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Abstract. In the threshold model of social contagions with non-redundant 
memory, researchers have overlooked the investigation on the limited imitation 
(LI) effect, which shows individual imitates the behavior adoption only for a 
certain range of ratio of his adopted informants. To understand such LI effect, 
we propose a social contagion model with a gate-like adoption probability 
consisting of the ‘on’ and ‘off’ thresholds. With extensive numerical simulations, 
we find that, given information transmission probability and a gate width (the 
‘off’ threshold minus the ‘on’ threshold), there exists an optimal imitation 
capacity with the optimal ‘on’ threshold maximizing the final adoption size. 
And the large ‘off’ threshold serves for further enlarging the final adoption 
size at a given ‘on’ threshold. Besides, a cross phenomenon in phase transition 
is also uncovered: the increase of ‘on’ threshold causes the growth pattern of 
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final behavior adoption size versus the information transmission probability 
change from the second-order to the first-order phase transition. We finally find 
that the above phenomena are qualitatively unaffected by the heterogeneity 
level of degree distribution. At last, an edge-based compartmental theory is 
conceived for theoretical analysis. And our suggested theory agrees well with 
the simulation results.

Keywords: network dynamics, nonlinear dynamics
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1. Introduction

Nowadays, owing to the remarkable significance of social network, more and more 
researchers have greatly contributed to social contagion in terms of network science  
[1, 2]. Unlike epidemic spreading [3–8], social contagion exhibits distinctive reinforce-
ment characteristic [9]. An effective method to depict the reinforcement in social 
contagion is threshold model [10, 12–15] that assumes an individual will adopt the 
information or behavior when the number or fraction of his adopted neighbors exceeds 
the adoption threshold. During the exploration of social contagion, considerable 
efforts are devoted to the studies of behavior spreading [16, 17], information spreading  
[18, 19], influence spreading [20] and the contagion of sentiment [21] to theoretically and 
experimentally unveil the essential nature of social contagions [21, 22]. In particular, 
behavior spreading attracts more interest and is widely modeled as a trivial Markovian 
process. Extensive numerical simulations and theoretical analyses have discovered that 
the social reinforcement effect can transform the phase transitions of social contagions 
[10, 11]. Especially, the final adoption size first grows continually and then decreases 
discontinually versus the average degree. Recently, many non-Markovian models have 
also been proposed to describe another novel social reinforcement effect [23–33]. Wang 
et al have proposed a novel model with social reinforcement originating in the memory 
of non-redundant information transmission [25], which means information is disallowed 
to be retransmitted to a neighbor along the same edge after a successful transmis-
sion. In such condition, the growth of the final adoption size depends on the behavior 
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information transmission probability, and it changes from a continuous to a discontinu-
ous pattern when the dynamical or structural parameters are altered.

In reality, whether an individual will adopt a behavior positively or negatively 
depends on the number of neighbors who have already adopted the behavior. For 
example, a shrewd businessman will imitate precursory achievers to invest scarce busi-
ness to earn a great deal of profit when there are few business participants, and aban-
don the gainless business when a large quantity of followers conduct the same business 
(Leibenstein calls this the ‘snob effect’ [34]). Another example is when an individual 
habitually patronizes a park with good exercise and a convivial atmosphere, but then 
avoids it when it becomes overly-popular and jam-packed. Both of these examples 
embody the limited imitation (LI) effect [35–37], i.e. an individual adopts the behav-
ior with the probability 1 at a critical number or fraction of adopted informants, and 
abandons the behavior after a certain increase of number or fraction. Different from 
LI effect, the EI Farol problem in minority games assumes that an agent will take the 
behavior even if there is globally no adopter and abandon the behavior only if the 
adopted fraction exceeds a critical point, markedly affecting the emergence of global 
cooperation [38–41]. Both the LI effect and EI Farol problem have a non-homogenous 
growth of the adoption probability with the number of adoptees in the neighborhood 
(or in the whole population). Doddes in [37] finds significant variation in the limiting 
behavior of a population’s infected fraction, ranging from steady state to chaotic.

