more being summarized in Gallery 2.4.

Shortest Path (or geodesic path) between nodes i and j
is the path with fewest number of links (Image 2.5). The
shortest path is often called the distance between nodes
i and j, and is denoted by d, , or simply d. We can often

Image 2.11
The adjacency matrix is typically sparse.

(a) A path between nodes i and i is an ordered list of n links P, = {(i, i),
(i, i), (i,i) ..(i -1,i),}.The length of this path is d. The path shown in (a)
follows the route 1—2—5—4—2—5—7, hence its length isn = 6.

(b) The shortest paths between nodes 1 and 7, representing the distance
d, . is the path with the fewest number of links that connect nodes 1 and
7. There can be multiple paths of the same length, as illustrated by the
two paths shown in different colors. The network diameter is the largest
distance in the network, being d =3 here.
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find multiple shortest paths of the same length d between a
pair of nodes (Image 2.5). The shortest path never contains
loops or intersects itself.

In an undirected network d, = d, i.e. the distance between
node i andj is the same as the distance between node j and
i. In a directed network often dij #dji. Furthermore, in a di-
rected network the existence of a path from node i to node j
does not guarantee the existence of a path from to i.

In real networks we frequently need to determine the dis-
tance between two nodes. For a small network, like the one
shown in Image 2.5, this is an easy task. For a network of
millions of nodes finding the shortest path between two
nodes can be rather time consuming. The length of the
shortest path and the number of such paths can be formal-
ly obtained from the adjacency matrix (Box 2.5). In prac-

Number of shortest paths between two nodes.

The number of shortest paths, ij' between nodes i and j and the
distance dfj between them can be determined directly from the
adjacency matrix, A,y-

] d,,j = 1:If there is a link between j and j, then A/.j= 1 (Ai/ =0
otherwise).

[ ] d,,j = 2: If there is a path of length two between iand j, then
the product of d elements AikAk/ = (Ar'kAkj = 0 otherwise).
The number of du = 2 paths between iand jis

N
NP =X AA=[A']  (8)
k=1
where [...]ij denotes the (ij) element of a matrix.

| d/.}:d: If there is a path of length d between i and j, then

A, .. AU =1(A,.. Ar/ =0 otherwise). The number of paths of

length d between i and j is

N;jd) — I:Ad :IU (17)

Equation (17) holds for both directed and undirected networks
and can be generalized to multigraphs as well. The distance be-
tween nodes i and j is the path with the smallest d for which NU"”
> 0. Despite the mathematical elegancy of Eq. (17), faced with a
large network, it is more efficient to use the breadth-first-search
algorithm described in Box 2.6.




o
)

+
=5

Shortest Path
disi=3

dyys =2

Diameter

disy=3

Average Path Length
(dissa + diy3 + dy a4+

+ie + -
+days +ds g +dy 5+
Hdiss) /10 = 1.6

Cycle

Self-avoiding Path

Eulerian Path

Hamiltonian Path

o
o
ks
ko
O
)

Image 2.12
Pathology.

PATH: A sequence of nodes such
that each node is connected to

the next node along the path by

a link. A path always consists of n
nodes and n - 7 links. The length of
a path is defined as the number of
its links, counting multiple edges
multiple times.

SHORTEST PATH (geodesic path, d):
the path with the shortest distance
d between two nodes. We will call

it the distance between two nodes.

DIAMETER (d_): the longest short-
est path in a graph, or the distance
between the two furthest away
nodes.

AVERAGE PATH LENGTH («d)):
the average of the shortest paths
between all pairs of nodes.

CYCLE: a path with the same start
and end node.

SELF-AVOIDING PATH: a path that
does not intersect itself, i.e. the
same node or link does not occur
twice along the path.

EULERIAN PATH: a path that tra-
verses each link exactly once.

HAMILTONIAN PATH: a path that
visits each node exactly once.

tice we most often use the breadth first search (BFS) algo-
rithm discussed in Box 2.6 and Gallery 2.5 to measure the
distance between two nodes.

Network diameter: the diameter of a network, denot-
edbyd_,isthe maximal shortest path in the network. In
other words, it is the largest distance recorded between any
pair of nodes. One can verify that the diameter of the net-
work shown in Image 2.5is d = 3. For larger graphs the
diameter can also be determined using the breadth first
search algorithm (Box 2.6).

Average path length, denoted by «d, is the average dis-
tance between all pairs of nodes in the network. For a di-

rected network of NV nodes, «d> is given by

1
(dy=——— d. .
N(N-1) i,j=21,N Y

For an undirected network we need to multiply the r.h.s. of
Eq. (18) by two.

(18)

We can use the BFS algorithm to determine the average
path length for a large network. For this we first determine
the distance between a node and all other nodes in the net-
work using the algorithm described in Box 2.6. We then
determine the shortest path between a second node and all
other nodes but the first one, a procedure that we repeat
for all nodes. The sum of these shortest paths divided by
L provides the average path length.

Finding the shortest path: breath first search.

BFS is one of the most frequently used algorithms in network
science. Similar to throwing a pebble in a pond and watching the
ripples spread from the center, we start from a node and label its
neighbors, then the neighbors' neighbors, until we encounter the
target node. The number of “ripples” needed to reach the target
provides the distance. To be specific, the identification of the
shortest path between node i and j follows the following steps
(Gallery 2.5):

1. Start at node i.

2. Find the nodes directly linked to /. Label them distance “1" and
put them in a queue.

3. Take the first node, labeled n, out of the queue (n = 7 in the first
step). Find the unlabeled nodes adjacent to it in the graph. Label
them with n + 7 and put them in the queue.

4. Repeat step 3 until you find the target node j or there are no
more nodes in the queue.

5. The distance between jand jis the label of j. If j does not have a
label, then dl.j.=oo.

The time complexity of the BFS algorithm, representing the
approximate number of steps the computer needs to find dij on a
network of N nodes and L links, is O (N + L). It is linear in Nand L
as each node needs to be entered and removed from the queue at
most once, and each link has to be tested only once.
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5939

Image 2.13

The BFS algo-
rithm applied to
a small network.

Starting from the
orange node, labeled
"0", we identify all
its neighbors, label-
ing them "1". Then
we label "2" the un-
labeled neighbors of
all nodes labeled "1",
and so on, in each
iteration increasing
the labels, until no
node is left unla-
beled. The length of
the shortest path

or the distance d
between node 0 and
some other node i in
the network is given
by the label on node
i. For example, the
distance between
node 0 and the
leftmost node is
d,=3.



SECTION 9

CONNECTEDNESS AND COMPONENTS

The phone would be of limited use as a communication
device if we could not call any valid phone number; the
email world be rather useless if we could send emails to
only certain email addresses, and not to others. From a
network perspective this means that the technology behind
the phone or the Internet must be capable of establishing
a path between any two devices or clients, like your phone
and any other phone on the network or between yours and
your acquaintance’s email address. This is in fact the key
utility of most networks: they are built to ensure connect-
edness. In this section we discuss the graph-theoretic for-
mulation of connectedness.

In an undirected network two nodes i and j are connected
if there is a path between them on the graph. They are dis-
connected if such a path does not exist, in which case we
have dij: oo, This is illustrated in Image 2.14a, which shows

(a) 00 0 0
-n 00 0

00 0

00 00 0 iL

00 00 1

00 00 1

1 0

(b) 0000
1000
00 0 0

0 1 0
0 00
0 00
g 00

== )
=== =)

Image 2.14
Connected and disconnected networks.

(a) The network consists of two disconnected components, i.e. there is a
path between any pair of nodes in the (1,2,3) component, as well in the
(4,5,6,7) component. However, there are no paths between nodes that
belong to different connected components. The right panel shows the
adjacently matrix of the network. If the network consists of disconnected
components, the adjacency matrix can be rearranged into a block diagonal
form, such that all nonzero elements of the matrix are contained in square
blocks along the diagonal of the matrix and all other elements are zero.

(b) The addition of one link, called a bridge, can turn a disconnected
network into a single connected component. Now there is a path between
every pair of nodes in the network. Consequently the adjacency matrix
cannot be written in a block diagonal form.

a network consisting of two disconnected clusters. While
there are paths between the nodes that belong to the same
cluster (for example nodes 4 and 6), there are no paths be-
tween nodes that belong to different clusters (for example
nodes 1 and 6).

A network is connected if all pairs of nodes in the network
are connected. Itis disconnected if there is at least one pair
with dij = oo, Clearly the network shown in Image 2.6a is
disconnected, and we call its two subnetwork components
(or clusters). A component is a subset of nodes in a net-
work, so that there is a path between any two nodes that
belong to the component, but one cannot add any more
nodes to it that would have the same property. If a network
consists of two components, a properly placed single link
can connect them, making the network connected (Image
2.14b). Such a link is called a bridge. In general a bridge is
any link that, if cut, disconnects the graph.

While for a small network visual inspection can help us
decide if it is connected or disconnected, for a network
consisting of millions of nodes connectedness is a chal-
lenging question. Several mathematical tools help us iden-
tify the connected components of a graph:

B Foradisconnected network the adjacency matrix can
be rearranged into a block diagonal form, such that
all nonzero elements in the matrix are contained in
square blocks along the matrix’ diagonal and all other
elements are zero (Image 2.14a). Each square block
will correspond to a component. We can use the tools
of linear algebra to decide if the adjacency matrix is
block diagonal, helping us to identify the connected
components.

B [n practice, for large networks the components are

more efficient identified using the breadth first
search algorithm (Box 2.7).
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Finding the connected components of a graph.

1. Start from a randomly chosen node i and perform a
BFS from this node (Box 2.6). Label all nodes reached this
way with n = 1. By linking friends to each other, we obtain
the friendship network, that plays an important role in the
spread of ideas, products and habits and is of major interest
to sociology, marketing and health sciences.

2. If the total number of labeled nodes equals N, then the
network is connected. If the number of labeled nodes is
smaller than N, the network consists of several components.
To identify them, proceed to step 3.

3. Increase the label n— n + 1. Choose an unmarked node
Ji. label it with n. Use BFS to find all nodes reachable from j,
label them with n. Return to step 2.



SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to
which the neighbors of a given node link to each other. For
anode i with degree k. the local clustering coefficient is de-
fined as[5].

2L,

C,=——_
k.(k.—1)

where L, represents the number of links between the k,
neighbors of node i. Note that C, is between o and 1:

(19)

B C =oif none of the neighbors of node i link to each
other;

B C = 1 if the neighbors of node i form a complete
graph, i.e. they all link to each other (Image 2.7).

B Ingeneral C,is the probability that two neighbors of a
node link to each other: C = o.5 implies that there is a
50% chance that two neighbors of a node are linked.

B Insummary C, measures the network’s local density:
the more densely interconnected the neighborhood
of node i, the higheris C.

The degree of clustering of a whole network is captured by
the average clustering coefficient, <C>, representing the av-
erage of C,over allnodesi=1,.., N[5],

€)= -

In line with the probabilistic interpretation <C> is the
probability that two neighbors of a randomly selected node
link to each other.

(20)

While Eq. (19) is defined for undirected networks, the
clustering coefficient can be generalized to directed and
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.

C;=1 Ci=1/2 Ci=0
C=1 C=9/14 C=0
13
(C) = 45 = 0310
C="2°=0375

Image 2.15
Clustering Coefficient.

The local clustering coefficient, C,, of the central node with degree k=4
for three different configurations of its neighborhood. The clustering
coefficient measures the local density of links in a node’s vicinity. The
bottom figure shows a small network, with the local clustering coefficient
of a node shown next to each node. Next to the figure we also list the
network's average clustering coefficient <C>, according to Eq. (20), and
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note
that for nodes with degrees k=0,1, the clustering coefficient is taken to be
zero.
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SECTION 11

CASE STUDY AND SUMMARY

The purpose of the crash course in graph theory offered in
this chapter was to familiarize us with some of the basic
graph theoretical concepts and tools that network science
uses. They define a set of elementary network character-
istics, summarized in Image 2.16, that will serve as a lan-
guage through which we can explore real networks. Yet,
many of the networks we study in network science consist
of hundreds to millions of nodes and links (Table 2.1). To
explore them, we need to go beyond the small graphs dis-
cussed in Image 2.16 and use the introduced measures to
explore large networks. A glimpse of what we are about
to encounter is offered in Image 2.17a, where we show
the protein-protein interaction network of baker’s yeast,
whose nodes are proteins, two proteins being connected
if there is experimental evidence that they can bind (inter-
act) to each other. The network is obviously too complex
to understand its properties through a visual inspection of
its wiring diagram. We therefore need to use the tools of
network science to characterize its topology.

Let us use the measures we introduced so far to explore
some basic characteristics of this network. The undirected
network of Image 2.8a has IV = 2,018 proteins as nodes and
L=2,930 binding interactions as links. Hence the average
degree, according to Eq. (7), is «k» = 2.90, suggesting that
a typical protein interacts with approximately two to three
other proteins. Yet, this number is somewhat misleading.
Indeed, the degree distribution p, shown in Image 2.17b
indicates that the vast majority of nodes have only a few
links. To be precise, in this network 69% of nodes have
fewer than three links, i.e. for these k < o . They coexist
with a few highly connected nodes, or hubs, the largest
having as many as 91 links. Such wide differences in node
degrees is a consequence of the network’s scale-free prop-
erty, characterizing many real networks. We will see that
the precise shape of the degree distribution determines a
wide range of network properties, from the network’s ro-
bustness to node failures to the spread of viruses.

The breath-first-search algorithm helps us determine the
network’s diameter, findingd = 14. We might be tempt-
ed to expect wide variations in d, as some nodes are close to
each other, others, however, may be quite far. The distance
distribution (Image 2.17c), indicates otherwise: pd has a
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prominent peak around «d> =5.61, indicating that most dis-
tances are rather short, being in the vicinity of «@. Also,
p, decays fast for large «@, suggesting that large distances
are essentially absent. Instead, the variance of the degrees
is o , = 1.64, hence we have d= 5.61 + 1.64, i.e. most path
lengths are in the clise vicinity of «d> . These are manifes-
tations of the small world property, another common fea-
ture of real networks, indicating that most nodes are rather
close to each other.

The breath first search algorithm will also convince us
that the protein interaction network is not connected, but
consists of 185 components, shown as isolated clusters in
Image 2.17a. The largest, called the giant component, con-
tains 1,647 of the 2,018 nodes; all other components are
tiny compared to it. As we will see in the coming chapters,
such fragmentation is common in real networks.

The average clustering coefficient of the network is <C>
=0.12, which, as we will come to appreciate in the coming
chapters, is rather large, indicating a significant degree of
local clustering. A further caveat is provided by the depen-
dence of the clustering coefficient on the node’s degree,
or the C(k) function (Image 2.17d), which indicates that
the clustering coefficient of the small nodes is significant-
ly higher than the clustering coefficient of the hubs. This
suggests that the small degree nodes are locates in dense
local neighborhoods, while the neighborhood of the hubs
is much more sparse. This is a consequence of network hi-
erarchy, another widely shared network property.

