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Abstract

Epidemic spreading processes on multiplex networks have richer dynamical properties than those on
single layered networks. To describe the intertwined processes on such networks, heterogeneous mean
field (HMF) approach for continuous-time processes and microscopic Markov chain approach for
discrete-time processes have been proposed. However, it has been shown that the time evolution of
infected individuals and the final epidemic size obtained from these approaches have noticeable
discrepancy comparing to those from Monte Carlo simulations. In this paper, we extend the approach
of effective degree theory (EDT) on multiplex networks. We will show that predictions obtained from
the EDT have excellent agreement with Monte Carlo simulations. Moreover, since the dynamics on
multiplex networks involve more dynamical variables, which may invoke more computations, to
reduce the computational burden, we further develop an approach based on partial effective degree
theory (PEDT) for analyzing the dynamics on multiplex networks, where one layer adopts EDT and
the other layer adopts the HMF. Our results show that PEDT has a good performance in predicting the
target dynamical process.

1. Introduction

Epidemic spreading is an extensively studied topic in the field of complex networks [1, 2]. On the practical side,
the study of this topic contributes to the understanding of behaviors of epidemics, while on the theoretical side, it
provides a simple dynamical framework to demonstrate rich phase diagrams for analysis. Several mathematical
models have been proposed to describe common infectious diseases, including two-state SIS model and three-
state SIR model with S standing for susceptible, I for infected, and R for recovery in the epidemiological
terminology [3, 4]. A variety of methods have been developed to analyze the epidemic spreading processes,
including generating function [5, 6], pair-approximation [7], heterogeneous mean field theory [8—10],
probability generating function [11, 12], and branching process approximation [13, 14].

Beyond the studies on single layered networks, growing attention has been focused on epidemic spreading
on multiplex networks [15—17]. Recently, the intertwined effect of epidemic spreading and information
diffusion on multiplex networks [18], where the microscopic Markov chain approach (MMCA) is taken to
understand the interplay between an epidemic spreading process and an awareness spreading process. Further,
other effects are studied under this framework, such as the effect of mass media [19], awareness cascade [20], and
heterogeneous responses [21]. The relevant analysis are mostly based on MMCA.

The MMCA has been previously proposed on single layered quenched networks for discrete-time epidemic
processes [22, 23]. However, it has been shown that the predictions of the time evolution of epidemics and the
final epidemic sizes have noticeable discrepancy comparing to the Monte Carlo simulations, especially when the
infection is slightly above the epidemic threshold [24]. This defect comes from neglecting the correlation of the
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Figure 1. Model of spreading dynamics on a multiplex network. The upper layer represents the network where the awareness of the
epidemic diffuses. Nodes in this layer can be in two types of states: unaware (U) and aware (A). The lower layer represents the network
where the epidemic spreads. Nodes in this layer can be in two types of states: susceptible (S) and infected (I). Therefore, anode could be
in four types of states: unaware and susceptible (US), unaware and infected (UI), aware and susceptible (AS), and aware and infected

(AD.

underlying dynamics. Since accurate prediction of epidemic processes is important and valuable in both
theoretical and practical considerations, an effective degree theory (EDT), which considers the dynamical
correlations, is proposed for gaining more accurate predictions in [24]. An approach, similar to the EDT, while
on anode-based and link-based perspective is also proposed for this purpose [25]. In single layered networks, the
EDT has been developed for SIS and SIR epidemics models [26, 27], a wide class of binary-state dynamics
[28,29], and correlated networks [30]. However, despite the rapid advance in the studies about spreading
dynamics on multiplex networks, an approach to accurately predict relevant behavior is still in demand, which
deserves in-depth investigations.