In respect of non-redundant memory, however, LI effect disappointedly lacks sys-
tematical investigation. To this point, we provide a social contagion model leverag-
ing non-Markovian property to describe the dynamics of behavior spreading with LI 
effect. We (based on LI effect) build a stochastic model for social contagion dynamics, 
considering social reinforcement in terms of non-redundant memory. In our model, 
information indicates the behavioral information. The non-redundant memory consists 
of two attributes: (1) non-redundant information transmission, i.e. disallowing informa-
tion retransmission alongside the same edge after a successful transmission; (2) every 
susceptible individual can remember the cumulative pieces of non-redundant informa-
tion that the individual received from his or her neighbors, leading to a non-Markovian 
contagion process. For appropriately depicting the LI characteristics, we propose a 
gate-like adoption probability involving two key ingredients: ‘on’ and ‘off’ thresholds, 
which denote the starting and turn-off point of behavior adoption regarding the ratio 
of adopted informants in neighbors. In addition, we develop an edge-based compart-
mental theory for qualitative validation. Numerical simulations and theoretical analy-
ses demonstrate that LI effect prominently influences the final adoption size. In detail, 
given information transmission probability, there exists an optimal imitation capacity 
in terms of the ‘on’ threshold to maximize the final adoption size, and, with fixed ‘on’ 
threshold, greater ‘off’ threshold will increase the final adoption size more. Moreover, 
the variation of imitation capacity versus information transmission probability induces 
a crossover phenomenon of final adoption size, i.e. enhancing imitation capacity (corre-
sponding to the increase of the ‘on’ threshold) causes phase transition of final adoption 
size transform from the second-order continuity to the first-order discontinuity, where 
a bifurcation occurs. Importantly, through further investigation, the above findings 
qualitatively remain unaffected by the heterogeneity level of the degree distribution.
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The rest of this paper is organized as follows: In section 2, we propose a new model 

to take into account the characteristics of LI effect. In section 3, we make numerical 
simulations and discuss the LI characteristics in behavior spreading. In section 4, we 
give an edge-based compartmental theory to explain the numerical results. Finally, in 
section 5, we present conclusions.

2. Social contagion model with LI effect

For investigating the LI effect in social contagion, we here appropriately leverage the 
generalized Susceptible-Adopted-Recovered (SAR) model [25] to depict the behavior 
spreading in complex networks with N nodes and a degree distribution P (k), where 
nodes represent individuals of population and the spreading process only happens 
between the linked neighboring nodes. At each time step each individual is in either a 
susceptible (S), adopted (A) or recovered (R) status. An individual in the susceptible 
state has not adopted the behavior no matter whether he has received the information, 
in the adopted state has accepted the behavior and transmits the information to the 
susceptible individuals, and in the recovered state has abandoned the behavior and 
refuses to transmit the information again.

To describe the LI effect in social contagion, we conceive an gate-like adoption prob-
ability distribution function h(x,α,∆), defined as follows:

h(x,α,∆) =

⎧
⎨

⎩

0, 0 ! x < α,
1, α ! x < α +∆,
0, α +∆ ! x ! 1,

 (1)

where x ∈ [0, 1] denotes the ratio of adopted informants to the individual neighbors, 
and α and ∆ indicate the ‘on’ threshold and gate width respectively. Besides, the ‘on’ 
threshold β = α +∆. The h(x,α,∆) function is demonstrated in figure 1. In figure 1, 
the parameter α represents the ‘on’ threshold, after which the behavior will be adopted 
with probability 1. The parameter β represents the ‘off’ threshold, after which the frac-
tion of adopted informants will inversely cause the rejection to the behavior. Small α 
means individual will more easily adopt the behavior when he or she has only received a 
small number of pieces of information from adopted neighbors, and vice versa. Great β 
can keep individual consistently in adopting the behavior even though there is a larger 
fraction of adopted informants. When given α, the greater ∆ means greater β. The 
parameter ∆ can help us learn how the tolerance of the fraction from the ‘on’ threshold 
to the ‘off’ threshold influences the final adoption size.

The behavior spreading process with non-redundant memory and social reinforce-
ment is:

 (i)  We denote the initial seed fraction as ρ0. The rest of the nodes stay in the 
susceptible state.

 (ii)  Renewing the states of individuals leverages the synchronous updating method 
[9]. At each time step, every adopted individual will transmit the information 
to each of its susceptible neighbors independently, through a transmission 
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probability λ. Once the information is successfully transmitted to a neighbor, 
the cumulative number m of received information of this neighbor will add one, 
i.e. m → m+ 1. In our model, alongside the same edge, retransmission of the 
same information will not increase the credibility and legitimacy of the behavior. 
Thus, with respect to non-redundant memory, an edge that has transmitted the 
information successfully will never transmit the same information again.