Finally, a visual inspection reveals an interesting pattern:
hubs have a tendency to connect to small nodes, giving the
network a hub and spoke character. This is a consequence
of degree correlations, which influence a number of net-
work characteristics, from the spread of ideas and viruses
in social networks to the number of driver nodes needed to
control a network.

Taken together, Image 2.17 illustrates that the quantities
we introduced in this chapter can help us diagnose several
key properties of real networks. The purpose of the coming
chapters is to study systematically these network charac-
teristics, understanding what they tell us about the behav-
ior of a complex system.



Image 2.16
Graphology.

In network science we encounter many networks distinguished by some
elementary property of the underlying graph. Here we summarize the
most commonly encountered elementary network types, together with
their basic properties, and an illustrative list of real systems that share the
particular property. Note that in many real network we need to combine
several of these elementary network characteristics. For example the
WWW is a directed multi-graph with self-interactions. The mobile call
network is directed and weighted, without self-loops.

Undirected 0 110 Self-interactions . L 10
A = 1 0 1 1 1 0 1 1
i A =
1 1 0 O E! 1 1 0o 0
0O 1 0 0 0 1 0 1
A, =0 AU = Aﬂ A, =0 A=A,
1 N 2L 1 N N
L=—2A; <k>=2= L= A+ DA, ?
2:‘.j=1 ' N 2:’.j=|.f=j =1
UNDIRECTED NETWORK: a network whose links do not have a predefined ~ SELF-INTERACTIONS: in many networks nodes do not interact with
direction. Examples: Internet, power grid, science collaboration networks, themselves, so the diagonal elements of adjacency matrix are zero, A, =0,
protein interactions. i=1,..,N. In some systems self-interactions are allowed; in such networks,
representing the fact that node 7 has a self-interaction. Examples: WWW,
protein interactions.
Directed 0 1 0 0 Multigraph 0w 1L 90
A = 0O 0 1 1 (undirected) A 2 0 1 4
. 2 1 0 0 O i 111 0 o
0O 0 0 O 0 3 0 0
A; =0 Aij = Aji A,=0 Au’ = Aﬂ'
N N
L 1 2L
= . =— L =— >» nonzero(A, <k>="—
L wE:]AU <k=> 5 > ;::1 (A;) N
DIRECTED NETWORK: a network whose links have selected directions. MULTIGRAPH: in a multigraph nodes are permitted to have multiple links
Examples: WWW, mobile phone calls, citation network. (or parallel links) between them. Hence A, can have any positive integer.
. 0 2 05 0
Weighted Complete Graph o1 1 1
(undirected) A = 2 0 1 4 (undirected) 1 0 1 1
g A =
05 1 0 0 =11 1 @ i
0 4 0 0 1 11 0
A; =0 A=A, A= A,;=1
N
L= % Znonzero(Au) <k>= % L=L_ = N(A;_ LS T,

WEIGHTED NETWORK: a network whose links have a predefined weight, COMPLETE GRAPH: in a complete graph all nodes are connected to each
strength or fow parameter. The elements of the adjacency matrix are AU.= other; no self-connections.

0 if /and j are not connected, or A,-,-= wl.j.if there is a link with weight wij

between them. For unweighted (binary) networks, the adjacency matrix

only indicates the presence (A = 1) or the absence (A,-,- = 0) of a link be-

tween two nodes. Examples: Mobile phone calls, email network.
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Characterizing a real network.

(a)

The protein-protein interaction (PPI) network of yeast, a network
frequently studied not only by biologists, but also by network scien-
tists. The nodes of the network are proteins and links correspond to
experimentally documented protein-protein binding interactions.
The figure indicates that the network, consisting of N=2,018 nodes
and [=2,930 links, has a giant component that connects 81% of
the proteins, several smaller components, and numerous isolated
proteins that do not interact with any other node.

The degree distribution, p,, of the PPl network, providing the
probability that a randomly chosen node has degree k. As N = Np,,
the degree distribution provides the number of nodes with degree
k. The degree distribution indicates that proteins of widely different
degrees coexist in the PPl: most nodes have only a few links, a

few, however, have dozens of links, representing the hubs of the
network.

The distance distribution, pd for the PPl network, providing the
probability that two randomly chosen nodes have a distance d be-
tween them (shortest path). The dotted line shows the average path
length, which is «» =5.61.

The dependence of the average clustering coefficient on the node's
degree, k. The C(k) function is measured by averaging over the local
clustering coefficient of all nodes with the same degree k.
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SECTION 12

ADVANCED TOPICS: GLOBAL CLUSTERING COEFFICIENT

In the network literature one often encounters the global
clustering coefficient, which measures the total number of
closed triangles in a network. Indeed, L, in Eq. (19) is the
number of triangles that node i participates in, as each link
between two neighbors of node i closes a triangle (Image
2.15). Hence the degree of a network’s global clustering is
captured by the global clustering coefficient, defined as

C= 3% NumberOfTriangles
NumberOfConnectedTriples (21)

where a connected triplet consists of three nodes that are
connected by two (open triplet) or three (closed triplet)
undirected links. For example, an A, B, C triangle is made
of three triples, ABC, BCA and CAB. In contrast a chain of
connected nodes A, B, C, in which B connects to A and C
but A does not link to C forms a single open triplet. The
factor of three in the denominator of Eq. (21) is due to the
fact that each triangle is counted tree times in the triple
count. The roots of the global clustering coefficient go back
to the social network literature of the 1940s [10,11], hence
C is often called the number of transitive triplets.

Note that the average clustering coefficient <C> defined in
(20) and the global clustering coefficient defined in (21)
are not equivalent.

Indeed, take a network that is a double star consisting of
N nodes, where nodes 1 and 2 are joined to each other and
to all other vertices, and there are no other links. Then the
local clustering coefficient C, is 1 for i = 3 and 2/(N - 1)
fori= 1, 2. It follows that the average clustering coefficient
of the network is <C> = 1-O(1), while the global cluster-
ing coefficient gives C ~ 2/N. In less extreme networks the
definitions will give more comparable values, but they will
still differ from each other [13]. For example, in Image 2.15
we have <C> = 0.31 while C = 0.375.
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SECTION 1

INTRODUCTION

Image 3.1
From a cocktail party to random networks.

The emergence of an acquaintance network through random encounters at a cocktail party.

Imagine organizing a party for a hundred guests who ini-
tially do not know each other [1]. Offer them wine and
cheese and you will soon have dozens of chatting groups
of two to three. Now mention to Mary, one of your guests,
that the red wine in the unlabeled dark green bottles is a
rare vintage, much better than the one with the fancy red
label. If she shares this information only with her acquain-
tances, you know that your expensive wine is safe, because
she only had time to meet a few others in the room. How-
ever, the guests will continue to mingle, creating subtle
paths between individuals that may still be strangers to
each other. For example, while John has not yet met Mary,
they have both met Mike, so now there is an invisible path
from John to Mary through Mike. As time goes on, the
guests will be increasingly interwoven by such intangible
links. With that the secret of the unlabeled bottle will be
pass from Mary to Mike and from Mike to John, slowly
escaping into a rapidly expanding group.
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To be sure, when all guests had gotten to know each other,
everyone would be pouring the superior wine. But if each
encounter took only ten minutes, meeting all ninety-nine
others would take about sixteen hours. Thus, you could
reasonably hope that a few drops of the better wine would
be left for you to enjoy once the party is over.

Yet, you will be wrong. The purpose of this chapter is to
show you why. We will see that the party maps into a clas-
sic model in network science called the random network
model. And random network theory tells us that we do not
have to wait until all individuals get to know each other
for our expensive wine to be in danger. Rather, soon af-
ter each person meets at least one other guest, an invisible
network will form that will allow the information to reach
most guests. Hence in no time everyone will be drinking
the better wine.



SECTION 2

THE RANDOM NETWORK MODEL

An important goal of network science is to build models
that accurately reproduce the properties of real networks
observed in real systems. Most networks we encounter in
nature do not have the comforting regularity of a crystal
lattice or the predictable radial architecture of a spider
web. Rather, at first inspection most real networks look
as if they were spun randomly. Random network theory
embraces this apparent randomness by constructing net-
works that are truly random.

From a modeling perspective a network is a relatively sim-
ple object, consisting of only nodes and links. The real
challenge, however, is to place the links between the nodes
in a way to reproduce the complexity and apparent ran-
domness of real systems. In this context the philosophy be-
hind a random network is simple: it assumes that this goal
is best achieved by placing the links randomly between the
nodes. With that we arrive to the definition of a random
network:

A random network consists of N labeled nodes where each
node pair is connected with the same probability p.

Two definitions of random networks.

There are two equivalent ways of defining a random network:

e G(N,L) model: N labeled nodes are connected with L random-
ly placed links. Erdés and Rényi (Erdds & Rényi, 1959) used
this definition in their string of articles on random networks.

e G(N,p) model: Each pair of N labeled nodes is connected with
probability p, a model introduced by Gilbert (Gilbert, 1959).

Hence the G(N,p) model fixes the probability p that two nodes are
connected and the G(N,L) model fixes the total number of links L.
While in the G(N,L) model the average degree of a node is simply

<k> =2L /N, other network characteristics are easier to calculate in
the G(N, p) model. Throughout this book we will explore the G(N,p)
model, not only for the ease that it allows us to calculate key net-
work characteristics, but also because its construction is closer to
the way real systems develop. Indeed, in real networks the number
of links is rarely fixed, but we can instead determine the probability
that two nodes link to each other.

To construct a random network, denoted with G(N, p)
(Box3.1):

1. Start with N isolated nodes.

2. Select a node pair, and generate a random number be-
tween o and 1. If the random number exceeds p, con-
nect the selected node pair with a link, otherwise leave
them disconnected.

3. Repeat step (2) for each of the N(N-1)/2 node pairs.

The network obtained through this procedure is called a
random graph or a random network. Two mathematicians,
Pal Erdés and Alfréd Rényi, have played an important role
in understanding the properties of random networks. In
their honor a random network is often called the Erdés-
Rényi network (Box 3.2).

A brief history of random networks.

Anatol Rapoport (1911-2007), a Russian immigrant to the United
States, was the first to explore the properties of a random
network. Trained as a pianist, Rapoport's interests turned to
mathematics after realizing that a successful career as a concert
pianist would require a wealthy patron. He became interested

in mathematical biology at a time when mathematicians and
biologists hardly spoke to each other. In a paper written with Ray
Solomonoff in 1951 [28], Rapoport demonstrated that if we in-
crease the average degree of a network, we will observe an abrupt
transition from a collection of disconnected nodes to a state in
which the graph contains a giant component. Despite its pioneer-
ing ideas, Rapoport's paper remains relatively unknown.

The study of random networks reached prominence thanks to the
fundamental work of Pal Erd6s and Alfréd Rényi. In a sequence
of eight papers published between 1959 and 1968 [8-15], they
merged probability theory and combinatorics with graph theory,
establishing random graph theory, a new branch of mathematics

[5].

The random network model was independently introduced by
Gilbert [18] the same year Erd8s and Rényi published their first
paper on the subject. Yet, the impact of Erdés and Rényi's work is
so overwhelming that they are rightly considered the fathers of
random networks.
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Image 3.2a
Pal ErdGs (1913-1996)

Hungarian mathematician known for both his eccentricity and exceptional
scientific output, having published more papers than any other mathema-
tician in the history of mathematics. His productivity had its roots in his
fondness for collaboration: he co-authored papers with over five hundred
mathematicians, inspiring the concept of Erdds number. His legendarily
personality and profound professional impact has inspired two biographies
[19, 27] and a documentary [7].
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Image 3.2b
Alfréd Rényi (1921-1970)

Hungarian mathematician with fundamental contributions to combina-
torics, graph theory, and number theory. His impact goes beyond mathe-
matics: the Rényi entropy is widely used in chaos theory and the random
network model he co-developed is at the heart of network science. He is
remembered through the hotbed of Hungarian mathematics, the Alfréd
Rényi Institute of Mathematics in Budapest. He once said, "A mathemati-
cian is a device for turning coffee into theorems”, a quote often attributed
to Erdés.



SECTION 3

THE NUMBER OF LINKS IS VARIABLE

Each random network we generate with the same param-
eters NV, p will look slightly different (Image 3.3). Not only
the detailed wiring diagram will vary between realizations,
but so will the number of links L. It is useful, therefore, to
determine how many links we expect for a particular reali-
zation of a random network with fixed N and p.

The probability that a random network has exactly L links
is the product of three terms:

1. The probability that L of the attempts to connect the
N(N-1)/2 pairs of nodes have resulted in a link, which
ispt.

2. The probability that the remaining N(N-1)/2 - L at-
tempts have not resulted in a link, which is (1-p)V®-V/~L

N
2
3. A combinational factor,\ L ) counting the number of

different ways we can place L links among N(N-1)/2
node pairs.

Hence the probability that a particular realization of a ran-
dom graph has exactly L links is

(Nj N(N-D)
p=112)p-p) 2 .

L

As Eq. (1) is a binomial distribution (Box 3.3), the expected
number of links in a random graph can be calculated as

(1)

N(N-1)
2 N(N -1
W= 1 =p~C= @

Hence «L> is the product of the probability p that two nodes
are connected and the number of pairs we attempt to con-
nect, whichisL = N(N-1)/2 (Chapter2).

Using Eq. (2) we obtain the average degree of a random
network as

w0 =20

= (3)
N

p(N ).

Image 3.3
Random networks are truly random.

Top row:Three realizations of a random network generated with the same
parameters N = 712 and p =1/6. Despite the identical parameters, the net-
works not only look different, but they differ in the number of links they
have (L =8, 10, 7) and in the degree of the individual nodes.

Bottom row: Three realizations of a random network with N = 700 and

p =1/6.

Hence (ko is the product of the probability p that two nodes
are connected and (N-1), representing the maximum
number of links a node can have in a network of size V.

In summary the number of links in a random network is
not fixed, but varies between realizations. Its expected val-
ue is determined by N and p. If we increase p from p = o to
p = 1 the random network becomes denser and the average
number of links increase linearly from «L> =0 to L _and
the average degree of a node increases from (ko = o to

= N-1.
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Binomial distribution: Mean and variance.

If we toss a fair coin N times, tails and heads should occur with
the same probability p = 7/2. The binomial distribution provides
the probability p, that we obtain exactly x heads in a sequence of
N throws. In general, the binomial distribution describes the num-
ber of successes in N independent experiments with two possible
outcomes, in which the probability of one outcome is p, and of the
otheris 7-p.

The binomial distribution has the form
N X N—x
p, =( jP (I-p).
X

The mean of the distribution (first moment) is

N
(x)= xp, = Np.
x=0

Its second moment is

N
(x*)y=Y x*, =p(I-p)N+p’N?, ©

x=0

providing its standard deviation as

o, =((- <X>2); [p(1- pINT". ©



SECTION 4

DEGREE DISTRIBUTION

As Image 3.3 illustrates, in a given realization of a random
network some nodes are lucky, gaining numerous links,
while others have only a few or no links. These differenc-
es are captured by the degree distribution p, providing the
probablity that a randomly chosen node has degree k.

In a random network the probability that node i has exactly
k links is the product of three terms [5]:

«  The probability that k of its links are present, or p*.