In this paper, we develop an EDT on multiplex networks based on the UAU-SIS model [18], where the
epidemics and the awareness dynamics co-evolve. Our results show that the new approach could predict the
dynamics in high accuracy, outperforming both HMF and MMCA. Moreover, to enhance the efficiency of the
approach, we further develop a partial effective degree theory (PEDT), in which the dynamics one layer adopts
EDT and the dynamics in the other layer adopts HMF. We show that the PEDT provides satisfactory accuracy for
the dynamics in the layer adopted EDT meanwhile systematically reducing the dimensions of the governing
equations in computations.

The paper is organized as follows. In section 2, we introduce the two-layered networks based on the UAU-
SIS model. In section 3, we provide the EDT for the model, and in section 4 we show the numerical results. In
section 5, we propose the partial EDT for the model. Finally, we conclude the paper by section 6.

2.Model

To start, recall the UAU-SIS model [18, 19]. Specifically, consider a multiplex network composing of two layers,
each layer has the same number N of individuals with different connectivity configurations. In one layer (the
upper layer in figure 1), an individual could be in two states: aware (A) and unaware (U), denoting whether it is
aware of certain news, i.e. the spreading of an epidemic. The state of an individual could evolve between Uand A,
thus forming a UAU process. For simplicity, this layer is referred to as awareness layer. In the other layer (the
lower layer in figure 1), epidemic spreads and an individual could be either infected (I) or susceptible (S),
forming an SIS process. For simplicity, this layer is referred as epidemic layer. Combining the two layers, at any
time each individual in this multiplex network can be in one of the four types of states: unaware and susceptible
(US), unaware and infected (UI), aware and susceptible (AS), aware and infected (AI).

Details of the dynamics on the multiplex network are as follows: for the UAU process, the dynamics are
composed of two parts. On one hand, an unaware individual (node) may become aware due to two reasons: first,
it may be informed by its aware neighbours, and each aware neighbour could send the news to it at a rate cx.
Second, if an unaware individual has been infected, it may be aware of the epidemic at a rate 7 due to self-
awareness, which reflects a direct impact from the epidemic layer. On the other hand, an aware individual may
return to be unaware because of forgetting the news at a rate f. For the SIS process, a susceptible individual can be
infected by an infectious neighbour. If this susceptible individual is unaware (aware) of the epidemic, i.e. an US
(AS), the infection rate by an infected neighbour willbe 3V (8%), where 84 < Y asan effect of preventive
measures taken by aware ones. For simplicity, assume B* = 03V with areduction coefficient § € [0, 1], where
BY will be abbreviated as 31in the rest of the paper. This reduction coefficient 0 reflects the direct impact from the
awareness layer. In addition, an infected individual can be recovered to become susceptible at a rate r.
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Figure 2. Possible states transitions for individuals in the class of X,,, Y;; where X € {U, A}and Y € {S, I}. (a) The possible state
transitions on individuals in the class of X, Y;;. (b) The possible state transitions on a neighbor of individuals in the class of X, Y;.

3. Effective degree theory

The EDT is now extended to be on multiplex networks. A feature of EDT is that the states of the individuals, the
number of their neighbours and related dynamical states are also taken into account, based on which the
dynamical correlation is considered. To realize this feature, individuals are grouped into classes of X,,, Y;, where
X € {U, A}and Y € {S, I}, and the subscripts u, g, s, i denote the numbers of unaware, aware, susceptible,
infected neighbours they have, respectively.

If not causing confusion, X,,, ¥;; are used also to denote the fraction of individuals in respective classes. Thus,
one may immediately obtain the conservationlawas 3°, , (UisSii + Uil + AuaSsi + Ayli) = 1. Then
suppose that initially a fraction a, of individuals are aware of the epidemics and a fraction 7y of individuals are
infected, which are randomly distributed in the respective layers with no correlations. Then,

X Yii(0) = X,.,(0) - Y;;(0), where X,,,(Y;;) denotes the fraction of individuals in the state X(Y) with a number of
uunaware (s susceptible) and a aware (i infected) neighbours. Suppose that the degree distributions of the
awareness layer and epidemic layer are ,; and gy, which denote the fraction of individuals who have i and k
neighbours in the respective layer. Then, one obtains