 (iii)  At a time step t, if the degree of a susceptible individual is k, and he or she has 
received m pieces of information from distinct neighbors by time t, the probability 
for the susceptible individual to adopt the relative behavior is h(m/k,α,∆) (refer-
ring to equation (1)). Only when the fraction m/k ∈ [α, β), the adoption will 
occur. At the same time step, each adopted individual will refuse to transmit the 
information again and enter into the recovered status with probability γ.

 (iv)  The spreading will repeat until there is no adopted individual left.

3. Numerical results

In numerical simulations, we respectively apply the Erdös–Rényi (ER) [42] and uncor-
related configuration Scale-Free (SF) [43] random network to the study of the behav-
ior spreading process, with the network size N  =  104 and the average degree ⟨k⟩ = 10. 
Through extensive numerical simulations, we find that γ does not qualitatively affect 
the phenomenon. We thus set γ = 1.0 in the main text. The relative variance vR [44] 
is introduced numerically to determine the size-dependent critical values λI

c as follows

vR =
⟨(R(∞)− ⟨R(∞)⟩)2⟩

⟨R(∞)⟩2
, (2)

where ⟨...⟩ is the ensemble average. The value of vR shows the peaks (indicating phase 
transitions) of R(∞) at the critical point when a dynamical parameter is varied. Thus 

Figure 1. Schematic of gate-like behavior adoption probability h(x,α,∆), where 
x denotes the fraction of adopted informants in neighbors. In behalf of the critical 
fraction of adopted informants, α represents the ‘on’ threshold, after which the 
behavior will be adopted with probability 1. The parameter β represents the ‘off’ 
threshold, after which the fraction of adopted informants will inversely cause 
the rejection to the behavior. Besides, ∆ = β − α indicates the gate width, the 
greater value of which implies the behavior adoption will persist in more fraction 
of adopted informants.
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we know that the critical point λI

c corresponds to the maximum vR under different val-
ues of λ.

To begin with the study in ER network, we investigate the time-evolution of 
the behavior spreading with the LI effect in figure 2 with λ = 0.8,α = 0.1,∆ = 0.2 . 
Figure 2(a) shows the time-evolution of node density respectively in the susceptible 
status S(t), the adopted status A(t), and the recovered status R(t). In detail, the den-
sity of the susceptible (recovered) nodes decreases (increases) with time and arrives at 
a certain value at the steady time. The density of the adopted initially increases, and 
reaches the peak at time step 9.

Furthermore, we analyze the average of degree of newly adopted individuals with 
time. Let us focus on the alteration of the adopted status and, at each time step in 
figure 2(b), see the average degree of newly adopted nodes [45] as follows

⟨kA(t)⟩ =
∑

k k[Ik(t) − Ik(t − 1)]

I(t) − I(t − 1)
. (3)

Here, Ik(t) and I(t) separately denote the number of adopted nodes in degree class k and 
in all degree classes at time t. Besides, we meanwhile care about the inverse participa-
tion ratio [45]

Y2(t) =
∑

k

[
Ik(t)

I(t)

]2
 (4)

at each time step in figure 2(c). From the above two metrics, we find behavior spread-
ing presents hierarchical characteristics. Totally speaking of the hierarchical spreading, 
adoption firstly exists in large degree classes, then progressively influences lower degree 
classes, and finally induces the capillary invasion to the lowest degree classes which 
have a larger number of nodes and thus exhibit a larger weight.

In detail, at time step 1, the only randomly selected seed holds the degree around 
10 corresponding to the average degree of the ER network, since the individuals will 
adopt the behavior only when they receive one piece of information. From time step 
2, ⟨kA(t)⟩ slowly increases initially, then reaches the peak, and decreases until the last 
time step. We zoom in the process at the typical time step 2 and 9, and expose the 
degree distribution of adopted nodes. We find that at the beginning of the spreading 
the degrees of adopted nodes are small, even less than the network average degree 10 
(see the lower left inset at time step 2). Gradually, when the neighboring adopted nodes 
become many, some nodes with larger degree (see the upper right inset at time step 
9) have the chance to adopt the behavior. After the hub nodes adopt the behavior, 
the rest very small-degree susceptible nodes can contact the behavior information and 
continue to adopt the behavior (see the downward curve after time step 9). The above 
hierarchical spreading phenomenon also can be detected in figure 2(c).