+  The probability that the remaining (N - 1 - k) links are
missing, or (1-p)V*.

«  The number of ways we can select k links from N - 1

N-—I
potential links a node can have, or ( K J
Hence the degree distribution of a random network fol-
lows the binomial distribution

— N-I kg _ m\N-l-k (7)
P, [k ]P (I=p) .

The shape of this distribution depends on the system size
N and the probability p (Image 3.4). Using the properties
of the binomial distribution (Box 3.3), from the degree dis-
tribution (77) we can calculate the network’s average degree
(o, recovering Eq. (3). We can also determine the second
moment < and the variance o, of the degree distribution
(Image 3.4), quantities that will play an important role lat-
er.

Most real networks are sparse, hence «k « N (Table 3.1, Im-
age 3.4b). In this limit the degree distribution (7) is well
approximated by the Poisson distribution (Advanced Top-

ics3.A)
k)
e—(k>< )

k!’ ®

P,

which is often called, together with (7), the degree distri-
bution of a random network.
The binomial and the Poisson distribution describe the

same quantity, hence they have several common properties
(Image 3.4a):

-+ Both distributions have a peak around cks. If we keep NV
constant and increase p, the network becomes denser,
increasing (& and moving the peak to the right.

«  The width of the distribution (dispersion) is also con-
trolled by p or <. The denser the network, the wider is
the distribution, hence the larger are the differences in
the degrees.

As we use the Poisson form in Eq. (8), we need to keep in
mind that:

« The exact result for the degree distribution is the bi-
nomial form in Eq. (7), thus Eq. (8) represents only an
approximation to (77) valid in the k « V limit. For most
networks of practical importance this condition is eas-
ily satisfied.

«  The advantage of the Poisson form is that key network
characteristics, like o, & and o, , have a much sim-
pler form (Image 3.4a), depending on a single param-
eter, k.

« The Poisson distribution in Eq. (8) does not explicit-
ly depend on the number of nodes N . Therefore, Eq.
(8) predicts that the degree distributions of networks
of different sizes but the same average degree (k» are
indistinguishable from each other (Image 3.4b).

Despite the fact that the Poisson distribution is only an
approximation to the degree distribution of a random net-
work, thanks to its analytical simplicity, it is the preferred
form for p,. Hence throughout this book, unless noted oth-
erwise, we will refer to the Poisson form in Eq. (8) as the
degree distribution of a random network.
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Image 3.4a

Anatomy of a binomial and a Poisson degree distribution.

The exact form of the degree distribution of a random network is the
binomial distribution (left). For N » ks, the binomial can be well approx-
imated by a Poisson distribution (right). As both distributions describe
the same quantity, they have the same properties, which are expressed in
terms of different parameters: the binomial distribution uses p and N as
its fundamental parameters, while the Poisson distribution has only one
parameter, .
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Image 3.4b
Degree distribution is independent of the network size.

The degree distribution of a random network with average degree < = 50
and sizes N = 107, 10°, 10°. For N = 1(? the degree distribution deviates
significantly from the Poisson prediction (8), as the condition for the
Poisson approximation, N » ¢k, is not satisfied. Hence for small networks
one needs to use the exact binomial form of Eq. (7) (dotted line). For N =
10° and larger networks the degree distribution becomes indistinguishable
from the Poisson prediction, (8), shown as a continuous line, illustrating
that for large N the degree distribution is independent of the network size.
In the figure we averaged over 7,000 independently generated random
networks to decrease the noise in the degree distribution.



SECTION 5

REAL NETWORKS DO NO NOT HAVE
A POISSON DEGREE DISTRIBUTION

The degree of a node in a random network can vary be-
tween o and N-1, raising an important question: How big
are the differences between the node degrees in a particular
realization of a random network? That is, can highly con-
nected nodes, or hubs, coexist with small degree nodes?
We address answer these questions by estimating the size
of the largest and the smallest node in a random network.

Let us assume that the world’s social network is described
by the random network model. This may not be as far
fetched hypothesis as it first sounds: there is significant
randomness in whom we meet and whom we choose to
become acquainted with. Sociologists estimate that a typ-
ical person knows about 7,000 individuals on a first name
basis, suggesting that (o=1,000. Using the results obtained
so far about random networks, we arrive to a number of
surprising conclusions about a random society (see Ad-
vanced Topics 3.B):

« The most connected individual (the largest degree
node) in a random society is expected to have degree
k.. =1185.

« The least connected individual is expected to have de-
gree k . =816.

+  The dispersion of a random network is ,=ck*/>, which
for do=1,000 is 0, = 31.62. This means that the number
of friends of a typical individual should be mainly in
the do + 0, range, or between 970 and 1,030, a rather
narrow range.

In other words, in a random society everyone would have
a comparable number of friends. We would lack outliers,
or highly popular individuals, and no one would be left be-
hind, having only a few friends. This calculation illustrates
that in a large random network the degree of most nodes is in
the narrow vicinity of (o (Box 3.4).

This prediction blatantly conflicts with reality. Indeed,
there is extensive evidence of individuals who have con-
siderably more than 1,018 acquaintances. For example, US
president Franklin Delano Roosevelt’s appointment book
had about 22,000 names in it, individuals he met person-

Why hubs are absent in random network.

To understand why hubs are absent in random networks, we turn to
the degree distribution (8). We first realize that the 1/k!term in (8)
significantly decreases the chances of observing large degree nodes.
Indeed, the Stirling approximation

o[

allows us rewrite Eq. (8) as

b = (&R ©
“ Jamk kK

For degrees k > e <k the term in the parenthesis is smaller than one,
hence for large k both k-dependent terms in (9), i.e. 1Ak and

(eckr /k)< decrease rapidly with increasing k. Overall Eq. (9) predicts
that in a random network the chance of observing a hub decreases
faster than exponentially.

ally [17, 26]. Similarly, a study of the social network behind
Facebook has documented numerous individuals with
5,000 Facebook friends, the maximum allowed by the so-
cial networking platform [4]. The reason behind these sys-
tematic discrepancies can be understood by comparing the
degree distribution of real and random networks.

In Image 3.5 we show the degree distribution of three real
networks, together with the corresponding Poisson fits.
The figure documents considerable differences between
the random network predictions and the real data:

« The Poisson form significantly underestimates the
number of high degree nodes. For example, according
to the random network model the maximum degree
for the Internet is expected to be around 20, while the
data indicates the existence of nodes with degrees close
to 103.
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+ The spread in the degrees of real networks is much These differences are not limited to the networks shown
wider than expected in a random network. This differ- in Image 3.5, but all networks listed in Table 2.1 share this
ence is captured by the dispersion o (Image 3.4a). For  property. Hence the comparison with the real data indi-
example, if the Internet were to be random, we would  cates that the random network model does not capture the
expect 0, = 2.52, while the measurements indicate degree distribution of real networks. While in a rgndgm

- =14.14, significantly higher than predicted. netwo?k most nodes have comparablg degrees, forbidding

hubs, in real networks we observe a significant number of
highly connected nodes and large differences in node de-
grees. We will resolve these differences in Chapter 4.
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Image 3.5

Degree distribution of real networks.

The degree distribution of the Internet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-
sponds to the Poisson prediction, obtained by measuring «o for the real network and then plotting Eq. (8). The significant deviation between the data and
the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs.
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SECTION 6

THE EVOLUTION OF ARANDOM NETWORK

Evolution of a random graph.

Changes in the structure of a random graph with increasing p, illustrating
the absence of a giant component for small p and its sudden emergence
once p exceeds a critical value.

The cocktail party we encountered at the beginning of the
chapter captures a dynamical process: starting with N iso-
lated nodes, the links are added gradually through random
encounters between the guests. Within the random net-
work model this corresponds to a gradual increase of p,
with striking consequences on the network topology (Mov-
ie 3.1). To quantify this process, we first inspect how the
size N, of the giant component, which is the largest cluster
within the network, varies with (k. The two extreme cases
are easy to understand:

«  For p = o we have «k = 0, hence we observe only isolat-
ed nodes. Therefore N =1 and N_. /N —o for large N.

«  For p = 1 we have do= N-1, hence the network is a com-
plete graph and all nodes belong to a single cluster.
Therefore N .= Nand N_/N =1.

One would expect that the giant component will grow
gradually from N = 1 to N = N if we increase o from o
to N-1. Yet, as Image 3.6a indicates, this is not the case:
N_ /N remains zero for small o, indicating the lack of
a giant component for a range of «o values. Once k) ex-

ceeds a critical value, N, /N increases rapidly, signaling
the emergence of a giant component. Erdés and Rényi in
their classical 1959 paper predicted that the condition for
the emergence of the giant component is

(x)=1.

In other words, we have a giant component if and only if
when each node has on average one link (Advanced Topics

3.0).

(10)

The fact that at least one link per node is necessary for a gi-
ant component is not unexpected. Indeed, for a giant com-
ponent to exist, each of its nodes must be linked to at least
one other node. It is somewhat counterintuitive, however
that one link is sufficient for its emergence.

If we wish to express Eq. (10) in terms of p, using Eq. (3)
we obtain

|
N-I N’ (1)

indicating that the larger a network, the smaller p is suffi-
cient for the giant component.

The emergence of the giant component is only one of the
important transitions displayed by a random network.
Changes in o allow us to distinguish four topologically
distinct regimes (Image 3.6), each with its unique charac-
teristics:

I
(a) Subcritical regime: o < o <1, (p <N )-

For o = o the network consists of NV isolated nodes. In-
creasing (o is equivalent with adding N = pN(N-1)/2
links to the network. Yet, given the small number of links
in the network in this regime, these links will mainly form
clusters of size two (Image 3.6b). Upon increasing ck fur-
ther, some of the new links will join these pairs, forming
tiny clusters. While we can designate at any moment the
largest such cluster to be the giant component, in this re-
gime the relative size of the largest cluster, N, /N, remains
zero. The reason is that for <k < 1 the largest cluster is a tree
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(k) <1 Subcritical regime
No giant component.
Cluster size distribution:
P(s) ~e
The size of the largest cluster:
Ng ~InN
The clusters are trees.

(ky=1 Critical point
No giant component.
Cluster size distribution:
P(s) ~ 5732
Size of the largest cluster:
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Evdlution of a random network.

(a) The relative size of the giant component in function of the average
degree ¢k in the Erd6s-Rényi model.

(b)-(e) The main network characteristics in the four regimes that charac-
terize a random network.

with size N . ~ InN. Therefore N /N = InN /N->o0 in the
N—oo limit, indicating that the largest component is tiny
compared to the size of the network.

In summary, in the subcritical regime the network con-
sists of numerous tiny components, whose size follows an
exponential distribution. Hence these components have
comparable sizes, lacking a clear winner that we could
designate as a giant component (Advanced Topics 3.D).
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(b) Critical Point: do = 1, (p = #)

The critical point separates the regime where there is not
yet a giant component (/o < 1) from the regime where
there is one (<o > 1). While it signals the emergence of
the giant component, the relative size of the largest com-
ponent in this point is still zero (Image 3.6c). Indeed, the
calculations indicate that the size of the largest component
is N .~ N3, so its relative size decreases as N, /N~ N 3, in-
dicating that N is still tiny compared to the network’s size.

In absolute terms there is a significant increase in the size
of the largest component at (o = 1. For example, for a ran-
dom network of N = 7 x10? nodes, the size of the globe’s
social network, for (o < 1 the largest cluster is of the order
of N.= InN = In (7 x10%)= 22.7. In contrast at o = 1 we ex-
pect N, ~ N*3 = (7 x109)4 = 3 x10°, a jump of about five
orders of magnitude. Yet, both in the subcritical regime (vk
< 1) and at the critical point (vl = 1) the largest component
contains a vanishing fraction of the total number of nodes in
the network.

Therefore most nodes are located in numerous small com-
ponents, whose size distribution follows Eq. (36), a pow-
er law form indicating that components of rather differ-
ent sizes coexist. These numerous small components are
mainly trees, while the giant component may contain
loops. Note that many properties of the network at the crit-
ical point resemble the properties of a physical system un-
dergoing a phase transition (Advanced Topics 3.F).

(c) Supercritical regime: o > 1, (p >'L— )-

This regime has the most relevance to real systems, as for
the first time we have a giant component that looks like a
network. In the vicinity of the critical point the size of the
giant component varies as

N_ /N~ k)1, (12)

or

N, ~(p—pN, (13)

where p_ is given by Eq. (11). In other words, the giant
component contains a finite fraction of all nodes in the net-
work. The further we move from the critical point, a larger
fraction of nodes will belong to it. Note that Eq. (12) is val-
id only in the vicinity of <k = 1, and for large (ks the depen-
dence between N, and o is nonlinear (Image 3.6d).

In the supercritical regime there are still numerous iso-
lated components that coexist with the giant component,
their size distribution being given by Eq. (35). These small



components are trees, while the giant component contains
numerous loops and cycles. The supercritical regime lasts
until all nodes are absorbed by the giant component.

InNy,

N
For sufficiently large p the giant component will absorb
all nodes and components, hence N _=N. In the absence
of isolated nodes the network becomes connected. The av-
erage degree at which this happens depends on N as (Ad-
vanced Topic 3.E)

(d) Connected regime: (o = InN, (p =

(k) ~InN. (14)

Note that when we enter the connected regime the net-
work is still relatively sparse, as (nV /N - o for large N.
The network turns into a complete graph only at do = N - 1.

In summary, the emergence of a network within the ran-
dom network model is not a smooth process: the isolated
nodes and tiny components observed for small (ko orga-
nize themselves into a giant component rather sudden-
ly, through a process called phase transition (Advanced
Topics 3.F). Along the way we encounter four topologi-
cally distinct regimes (Image 3.6). The discussion offered
above follows an empirical perspective, fruitful if we wish
to compare the observed networks to real systems. A dif-
ferent prospective, leading to it own rich behavior, is dis-
cussed in the mathematical literature (Box 3.5).

Network evolution in graph theory.

In the random graph literature it is often assumed that the con-
nection probability p(N) scales as \?, where zis a tunable param-
eter between -e and 0. The greatest discovery of Erdds and Rényi
was that as we vary z, key properties of random graphs appear
quite suddenly. To be precise, a graph has a given property Q if the
probability of having Q approaches 1 as N = o. That is, for a given
probability either almost every graph has the property Q or, almost
no graph has it. For example, for zless than -3/2 almost all graphs
contain only isolated nodes and edges.

z

p-N
z|-* -2 -3 3 3 1 2 ;
' " %
s did I ) G ‘

Image 3.7
Evolution of random graph.

The threshold probabilities at which different subgraphs appear
in a random graph, as defined by exponent z in the p(N) ~ N
relationship. For z < -3/2 the graph consists of isolated nodes
and edges. When z passes -3/2 trees of order 3 appear, while at
7 =-4/3 trees of order 4 appear. At z= 1 trees of all orders are
present, together with cycles of all orders. Complete subgraphs
of order 4 appear at z=-2/3, and as z increases further, complete
subgraphs of larger and larger order emerge.
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SECTION 7

REAL NETWORKS ARE SUPERCRITICAL

Two predictions of random network theory are of special
importance for real networks:

1. Once the average degree exceeds (ks = 1, a giant com-
ponent emerges that contains a finite fraction of all
nodes. Hence only for ks > 1 the nodes organize them-
selves into a recognizable network.