Ui=(1 — ﬂo)Pi(Z.)ﬂ({(l — ap)t ),
]

A= ﬂopi(l.)ﬂ({(l — ag)i 7,
J
) kY., )
S = (1 — 1p)q, ] ig(1 — )77,
. k -] . (k*l)
Iy =104, ] ig(1 — ig)" 7" (D

In this paper, the dynamics are in continuous-time processes and the EDT approach to be developed will be
presented by a set of ordinary differential equations (ODEs). To simplify the analysis, the whole process is
separated into four sub-processes, named the infection process, recovery process, awareness process, and
forgetting process, respectively. In the continuous-time process, the time interval of each update is very small.
Thus, the nonlinear impacts among different sub-processes in a short time interval could be ignored, and the
update of the whole process is equivalent to the summation of those on the four sub-processes. Therefore, for
each class of individuals, one first calculates their variations in the four sub-processes, respectively, and then
sums them up to obtain the variation of the whole process. Denoting the differential operators of the ODEs of
the four sub-processes and the whole process as d'/dt, dR/dt, d*/dt, d¥/dt, and d/dt, respectively, one has
d/dt(+) = di/dt(*) + dR/dt(*) + d*/dt(*) + dF/dt(+). All possible state transitions for individuals in a
certain class of X,,; Y;; is presented in figure 2, and in the following we will derive the governing equations of these
sub-processes accordingly.

Now, the EDT of the four sub-processes is shown in sequence. Start from the infection process. Since, in the
continuous-time description, the possibility of two events happen in one time interval can be ignored, the
change in the states of an individual’s neighbours due to the infection process could only be the case of
Xua Y — X5 Ys—1,+1,1.e. an susceptible neighbour changes to be infected through the infection. However,
since this susceptible neighbour could be either US or AS, the estimation of its changing rate should account for
the different infection rate 3 or 63 due to the two kinds of states. Here, mean field approximation is used to
estimate its changing rate. This susceptible neighbour could be either an A,,/ Sy or a U o Sy one. Suppose that
itis A,y Sy Note that the possibilities of a U, S,; individual reached by this neighbour through a certain link
equals A,y Syirs’ /> aroi(Uar Soit + AyrarSeir)s’. Thus, for a U, S individual, the rate thatit hasan A, Sy
neighbour meanwhile this neighbour is infected equals 05i’A ;1o Syrirs’ /3 1100 (Uyrar Srir + Ayrar Seir)s”

u'a’s'i
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Similarly, when this neighbour is U, Sy the corresponding rate equals

Bi'UyratSeit' /3 151U St + A ar Syiv)s’. Summing all the possible classes of the neighbours gives the

effective infection rate of a susceptible neighbour of a U, S; individual, defined as (3s, as follows:
/Bzu/a/s/i/(Uu'a/SS/i/sl + eAu/u'SS/i/sl) i/

S UeaSons + AvaSers)

uasi

Bs (2)

Itis not difficult to find that a susceptible neighbour of an A,,S;; individual has the same effective infection rate
Os. With a similar reason, the effective infection rate of a susceptible neighbour of a U, I; or A, L; one is defined

