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In order to survive, self-serving agents in various kinds of complex
adaptive systems (CASs) must compete against others for sharing
limited resources with biased or unbiased distribution by conduct-
ing strategic behaviors. This competition can globally result in the
balance of resource allocation. As a result, most of the agents and
species can survive well. However, it is a common belief that the
formation of a herd in a CAS will cause excess volatility, which
can ruin the balance of resource allocation in the CAS. Here this
belief is challenged with the results obtained from a modeled re-
source-allocation system. Based on this system, we designed and
conducted a series of computer-aided human experiments includ-
ing herd behavior. We also performed agent-based simulations and
theoretical analyses, in order to confirm the experimental observa-
tions and reveal the underlying mechanism. We report that, as
long as the ratio of the two resources for allocation is biased en-
ough, the formation of a typically sized herd can help the system
to reach the balanced state. This resource ratio also serves as the
critical point for a class of phase transition identified herein, which
can be used to discover the role change of herd behavior, from a
ruinous one to a helpful one. This work is also of value to some
fields, ranging from management and social science, to ecology
and evolution, and to physics.

experimental econophysics | computational econophysics | market-directed
resource-allocation game | minority game | agent-based model

M ost of the social, ecological, and biological systems that in-
volve a large number of interacting agents can be seen as
complex adaptive systems (CASs), because they are characterized
by a high degree of adaptive capacities to the changing environ-
ment. CAS dynamics and collective behaviors have attracted
much attention among physical scientists (1-3). In order to sur-
vive, self-serving agents in these CASs must compete against
others for limited resources with biased or unbiased distribution
by conducting strategic behaviors. This competition can globally
result in balanced or unbalanced resource allocation. Examples
of such phenomena involve many species like human beings. For
instance, drivers select different traffic routes, people bet on
horse racing with odds, and so on. In general, the allocation of
the resources in a CAS could reach a balanced state due to the
preferences and decision making ability of agents, as revealed by
investigating a resource-allocation problem (4). In practice, how-
ever, it will sometimes fail to reach the balanced state. For this,
one important reason is due to the formation of a herd. In fact,
herding extensively exists in collective behaviors of many species
in CASs, including human beings. Though human decisions are
basically made according to individual thinking, people tend to
pay heed to what others are doing, emulate successful persons,
or those of higher status, and thus follow the current trend. For
example, young girls often copy the clothing style of some famous
stars named as trendsetters in the fashion world. Similarly, re-
searchers would rather choose to work on a topic that is currently
hot in the scientific society. As a result, large numbers of people
may act in concert, and this unplanned formation of crowds is
called herd behavior (5). Locally speaking, either the irrationality
(6, 7) or rationality (8-10), of an individual agent can be the cause
of herd behavior. The global view of herding often implies the
ruin of balance by causing excessive volatility in the resource
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allocation system. Accordingly, herd behavior is commonly seen
as a tailor-made cause for explaining bubbles and crashes in a
CAS with the existence of extremely high volatility. But is this
“common sense” always right? Based on results of this study,
we argue that herd behavior should not be labeled like the killer
of balance and stability all the time. Here we focus on the effect of
herding on the whole CAS for resource allocation, because it is
most important for as many agents (involving human beings) as
possible to survive in various kinds of CASs like social, ecological
or biological systems. Therefore, we shall not study or consider
the details on how to reach a herd through contagion and/or
imitating. In fact, our results are not dependent on the process
of herding formation.

Experiment

We design and conduct a series of computer-aided human experi-
ments, on the basis of the resource-allocation system (4, 11-13),
in order to study the necessary conditions for a CAS to reach the
ideal balanced state. Using this kind of experimental settings
will allow us to investigate the herd behavior in a well regulated
abstract system for resource allocation, which reflects the funda-
mental characteristics of many CASs (14-17). Human partici-
pants of the resource-allocation experiment are students
recruited from several departments of Fudan University. Before
the start of experiments, a leaflet (as shown in SI Text: Part I) was
provided which explains configurations of the experiment and
actions of the participants. There are two rooms (Room 1 and
Room 2) and the amounts of resource in these two rooms are
M, and M, (<M,), respectively. As the experiment evolves, M
and M, are kept fixed and unknown to all the participants. For
each experiment round, each participant has to choose one of the
two rooms to enter. Those who go into the same room should
share alike the virtual resource (M; or M) in it. Apart from
human participants, there are also imitating agents joining the
experiment. All the imitating agents are generated by a computer
program, because their decisions are simply made by mimicking
human participants’ behaviors. In particular, each imitating agent
will randomly select a group (of size five) of human participants at
every experiment round, and then follow the choice of the best
participant (who has the highest score) in the group for the next
round. In each round of the experiment, the number of human
participants and imitating agents in Room 1 is denoted as N, and
the number in Room 2 as N,. Therefore the total number of
human participants and imitating agents can be counted as
N = N, + N,. The human participants or imitating agents who
earned more than the global average (M| + M,)/N are regarded
as winners of the round, and the room which the winners had
entered as the winning room. The total number of human parti-
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cipants or imitating agents can also be expressed as N =N, +
N,,. Here N, is the total number of human participants who
make decisions by their own, and N,, is the total number of
imitating agents who do not have their own ideas. The ratio be-
tween imitating agents and human participants is defined as
B =N,,/N,. More details about the experiment can be found at
the end of the main text.