2. For o > InN all components are absorbed by the giant
component, resulting in a single connected network.

But, do real networks satisfy the criteria for the existence
of a giant component, i.e. o > 1? And will this giant com-
ponent contain all nodes, i.e. is <ks > [nIV', or do we expect
some nodes and components to remain disconnected?
These questions can be answered by comparing the mea-
sured (ko with the theoretical thresholds uncovered above.

Network N L <k> InN
Internet 192,244 /609,066 |6.34 |12.17
Power Grid 4,91 6,594 2.67 |8.51
Science Collaboration 23133 186,936 |8.08 |10.04
Actor Network 212,250 |3,054,278| 28.78 | 12.27
Yeast Protein Interactions|2,018 {2,930 2.90 |7.61

Table 3.1

Are real networks connected?

The number of nodes N and links L for several undirected networks,
together with <> and InN. A giant component is expected for < > 1 and
all nodes should join the giant component for < > InN. While for all
networks < > 1, for most «o is under the /nN threshold.

The measurements indicate that real networks extrava-
gantly exceed the o = 1 threshold. Indeed, sociologists es-
timate that an average person has around 1,000 acquain-
tances; a typical neuron is connected to dozens of other
neurons, some to thousands; in our cells, each molecule
takes part in several chemical reactions, some, like water,
in hundreds. This conclusion is supported by Table 3.1,
listing the average degree of several undirected networks,
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in each case finding o > 1. Hence the average degree of
real networks is well beyond the (k) = 1 threshold, implying
that they all have a giant component.

Let us now inspect if we have single component (if «k >
[nN), or we expect the network to be fragmented into
multiple components (if o < InV ). For social networks
this would mean that o > In(7 x10%) = 22.7. That is, if the
average individual has more than two dozens acquain-
tances, then a random society would have a single com-
ponent, leaving no node disconnected. With o = 1,000
this is clearly satisfied. Yet, according to Table 3.1 most real
networks do not satisfy this criteria, indicating that they
should consist of several disconnected components. This
is a disconcerting prediction for the Internet, as it suggests
that we should have routers that, being disconnected from
the giant component, are unable to communicate with
other routers. This prediction is at odd with reality, as these
routers would be of little utility.

Internet . X -
poweri [V I
Science
Collaboration . x _
Actor Network . --
e o ]
Interactions . X
T T >
1 10 <k>
Image 3.8

Most real networks are supercritical.

The four regimes predicted by random network theory, marking with a
cross the location of several real networks of Table 3.1. The diagram indi-
cates that most networks are in the supercritical regime, hence they are
expected to be broken into numerous isolated components. Only the actor
network is in the connected regime, meaning that all nodes are expected
to be part of a single giant component. Note that while the boundary be-
tween the subcritical and the supercritical regime is always at o = 1, the
boundary between the supercritical and the connected regimes is at /nN,
hence varies from system to system.




Taken together, we find that most real networks are in the
supercritical regime (Image 3.8). This means that these
networks have a giant component, but it coexists with
many disconnected components and nodes. This is true,
however, only if real networks are accurately described by
the Erd6s-Rényi model, i.e. if real networks are random. In
the coming chapters, as we learn more about the structure
of real networks, we will understand why real networks
can stay connected despite failing the k > [nlV criteria.
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SECTION 8

SMALL WORLD PROPERTY

Image 3.9

Six degrees of separation.

According to six degrees of separation any two individuals, anywhere in
the world, can be connected through a chain of six or fewer acquaintanc-
es. This means that while Sarah does not know Peter, she knows Ralph,
who knows Jane and who in turn knows Peter. Hence Sarah is three
degrees from Peter. In the language of network science six degrees, also
called the small world property, states that the distance between any two
nodes in a network is unexpectedly small.

Small world phenomena, also known as six degrees of sepa-
ration, has long fascinated the general public. It states that
if you choose any two individuals anywhere on earth, you
will find a path of at most six acquaintances between them
(Image 3.9). The fact that individuals who live in the same
city are only a few handshakes from each other is by no
means surprising. The small world concept goes further,
however, stating that even individuals who are on the op-
posite side of the globe are six or fewer hand-shakes from
us.

In the language of network science small world phenom-
ena implies that the distance between two randomly chosen
nodes in a network is surprisingly short. This statement rais-
es two questions:
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«  What does short (or small) mean, i.e. short compared
to what?

- How do we explain the existence of these short dis-
tances?

Both of these questions are answered by a simple calcula-
tion within the context of random networks. Consider a
random network with average degree (k). A node in this
network has on average:

k» nodes at distance one (d=1).
k»* nodes at distance two (d=2).
«k»» nodes at distance three (d=3).

dod nodes at distance d.

For example, if o = 1,000, we expect 10° individuals at
distance two and about a billion individuals, i.e. almost
the whole earth’s population, at distance three from us.

To be precise, the expected number of nodes up to distance
d from our starting node is

k d+l I

N(d) = 1+ (k) +(k)* + ... +(k)* = L.

(k)1
Yet, N(d) must not exceed the total number of nodes, NV, in
the network. Therefore the distances cannot take up arbi-
trary values. We can identify a maximum distance d _ _ or
the network’s diameter at which N(d) reaches . By setting

(15)

N(d )=N, (16)

max

and assuming that «k » 1, we can neglect the (-1) term in
both the nominator and denominator of Eq. (15), obtain-
ing

(k) = N. (17)

Therefore the diameter of a random network follows

logN

o 8
max |Og<k>’ (1 )




which represents the quantitative formulation of the small
world phenomena. The key, however is its interpretation:

« Asderived, Eq. (18) predicts the scaling of the network
diameter,d . Yet, for most networks Eq. (18) offers a
better approximation to the average distance between
two randomly chosen nodes, «@, than to d__(Table
3.2). This is because d___is often dominated by a few
extreme paths, while «d> is averaged over all node pairs,
a process that diminishes the fluctuations. Hence typi-
cally the small world property is defined by

o logN (19)
@ log(k)’

describing the dependence on N and ¢k of the average
distance in a network.

In general log N « N, hence the dependence of «d> on
logN implies that the distances in a random network
are orders of magnitude smaller than the size of the net-
work. Consequently small world phenomena implies
that the average path length or the diameter depends
logarithmically on the system size. Hence, “small”
means that «d» is proportional to log N, rather than V
or some power of NV (Image 3.10).

The 1 /log o term implies that the denser the network,
the smaller is the distance between the nodes.

In real networks there are systematic corrections to Eq.
(18), rooted in the fact that the number of nodes at dis-
tance d > «d»> drops rapidly (Advanced Topics 3.F).

Network Name N L &> « A, ,L"g%

Internet 192,244 609,066 6.34 6.98 26 6.59

WWW 325,729 1,497134 4.60 1.27 93 8.32

Power Grid 4,941 6,594 2.67 18.99 46 8.66

Mobile Phone Calls 36,595 91,826 2.51 11.72 39 11.42

Email 57194 103,731 1.81 5.88 18 18.4

Science Collaboration 23,133 186,936 8.08 5.35 15 4.81
Actor Network 212,250 | 3,054,278 28.78 - - -

Citation Network 449,673 | 4,707,958 | 10.47 .21 42 5.55

E Coli Metabolism 1,039 5,802 5.84 2.98 8 4.04

Yeast Protein Interactions 2,018 2,930 2.90 5.61 14 714

Table 3.2
Six degrees of separation.

The average distance «and the maximum distance d, of the ten networks explored in this book. The last column provides « predicted by Eq. (19),
indicating that it offers a reasonable approximation to «h. Yet, the agreement is not perfect - we will see in the next chapter that for many real networks
Eq. (19) needs to be adjusted. For directed networks we list the average out-degree « »and the path lengths are measured only along the direction of
the links.

THE SMALL WORLD PROPERTY | 63



1d lattice 2d lattice d |
- re
(d) ~ N %"‘ N2 2
3d
vl =
< (d) ~ NY =
- 1 3d lattice 3
RN —
Random Network  {d} ~ log N
N log N

Image 3.10

Why are small worlds surprising?
Much of our intuition about distance is based on our experience with reg-
ular lattices, which do not display the small world phenomenon. Indeed,

e  Fora one-dimensional lattice (a line of length N) the diameter and
the average path length scale linearly with N:d__~«h ~N.

*  Forasquare lattice d__~ah~ N"2.
*  Fora cubic lattice d_ ~«h~ N'-.
* Ingeneral, for a d-dimensional lattice we have d__~ b~ N2,

Such polynomial dependence predicts a much faster increase with N than
Eq. (19), indicating that in regular lattices the path lengths are signifi-
cantly longer than in a random network. The figure shows the predicted
N-dependence of « for regular and random networks on a linear (left)
and on a log-log (right) scale. If the social network would form a regular
2d lattice, where each individual knows only its nearest neighbors, the
average distance between two individuals would be roughly (7 x109)"? =
83,666. Even if we correct for the fact that a person has about 1,000 ac-
quaintances, not four, the average separation will be orders of magnitude
larger than predicted by Eq. (19).

Let us illustrate the implications of Eq. (19) for social net-
works. Using N= 7 x10? and (=103, we obtain

9
(d) = In7><|30 _398
In(10%)
Therefore, all individuals on Earth should be within three
to four handshakes of each other, about a half of “six de-
grees”. The estimate (20) is probably closer to the real val-
ue given by Eq. (7) than the frequently quoted six degrees

(Image 3.11).

(20)

While discovered in the context of social systems, the
small world property applies beyond social networks. In
Table 3.2 we compare the prediction of Eq. (19) with the
average path length «d> for several real networks, finding
that despite the diversity of these systems and the signif-
icant differences between them in terms of N and o, Eq.
(19) offers a reasonable approximation to the empirically
observed «@>.

The small world property has not only ignited the public’s
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Six degrees? Facebook finds only four.

Milgram's experiment could not detect the true distance between his
study's participants, as he lacked an accurate map of the full social
network. Today Facebook has the most extensive social network map ever
assembled. Using Facebook's social graph of May 2011, consisting of 721
million active users and 68 billion symmetric friendship links, the average
distance between the users was 4.74. The figure shows the distance
distribution, p,, for all pairs of Facebook users worldwide (full dataset) and
within the US only. Therefore, instead of 'six degrees' researchers detected
only ‘four degrees of separation’ [4], closer to the prediction of Eq. (20)
than to Milgram's six degrees [23]. Using Facebook's N and L Eq. (19)
predicts the average degree to be approximately 3.90, not far from the
reported four degrees.

imagination, but plays an important role in network sci-
ence as well. It affects most network characteristics, from
the spread of ideas in social networks to search on net-
works. The small world phenomena can be reasonably well
understood in the context of the random network model:
itis rooted in the fact that the number of nodes at distance
d from a node increases exponentially with d. While in
the coming chapters we will see that in real networks we
encounter systematic deviations from Eq. (19), forcing us
to replace it with more accurate predictions, the intuition
offered by the random network model on the origin of the
phenomenon remains valid.



A BRIEF HISTORY OF SIX DEGREES

Frigyes Karinthy (1887-1938)

Hungarian writer, journalist and playwright, the first to describe
the small world property. He remains one of the most popular

writers in Hungary. English translation of Chains, the 1929 short
story describing the small world phenomena, is available in [25].

The first description of small world phenomena goes back to a
1929 story collection entitled Minden mdsképpen van (Everything
is Different) by the Hungarian writer Frigyes Karinthy [21]. In
Ldncszemek (Chains), a short story in the volume, Karinthy sug-
gests that one could name any person among earth's one and a
half billion inhabitants (estimated population in 1929) and through
at most five acquaintances, one of which he knew personally, he
could link to him. To demonstrate his thesis Karinthy links a Nobel
Prize winner to himself, noting that the Nobelist must know King
Gustav, the Swedish monarch who hands out the Nobel Prize, who
in turn is a consummate tennis player and occasionally plays with a
tennis champion who is one of Karinthy's good friends. Remarking
that finding a chain of acquaintances to celebrities, like a Nobelist,
is easy, he next links a worker in Ford's factory to himself:

"The worker knows the manager in the shop, who knows Ford; Ford
is on friendly terms with the general director of Hearst Publications,
who last year became good friends with Arpdd Pdsztor, someone |
not only know, but to the best of my knowledge a good friend of
mine.

Stanley Milgram (1933-1984)

American social psychologist known for his experiments on obe-
dience and authority. He designed and carried out the small world
experiment in 1967 as part of his Harvard dissertation.

The first experimental study of small world phenomena took place
four decades after Karinthy, in 1967, when Stanley Milgram turned
the idea into an experiment probing the structure of social net-
works [23]. Milgram chose a stock broker in Boston and a divinity
student in Sharon, Massachusetts as “targets”. Randomly select-
ed residents of Wichita, Kansas and Omaha, Nebraska received

a letter containing a short summary of the study's purpose, a
photograph, the name, address and information about the target
person. They were asked to forward the letter to a friend, relative
or acquaintance, who is more likely to know the target person.
Milgram wrote in 1969: “/ asked a person of intelligence how
many steps he thought it would take, and he said that it would
require 100 intermediate persons, or more, to move from Nebraska
to Sharon.” Yet, within a few days the first letter arrived, passing
through only two links. Eventually 42 of the 160 letters made

it back, some requiring close to a dozen intermediates. These
completed chains allowed Milgram to determine the number of
individuals required to get the letter to the target. He found that
the median number of intermediates was 5.5, a relatively small
number and remarkably close to Karinthy's 1929 insight.
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Six Degrees of Separation.

Cover of John Guareis Six Degrees of Separation play, that helped
turn six degrees into a catch phase of popular culture.

The phrase "six degrees of separation” was introduced in 1991 by
the playwright John Guare, who used it as the title of his Broad-
way play, later turned into a movie. The play's lead character, Ousa,
musing about the world's interconnectedness, tells her daughter:

"Everybody on this planet is separated by only six other people. Six
degrees of separation. Between us and everybody else on this plan-
et. The president of the United States. A gondolier in Venice. It's not
Just the big names. It's anyone. A native in a rain forest. A Tierra del
Fuegan. An Eskimo. | am bound to everyone on this planet by a trail
of six people. It's a profound thought. How every person is a new
door, opening up into other worlds.”

Milgram's study was confined to the United States, linking indi-
viduals in Wichita and Omaha to Boston. Guare, however, with
the sweep of a writer's imagination, generalized six degrees to the
whole planet, bringing it closer in spirit to Karinthy's 1929 descrip-
tion. As more people watch movies than read sociology papers,
Guare's version prevailed in popular thought.

A BRIEF HISTORY OF SIX DEGREES

Increasing randomness

Watts-Strogatz model.

The model starts from a ring of nodes, each node connected to
their immediate and next neighbors, a configuration in which
each node has clustering coefficient C = 3/4 (left, p = 0). With
probability p each link is rewired to a randomly chosen node.