as
p B aeyUiar S’ + OAy Syiri)i )
— uasi . 3
LS U Seri’ + Ay Serd)
Thus, one obtains the evolution equations of the infection process as follows:
i .
M = _ﬁiUuussi - ﬁS Uuussis
dt
+ BsUuaSsi1,i-1(s + 1), (4a)
I .
% = +/BiUuulsi - /61 UquSiS
t
+ ﬂIUuaIsle,ifl(s + 1)> (4b)
d"(A.uSsi .
% = —0BiAuSi — BsAuaSsis
+ ﬁSAuuSsJﬁl,ifl(S + 1)) (4C)
I .
% = +9ﬁiAuaIsi - ﬁIAuaIsiS
t
+ BIAuaI&H,ifl(S + 1) (4d)
Here, the second term on the right-hand side of equation (4a) describes the event that one of the susceptible
neighbours of a U,, S;; individual becomes infected atarate 3s - s and hence U, S; changes to U,;S;—1,i+ 1>
leading to a subtraction from the value of U, S;.
The recovery process is relatively simple and its evolution equations are given as follows:
R .
d G = +1Uualsi — rU,Ssii
dt
+ rUuaszl,iJrl(i + 1)) (Sﬂ)
R
I .
M = —1Uuli — rUsL1
dt
+ TUuaIsfl,iJrl(i + 1), (5b)
R .
M = +rAuaIsi - rAuuSsii
dt
+ rAuuss—l,H-l(i + 1)) (SC)
R .
M = _TAuaIsi - rAqusii
dt
+ TAualsfl,l?H(i + 1) (Sd)

Similarly to the infection process, in the awareness process one can define the effective awareness rate of an
unaware neighbour reached by an unaware and an aware individual as ay and oy, respectively, as follows:

a) . . [UuSit + Ualiula
Y vas il UiaSsitt + UnaLiiu]
a) . .. [UaSia+ Ugliala
Y UaSaa + Ulial

ay =

(6a)

QA

(6b)

Moreover, as a Ul individual may change to Al at a rate T due to self-awareness, this effect could also cause a
change in the states of an unaware neighbour. Define the effective changing rate of an unaware neighbour
reached by an unaware and an aware individual due to this event as 7y and 74, respectively, as follows:
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TzuasiUu“ISiu
= s, , (7a)
Zu,u,s,i[U““SSiu + Uualsiu]

Tzu’a,S,iUuaIsia

TA = . (7b)
Zuﬂ)s)i[UuaSsia + Uuulsia]
Thus, the evolution equations of the awareness processes are
A )
d (UuﬂSSI) — —aUuaSSia
dt
- (aU + TU) UuaSsiu
+ (av + ) Uiy 1,018 (u + 1), (8a)
A .
d (UWISI) = _aUuaIsia - 7—(JuaIsi
dt
— (ay + ) UL
+ (aU + TU) Uu+1,a71)Isi(u + 1)> (Sb)
A .
d (AM!ZSSI) — —I—OZUWSS,LI
dt
- (aA + TA)Auussiu
+ (aa + TA)Aus1,a-18i(u + 1), (8¢c)
A .
M = +aUuaIsia + TUuaIsi
dt
- (aA + TA)Auulsiu
+ (s + Ta)AuprioLi(u + 1), (8d)
Finally, the evolution equations of the forgetting processes are given as follows
F .
% = +fA,.Si — fU,Sia
+fUu,1‘u+155,'(a + 1), (9a)
F .
% =+, Li = fU,Lia
t
+ U rapikiCa + 1), (Ob)
F .
M — _fAW S — fAua Siia
dt
+fAu_1),H_1SSi(a + 1)’ (96)
dF(Au 11)
Tﬂs - 7'fA“aISi - fAuaISia
+fAu71’aHIsi(a + 1). (9d)

4. Numerical results

The performance of the EDT on a multiplex network is examined in which each layer is generated with (i)

Erdés-Rényi model whose degree distributionis p, = g, = (k)*e~ (¥’ /k!in the limitof N — oo, and (ii)

Configuration model with the truncated power-law degree distribution, where p, = g, ~ k™7 when

0 < k < krand p, = g, = 0 otherwise. For the convenience of discussion, the two kinds of networks are
denoted as ER network and PL network, respectively.