The resource-allocation experiments are conducted repeatedly
with different values of M /M, and p. The modeled system is
designed as an open system in which the number of human par-
ticipants N,, is fixed while the number of imitating agents N,,, is
increased in an implicit manner. As shown in the previous study
(4), the heterogeneity of preferences is an indispensable factor
for the whole system to reach the balanced state. Hence the
preferences of human participants need to be checked under the
influence of imitating agents. For a human participant in the
experiment, his/her preference is evaluated as the average rate
that he/she chooses to enter Room 1. Preferences of the 44
participants are plotted in Fig. 1 with different M, /M,’s and/or
P’s. Fig. 14 shows the preferences of human participants when
M,/M, =1 and the imitating agents are absent. Distinctions
among the preferences of human participants can be easily iden-
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tified. For example, the fourth participant is strongly partial
to entering Room 2 while the sixth participant prefers Room 1
much more. It can be found in Fig. 1 B and C, that the human
participants still have diverse preferences even when M| becomes
much larger than M,. In addition, the heterogeneity of prefer-
ences remains even for the cases in which N,, = N, /2 imitating
agents are involved; see Fig. 1 G-I. Despite of this heterogeneity,
the average of participants’ preferences changes along with
M /M,. In other words, human participants have the ability to
adapt themselves to fit the environment.

Comparisons of the distributions of human participants’ pre-
ferences, as the resource distribution M, /M, is varied and/or the
imitating agents are involved, are shown in Fig. 1 D-F, J-L. From
Fig. 1 D and E, one can find that when M, /M, is not so biased,
human participants alone can do the analysis of the system so well
that they can make the whole system reach the balanced state.
Note that the preference distribution has a peak at 0.5 in Fig. 1D
and the participants’ preferences are mainly distributed around
0.75 in Fig. 1E. Both of the two observations can be deduced from
the resource distribution, M| /M, = 1 and M| /M, = 3. When the
imitating agents are involved, however, the two preference distri-
butions have some changes in Fig. 1 J and K. In particular, the
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Data obtained from the human experiment. (A-C G-/) Preferences of the 44 participants in sequence to Room 1 for the cases (A-C) without and

(G-I) with imitating agents, # = (A-C) 0 and (G-/) 0.5, for the resource distributions M, /M, = (A,G) 1, (B,H) 3, and (C/) 20. Here, “Mean"” denotes the average
value of the preferences of the 44 participants. (D-FJ-L) Distribution of the 44 participants’ preferences.
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Fig.2. Experimental results for (A) efficiency e, (B) stability 62 /N, and (C) predictability w, of the modeled resource-allocation system, with human participants
N, =50. =0 and 0.5 correspond to imitating agents N,, =0 and 25, respectively. Each experiment lasts for 30 rounds.

peak almost disappears in Fig. 1J and the mean value of partici-
pants’ preference deviates from the resource distribution bias
in Fig. 1K. A possible reason for these changes can be inferred
as that human participants may get confused by the behavior of
imitating agents. Hence in this case the herd (which is formed by
imitating agents) indeed disturbs the system and weakens the
analyzing ability of human participants. Things are different if
M, /M, gets even larger, as shown in Fig. 1 F and L. Here the
involvement of imitating agents does not bring much change to
the preference distribution of human participants. One may say
that, in this case, herd behavior has no harmful effect on the ana-
lyzing ability of the human participants. Finally, it is interesting to
note from the same figure, that a minority of human participants
with preference to Room 2 can stay alive even in a highly biased
system (M, /M, > 1) when the imitating agents exist.