For small p the network maintains a high average clustering
coefficient but the random long-range links drastically decrease
the distances between the nodes, inducing the small world effect
(middle). For large p (right, p = 1) the network turns into a random
network. (After [30]).

A new wave of interest in small worlds emerged following

the 1998 study of Duncan Watts and Steven Strogatz, applied
mathematicians working at Cornell [30]. They analyzed three real
systems, the actor network of Hollywood, the neural network

of the worm C. elegans, and the North American power grid, in
each case finding that the average distance between the nodes is
comparable to the random network prediction Eq. (19). Hence they
found that the small world property applies to networks appearing
in natural and technological systems as well. Watts and Strogatz
also noted that these networks have a much higher clustering
coefficient than expected for a random network, prompting them
to propose a model to account for the coexistence of small path
lengths and large clustering (Image 3.15). The model's properties
are discussed in detail in the chapter devoted to social networks.




SECTION 9

CLUSTERING COEFFICIENT

The local clustering coefficient C, captures the density of
links in node i's immediate neighborhood: C = 0 means
that there are no links between i's neighbors; C = 1 implies
that each of the i’s neighbors link to each other (Sect. 2.10).
To calculate C, for a node in a random network we need
to estimate the expected number of links L, between the
node’s k, neighbors. In a random network the probability
that two of i's neighbors link to each other is p. As there are
k (k.- 1)/2 possible links between the k neighbors of node i,
the expected value of L is

y=p =,

Thus the local clustering coefficient of a random graph is

2L
A

Tk (k1) N (21)

Equation (21) makes two predictions:

(a) For fixed (o, the larger the network, the smaller is a
node’s clustering coefficient. Consequently the net-
work’s average clustering coefficient <C> is expected to
decrease as 1 /N.

(b) The local clustering coefficient of a node is indepen-
dent of the node’s degree.

To test the validity of Eq. (21) we plot <C>/k» in function
of N for several undirected networks (Image 3.16a). We
find that <C>/k» does not decrease as N, but it is largely
independent of IV, in violation of Eq. (21) . In Image 3.16b-
d we also show the dependency of C on the node’s degree
k. for three real networks, finding that C(k) systematically
decreases with the degree, again in violation of Eq. (21) .

Taken together, we find that the random network model
does not capture the local clustering of real networks. In-
stead real networks have a much higher clustering coeffi-
cient than expected for a random network of similar N and
L, and high-degree nodes tend to have a smaller clustering
coefficient than low-degree nodes.
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Image 3.16
Clustering in real networks.

(a) Comparison between the average clustering coefficient of real net-
works and the prediction Eq. (21) for random networks. Each circle corre-
sponds to a network from Table 3.2. Directed network were made undirect-
ed to calculate C. The dashed line corresponds to Eq. (21), predicting that
for random networks the average clustering coefficient should decrease as
N-". In contrast, for real networks <G has only a weak dependence on N.

(b)-(d) The dependence of the local clustering coefficient, C(k), on the
node’s degree for (b) the Internet, (c) science collaboration network and
(d) protein interaction network. C(k) is measured by averaging the local
clustering coefficient of all nodes with the same degree k. The dashed line
corresponds to the prediction of Eq. (21) of the random network model,
for which C(k) is independent of k. In many real networks, the clustering
coefficient decreases with k.
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SECTION 10

REAL NETWORKS ARE NOT RANDOM

For about four decades following its introduction in 1959
the random network model has dominated mathematical
approaches to complex networks. The model suggests that
if a network is not as regular as a square lattice, we should
describe it as random. With that it equated complexity
with randomness. We must therefore ask:

Do we really believe that real networks are random?

The answer is clearly no. The interactions between our
proteins are governed by the strict laws of biochemistry so
for the cell to function its chemical architecture can not be
random. Similarly, in a random society an American stu-
dent would be more likely to have among his friends Chi-
nese factory workers than one of her classmates. In reality
we suspect the existence of a deep order behind most com-
plex systems. That order must be reflected in the structure
of the network that describes their architecture, resulting
in systematic deviations from a pure random configura-
tion.

The degree to which random networks describe (or fail to
describe) real systems must not be decided by epistemo-
logical arguments, but by a systematic quantitative com-
parison. This is possible because random network theory
makes a number of quantitative predictions that can be
tested on real networks:

Degree distribution: The degrees of a random network
follow a binomial distribution, well approximated by a
Poisson distribution in the k « NV limit. Yet, as shown in
Image 3.5, the Poisson distribution fails to capture the de-
gree distribution of real networks. Instead in real systems
we have more highly connected nodes than the random
network model could account for.

Connectedness: Random network theory predicts that
for ks > 1 we should observe a giant component, a condi-
tion satisfied by all networks we examined. Most networks
do not satisfy the o > In IV condition, which implies that
these networks should be broken into isolated clusters (Ta-
ble 3.1). Some networks are indeed fragmented, most are
not.
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Average path length: Random network theory predicts
that the average path length scales as «d ~ logN /log, a
prediction that captures the order of magnitude of the path
lengths. Hence the random network model can account
for the fundamental features of small world phenomena.

Clustering coefficient: In a random network the local
clustering coefficient is independent of the node’s degree
and «C> depends on the system size as 1 /N. In contrast,
measurements indicate that for real networks C decreas-
es with the node degrees and is largely independent of the

system size (Image 3.16).

Taken together, it appears that the small world phenom-
ena is the only property reasonably explained by the ran-
dom network model. All other network characteristics,
from the degree distribution to the clustering coefficient,
are significantly different in real and random networks. In
fact, the more we learn about real networks, the more we
will arrive at the startling conclusion that we do not know of
any real network that is accurately described by the random
network model.

This conclusion begs a legitimate question: If real net-
works are not random, why did we devote a full chapter
to the random network model? The answer is simple: the
model serves as a fundamental reference as we try to un-
derstand the properties of real networks. Each time we ob-
serve some network property we will have to ask if it could
have emerged by chance. For this we turn to the random
network model as a guide: if the property is present in the
model, it means that randomness can account for it. If the
property is absent in random networks, it may represents
some signature of order, requiring a deeper explanation.
So, the random network model may be the wrong model
for most real systems, yet, it remains quite relevant for net-
work science (Box 3.8).



Random networks and network science.

The lack of agreement between random and real networks raises
an important question: how could a theory survive so long given
its poor agreement with reality? The answer is simple: random net-
work theory was never meant to serve as a model of real systems.
True ErdGs and Rényi did write in their first paper [9] that “This
may be interesting not only from a purely mathematical point of
view. In fact, the evolution of graphs may be considered as a rath-
er simplified model of the evolution of certain communication nets
(railways, road or electric network systems, etc.) of a country or
some unit." Yet, this is the only mention of the potential practical
value of their approach. The subsequent development of random
graphs was driven by inherent mathematical challenges.

It is tempting to follow Thomas Kuhn and view network science

as a paradigm change from random graphs to a theory of real
networks [22]. In reality, there was no network paradigm before
the end of 1990s. This period is characterized by a lack of interest
in the problem, without systematic attempts to compare the prop-
erties of real networks with graph theoretical models. The work of
Erd6s and Rényi has gained prominence outside mathematics only
after the emergence of network science (see Image 3.17).

Network theory does not lessen the contributions of Erd6s and
Rényi, but demonstrates the unintended importance of their work.
When we point out the disrepacies between the predictions of the
random network model and real networks, we do so only to offer a
proper ground on which we can understand the properties of real
systems.

200

~*Erdos-Renyi 1960
“®Erdos-Renyi 1959

150

100

50

o h
1960 1965 1970 1975 1980 1585 1550 1995 2000 2005 2010

Image 3.17
Network science and random networks.

While today we perceive the Erd6s-Rényi model as the cornerstone
of network theory, the model was hardly known outside a small
segment of mathematics. This is illustrated by the yearly citations
of the first two papers by Erdés and Rényi, published in 1959 and
1960. For four decades after their publication the papers gathered
less than 10 citations per year. The number of citations exploded
after the first papers on scale-free networks [2, 3, 20] have turned
Erd6s and Rényi's work into the reference model of network
theory.
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SECTION 11

SUMMARY:
THE FIRST LAW OF NETWORKS

Network science has distilled a small number of funda-
mental organizing principles that govern the structure and
evolution of real networks. We call these network laws as
just like the laws of physics, they encode generic principles
obeyed by many real networks. A network property quan-
tifies as a law if

(A) it has a unique quantitative, testable and falsifiable
formulation;

(B) it is obeyed by a large number of real networks;
(C) it does not emergence by chance, hence it cannot be
explained within the context of the random network

model.

The results of this chapter allow us to formulate the fist of
these laws:

THE FIRST LAW: SMALL WORLD PROPERTY
In complex networks there are short
distances between any pair of nodes.

Evidence for the first law is provided in Sect. 3.8. To recap
in the context of the criteria A-C:

A. Equation (19) offers the quantitative formulation of the
First Law, predicting that the average distance between
two randomly chosen nodes scales as a logarithm of
the system size. Hence node-to-node distances are
small compared to the network size.

B. Table 3.2 offers evidence that most real networks obey
the first law.

C. As the small world property is present in random net-
works, the First Law apparently fails criterion C. Yet,
we will see in the next chapter that in real networks
distances are different from those expected in random
networks, forcing us to modify Eq. (19).
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At a glance: Random networks

e Definition: N nodes, where each node pair is connected with
probability p.

e Average degree: <k> = p(N - 1)

e Average number of links: <L> = w
D o _ N-I k N—-I-k
*  Degree distribution: p, = . p(l—p) .

For sparse networks (k « N), Pk has the Poisson form

D= e M :

®  Giant component (N,):

< 1: no giant component (N~ InN)

1 < < InN: one giant component and disconnected clusters

[NG Nsz

¢ > InN: all nodes join the giant component NG ~ (p = p’_)N

logN
log(k)’

e Average distance: {d) o<

e C(Clustering coefficient: (C = @ .



SECTION 12

ADVANCED TOPICS 3.A:

DERIVING THE POISSON DEGREE DISTRIBUTION

We start from the exact binomial distribution (7) or

b, =[Nk_ ijk(l—p)“"‘k (22)

that characterizes a random graph, and we rewrite the first
term on the r.h.s. as

(23)

N=1) (N=(N=I=)(N—=1-2)..(N=I—k+)(N=I—Kk)! (N—I)*
k) k!I(N—1—k)! Y

The last term of Eq. (22) can be simplified as

In[(1— P 4] = (N —1— Kyin(l— <L)
N—I
and using the series expansion

2 3
X

oo (_l)n+l , %
n(l+x)= ) —~—x"=x——+—-..,V|x[<]
n(l+ x) ; . x" = x > 3 | x |

we obtain

Inf(1- 11 = (N 1=K = i1 - ) = (k)

which is valid if N » k, representing the small degree ap-
proximation at the heart of this derivation. Therefore the
last term of Eq. (22) becomes

(1-p) "= (24)

Combining Egs. (22), (23), and (24) we obtain the Poisson
form of the degree distribution

P = {Nk_ Iij(l — p)N Ik = (Nk—'”k pre

_ (NI (ﬂjk oo,
k! N —1

k k
— e_<k> Q

k!

(25)
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SECTION 13

ADVANCED TOPICS 3.B:

MAXIMUM AND MINIMUM DEGREES

To determine the expected degree of the largest node in a
random network, called the network’s upper cutoff, we de-
fine the degree k__ such that in a network of N nodes we
have at most one node with degree higher than k . Math-
ematically this means that the area behind the Poisson dis-
tribution p, for k= k_ _should be approximately one (Im-
age 3.18). Since the area is given by 1- P(k__), where P(k)

is the cumulative degree distribution of p,, the network’s
largest node satisfies:

N[1-Pk )] =I. (26)

We write = instead of =, because k__ is an integer, so in
general the exact equation does not have a solution. For a
Poisson distribution

(27)
Ko /1, \k - k Kinax +!
I _ P(k ) — I _ e—(k)E& — e—(k) 2 <k> ~ e—(k) <k> ,
e TR T X R VR Y

where in the last term we approximate the sum with its
largest (leading) term.

For N = 10%, and (ko = 1,000 corresponding to roughly the
size and average degree of the globe’s social network, we
obtain k= 1,185, indicating that a random network lacks
extremely popular individuals, or hubs.

We can use a similar argument to calculate the degree of
the smallest node k__ , or the natural smallest cutoff. In-
deed, by requiring that there should be at most one node
with degree smaller than k. we can write

NP(k )=l (28)

If P(0) > 1 the equation has no solution and k . = o. For the
ER network we have

kmin k
P(kmin) = e7<k>z<k—>
o k!

Solving Eq. (28) with N = 109 and «lo = 1,000 we obtain k__
= 810.

(29)
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A
—~
=2 This area under the
E curve should be less
than 1/N.
k kmax
Image 3.18

Approximating the minimum and the maximum degree.

The maximum degree k__ is chosen so that there is at most one node
whose degree is higher than k. This is often called the natural upper
cutoff of a degree distribution. To calculate it, we need to set k__ such
that the area under the degree distribution p, for k> k _is exactly equal
to 1/N, hence this area multiplied by N, capturing the total number of
nodes expected in the regime, is exactly one. We follow a similar argu-

ment to determine k _, or the expected smallest degree.



SECTION 14

ADVANCED TOPICS 3.C:
GIANT COMPONENT

Our aim here is to reproduce the argument, put forward
independently by Solomonoff and Rapoport [28], and by
Erdés and Rényi [ 8], on the emergence of giant component
at do=1(see also[24]).

Let us denote with u = 1- N /N the fraction of nodes that
are not in the giant component (GC), whose size we take to
be N . If node i is part of the GC, it must link to another
nodej, which is also part of the GC. Hence if i is not part of
the GC, that could happen for two reasons:

« There is no link between i and j (probability for this is
1- p).

« There is a link between i and j, but j is not part of the
GC (probability for this is pu).

Therefore the total probability that i is not part of the GC
via nodejis 1 - p + pu. The probability that i is not linked
to the GC via any other node is therefore (1 - p + pu)"-?, as
there are V - 1 nodes that could serve as a potential links
to the GC for node i. As u is the fraction of nodes that do
not belong to the GC, for any p and N the solution of the
equation
u=(-p+pu)* (30)

provides the size of the giant componentvia N, = N(1-u).
Using p = do /(N - 1) and taking the log of both sides, for
ky « N we obtain

Inu = (N—I)In[l— %(l —u)}, (31)

Taking an exponential of both sides leads to u = exp[- (1
- u)/. If we denote with S the fraction of nodes in the giant
component, S =N_ /N, then § = 1-u and Eq. (31) provides

S =|- e_<k>s- (32)

This simple looking equation provides the size of the giant
component S in function of o (Image 3.19). Yet, Eq. (32)

does not have a closed solution. We can solve it graphically
by plotting the right hand side of Eq. (32) as a function of
S for various values of (. To have a nonzero solution, the
obtained curve must intersect with the dotted diagonal,
representing the left hand side of Eq. (32). For small o the
two curves intersect each other only for § = o, indicating
that for small k, the size of the giant component is zero.
Only when (k> exceeds a threshold value, does a non-zero
solution emerge.