Since the developed method is for continuous-time processes, in order to fulfill this condition small
dynamical parameters are used to realize the process, so that in each time step the increments of the variables are
small and higher-order terms can be neglected. Thus, in the simulation, the values of the parameters a, f, b, r, and
Tare setinan order of 10,

Figure 3 shows the results of time evolutions of the fraction of aware individuals p, (t) and the fraction of
infected individuals p;(f) for the two kinds of networks. For easy comparison, besides the results of the
simulation and the EDT, the results of heterogeneous mean field method (HMF) and MMCA are also presented.
The governing equations of HMF and MMCA can be found in appendices A and B, respectively. One can see that
the EDT has an excellent agreement with the simulations, while both HMF and MMCA overestimate the
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Figure 3. Time evolutions of the fractions of aware nodes p, and infected nodes p, for ER networks (a) and (b) and PL networks (c)
and (d), respectively. Results are obtained from numerical simulations (blue circles), EDT (magenta curves), MMCA (black curves),
and HMF (red curves). The ER network is constructed using the Erdos—Rényi model with average degree 4, and the PL network is
constructed using the uncorrelated configuration model with power-law degree distribution p(k) ~ k=7, where v = 2.2 and

kr = 20. The network sizeis N = 10 000. Results are obtained with averaging on 100 different realizations. Other parameter values
areb=r=a=f=10%60=0.5,and 7 = 1072,

dynamics. Itis noted that MMCA is developed for the discrete-time process which contains non-perturbative
formulations. In the continuous-time limit, the impact of non-perturbative formulation will fade away,
reflected by the similar behaviors of the two curves of HMF and MMCA in figure 3.

The final sizes of aware individuals p, (c0) and infected individuals p;(c0) in the steady states of two kinds of
networks are shown in figure 4. One can also find an excellent agreement between the Monte Carlo simulations
and the EDT. The results of HMF and MMCA also overestimate the dynamics and overlapped to each other.

5. Partial EDT

In the above proposed EDT, there are four variables, u, a, s, and i, corresponding to the numbers of four types of
neighbours in concern. Thus, the computational cost will scale as k. with kp,,,, being the maximum degree.
Therefore, when k..« is large, for example in the extreme case where k.« reaches the upper bound of the degree
range for uncorrelated networks in the configuration model [1], i.e. ko ~ N'/2, the computational efficiency
will not have prominent advantage compared to simulations. In order to increase the computational efficiency,
consider a PEDT for multiplex networks. In this method, EDT is adopted for one layer and HMF is for the other
layer. Since in the UA U-SIS model, the epidemic dynamics is the target process to be understood and the
awareness dynamics is the auxiliary process to better understand the epidemic dynamics, we here adopt EDT for
the epidemic layer and HMF for the awareness layer. Specifically, the individuals are grouped into in the classes
X Y, where k denotes the number of neighbours in the awareness layer and the meaning of other symbols are
the same as those in the previous sections. Similarly, one can obtain the initial condition and the evolution
equation for PEDT, which are provided in appendix C.

Figure 5 shows the results of the Monte Carlo simulation, EDT, and PEDT for comparison. One can observe
that the results of p, () and p, (c0) for EDT and PEDT have prominent discrepancies. While the results of p, (t)
and p, (o) for EDT and PEDT are well matched. Other parameters have been examined and similar results are
obtained. These results show that, although the accuracy in predicting the dynamics of awareness is damaged
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ER Networks
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Figure 4. The steady fractions of p, and p, after the transient process as a function of infection rate b, where (a) and (b) for ER
networks, (c) and (d) for PL networks. The multiplex networks and other parameters are the same as those in figure 3.

because of the simple HMF approach, the accuracy in predicting the epidemic dynamics is still preserved.
According to the performance of PEDT, this approach may serve as a compromise scheme, where the accuracy is
kept in the epidemic layer while the efficiency of the prediction is significantly increased by sacrificing the
accuracy of the prediction in the other layer.