Moreover, the figures 2(d)–(f) correspondingly provide the snapshots of the time-
evolution under LI effect. We can clearly see that at time step 1, there is only one seed 
in figure 2(d), then at time step 2 of figure 2(e), several susceptible nodes around the 
seed turn into the adopted and the seed enters into the recovered status, and at time 
step 9 so many nodes becomes adopted and recovered and few nodes remain susceptible 
in figure 2(f ).
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Besides the time-evolution, we further investigate the phase transition of the final 
adoption size R(∞) versus λ under LI effect, and demonstrate the results in figure 3. 
Symbols and dash lines indicate the numerical simulations and the theoretical solu-
tions, respectively. When the ‘on’ threshold α is very small, such as 0.06 in figures 3(a) 
and (b), the final adoption size R(∞) increases continuously with λ, which means a 
second-order phase transition in the system with the increase of α, such as 0.1. In 
figures 3(c) and (d), the final adoption size R(∞) increases discontinuously with the 
increase of λ as a first-order phase transition. The transformation of phase transition 
here is called the crossover phenomenon [46], which can be further highlighted by con-
trasting (a)–(c) or (b)–(d) with different α. In addition, the numerical simulations agree 
with the theoretical solutions very well.

To intuitively understand the abrupt increase of R(∞) as λ passes through a critical 
point, we focus on the individuals in the subcritical state. In such state, an individual u 
with degree k has received m pieces of information with precisely one piece less than the 
adoption threshold, i.e. m = ⌈kα⌉ − 1, and has not yet adopted the behavior. Say at the 
same time, u has received information from his or her neighbors but neighbor v. Now 

Figure 2. Demonstration of time-evolution characterized by LI effect in ER 
network with λ = 0.8,α = 0.1,∆ = 0.2 . Here network size N  =  104, average degree 
⟨k⟩ = 10, vaccination probability γ = 1.0, and seed fraction ρ0 = 1/N . (a) The 
density time-evolution of three states, the susceptible S(t), the adopted A(t), and 
the recovered R(t). (b) Average degree of the newly adopted nodes at time t [45]. 
Here, the bottom left and upper right insets represent the degree distribution of 
adopted nodes at time 2 and 9, respectively. (c) The inverse participation ratio 
[45]. (d)–(f) Snapshots of node time-evolution in three statuses at time 1, 2, and 
9, with the susceptible node in green, the adopted node in red, and the recovered 
node in yellow.
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assume that v has adopted the behavior and transmits the information to u success-
fully, leading to the behavior adoption by u. In turn, u will transmit the information to 
his or her susceptible neighbors with probability λ. As a result, some neighbors in the 
subcritical state adopt the behavior. The process will repeat step by step, cumulatively 
resulting in an avalanche of behavior adoption. If there are considerably large number 
of individuals in the subcritical state, a tiny increase in the number of adopted indi-
viduals, e.g. by rising λ a little, may induce a sudden and large number of subcritical 
individuals to adopt the behavior, causing a discontinuous ‘jump’ in the value of R(∞).

The above intuitive explanation is further proved by numerical simulations and 
theoretical solutions in figures 3(e)–(h). The peak of subcritical Φ(∞) curve at the 
critical probability λI

c just points to the critical ‘jump’ point of R(∞). Noticeably, the 
peak values in figures 3(e) and (f) are much smaller than those in figures 3(g) and (h), 
implying that the quantities of subcritical individuals in figures 3(e) and (f) are less 
than in figures 3(g) and (h). The considerable difference in number of subcritical indi-
viduals leads to the crossover phenomenon from the continuity to the discontinuity in 
the phase transition.

The critical point λI
c can be numerically acquired by the relative variance vR in 

figures 3(i)–(l). According to equation (2), we can get the vR curve versus λ and the 
peak just corresponds to critical point λI

c. The λI
c in figures 3(i)–(l) coincide with the 

corresponding peaks in figures 3(e) and (f) very well.
We explore the effects of seed fraction ρ0 on the final adoption size R(∞) versus 

spreading probability λ in figure 4. We find that R(∞) increases with ρ0. Importantly, 
we note that R(∞) increases continuously with λ for large values of ρ0. Our theory can 
well predict the above phenomena.