To determine the value of o at which we start having a
nonzero solution we take a derivative of Eq. (32), as the
phase transition point is when the r.h.s. of Eq. (32) has the
same derivative as the Lh.s. of Eq. (32), i.e.

d —(k)S
E(I —e %)=,
(kye™ s =1 (33)

Setting S = o, we obtain that the phase transition point is
atdo = 1.

(@) 1—————x (b !
’ 0.8 [
0.6 [
0.4

0.2 |

Image 3.19
Graphical solution for the size of the giant component.

(a) The three curves in the left panel show y = T-exp[ -t S ] for various
. The diagonal dashed line corresponds y =S, and the intersection of the
dotted and continuous lines provides the solution to Eq. (32),

S = 1-exp[ -toS ]. For the bottom curve there is only one intersection, at

S =0, indicating the absence of a giant component. The top curve a solu-
tion at S = 0.583... (vertical dashed line). The middle curve is precisely at
the threshold between the regime where a non-zero solution for S exists
and the regime where there is only the solution S=0.

(b) The size of the giant component in function of «» as predicted by

Eq. (32) [24].
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SECTION 15

ADVANCED TOPICS 3.D:
COMPONENT SIZES

In Image 3.5 we focused only on the size of the giant com-
ponent, leaving an important question open: how many
smaller components do we expect for a given (o, and what
is their expected sizes? The aim of this section is to discuss
these topics.

Component size distribution: For a random network
the probability that a randomly chosen node belongs to a
component of size s (different from the giant component

G)is[24]

~(S<k>)s_l ~(k)s
PS —S! e .

(34)

Replacing o with exp[(s-1) Indo] and using the

Stirling-formula sl =275 (EJS

e
for large s we obtain

Ps - S—3/2e—(<k)—l)s+(s—|)|n(k)‘ (35)

Therefore the component size distribution has two contri-
butions: a slowly decreasing power law term s3* and a rap-
idly decreasing exponential term e (®s*s-vin® - Given that
an exponential dominates for large s, Eq. (35) predicts that
large components are prohibited. The only exception is at
the critical point, (o=1, where all terms in the exponential
cancel, hence p_follows the power law

=3/2

p,~s (36)

As a power law decreases relatively slowly, at the critical
point we expect to observe clusters of widely different
sizes, a property consistent with the behavior of a system
during a phase transition (Advanced Topics 3.E). These
predictions are supported by numerical simulations in
Image 3.20, that shows p_for three o values.