To evaluate the performance of the whole system, we have
calculated efficiency (which, herein, only describes the degree
of balance of resource allocation), stability, and predictability
of the resource-allocation system. The efficiency of the whole
system can be defined ase = |(N)/(N,) — M /M,|/(M,/M,). A
smaller e means a higher efficiency in the allocation of resources.
The stability of the resource-allocation system can be described as
?/N =5 Y2 | ((N; = N;)?), where (A) denotes the average of
time series A. This definition describes the fluctuation (volatility)
in the room population away from the balanced state, where the
optimal room populations N; = M;N/ >, M; can be realized. The
predictability of the system is measured by the “uniformity” of the
winning rates in different rooms. The winning rate in Room 1 is
denoted as w;. It is obvious that if w, is close to 0.5, choices of the
two rooms are symmetrical and the system is unpredictable. If the
winning rates were too biased, smart participants should be able
to predict the next winning room in the experiment. As shown
in Fig. 2, when M /M, is small (M, /M, = 1 or 3), adding some
imitating agents will lower the efficiency and cause large fluctua-
tions. On the other hand, when M;/M, get even larger
(M, /M, = 20), the formation of herd can improve the efficiency,
the stability, and the unpredictability of the resource-allocation
system.

Agent-Based Modeling

An agent-based model is developed in order to fully understand
the preceding experimental results. Consider a situation where N
agents repeatedly join a resource-allocation system. Among these
agents, there are N,, normal agents (which correspond to human
participants in the preceding experiments) and N,, imitating
agents, so that the total number of agents can be calculated as
N =N, +N,,. To play in the resource-allocation system, each
normal agent will take § strategies from the full strategy space
and compose a strategy book. A strategy for the resource-alloca-
tion experiment is typically a choice table which consists of two
columns. The left column is for the P possible situations, and the
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right column is filled with bits of 0 or 1. Bit 1 is linked to the
choice for the entrance of Room 1, while bit 0 to that of Room
2. In the strategy book of a normal agent, strategies differ from
each other in the preference, which is defined as an integer
L (0 <L £P). To model the heterogeneity of preference, let
the normal agent pick up a preference number L first. Then each
element of the strategy’s right column is filled in by 1 with the
probability L /P, and by 0 with the probability (P —L)/P (more
detailed explanations can be found in SI Text: Part IT). The process
will be repeated S times, each time with a randomly chosen L for
each normal agent to complete the construction of its strategy
book. From the start of the resource-allocation experiment, each
normal agent will score all the strategies in its strategy book so as
to evaluate how successful they are to predict the winning room.
Following the hitherto best performing strategy in their strategy
books, normal agents are enabled to make decisions to enter one
of the two rooms, once the current situation is randomly given*.
Imitating agents in the model behave in a different way during the
process of decision making. Before each round of the play starts,
each imitating agent will randomly select a group of k (1 <k <
N,,) normal agents *. Within this group, the imitating agent will
find the normal agent who has the best performance so far and
imitate its behavior in the following experiment round. It is
assumed that the imitating agents know neither the historical
record of the winning room nor the details of strategy books of
other group members. The only information for them to access is
the performance of the normal agents, that is, the virtual money
that these normal agents have earned from the beginning of the
experiment. If the number of imitating agents N, kept increasing,
there would be more and more positive correlations among
agents’ decisions, which would trigger the formation of a herd in
the system.

Simulation Results of the Agent-Based Modeling

Agent -based simulations are carried out in an open system con-
dition, in reference to the experiments. (Please refer to SI Text:
Part I11 to see the results for a closed system.) Following the ana-
lysis of experimental results, we first investigate the simulation
results for the preferences of normal agents. Clearly, Fig. 3 shows
distributions of the preferences similar to those shown in Fig. 1.
The qualitative agreement indicates that our agent-based model-
ing has taken into account the heterogeneity of preferences with
a reasonable modeling of the decision making process for the
human participants. (We had also investigated the preferences

*Here the situation is not the history of winning rooms. Broadly speaking, it can be
explained as a mixture of endogenous and exogenous system information. Results
obtained with the real history bit-strings have no essential difference with the current
study, though the use of random information makes the theoretical analysis easier.

"This process corresponds to the case of primary imitators. In fact, in the real system, there
might exist multilevel imitations where some imitators can copy other imitators’ behavior.
Similar conclusions could be achieved.

Zhao et al.
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Fig. 3. Simulation results obtained from the agent-based simulations. (A-C,G-I) Preferences of the 50 normal agents to Room 1 for the cases (A-C) without
(8 = 0) and (G-/) with (5 = 0.5) imitating agents, and for the resource distributions M; /M, = (A,G) 1, (B,H) 3, and (C/) 20. We have run the simulations for 200
times, each over 400 time steps (first half for equilibration, the remaining half for statistics). (A-C,G-/) are typical results of one of the 200 runs. In (A-C,G-I),
“Mean” denotes the mean value of the preferences of the 50 normal agents. (D-FJ-L) Distribution of the 50 normal agents’ preferences. Note that (D-FJ-L) are
obtained from the average over the 200 runs, and also the “Mean” in (D-FJ-L) denotes this average. Simulation parameters: S =4, P = 16, and N,, = 50.