We further investigate the effects of α on R(∞) in figure 5. We find that for a given 
∆, there always exists an optimal α maximizing the final adoption size R(∞) (see the 
peaks in subgraphs). We call such phenomenon of optimal α under LI effect as the 
optimal imitation capacity. Since the network structure is fixed, when the ‘on’ thresh-
old α is small, many individuals with small number k of neighbors can easily adopt the 
behavior after receiving m pieces of information, but many individuals with a relatively 
great k of neighbors will abandon the behavior because the given gate width ∆ accord-
ingly produces a small ‘off’ threshold. Besides, increasing α is equivalent to moving the 
adoption window towards the right and enlarging the ‘off’ threshold β, causing some 
individuals with smaller number of neighbors fail to adopt the behavior. At the same 
time, some other individuals with greater number of neighbors will meet the condition 
to adopt the behavior. If the number of newly satisfied individuals is more than the 
number of the individuals losing chance, the final adoption size R(∞) will continue to 
increase until the variation attains balance. At this time, the R(∞) reaches the peak 
and α arrives at the optimal. Then proceeding to increase α will cause more individu-
als lose chance than the newly satisfied individuals. As a result R(∞) ever-lastingly 
declines. Furthermore, at certain α when all individuals lose the chance to adopt the 
behavior, an abrupt ‘fall’ of R(∞) will happen directly to a value of zero. Besides, 
through comparison between figures 5(a)–(c), we also uncover, given α, larger ∆ can 
enlarge the final adoption size R(∞), which is also unfolded in figure 6.

In figure 6, we pay attention to the dependance of R(∞) on the gate width ∆, based 
on the combinations of λ = 0.1, 0.2, 0.5 and α = 0.01, 0.06, 0.09. Here we find for a given 
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α, increasing ∆ can enlarge the final adoption size R(∞). The reason is: When given 
α, widening ∆ will increase the ‘off’ threshold, making more and more individuals with 
different numbers k of neighbors satisfy the adoption ratio when they have received m 
pieces of information; At the same time, less individuals lose the adoption chance or 
abandon. At certain ∆ when all individuals can satisfy the adoption condition, the final 
adoption size R(∞) will reach the maximum and keep the same till the end. Through 
horizontal comparison from figures 6(a)–(c), we find increasing α holistically reduces 
the R(∞), especially when the λ is small (see figure 6(c)). At this time, more individu-
als cannot meet the adoption condition with enough ratio of adopted informants. As 
a result, the smaller transmission probability causes more difficulty in information 
transmission and worsens the above situation, exhibiting the consistent phenomenon 
with figure 5.

Besides the research on the ER network, we also investigate the LI effect in SF net-
work with network size N  =  104 and average degree ⟨k⟩ = 10. The minimum degree is 
4 and the cutoff for the maximum degree is 100. The uncorrelated networks are gener-
ated with the power-law degree distribution P (k) ∼ k−v (v being the degree exponent) 
according to the method in [43]. Under LI effect, an individual will adopt the behavior 