Average component size: The calculations also indicate
that the average component size (once again, excluding
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(a) (k) =1/2 (b) (k) =1
100 100
~~~~~~~ . N =102
T, N =10
e N =10*
10 . N=cx ©
S <
102
1

(o =3 (d)

Image 3.20
Component size distribution.

Component size distribution in a random network, p, excluding the giant
component. (a)-(c)shows p_for different < values and N, indicating that
p, converges for large N to the prediction (34). In (d) we show the results
for N = 107 plotting together p_for different . The plot clearly shows
that while for o < 7 and ¢ > 7 the p_has a exponential form, right at the
critical point <k = 1 the distribution follows the power law (36). The dotted
line in each image correspond to the theoretical prediction (35). The first
numerical study of the component size distribution in random networks
was carried out in 1998, preceeding the exploding interest in complex
networks.

the giant component) follows [24]

S (37)
I—(k)+ (k)N /N

(s)

For do < 1 we lack a giant component (N = 0), hence
Eq. (37) becomes

__ 8
(s)—|_<k> (38)

which diverges when the average degree approaches the
critical point <o = 1. Therefore as we approach the criti-
cal point, the clusters are becoming bigger, signaling the



emergence of the giant component at <o = 1. Once again,
numerical simulation support these predictions for large

N (Image 3.21).

To determine the average component size for <k > 1 using
Eq. (37), we need to first determine the size of the giant
component. This can be done in a self-consistent manner,
obtaining that the average cluster size decreases for

ky > 1, as most of the clusters are gradually absorbed by the
giant component.

Note that Eq. (37) predicts the size of the component to
which a randomly chosen node belongs to. This is a biased
measure, as the chance of belonging to a larger cluster is
higher than the chance of belonging to a smaller one. The
biasis linear in the cluster size, s. If we correct for this bias,
we obtain the average size of the small components that we
would get if we were to inspect each cluster one by one and
measuring their average size [24]

2

T 2=+ (N, IN (39)

(s

Image 3.21 again offers numerical support for Eq. (39).

0 0.5 1 1.5 2 2.5
(k)
30 T T T T
(b) H N =10% -
25 - ; : N =10° — -
s N=10" -
wr H Theory --]
1
— '
= i

2.5 T T T

! -
(c) N =10% —
N=10° —
2r 4 N =10 —1

Theory

(s)

15

1.5 2 25

Image 3.21
Average component size.

a. Upper curve: the average size <s> of a component to which a ran-
domly chosen node belongs to as predicted by Eq. (39). Lower curve:
the overall average size <s'> of a component as predicted by Eq. (37).
The dotted vertical line marks « = 1 (Redrawn after Newman, 2010).

b.  The average cluster size in a network measured in by numerical
simulations, where we picked a node in the network and determined
the size of the cluster it belongs to. This measure is biased, as each
component of size s" will be counted s' times. The larger N becomes,
the more closely the numerical data follows the prediction of Eq. (37).
As predicted, <s> diverges at the «o=1, critical point, supporting the
existence of a phase transition in the system (Advanced Topics 3.F).

c.  The average cluster size in a network, where we corrected for the bias
in (b) by selecting each component only once.The larger N becomes,
the more closely the numerical data follows the prediction of Eq. (39).
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SECTION 16

ADVANCED TOPICS 3.E:
SUPERCRITICAL REGIME.

To determine the value of (k» at which most nodes became
part of the giant component, we calculate the probability
that a randomly selected node does not have a link to the
giant component, whichis (I-p)* =~ (-p)" , as in this re-
gime N_ = N. The expected number of such isolated nodes
is

I, =N(I-p)" = N[ - %) ~Ne™, (40)

where we used (- i)“ ~e ¥, an approximation valid for
n

large n. If we make p sufficiently large, we arrive to the
point where only one node remains disconnected from the
giant component. At this point I, = 1, hence according to
Eq. (40) p needs to satisfy Ne ™ =| . Consequently, the
value of p at which we are about to enter the fully connect-
ed regime is

N

, (41)
N

which leads to Eq. (14) in terms of k.
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SECTION 17

ADVANCED TOPICS 3.F:
PHASE TRANSITIONS.

The emergence of the giant component at (=1 in the ran-
dom network model is reminiscent of a phase transition, a
much studied phenomenon in physics and chemistry [29].
Consider two examples:

i. Water-Ice Transition (Image 3.22a): At high tempera-
tures the H O molecules engage in a diffusive dance,
forming small groups and then breaking apart to group
up with other molecules. If cooled, at 0°C the mole-
cules suddenly form a perfectly ordered ice crystal.

ii. Magnetism(Image3.22b): In ferromagnetic metals like
iron at high temperatures the spins point in randomly
chosen directions. Under some critical temperature T,
however, all atoms orient their spins in the same direc-
tion and the metal becomes a magnet.

The freezing of a liquid and the emergence of magneti-
zation are examples of phase transitions, representing
transitions from disorder to order. Indeed, relative to the
perfect order of the crystalline ice, liquid water is rather
disordered. Similarly, the randomly oriented spins in a
ferromagnetic take up the highly ordered common orien-
tation under T

Many properties of a system undergoing a phase transition
are universal, that is, they are the same in a wide range of
systems, from magma freezing into rock to a ceramic ma-
terial turning into a superconductor. Furthermore, near
the phase transition point, called the critical point, many
quantities of interest follow power-laws. The phenomena
observed near the critical point <o=1 in a random network
in many ways is similar to such a phase transition:

«  The similarity between Image 3.6a and the magneti-
zation diagram of Image 3.22b is not accidental: they
both show transition from disorder to order, man-
ifested as the emergence of a giant component as k
exceeds =1 in a random network.

«  Aswe approach the freezing point, ice crystals of wide-
ly different sizes are observed, and so are domains of
atoms with spins pointing in the same direction. The
size distribution of the ice crystals or magnetic do-

mains follows a power law. Similarly, while for

ky < 1 and (o > 1 the cluster sizes follow an exponen-
tial distribution, in a random network right at the
phase transition point, p_follows a power law given
by Eq.(36), implying the coexistence of components of
widely different sizes.

At the critical point the average size of the ice crystals
or of the magnetic domains diverges, assuring that the
whole system turns into a single frozen ice crystal or
that all spins point in the same direction. Similarly in
arandom network the average cluster size <s> diverges
as we approach o = 1 (Advanced Topics 3.D).
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Image 3.22a
Water-Ice phase transition.

The hydrogen bonds that hold the water molecules together (dotted lines) are weak, constantly breaking up and re-forming, maintaining partially
ordered local structures (left panel). The temperature-pressure phase diagram indicates (center panel) that by lowering the temperature, the water
undergoes a phase transition, moving from a liquid (orange) to a frozen solid (red). In the solid phase each water molecule binds rigidly to four other
molecules, forming an ice lattice (right panel). After http://www.lbl.gov/Science-Articles/Archive/sabl/2005/February/ water-solid.html; phase diagram
after http://stevengoddard.wordpress.com/2010/09/02/the-ideal-world-phase-diagrams-part-deux/
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Image 3.22b
Magnetic phase phase transition.

In magnetic materials the magnetic moments of the individual atoms (spins) can point in two different directions. At high temperatures they choose
randomly their direction (right panel), hence the system's total magnetization, m = AM /N, where AM is the number of up spins minus the number of
down spins, is zero. The phase diagram (middle panel) indicates that by lowering the temperature X, the system undergoes a phase transition at T=Tc
when a nonzero magnetization emerges, hence m = M /N converges to one. In this ordered phase all spins point in the same direction (left panel).
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SECTION 18

ADVANCED TOPICS 3.G:

CORRECTION TO SMALL WORLDS

Equation (18) offers only a rough approximation to the
network diameter, valid for very large N and small d. In-
deed, as soon as «o? approaches the system size N the do?
scaling must break down, as we are hitting the boundary
of the network and there are not enough nodes to continue
the «o? expansion. Such finite size effects result in correc-
tions to Eq. (18).

For a random network with average degree (o, the network
diameter is better approximated by (Fernholz & Ramach-
andran, 2007)

InN 2InN

d = , (42
= ind) " W (yexp— ()]

where the Lambert W-function W(z) is the principal in-
verse of f(z) = z exp(z). The first term on the r.h.s is Eq.
(18), while the second is the correction that depends on the
average degree. The correction increases the diameter, ac-
counting for the fact that when we approach the network’s
diameter the number of modes must grow slower than «k .
The magnitude of the correction becomes more obvious if
we consider the various limits of Eq. (42).

In the do > o limit, i.e. when the network approaches
the phase transition point, we can determine the Lambert
W-function and the diameter becomes

InN
In(k) "

=3 (43)

max

Hence in the moment when the giant component emerg-
es the network diameter is three times our prediction (18).
This is due to the fact that at the critical point o = 1 the
network has a tree-like structure, consisting of long chains
with hardly any loops, a configuration that significantly
increasesd .
In the o > oo limit, corresponding to a very dense net-
work, Eq. (42) becomes

_InN
max In<k>

2InN In¢k)
+ © +InN[<k>2J. (44)

Hence if <o increases, the second and the third terms van-
ish and the solution (42) converges to the result (18).
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As difficult it is to overstate the importance of the World Wide Web in
our daily life, it is equally hard to exaggerate the role the Web played in
the development of network theory. It aided the discovery of a number of
fundamental network properties and became a standard testbed for many
network measures. As its name states, the WWW is a “web” whose nodes
are documents and the links are the uniform resource locators (URLs) that
allow us to move with a click from one web document to the other. With
an estimated size of over one trillion documents (N=10?), the Web is the
largest network humanity has ever built. It exceeds in size even the human
brain (N = 10 neurons).

We can use a software called a crawler to map out the Web’s wiring di-
agram. A crawler can start from any web document, identifying the links
(URLSs) on it. Next it downloads the documents these links point to and
identifies the links on these documents, and so on. This process iteratively
returns a local map of the Web. Search engines like Google or Bing operate
such crawlers that constantly index new documents, along the way provid-
ing a detailed map of the WWW.

The first map of the WWW obtained with the explicit goal of under-
standing the structure of the network behind it was generated by Hawoong
Jeong at University of Notre Dame. He mapped out the nd.edu domain [1],
consisting of about 300,000 documents and 1.5 million links. The purpose
of the map in was to compare the properties of the Web graph to
the random network model. Indeed, in 1998 there were reasons to believe
that the WWW could be well approximated by a random network. The con-
tent of each document reflects the personal and professional interests of
its creator, from individuals to organizations. Given the diversity of these
interests, the links on these documents might appear to point to randomly
chosen documents. A quick look at the map in supports this view:
there is a high degree of randomness behind the Web’s wiring diagram.
Yet, a closer inspection reveals some puzzling differences between this
map and a random network. In a random network highly connected nodes,
or hubs, are effectively forbidden.



In contrast in Fig. 41 numerous small-degree nodes coexist with a few
hubs, nodes with an exceptionally large number of links. The purpose of
this chapter is to show that these hubs are not unique to the Web, but we
encounter them in many real networks. They represent a signature of a
deeper organizing principle that we call the scale-free property.

The topology of the WWW

THE SCALE-FREE PROPERTY 4

A visualization of the web sample that led to
the discovery of the scale-free property. The
sequence of images shows an increasingly
magnified local region of the network. The
first panel displays all 325,725 nodes, offer-
ing a global view of the full dataset. Nodes
with more than 50 links are shown in red and
nodes with more than 500 links in purple. The
increasingly magnified closeups reveal the
presence of a few highly connected nodes,
called hubs, that accompany scale-free net-
works (Image by M. Martino).

INTRODUCTION



SECTION 4.2

POWER LAWS AND

SCALE-FREE NETWORKS

If the WWW were to be a random network, its degrees should follow a
Poisson distribution. Yet, as Fig. 4.1 indicates, the Poisson form offers a poor
fit for the WWW’s degree distribution. Instead we find that on a log-log

scale the data points form an approximate straight line, suggesting that
the degree distribution of the WWW is best approximated with

p,~ k. (41)

Eq. 4.1 is called a power law distribution and the exponent vy is its degree
exponent. If we take a logarithm of Eq. 4.1, we obtain

logp, ~ —v logk. (4.2)

Therefore, if Eq. 41 holds, logp, is expected to depend linearly on logk, the
slope of this line being the degree exponent v, as observed in Fig. 4.2.
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The degree distribution of the WWw

The incoming (left panel) and outgoing (right
panel) degree distribution of the WWW sam-
ple mapped in the 1999 study of Albert et al.
[1]. The degree distribution is shown on double
logarithmic axis (log-log plot), in which a pow-
er law is expected to follow a straight line. The
symbols correspond to the empirical data and
the dotted line corresponds to the power-law
fit, with degree exponents V= 21 and vy, =
2.45. The degree distribution predicted by a
Poisson function with average degree <k, ) =
<k, = 4.60, representing the observed values

for the WWW sample, is shown as a dotted
line.



As the WWW is a directed network, each document is characterized by
anout-degreek ,representingthe number oflinks that point from a doc-
ument to other documents, and an in-degree km, representing the num-
ber of other documents that point to a given document. We must therfore
distinguish two different degree distributions: the probability that a ran-
domly chosen document points to k , other web documents, or p K. and
the probability that a randomly chosen node has k,  other web documents
pointing to it, or Pk - In the case of the WWW both Pk, andp K, can be ap-

proximated by a power law

p, Ok

P [ Yo
where v, andy, , are the degree exponents for the in- and out-degrees, re-
spectively . In general vy, can differ from y_ . For example, for the
WWW sample of we havey, = 2landy,,
evidence discussed above leads to the concept of a scale-free network [2]:
Networks whose degree distribution follows a power law are called scale-
free networks. As indicates, for the WWW the power law persists for

almost four orders of magnitude, prompting us to call the network behind

out®

= 2.45. The empirical

the Web scale-free. In this case the scale-free property applies to both in
and out-degrees. To explore the consequences of the scale-free property, we
have to define the power-law distribution in more precise terms. For this
we introduce the discrete and the continuum formalisms used throughout
this book.

As node degrees are always positive integers, k=0, 1, 2, 3, ..., N, the dis-
crete formalism captures the probability p, that a node has exactly k links

p, =Ck.

The constant C is determined by the normalization condition

Using we obtain, C E k™ =1 hence
=

ik,y E(r)

k=l

where Z(y) is the Riemann-zeta function. Thus for k > 0 the discrete pow-
er-law distribution has the form




Note that diverges at k=0. We therefore need to separately speci-
fy p, representing the fraction of nodes that have no links to other nodes
(isolated nodes).

In analytical calculations it is often convenient to assume that the de-
grees can take up any positive real value. In this case the power-law degree
distribution is written as:

p(k) = Ck.

Using the normalization condition:

f:’ p(k)dk =1

‘min

we obtain the constant:

o= 0K
ﬂ k™" dk

‘min

Therefore in the continuum formalism the degree distribution has the
form:

p(k) = (v =Dkl k™.

Here k_. is the smallest degree for which the power law holds.
Note that p, encountered in the discrete formalism has a precise meaning:
it provides the probability that a randomly selected node has degree k. In
contrast, only the integral of p(k) encountered in the continuum formal-
ism has a physical interpretation:

f p(k)dk

provides the probability that a randomly chosen node has degree between
k, and k,. In summary, networks whose degree distribution follows a power
law are called scale-free networks. If a network is directed, the scale-free
property can apply separately to the in- and the out-degrees.

To mathematically study the properties of scale-free networks, we
can use the discrete or the continuum formalism. Note, however, that the
scale-free property is independent of the formalism we use to describe the
degree distribution.



Vilfredo Pareto, a 19th century economist, noticed that in It-
aly a few wealthy individuals earned most of the money, while
the majority of the population earned rather small amounts. He
connected this disparity to the observation that incomes follow
a power law, representing the first known report of a power-law
distribution [3]. His finding entered the popular literature as the
80/20 rule: roughly 80 percent of money is earned by only 20 per-
cent of the population.

The 80/20 emerges in many areas, like management, stating that
80 percent of profits are produced by only 20 percent of the em-
ployees or that 80 percent of decisions are made during 20 per-
cent of meeting time.

They are present in networks as well: 80 percent of links on the
Web point to only 15 percent of webpages; 80 percent of citations
go to only 38 percent of scientists; 80 percent of links in Holly-
wood are connected to 30 percent of actors [4]. Typically all quan-
tities obeying the 80/20 rule follow a power law distribution.

During the 2009 economic crisis power laws have gained a new
meaning: the Occupy Wall Street Movement highlighted the fact
that in the US 1% of the population earns a disproportionate 15%
of the total US income. This 1% effect, a signature of a profound
income disparity, is again a natural consequence of the pow-
er-law nature of the income distribution.

Figure 4.3

Italian economist, political scientist, and phi-
losopher, who had important contributions
to our understanding of income distribution
and to the analysis of individuals choices. A
number of fundamental principles are named
after him, like Pareto efficiency, Pareto distri-
bution (another name for a power-law distri-
bution), the Pareto principle (or 80/20 law).



SECTION 4.3

The main difference between a random and a scale-free network comes
in the tail of the degree distribution, representing the high-k region of p,.
Fig. 4.4 compares a power law with a Poisson function, indicating that:

« For small k the power law is above the Poisson function, hence a scale-
free network has a large number of small degree nodes that are virtually
absent in a random network.

« For k the vicinity of (k) the Poisson distribution is above the power law,
indicating that in a random network most nodes have degree k = (k.

« For large k the power law is again above the Poisson curve. The differ-
ence is particularly visible if we show p, on a log-log plot Fig. 4.4b, indicating
that the probability of observing a high-degree node, or hub, is several or-
ders of magnitudes higher in a scale-free than in a random network.

Let us use the WWW to illustrate the properties of the high-k regime.
The probability to have a node with k = 100 is about p,,, = 107*° in a Pois-
son distribution while it is about p, ,, = 10~* if p, follows a power law. Con-
sequently, if the WWW were to be a random network with

N AR I0'8,<k>=4.6 (4.14)

and N = 10 Table 4.1, we would expect nodes with more than 100 links, or
effectively none. In contrast, given the WWW’s power law degree distribu-

tion, with y, =2.1, wehave N =10° nodes with degree k >100.

k>100

All real networks are finite. The size of the WWW is estimated tobe N =
102 nodes; the size of the social network is the Earth’s population, about N
= 7 x 10°. These numbers are huge, but finite. Other networks pale in com-
parison: the genetic network in a human cell has approximately 20,000
genes while the metabolic network of the E. Coli bacteria has only about a
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Poisson vs. power-law distributions

(a) A Poisson function and a power-law
function withlly= 2.1. Both distributions have
(k)= 10.

(b) The curves in (a) shown on a log-log plot,
offering a better view of the difference be-
tween the two functions in the high-k regime.
(c) A random network with {k)=3 and N =50,
illustrating that most nodes have comparable
degree k =(k).

(d) A scale-free network with {k)= 3, illustrat-
ing that numerous small-degree nodes coexist
with a few highly connected hubs.



thousand metabolites. This prompts us to ask: how does the network size
affect the size of its hubs?

For an arbitrary degree distribution p, we can calculate the expected

maximum degree, k__, often called natural cutoff. It represents the ex-

max’

pected size of the largest hub.

It is instructive to perform the calculation first for the exponential dis-
tribution p, = Ce™. Assuming that the network’s minimum degree is k, the
normalization condition
f” p(k)dk =1

min

provides C = AeMmn, To calculate k,___we assume that in a network of N
nodes we expect at most one node in the (k,_, ) regime. In other words
the probability to observe a node whose degree exceeds k,_ is1/ N:

f: p(k)dk = %

‘max

Equation yields

k =k +—o.

max ‘min }L

tells us that the
maximum degree will not be very different from k_. . For a Poisson degree

As In N is a slow function of the system size,

distribution the calculation is a bit more involved, but the obtained depen-
denceofk__ on N is even slower than the logarithmic dependence predict-
ed by

For a scale-free network, according to and the natural cut-
off follows

1

k. ~k, N'"™".

‘max min

Hence the larger a network, the larger is the degree of its biggest hub.
The polynomial dependence of k, . _on N implies that in a large scale-free
network there can be orders of magnitude differences in size between the
smallest node, kmin’ and the biggest hub, kmax

To illustrate the difference in the maximum degree of an exponential
and a scale-free network let us return to the WWW sample of consist-
ingof N=3x10°nodes. Ask . =1,if the degree distribution were to follow
an exponential, predicts that the maximum degree should be k__ [l
= 13. In a scale-free network of similar size and y=2.1, predicts k_
= 85,000, a remarkable difference. Note that the largest in-degree of this
WWW map of is 10,721, which is comparable to the predicted k..

This reinforces our conclusion that in a random network hubs are for-
bidden, while in scale-free networks they occur naturally.

kmax

Proportionalto N -1

Scale-free

Random Network

.
104

.
1010

.
1012

The expected degree of the largest node (natu-
ral cutoff) in scale-free and random networks
with the same average degree {k)= 3. For the
scale-free network we chose y = 2.5. For com-
parison, we also show the linear behavior,

~ N -1, expected for a complete network.

max
Overall, hubs in a scale-free network are sev-
eral orders of magnitude larger than the big-
gest node in a random network with the same

N and <k).



In summary the key difference between a random and a scale-free
network comes in the different shape of the Poisson and of the power-law
function: in a random network most nodes have comparable degrees and
hence hubs are forbidden. Hubs are not only tolerated, but are expected in
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the
largest node grows logarithmically or slower with N, implying that hubs
will be tiny even in a very large network.

Bell Curve Power Law Distribution

Very many nodes
Most nodes have with only a few links

the sante number of links

N
No highly é A few hubs with )
cunng‘gtgii nodes TJ\} large number of links
A N
1T
b XL

Number of nodes with k links