of normal agents in an alternative way by analyzing the Shannon
information entropy; see SI Text: Part IV) Next, efficiency, stabi-
lity, and predictability of the whole modeled system are calcu-
lated according to the definitions made in the experimental
study. The change of system behavior along with the variation of
the resource ratio M| /M, is shown in Fig. 4. Differently colored
symbols in the figure represent results obtained under different
values of f. As shown in Fig. 44, when the resource distribution
is comparable (M /M, = 1), the averaged population ratio (N)/
(N,) can always be in concert with M, /M, no matter imitating
agents are involved or not. On the other hand, as the resource
distribution gets more and more biased (M /M, increases), sur-
prisingly the whole system tends to reach the balanced state only
if more imitating agents (larger ) join the system. Fig. 4B shows
the change of efficiency of the resource-allocation system. The
tendency is that when the resource ratio gets more biased, a
larger size of herd is needed to realize a higher efficiency of the
resource distribution. From both the subfigures, the so-called
“M /M, phase transition” (4), where M/M, plays the role of
control parameter, can also be identified. As shown in Fig. 4C,

Zhao et al.

the increase of the number of imitating agents will cause larger
fluctuations in the low M,/M, region. However, as M /M,
increases, more imitating agents can yield higher stability of the
resource-allocation systems. Comparing system behaviors for
the cases of # =0 and f # 0, the M, /M, phase transition also
indicates the change of role for the herd behavior, namely, from
a ruinous herd into a helpful herd. It is clear that the critical point
of the M| /M, phase transitions get larger when the number of
imitating agents increases. Denoted as (M,/M,). hereafter,
the critical point refers to the M, /M, value where the minimum
of 62 /N is achieved. This definition together with the mechanism
for the increase of (M /M,), will be further discussed in the the-
oretical analysis of the model. Finally, the effect of herd behavior
on the predictability of the resource-allocation system is shown
in Fig. 4D. When more imitating agents are introduced to the
system for large M| /M, the prediction of the next winning room
becomes more difficult as winning rates for the two rooms are
more symmetric. Notice that the system behavior under various
conditions found herein by the agent-based simulations echoes
with the observations in the experiment.
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We summarize the simulation results here and make some
more comments to emphasize the significance of findings in our
study. The performance of the resource-allocation system consist-
ing of normal agents or human participants with the full decision
making ability is, in some cases, inferior to those including imi-
tating agents (who form the herd). This argument might seem
questionable at first sight. In particular, it may be argued that
the failure to reach the balanced resource allocation for large
M /M, when g = 0 is only due to the relatively small population
of the normal agents. However, it has been proved in the theo-
retical analysis [see the equation for the population in the next
section or Eq. S6 in SI Text: Part II] and the agent-based simula-
tion of resource-allocation systems (4) that the total number of
agents is indeed not a key factor. When the resource distribution
is not biased so much, the normal agents can play pretty well so
that the resource-allocation system behaves in a healthy manner
(efficient or balanced, stable and unpredictable). In such kind of
situations, adding imitating agents will only bring about a
“crowded system” in which larger fluctuations (volatility) turn
up. In this respect, our study shares some common features with
the Binary-Agent-Resource model (18, 19). In particular, the
“crowd effect” has been observed in these models and the inclu-
sion of imitating agents in our model can be explained as a special
kind of networking effects. Only if the resource distribution
becomes so biased that most of the normal agents cannot com-
pletely solve the decision making problem by referencing their
strategy books, adding the imitating agents could become a help-
ful factor in consuming the remained arbitrage opportunities in
the system. The discussion above explains the reason why the
herd behavior in the resource-allocation system can effectively
help the system to realize the balanced state and reduce instabil-
ity and predictability in the mean time.

Theoretical Analysis of the Agent-Based Modeling

To further understand the underlying mechanism for these
phenomena, we also conduct a theoretical analysis by deriving
the critical points (M,/M,),. for the M,/M, phase transition
identified in the agent-based simulations. (For the details of
derivation, please refer to SI Text: Part I1.) As a result of the the-
oretical analysis, the maximum of population ratio in Room 1

15062 | www.pnas.org/cgi/doi/10.1073/pnas.1105239108

(Ri(= N|/N))max can be obtained under the condition M| > M,.
Its formula reads as the following (the meaning of the symbols
can also be found in SI Text: Part II),

i1 8 ) ()

where L stands for the preference of a normal agent’s strategy.
If (R1)may is not less than M, /(M| + M,), the system can fluctu-
ate around the balanced state. Otherwise, the system can never
reach the balanced state. Then some insightful comments can be
added:

* The state of the resource-allocation system depends only on
M, /M,, B, k, P, and S. This state has no concern with N,
or N,,.