6. Conclusion

In summary, in this paper we have developed an effective degree theory (EDT) for studying epidemic spreading
dynamics on multiplex networks. We present the new approach on the basis of UAU-SIS model [18]. In this
model, a multiplex network is composed of two layers. One is the epidemic layer where an epidemic spreads,
while the other is the awareness layer where the awareness of the epidemic diffuses. The dynamics of the
epidemic are described by the susceptible-infected-susceptible (SIS) model, and the dynamics of the awareness is
described by the unawareness-awareness-unawareness model (UAU). These two layers interact with each other
through the reduction of infection rate in the epidemic layer and the self-awareness process in the awareness
layer. In presenting the EDT we separate the whole dynamical process into four sub-processes, which are
infection process, recovery process, awareness process, and forgetting process. The key step of EDT is to consider
the dynamical states of the neighbours of an individual so as to take into account the dynamical correlation of the
dynamics. To grasp this property, we classify the individuals according to their dynamical states and the
dynamical states of their neighbours in the two layers, respectively, which correspondingly raises four
dimensional quantities to account for the sizes of these classes. The developed EDT gives the evolution equations
of these quantities.

In the model for a susceptible individual, whether or not it is aware or unaware of the epidemic may result in
different infection rates. To account for this effect of different infection rates on a susceptible neighbour, in our
approach we use mean-field approximation and propose an effective infection rate to measure the related
changing rates. In a similar manner, we further propose an effective awareness rate and an self-awareness rate to
describe the relevant changing rates of the neighbours. Our results show that the proposed EDT on multiplex
networks successfully predicts the dynamical behavior in a high accuracy. Since the prediction of spreading

7
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Figure 5. The steady fractions of p, and p after the transient process as a function of self-awareness rate 7 for different 6, where (a) a
for ER networks, (b) i for ER networks, (c) a for PL networks, and (d) i for scale-free networks. The multiplex networks and other
parameters are the same as those in figure 3.

dynamics on multiplex networks is a more challenging task compared to that on single layered networks, our
approach provides a useful tool for future studies on this topic.

We also manifest the performances of the heterogeneous mean field theory (HMF) and MMCA for
comparison. We show that these two methods systematically overestimate the epidemics. Since the two methods
neglect the dynamical correlation of the dynamics, where an infected individual is more likely to connect with an
infected neighbour because it may be infected by the neighbour previously, the number of susceptible
neighbours will be overestimated, and consequently it overestimates the whole extent of the epidemics. Besides,
as the MMCA is a non-perturbative approach for discrete-time processes, it is expected to return to HMF in the
continuous-time limit, which has also been verified in this work.

Since EDT of multiplex networks needs to consider more variables than single layered networks, the
computational efficiency of the approach could be an important concern especially when the maximum degree
of the individuals is large. Thus, it could be useful to find a method to further improve the efficiency of the
theory. For this purpose, we propose a PEDT. In this approach, the epidemic dynamics in the epidemic layer is
analyzed by EDT and the awareness dynamics in the awareness layer is analyzed by HMF. The results show that
the prediction of the epidemic dynamics remains in high accuracy, meanwhile the computational efficiency of
the approach is significantly improved by sacrificing the accuracy in the other layer where the HMF is adopted.
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Appendix A. Heterogeneous mean field theory

In this approach, nodes are classified according to their degrees in different layers. X;Y; denotes the fraction of
nodes in state X (either U or A) and state Y (either S or I) with i neighbors in the awareness layer and k neighbors
in the epidemic layer. Thus, the governing equations are given by

dU I > ek
= — UL + BU;Skk
dt j ik ﬁ 'j Ok <k>E
DA
+fA-Ik — OzUjIk] — TUJ‘Ik, (1.1a)
! (k)a
du;s, >k
—= — UL — BUSik
dr rUjlk ﬁ j Ok <k>E
> A
+ fA; Sk — aU;Sij ! , (1.1b)
(k)a
dA: ] Dok’
itk _ —1Ajlx + QﬂAJ‘Skak -
(k)e
2 AT
—fA L + alUlyj——— + UL, (1.1¢)
! (k)a
dA]Sk Zkrlk’k/
= +rA; I, — 08A;Sik
dr Al = 004 Sk =

5!