Number of nodes with k& links

ity A *

Random versus scale-free networks

Number of links (&)
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Left column: the degrees of a random network
follow a Poisson distribution, which is rather
similar to the Bell curve shown in the figure.
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number
of links are absent (top panel). Consequently
a random network looks a bit like a national
highway network in which nodes are cities
and links are the major highways connecting
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no
city is disconnected from the highway system.

Right column: In a network with a power-law
degree distribution most nodes have only a
few links. These numerous small nodes are
held together by a few highly connected hubs
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network,
whose nodes are airports and links are direct
flights between them. Most airports are tiny,
with only a few flights linking them to other
airports. Yet, we can also have few very large
airports, like Chicago or Atlanta, that hold
hundreds of airports together, acting as major
hubs (bottom panel).

Once hubs are present, they change the way
we navigate the network. For example, if we
travel from Boston to Los Angeles by car, we
must drive through many cities (nodes). On
the airplane network, however, we can reach
most destinations via a single hub, like Chica-

go.

After [4].

HUBS



What is behind the “scale-free” name? The term is rooted in a branch of
statistical physics called the theory of phase transitions , that
extensively explored power laws in the 1960s and 1970s. To best under-
stand the meaning of the scale-free term, we need to familiarize ourselves
with the moments of the degree distribution. The n'* moment of the degree
distribution is defined as:

©

k=Y k'p, = f: K" p(k)dk.

k

min

The lower moments have important interpretation:

» n=1: the first moment is the average degree, <k).

 n=2: the second moment, (k?), provides the variance o?= (k?) - {k)?,
measuring the spread in the degrees. Its square root, g, is the standard
deviation.

e n=3: the third moment, {k?), determines the skewness of a distribu-
tion, telling us how symmetric is p, around the average (k). Symmet-
ric distributions have zero skewness. For a scale-free network the n'
moment of the degree distribution is

n o KT = g
k =fk k" p(k)dk = Cﬁ'

While typically k__is fixed, the degree of the largest hub, k_,increas-

es with the system size, following

max’

Hence to understand the behavior of (k) we need to take the asymptot-
iclimitk, - oo in , probing the properties of very large networks.
In this limit predicts that the value of (k*) depends on the interplay
between n and v:

¢ If n -y + 1 = 0 then the first term on the r.h.s. of , kir+l goes to
zero as k__increases. Therefore all moments that satisfy n < y-1 will
be finite.



o If n-y+1=0 then <k ) goes to infinity as k__—eo. Therefore all mo-
ments satisfying n = y-1 diverge.

For most real scale-free networks the degree exponent y is between 2
and 3 . Hence for these in the N — oo limit the first moment <k) is
finite, but the second and higher moments, {k?, k%), go to infinity. This
divergence helps us understand the origin of the “scale-free” term:

« If the degrees follow a normal distribution, then the degree of a ran-
domly chosen node is

k={k\xo,

For a random network with a Poisson degree distribution %= (k).
which is always smaller than (k). Hence the degrees are in the range k =
(k) £ {k)/?, indicating that nodes in a random network have comparable
degrees. Therefore the average degree (k) serves as the “scale” of a random
network.

» For a network with a power-law degree distribution and y < 3 the first
moment is finite but the second moment is infinite. The divergence
of {k?), and hence of o, for large N indicates that the fluctuations
around the average could be arbitrary large. That is, when we ran-
domly choose a node, we do not know what to expect, as the chosen
node’s degree could be tiny or arbitrarily large. Hence networks with
y < 3 do not have a meaningful internal scale. They are “scale-free”

. For example the average degree of the WWW sample is <k) =
4.60 . Given thaty = 2.1, the second moment diverges, which
means that our expectation for the in-degree of a randomly chosen
WWW document is (k)=4.60 + oo in the N — o limit. That is, a ran-
domly chosen webpage could easily yield a document of degree one
or two, as 74.02% of nodes have in-degree less than (k). Yet, it could
also yield a node with hundreds of millions of links, like google.com
or facebook.com.

Strictly speaking (k?) diverges only in the N — oo limit. Yet, the diver-
gence is relevant for finite networks as well. To illustrate this, and
show the standard deviation Eﬂmmr ten real networks.
For most of these networks o is significantly larger than <k), documenting
large variations in node degrees. For example, the degree of a randomly
chosen node in the studied WWW sample is k, = 4.60 + 39.05, indicating
once again that the average is not informative in this case. In summary,
the scale-free name captures the lack of an internal scale, a consequence of
the fact that nodes with widely different degrees coexist. This feature dis-
tinguishes scale-free networks from lattices, in which all nodes have exact-
ly the same degree (o = 0), or from random networks, whose degrees vary
in a narrow range (o, = <k)’?). As we will see in the coming chapters, this
divergence is the origin of some of the most interesting properties of scale-
free networks, from their robustness to random failures to the anomalous
spread of viruses.

Py

~N

k

Randomly chosen node: k = (k) = <k>”2
Scale: (k)

Scale-free network
Randomly chosen node: k = (k) = %
(k) is meaningless as ‘scale’

For any bounded distribution (e.g. a Poisson or

a Gaussian distribution) the degree of a ran-

domly chosen node will be in the vicinity of

(k). Hence <{k) serves as the network’s scale.

In a scale-free network the second moment

diverges, hence the degree of a randomly

chosen node can be arbitrarily different froml[]
(k). As a scale-free network lacks an intrinsic

scale, is it scale-free.



NETWORK NL §:i> _ <k0u,> o, O o Yin Y our Y
Internet 192,244 | 609,066 6.34 - - 14.14 - - 3.42*
WWW 325,729 | 1,497,134 4.60 39.05 21.48 - 2.31 2.00 -
Power Grid 4,941 6,594 2.67 - - 1.79 - - Exp.
Mobile Phone Calls 36,595 91,826 2.51 2.39 2.32 - 4.69* 5.01% -
Email 57,194 103,731 1.81 9.56 34.07 - 3.43% 2.03 -
Science Collaboration 23,133 93,439 8.08 - - 10.63 - - 3.35
Actor Network 702,388 | 29,397,008 | 83.71 - - 200.86 - - 2.12
Citation Network 449,673 | 4,689,479 10.43 29.37 9.49 - 3.03%* 4.00 -
E. Coli Metabolism 1,039 5,802 5.58 22.46 19.12 - 2.43 2.90 -
Yeast Protein Interactions 2,018 2,030 2.90 - - 4.88 - - 2.89%

The characteristics of several real network

The table shows the standard deviation of the degree distribution 0 = <k2> - <k>2

(0,,and o, for directed networks) for our ten ref-

erence networks. It indicates that for most networks o is much larger than <k>, consequence of their scale-free nature. It also lists the
estimated degree exponent, y, for each network, determined using the procedure discussed in ADVANCED TOPICS 4.A. The stars next to
the reported values indicate the statistical confidence for a particular fit to the degree distribution. That is, * means that the fit shows

statistical confidence for a power-law k™Y fit; while ** marks datasets that display statistical confidence fora o, = <k‘>— (k)* fit. Those
with no stars do not show statistical confidence for any of the two forms; the reasons for this are discussed later in the next chapter

and in

. Note that the power grid is not considered scale-free. For this network a degree distribution of the

—-Ak

form e™ offers a statically significant fit.

a0 o WWW(in)
35 gEmaillout)
30 o Citations(in]
25
Metabolic(in)
° L]
'Metahnlic[uut} Standard deviation is large in real networks
15 .lI'ItEI"I'IEt For a random network the standard deviation
. follows g, = 1/(k).,shown as a dashed line on the
10 Email(in) .Cullabnmhun figure. The symbols show o for ten reference
. .Ciiatinnstnut] networks Table 4.1, indicating that for each o
) is larger than expected for a random network
5 .Pmtem 1 fﬂ with similar (k). The only exception is the
PhoneCalls(in,put) .- - ------------ - '(k} power grid, which is not scale-free. While the
NP ‘F’B;u_érdﬁ_rid phone call network is scale-free, it has a large
] - Y, hence it behaves like a random network.
0 2 4 6 8 10 12 14

(k)
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SECTION 4.5

While the terms ‘WWW’ and ‘Internet’ are often used interchangeably
in the popular press, they refer to rather different systems. The WWW is an
information network, with Web documents as nodes and URLs as links. In
contrast the Internet is an infrastructural network, whose nodes are rout-
ers and links correspond to physical connections, like copper or optical ca-
bles.

This difference has important consequences: while the cost of linking
to a web document residing on the same computer or on a different con-
tinent is the same, establishing a direct Internet link between routers in
Boston and Budapest would require us to lay a new cable between the two
continents, which would be prohibitively expensive. Despite these differ-
ences, the degree distribution of both networks is well approximated by a

THE SCALE-FREE PROPERTY

The topology of the Internet

15

An iconic representation of the Internet to-
pology at the beginning of the 21st century.
The image was produced by CAIDA, an orga-
nization based at University of California in
San Diego, devoted to collect, analyze, and
visualize Internet data. The map offers a visu-
al demonstration of the Internet’s scale-free
nature: a few highly connected hubs hold to-
gether numerous small nodes.



power law [1, 5, 6]. We have discussed the scale-free property of the WWW
in the previous sections. The signatures of the Internet’s scale-free nature
are visible in , showing that a few high-degree routers hold together
alarge number of routers with only a few links.

In the past decade many real networks of major scientific, technologi-
cal and societal importance were found to display the scale-free property.
This is illustrated in , Where we show the degree distribution of an
infrastructural network (Internet), a biological network (protein-protein
interactions) and a professional affiliation network (Hollywood actors).
For each network the degree distribution significantly deviates from a
Poisson distribution, being better approximated with a power law.

The diversity of the systems that share the scale-free property is re-
markable. Indeed, the WWW is a man-made network with a history of lit-
tle more than two decades, while the protein interaction network is the
product of four billion years of evolution. In some of these networks the
nodes are molecules, in others they are computers. It is this diversity that
prompts us to call the scale-free property a universal network character-
istics.

From the perspective of a researcher, a crucial question is the follow-
ing: how do we establish the scale-free nature of a network? One one end,
a quick look at the degree distribution will immediately reveal whether the
network could be scale-free: in scale-free networks we observe orders of
magnitude differences between the degrees of the smallest and the largest
nodes. In contrast most nodes have comparable degrees in a random net-
work. Yet, as the value of the degree exponent plays an important role in
predicting various network properties, we need tools to fit the p, distribu-
tion and to estimate y. This prompts us to address several issues:

The degree distributions shown in this chapter are all plotted on a dou-
ble logarithmic scale, often called a log-log plot. The main reason is
that when nodes with widely different degrees coexist, a linear plot is
unable to display them all. We also use logarithmic binning to obtain
the clean-looking degree distributions shown throughout this book, en-
suring that each datapoint has proper statistical significance. The prac-
tical tips for plotting a network’s degree distribution are discussed in

A quick estimate of the degree exponent is often obtained by fitting a
straight line to p, on a log-log plot.Yet, this approach can be affected by
systematic biases, resulting in an incorrecty. The statistical tools avail-
able to estimate y are discussed in . We used these
tools to determine the degree exponents listed in

Most degree distributions observed in real networks display clear devi-



ations from a pure power law. These can be attributed to data incomplete-
ness or data collection biases, but the deviations also carry important in-
formation about processes that contribute to the emergence of a particular
network. In we discuss some of these deviations, and

in we explore their origins.

Since the discovery of the scale-free nature of the WWW, an amazing
number of real networks of major scientific and technological interest
have been found to be scale-free Fig. 4.10 from biological to social and even
linguistic networks. This does not mean that all networks are scale-free.
Indeed, many important networks, from the power grid to networks ob-
served in materials science do not display the scale-free property.

Yet, the prevalence of the scale-free property have prompted the re-
search community to devote special attention to this class of networks.
Uncovering the reasons why some networks are scale-free while others are
not, and understanding the consequences of the scale-free property, help
us better understand real networks.
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Many real networks are scale-free

The degree distribution of three of the net-
works listed in Table 4.1.

(a) The degree distribution of the Internet at
the router level.

(b) The degree distribution of the protein-pro-
tein interaction network of yeast.

(c) The degree distribution of the email net-
work of a European university.

In each panel, the dotted line shows the Pois-
son distribution with the same (k) as the real
network, indicating that the random network
model cannot account for the observed p,.
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SCALE-FREE HISTORY

FIG. 4.10
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Many biological, social, and technological networks
display the scale-free property. The figure shows the
timeline of the discoveries reporting the scale-free
nature of various real networks. While there is a clear
burst of reports following the 1999 discovery of
scale-free networks, in hindsight it is clear that several
early papers have reported characteristics that are
consistent with what we call today a scale-free
topology. For example, Etel de Solla Price reported in
1965 that citations to scientific papers follow a
power-law distribution [7], a property independently
discovered by Redner in 1998 [8]. This is a consequence
of the scale-free nature of citation networks.

2005 2006 2007 2008

THE SCALE-FREE PROPERTY

A common feature of these early works is that they
viewed the observed quantities as scalar events, not as
a manifestation of some network phenomena. It
wasn’t until the 1999 that it was understood that
power laws are also a fundamental network property.
Indeed, Barabasi and Albert, in their 1999 Science
paper argued that “we expect that the scale-invariant
state observed in all systems for which detailed data
has been available to us is a generic property of many
complex networks, with applicability reaching far
beyond the quoted examples.” The ‘scale-free network’
term was also first used in 1999 [2, 9].

TWITTER (23, 24)  FACEBOOK (25)
= BIOLOGICAL

SOCIAL

INFORMATIONAL

INFRASTRUCTURAL

2009 2010 2011

19 UNIVERSALITY




Not all network are scale-free

The ubiquity of the scale-free property does not mean that all real
networks are scale-free. Indeed, several important networks do
not share this property:

» Networks appearing in material science, like the network de-
scribing the bonds between the atoms in crystalline or amor-
phous materials, where each node has exactly the same degree.

» The neural network of the C. elegans worm.

» The power grid, consisting of generators and switches connect-
ed by transmission lines.

For the scale-free property to emerge the nodes need to have the
capacity to link to an arbitrary number of other nodes. These
links do not need to be simultaneous: we do not constantly chat
with each of our acquaintances and a protein in the cell does not
simultaneously bind to each of its potential interaction partners.
In general the scale-free property is absent in systems that have a
limitation in the number of links a node can have, as such limita-
tions limit the size of the hubs. As illustrated in the image, such
limitations are common in materials, explaining why they can-
not develop a scale-free topology.

THE SCALE FREE PROPERTY

Figure 4.11
The material network

A carbon atom can share only four electrons
with other atoms, hence no matter how we
arrange these atoms relative to each other,
in the resulting network a node can never
have more than four links. Hence, hubs are
forbidden and the scale-free property cannot
emerge. The figure shows several carbon al-
lotropes, each characterized by a different
“network”, resulting in materials with differ-
ent physical characteristics, like (a) diamond;
(b) graphite; (c) lonsdaleite; (d) C60 (buckmin-
sterfullerene); (e) C540 (a fullerene) (f) C70
(another fullerene); (g) amorphous carbon; (h)
single-walled carbon nanotube.

Source: http://www.thenanoage.com/Figures/
Eight_Allotropes_of Carbon.png
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The presence of hubs in scale-free networks raises an interesting ques-
tion: how do hubs affect the small world property?

suggests that they do: airlines build hubs precisely to decrease
the number of hops between two airports. The calculations support this ex-
pectation, finding that distances in a scale-free network are either smaller
or equal to the distances observed in an equivalent random network. The
precise dependence of the average distance {d) on the system size N and
the degree exponent vy are captured by the expression [26, 27].

const. if y=2,
InInN

I I if2<y <3,
d ~ n(y - )
InN it y=3,
IninN
InN if y >3.

In the following we discuss the behavior of {d) in the four regimes pre-
dicted by

According to for y = 2 the degree of the biggest hub grows linear-
ly with the system size, i.e. k, _~ N. This forces the network into a hub
and spoke configuration in which all nodes are at a short distance from
each other. In this regime the average path length does not depend on
N.

As several real networks have degree exponent between two and three

, this regime is of particular practical interest. predicts
that the average distance increases as InlnN, a significantly slower de-
pendence than the InN we derived earlier for random networks. We call
networks in this regime ultra-small, as the hubs radically reduce the
path length [27]. They do so by linking to a large number of small-de-



gree nodes, creating short distances between them.

To see the implication of the ultra-small property let us consider again
the social network with N = 7x10°. If the society were to be random, the
N-dependent term is InN = 22.66. In contrast for a scale-free network
the N-dependent term is InlnN = 3.12 according to , supporting
our conclusion that hubs radically shrink the distance between the
nodes.

This value is of particular theoretical interest, as the second moment
of the degree distribution does not diverge any longer, prompting us
to call vy =3 the “critical point.” At this critical point the InN depen-
dence encountered for random networks returns. Yet the calculations
indicate the presence of a double logarithmic correction InlnN [27, 28],
which shrink slightly the distances compared to a random network of
similar size.

In this regime (k?) is finite and the average distance follows the small
world result derived for random networks. While hubs continue to be
present, fory > 3 they are not sufficiently large and numerous to have a
significant impact on the distance between the nodes.

Taken together, indicates that the more pronounced the hubs
are, the more effectively they shrink the distances between the nodes. This
conclusion is supported by , which shows the scaling of the average
path length for scale-free networks with different y.

The figure indicates that while for small N the distances in the four re-
gimes are comparable, for large N the differences are remarkable. Further
support for this conclusion is provided by the path length distribution for
scale-free networks with different y and N . For N =102 the path
length distributions largely overlap, indicating that at this size differenc-
es in y result in insignificant differences in the path length. For N = 109,
however, p, observed for different y are well separated. also shows
that the larger the degree exponent, the larger are the distances between
the nodes. In summary the scale-free property has two effects on network
distances:

« Shrinks the average path lengths.

« Changes the dependence of {d) on the system size, as predicted
by . The smaller vy, the shorter are the distances between
the nodes.

Therefore, most scale-free networks of practical interest are not only
“small”, but are “ultra-small”. This is a consequence of the hubs, that act as
bridges between the many small nodes. Only for y >3 we recover the small-
world property encountered in random networks



Frigyes Karinthy in his 1929 short story [30] that introduced the
small world concept writes that “it's always easier to find some-
one who knows a famous or popular figure than some run-the-
mill, insignificant person”.

In other words, we are typically closer to hubs than to less con-
nected nodes. This effect is particularly pronounced in scale-free
networks as shown in the figure below. The implications are obvi-
ous: there are always short paths linking us to famous individuals
like well known scientists or to the president of the United States,
as they are hubs with an exceptional numbers of acquaintances.
It also means that many of the shortest paths go through these
hubs.

In contrast with this expectation, recent measurements designed
to replicate the six degrees concept in the online world find that
the paths that individuals used to reach their target node involve
rather few hubs [31]. That is, individuals involved in successful
chains (those that reached their target) were less likely to send a
message to a hub than individuals involved in incomplete chains.
The reason may be self-imposed, we perceive hubs as busy, hence
we contact them only in real need. We therefore avoid them in
online experiments of no perceived value to us.
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The distance ¢d,,,,,» of a node with degree

k=(k), to a target node with degree k,,
in a random and a scale-free network. In
scale-free networks our distance to the
hubs is shorter than in random networks.
The figure also documents that in a ran-
dom network the largest-degree nodes are
considerably smaller and hence the path
lengths are visibly longer than in a scale-
free network. Both networks have (k) = 2
and N = 1,000 and for the scale-free net-
work y =2.5.
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Distances in scale-free networks

(a) The scaling of the average path length
in the four scaling regimes characterizing a
scale-free network: InN (scale-free networks
with y >3 and random networks), InN/InlnN
(Y = 3) and InInN (2 < y< 3). The dotted lines
mark the approximate size of several real net-
works of practical interest. For example, given
their modest size, in biological networks the
differences in the node to node distances are
relatively small in the four regimes. The dif-
ferences become quite relevant for networks
of the size of the social network or the WWW.
For these the small-world formula consider-
ably underestimates the real value of {d).

(b)(c)(d) Distance distribution for networks
of size N =102,10% 108, illustrating that while
for small N ( = 10?) the distance distributions
is not too sensitive to y, for large N ( = 10°) P4
and {d) changes visibly with y. As (d) shows,
the smallery, the shorter are the distances be-
tween the nodes. The networks were generat-
ed using the static model [29] with {k) = 3.
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Many properties of a scale-free network depend on the value of the de-
gree exponent y. A close inspection of indicates that:

e y varies from system to system, prompting us to explore how the
properties of a network change with y

e For many real systems the degree exponent is between 2 and 3,
prompting us to ask: why don’t we see systems with y < 2 and why are
so few systems with y > 3? To address these questions next we discuss
how the properties of a scale-free network change with y

According to , for y< 2 the exponent 1/(y - 1) is larger than one,
hence the fraction of links connected to the largest hub grows faster than
the size of the network. This means that for sufficiently large N the degree
of 