* An optimized value of f may be calculated by setting
(R\)max = M /(M| + M,), which could make the system most
stable. After substituting this expression into the equation
for (R|)max We can obtain numerical solutions for the critical

max?>

28

® simulation
—— theory

24 |

Fig.5. Critical points of the M, /M, phase transition, (M, /M), varying with
different population ratios g: simulation results (symbols) vs. theoretical
results (line). The simulation results are obtained from the data in Fig. 4 A
and C.
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points (M, /M,). of the phase transitions. Fig. 5 shows a good
agreement between the simulation results and those of theo-
retical derivation for the critical points.

* It is easy to prove that d(R;)../9f > 0, which means that j
and (R;) . are positively related. When f — oo, the popula-
tion ratio will converge to (R )y = 1 =5 Xb_, (557). At this
limit, the model suggested here will be equivalent to the ori-
ginal resource-allocation model without the imitating agents

(4), except that in this case, each agent would occupy kS (in-
stead of S) strategies.

Discussion and Conclusions

We have revealed that, if the bias between the two resources
M /M, were large and unknown to the participants, a herd of a
typical size could help the overall system to reach the optimal
state, namely, the state with a minimal fluctuation, a high effi-
ciency, and a relatively low predictability. The corresponding
ratio between the two resources also works as the critical point
of a class of M, /M, phase transition. The phase transition can be
used to discover the role change of herd behavior, namely from a
ruinous herd to a helpful herd as the resources distribution gets
more and more biased. The main reason for this generalization
could be understood as follows. When a large bias exists in the
distribution of resource, the richer room will offer more arbitrage
opportunities so that it deserves to be chosen without too much
deliberation. Because imitating agents learn from the local best
human participant or normal agent, the herd formed by these
agents will certainly be more oriented to the richer room. To bal-
ance a highly biased resource distribution, in fact, it correspond-
ingly needs a suitable number of participants who have a highly
biased orientation in their choices. But every coin has two sides.
Normal agents will be confused if too many imitating agents are
involved. Because in that case, normal agents have to estimate
not only the unknown system but also the behavior of the herd.
The effect of herd behavior would become negative again under
these situations. We emphasize that these arguments are quite
general. In particular such arguments are independent of the pro-
cess of herding. In SI Text: Part V; results of a different agent-
based model, in which imitating agents follow the majority of
the linked group, rather than the best normal agent, are shown.
Similar results are achieved indeed.

This work is also expected to be important to some fields,
ranging from management and social science, to ecology and evo-
lution, and to physics. In management and social science, admin-
istrators should not only conduct risk management after the
formation of herd, but also need to consider system environment
and timing to see whether the herd is globally helpful or not.
In ecology and evolution, it is not only necessary to study the
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mechanism of herd formation as usual, but also to pay more
attention to the effect of herding on the whole ecological system
and/or evolution groups. For physics, this work not only presents
the existence of phase transition in such a complex adaptive
system, but also proposes a new equilibrium theory. Namely, in
the presence of symmetry breaking, a complex adaptive system is
likely to reach the equilibrium state only through the perfor-
mance of typically sized clusters.

About the Computer-Aided Human Experiment

All the experiments are carried out in an online manner. Human
participants can get the necessary information only from their
computer terminals. The desktop designs of the experiment-con-
trol computer program are shown in Fig. S1. The control panel
for the experiment coordinator is configurated as panel (A), and
that for human participants as panel (B). At the beginning of the
experiment, the coordinator input the value of M, /M, and $3, and
set the time length (60 s) for the human participants to make their
decisions. When all the human participants have logged in, the
coordinator can click the “start” button to start the experiment.
After all the participants have made their choices, the coordina-
tor clicks the “reset” button to end the current round and set
anew. On panel (B), buttons with numbers of 1 and 2 are used
to choose Room 1 and Room 2. The left of the panel displays the
current score (a) of the participant and the current experiment
round (¢). To keep every participant conducting the experiment
independently, procedures and rules of the experiment are de-
signed carefully so that possible direct or indirect communica-
tions can be shut off. For example, participants can only make
their own choices by clicking the button instead of raising their
hands. This limitation could make sure that participants cannot
get information from sounds, expressions, or gestures of the
others. There is also no need for the experiment coordinator
to announce the result of winning room. Participants can only
deduce the winning room from the change of their scores on
the desktop panels. In addition, no human participants had been
kicked off (please refer to SI Text: Part I) during the experiments.
For all the experiments with M, /M, =1, 3, and 20, the total
number of human participants was kept to be 50. Among those,
44 human participants played through all the three experiment
sessions. On the other hand, we had member-changes for the re-
mained six participants.
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SI Text

Part I: Leaflet to the Human Experiments. There are totally 50 par-
ticipants doing the experiments together. The experiment situa-
tion is the same for everyone. Once the experiments begin, any
kind of communication is not allowed.