Zj/Aj’]
(k)a

where Iy = Uil + Ajliand Ay = Ay S; + Ajly, and (k)4 ((k)g) is the average degree of the awareness
(epidemic) layer. The parameters have the same definitions as those in the main text.

_fAjSk+ aU;Sj , (1.1d)

Appendix B. Microcopic markov chain approach

In this approach, the possibility of an individual i lingered on the four states US, AS, UI, Al attime fare
denoted as piUS (1), pl.AS (), piUI (t)and pl.AI (t), respectively. Moreover, the probabilities for individual i not being
informed by any of its neighbours, defined as r;(¢), not being infected by any of its neighbours if i is aware of the
epidemics, defined as in (t), and not being infected by any of its neighbours if i was unaware of the epidemics,

defined as qu (t), are given by
i =[] 1 = aip! (1) al,
i

g =11 It = bip (03],
j

q; =1 1 = bip ()1,
j

where ij = p],‘” + ijs , p].f = ijI + ijS, and aj; and bj; are the binary elements of the adjacency matrixes of the
awareness layer and the epidemic layer, respectively. The corresponding Markov chain equations are as follows:

P+ 1) =+pMO)fr

+ 7 r(g” (1)
+p g (1)
+p/ (OO — 1), (2.1a)

P+ D =+pM (A~ fHr
+ A = r(0))q (1)
+p 00 =~ Ha o
+ (A = r(A = D), (2.1b)
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PP+ D =+pM)f 1 -1
+ PP OrmA — g7 (1)
+pMmf (1 — q/ 1)
+pN(OrmHA - (A — 1), (2.1¢)
PP+ D =+pM 0 - HA 1)

+ A = ()1 — g7 (1))

+p8 00 = HI - ¢/ ®)]

+ O — r(HA = DA — 7). (2.1d)

Appendix C. Partial EDT

In this approach, individuals are classified as X Y; with X € {U, A}and Y € {S, I}. The whole dynamical
process is separated into three sub-processes, which are infection process, recovery process, and awareness and
forgetting process. The differential operators of the three sub-processes are denoted as d!/dt, d® /dt, and
dAt/dt, respectively.

The evolution equations of infection process are as follows:

1 .
% = —BilkSsi — BsUkSsis
+ BsUrSsi1,i-1(s + 1), (3.1a)
I .
% = +ﬂiUklsi - 61 []klsiS
+ B1Uckss1,i-1(s + 1), (3.1b)
I 4
SASD) __ggings — fsiss
+ BsArSsi1,i-1(s + 1), (3.1¢)
d'(Ag L .
% = +0BiAxLi — BrAxLis

+ BrAily1,i-1(s + 1), (3.1d)
where

S il BUL S’ + 08ALSers' i

= 3.2
& Zk/s/i/[Uk’Ss’i’S/ + ApSeirs'] G-2)
> e lBUkSeiri’ + OBAw Sgiri'11
B = =L v — (3.3)
> il Uk Ssii’ + ApSyii']
The evolution equations of the recovery process are as follows:
R .
M = +rUil; — rULS;i
dt
+ rUkSs— 1,110 + 1), (3.4a)
R ‘
M = —TUkIS,' — T’Uklsil
dr
+ rUk—1,i1(G + 1), (3.4b)
R .
M = +rArl; — rA;Sgl
dt
+ rAgSs— 11 + D), (3.4¢)
R .
M = *rAklsi — rAkISil
dt
+ rAL 101G + 1. (3.4d)
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The evolution equations of the awareness-and-forgetting process are as follows:

AF A
M = akaUS;; JrfAkssi)
dt
AF A
% = —akaUds + fA Li — TUcls;,
t
AF .
M = +OékdUkSsi - fAkSSi’
dt
AF AL
% = +akaUcl; — fA Li + TUL;
t

where a denotes the possibility of a randomly chosen link in the awareness layer connecting to an aware
individual, which is expressed as

Zk/sli/k/(Ak’Ss’i’ + Aplyir)

Zk/k/pk’

a =
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