Together with other participants, you shall engage in a re-
source-allocation experiment. For the experiment, there are two
virtual rooms (Room 1 and Room 2), and the amounts of virtual
money in the two rooms are M| and M,, respectively. The value
of M| /M, is fixed in one experiment, but is not announced. In
each round, you have to choose to enter one of the two rooms,
in order to share alike the virtual money inside the room. After
everyone has made decision, those who earned more than the
global average are regarded as winners of the round, and the
room which the winners had entered as the winning room.

After you log in, you will see the choosing panel on the com-
puter screen (as shown in Fig. S1B), buttons with numbers of 1
and 2 are used to choose Room 1 and Room 2. The left displays
your current score (a) and the current experiment round (t).
During the experiment, 60 s were given for making choice. If
you could not decide your choice within 60 s, the experiment-con-
trol computer program would assign you a random choice with
probability 50%. Nevertheless, the participant who borrowed
the computer’s choice twice would be automatically kicked out of
the experiment. In each round of the experiment, the experiment-
control computer program will update the score for each parti-
cipant after all the participants have made their choices. If your
score is added 1 point, it means that the room you have chosen
happened to be the winning room. If the score keeps unchanged,
it may have two possible interpretations: either the other room
won or neither of the rooms won (i.e., the experiment ended
in a draw).

The initial capital of each participant is 0 point and the total
payoff of a participant is the accumulated scores (points) of all
the experiment rounds. At the end of the experiments, as a pre-
mium, this payoff (points) will be converted to the monetary pay-
off in Renminbi with a fixed exchange rate 1:1 (namely, one point
equals to one Chinese Yuan). Try to win more points, and then
you can get more premium.

Part Il: The Open Complex Adaptive System (CAS)—Theoretical
Analysis of the Agent-Based Modeling. Besides the simulations
performed in the main text here we present some theoretical ana-
lysis for the same open system. It is reasonable to assume that, if
P is not too small, the right column of a strategy filled in by 1 with
probability L /P is equal to the one filled in 1 with the number of
L. Hence strategies with the same preference number L can be
regarded as the same. It is worth noting that if the situations vary
in a random manner, the probability is L /P for a normal agent to
choose Room 1 using a strategy with preference number L. Next,
we assume that the preference number of the best strategy held
by normal agent i at time 7, is L;. Denote the choice of room as x;
so that x; = 1 if Room 1 is chosen and x; = 0 otherwise. At the
same time, let imitating agent j choose to follow the normal agent
U, the best agent (who has the highest score) in the group of size k
(1 £k <N,). For the imitating agent, its choice of room is
y;j = x,,, and its preference number becomes L; = L. With these
definitions, the total number of agents in Room 1 at time 7" can be
written as

Zhao et al. www.pnas.org/cgi/doi/10.1073/pnas.1105239108

= Zx, + z"fy, [s1]

It is obvious that (x;) = L;/P, which can be used to derive the
expectation and the variance of the population in Room 1 as

1 N, N,,
:ﬁ<2Li+ZL,-), [S2]
i=1 j=1

612\71 Zﬁx, + i(;y + Z z( xLy/ xl <YJ>)
i=1 j=1
+ Z () = 0p)0g))- [S3]
Pq=1p#q

Owing to the specific method for the construction of strategies
in the resource-allocation model, the covariance between the
choices of different normal agents can be neglected. On the
right-hand side of Eq. S3, the third term is the correlation be-
tween choices of the normal agents and those of the imitating
agents who followed them. The fourth item is the correlation
between the choices of different imitating agents who followed
the same normal agent. Both terms should always be positive,
which means that adding the imitating agents could cause large
fluctuations (volatility) in the resource-allocation system. It
should be emphasized here that the stability defined in the main
text is different from the traditional definition of variance. The
former characterizes both the deviation and the fluctuation to the
idealized room population in the balanced state, while the latter
only represents the fluctuation to the mean value of the time ser-
ies. When the resource distribution is comparable (M, /M, = 1),
because normal agents are able to produce the idealized popula-
tion or (N;)/(N,)~M,/M,, these two kinds of definitions
are approximately equal. This condition explains why the stability
can be destroyed when imitating agents are involved in situations
with a nearly unbiased resource distribution. However, when the
system environment becomes difficult for the normal agents to
adapt to, the difference between the “variance” and the “stabi-
lity” cannot be neglected. If no imitating agents are involved, the
normal agents alone cannot make the system reach the balanced
state. In that case, even if the fluctuation of N, /N, to its average
value could be made small, the deviation to the idealized popula-
tion ratio can still be very large. This situation would make the
system suffer from a higher dissipation. If an appropriate portion
of imitating agents is added, the deviation of N, /N, to the idea-
lized room population diminishes, leaving only some fluctuations
around M /M ,, which could result in a reduction of waste in the
resource allocation.

Then, we study the performance of different strategies
(namely, strategies with different preference numbers). We also
assume the condition of M, /M, > 1, as used in the main text.
Assume that at time 7, the winning rate of Room 1 is a(7).
The expectation of the increment of score for the strategy with
the preference number L should be 1 —%+ (2% — 1)a(T). Then
the expectation of the cumulative score for this strategy from
t=1tot=T can be expressed as
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fILT) = (1 —%)T+ (%— 1) ga(t). [S4]

From this expression, we can calculate the dependence of the
cumulative score on the preference number as

2T
__FZ [a(t) — 0.5]. [S5]

It is easy to find from Eq. S3 that if }'7 , [a(¢) — 0.5] > 0, f should
be a monotonically increasing function with L. Now we assume
that [a(T) — 0.5] is always positive, which is not a too stringent
condition as long as M, is large enough. As the experiment
evolves under this assumption, the gap of scores among different
strategies of different preference numbers will become larger and
larger. Eventually, the best performed strategy owned by a nor-
mal agent would be the one with the largest L in its strategy book.
As a consequence, imitating agents will choose to follow those
who own the strategy with the largest preference number L.
From Eq. S2, it is obvious that (N} will also reach its maximum
value (N} ., When both L; and L; reach their maximum values.
With this maximum value of the expected population in Room 1,
we can propose the following two conditions:

o If <N1>de <
balanced state.

o If <Nl>max >M +M
balanced state.

Mﬂer N, the system can never reach the

N, the system can fluctuate around the

Denoting the population ratio (R;) = (N;)/N, we need to
calculate (R|)max = (V1) max/ N, to evaluate the conditions above.
As the normal agents construct their strategies in a random way,
a strategy with an arbitrary preference number may be picked
up with a uniform probability 1/(P + 1). Thus, among the §
strategles of a normal agent, the probability to have L., = Lis

pL) = f,ﬂ) - (&5 +1) Because an imitating agent would choose
the best normal agent among the k£ group members, the probabil-

ity to have (L )i = L should be p/(L) = (5EFS — (5L, ALYk With

these probabilities, we obtain the population ratio as

R,) NP(EL+§L)
[ni (L+NmZLp }

L=1 L=1

_1‘(ﬂ+11>P521KPi1>X+ﬁ(1%ﬂ‘ el

Part llI: A Closed CAS—Simulations Based on the Agent-Based Model-
ing. For the open system discussed in the main text, if there are
too many imitating agents in the resource-allocation system, it
may still become a disturbing factor to the system. For the com-
pleteness of the study, here we consider a closed system in which
the number of normal and imitating agents is fixed at N = 150
with the parameter f being varied. As shown in Fig. S2, in the
larger M /M, region, situations with the imitating agents
(B = 2.0 and 4.0) are generally better than those without the imi-
tating agents (f =0), similar to cases of the open system. Mean-
while, there clearly exists an optimized f (=4.0 in the current
case) with which the best state of the closed system can be rea-
lized in the aspects of the efficiency (which, herein, only describes
the degree of balance of resource allocation in the model system)

Zhao et al. www.pnas.org/cgi/doi/10.1073/pnas.1105239108

and the stability. When g = 9.0, the system seems to be disturbed
by the imitating agents and the performance (except the system
unpredictability) becomes even worse than the case of § = 2.0.
The reason for this phenomenon may be explained as follows.
If too many imitating agents join the system, even the best normal
agents may be confused. Typically the best normal agents might
have wrong estimations about the system situation and then make
incorrect decisions. When the best normal agents’ decisions are
learnt by the imitating agents, the herd will overconsume the ar-
bitraging opportunities in the system as a result of the distribution
of biased resources, thus yielding a less efficient (or equivalently
less balanced) and less stable but still unpredictable state.

Part IV: An Alternative Approach to Analyzing Preferences of Normal
Agents and Imitating Agents in the Agent-Based Modeling: Analysis of
the Shannon Information Entropy. In order to study the agents’
preferences and their estimation of the system, the Shannon
information entropy (S1) may be introduced to our agent-based
modeling. The information entropy S; of a discrete random vari-
able X with possible values {xi,...x,} is defined as S;(X) =
— > P(x;) InP(x;), in which P(x;) denotes the probability mass
function of x;. In the agent-based model, the information entropy
for a normal agent is S;; = —%ln% -2 ;L' InZ ;,L', where L; stands
for the preference of the current strategy. If the normal agent
would choose two rooms with an equal probability, this informa-
tion entropy could reach the maximum value of In 2. On the other
hand, the information entropy Sj; for imitating agent j will be the
same as that of the normal agent he/she follows in the local group.
Thus the averaged information entropy of all the agents (i.e.,
normal agents and imitating agents) can be calculated as

1 /N N
=5 (Z Si+ Y, S,j) : [S7]
i=1 j=1

and the results are shown in Fig. S34. As the averaged informa-
tion entropy decreases as M /M, becomes larger, a clear-cut
average preference of agents emerges as the distribution of
resources gets more biased. This observation agrees with the ana-
lysis of participants’ preferences in the human experiments; see
Fig. 1 in the main text. Furthermore, the information content of
agent i can be defined as I; = (In2 — Sj;)/ In2. Note that a larger
I; indicates that the agent has more confidence in a certain
room. The averaged information content for all the normal
agents (/,) and imitating agents (I,,) are shown in Fig. S3B. In
this figure, I,, decreases with the increase of the population of
imitating agents when M /M, is small. This observation means
that normal agents can be confused by the actions of imitating
agents in a rather uniform distribution of the resource. When
M /M, gets larger, I, is nearly a constant implying that imitating
agents will no longer affect the estimation of the normal agents.
All of these arguments go well with the analysis of the experimen-
tal results in Fig. 1. The averaged information content of imitat-
ing agents has a rather drastic change as the environment varies.
When M, /M, =1, I,,, is pretty low, even lower than that of the
normal agents, a fact indicating that imitating agents have almost
unbiased preferences when the resource distribution is uniform.
As M| /M, increases, imitating agents are apt to flood into a
specific room and thus form the herd in the modeled system.

Part V: A Different Agent-Based Modeling in Which Imitating Agents
Follow the Majority, Rather than the Best Agent: an Open CAS vs. a
Closed One. To make our work more general, a different modeling
of the formation of herd is studied. Following the most successful
person is often seen in daily life, and there is another common
case following the majority. For example, people often decide
on which store or restaurant to patronize on the basis of how pop-
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ular they seem to be. In this sense, we make some changes to our
agent-based modeling adopted in the main text. Models’ main
structures are similar, but the difference between them is that the
“imitating agent” now follows the majority decision of his/her
group (namely, the current imitating agents act as local majority-
followers). This way of imitation means if more than half of
the group members choose Room 1, he/she will enter Room 1
accordingly.

As shown in Fig. S4 and Fig. S5, the system behaviors are
similar as those of “imitating the best.” The main difference
between Fig. 4 and Fig. S4 lies in Fig. S4C. When M| /M, is small,
adding imitating agents (local majority-followers) will cause
relatively larger fluctuations. From Fig. S5 we can find that in

1. Shannon CE (1951) Prediction and entropy of printed English. The Bell System Tech-
nical Journal 30:50-64.

the closed system of “following the majority,” there also exists
a proper f for one certain system environment M, /M,. Com-
pared with Fig. S2, Fig. S5 shows that following the majority
works not that well as following the best and this is easy to under-
stand. The best normal agent owns the best strategy and is usually
much more sensitive than common ones, while the majority
reflects the average level of all the normal agents in the group.
Although quantitatively different, the main conclusions arising
from the two kinds of “following” are similar. Thus, the mechan-
ism on how to form the herd is not an essential problem, and both
imitating the best and following the majority can lead to similar
conclusions.

y

Score Cholces
Turns 1
t

Time remained: 60 seconds

Fig. S1. The desktops of the experiment-control computer program used in the computer-aided human experiments: The control panel (4) for the coordi-

nator and (B) for the human participants.
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Fig. S2. (A) (N;)/(N,), (B)e, (C) 6% /N, and (D) w, as a function of M, /M,, for a closed system. Parameters: N = 150, S = 4, P = 16, k = 5, and = 0,2.0,4.0, and
9.0. Simulations are run for 200 times, each over 400 time steps (first half for equilibration, the remaining half for statistics). In (4), “slope = 1" denotes the
straight line with slope being 1.
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Fig. S5. (A) (N;)/(N;), (B) e, (C) 6% /N, and (D) w, as a function of M, /M,, for a closed system. Parameters: N = 150, P = 16, S = 4, k = 5, and = 0,2.0,4.0, and
9.0. Others are the same as those information in Fig. S4.
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