Figure 3. Demonstration of the crossover phase transition of the final adoption size 
R(∞) versus λ triggered by the ‘on’ threshold α of LI effect, related to α = 0.06, 0.1 
and ∆ = 0.06, 0.2 in ER network. Here network size N  =  104, average degree 
⟨k⟩ = 10, γ = 1, and seed fraction ρ0 = 1/N . Symbols and dash lines indicate the 
numerical simulations and the theoretical solutions, respectively. (a)–(d) Crossover 
phase transition of R(∞) versus λ, corresponding to the circle symbol. (e)–(h) The 
ratio Φ(⌈kα⌉ − 1,∞) of individuals in the subcritical state versus λ, corresponding 
to the up triangle symbol. (i)–(l) The relative variance vR versus λ, corresponding 
to the solid line.
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only if he or she has successfully received m = ⌈kα⌉ pieces of information, with k and 
α denoting the number of neighbors and ‘on’ threshold. In SF network, small v means 
large heterogeneity level of degree distribution and vice versa. In figure 7, we provide 
the R(∞) curves versus λ to uncover the influence from the heterogeneity level of 
degree distribution, in terms of different degree exponent v = 2.1, 3, and 4. We find 
that increasing the heterogeneity of network structure (by reducing the value of the 
degree exponent v) will not affect the crossover phenomenon of phase transition. In 
detail, when the ‘on’ threshold is very small, e.g. α = 0.01 in (a) and (b) with ∆ = 0.05 
and 0.5, no matter what the exponent degree v is, R(∞) versus λ always exhibits the 
continuous second-order phase transition. When the ‘on’ threshold becomes large, e.g. 
α = 0.1 in (c) and (d) corresponding to ∆ = 0.05 and 0.5, R(∞) versus λ still presents 
the discontinuous first-order phase transition regardless of v. The result can be quali-
tatively explained as follows: Given gate width ∆ and small ‘on’ threshold α, when 
spreading probability λ is small, under LI effect, only individuals with small number 
of neighbors (i.e. with smaller degree k) can easily receive enough pieces of behavior 
information and thus adopt the behavior. With the increase of λ, many individuals 
with larger number of neighbors also gradually become easy to receive enough pieces 
of information and then adopt the behavior. Under such condition, few individuals 
in subcritical state will be cumulated and adopt the behavior at once. Therefore, for 
small value of v, R(∞) versus λ exhibits the continuous first-order phase transition. 

Figure 4. Dependence of the final adoption size R(∞) on λ with ρ0 = 0.1 triggered 
by the ‘on’ threshold α of LI effect, related to α = 0.06, 0.1 and ∆ = 0.06, 0.2 in ER 
network. Here network size N  =  104, average degree ⟨k⟩ = 10 and γ = 1. Symbols 
and dashed lines indicate the numerical simulations and the theoretical solutions, 
respectively.

Figure 5. Demonstration of dependence of the final adoption size R(∞) on the 
‘on’ threshold α, concerning λ = 0.1, 0.2, 0.5 and ∆ = 0.06, 0.1, 0.8, characterized 
by LI effect in ER network. Here network size N  =  104, average degree ⟨k⟩ = 10, 
γ = 1, and seed fraction ρ0 = 1/N . Symbols and dashed lines indicate the numerical 
simulations and the theoretical solutions, respectively.
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In contrast, given gate width ∆ and large ‘on’ threshold α, the adopt condition of 
m = ⌈kα⌉ pieces of information become more difficult to be met for the same degree k. 
At this time, small λ will aggravates the difficulty of adoption. With the increase of λ, 
because of the large ‘on’ threshold α, more and more individuals enter into the subcriti-
cal state but have not adopted the behavior. At certain λ, the massively cumulated 
individuals suddenly adopt the behavior at once, causing the abrupt ‘jump’ of R(∞) 
and bringing in the discontinuous second-order phase transition. In a word, under LI 
effect, heterogeneity of degree distribution, corresponding to v, just influences the size 
of R(∞) instead of pattern of phase transition.

4. Theoretical analysis based on edge-based compartmental theory

To unveil the essence, we proceed to provide a theoretical analysis to explain the 
behavior spreading under LI effect. We develop a generalized edge-based compartmen-
tal theory based on [25, 26, 47, 48]. For convenience, we define mathematical symbols 
S(t), A(t), and R(t) as the fraction of individuals in the susceptible, adopted, and recov-
ered states at time step t. Especially, R(∞) represents the steady state when t → ∞.

We suppose individual u in the cavity state [49], which can receive behavior infor-
mation from adopted neighbors but cannot propagate the information to neighbors. 
We define θ(t) as the probability that individual v by time t has not transmitted the 
behavior information to individual u alongside a randomly selected edge. Thus, by time 
t, an individual u with degree k has received m pieces of information from different 
neighbors with probability

φm(k, t) =

(
k

m

)
[θ(t)]k−m[1 − θ(t)]m. (5)

The probability that individual u with degree k has received m pieces of information 

but keeps susceptible is 
m∏
j=0

[1 − h( jk ,α,∆)]. Furthermore, we can obtain the probability 

that such individual u by time t is still in susceptible state as

Figure 6. Demonstration of dependence of the final adoption size R(∞) on the 
gate width ∆, related to λ = 0.1, 0.2, 0.5 and α = 0.01, 0.06, 0.09, characterized by 
LI effect in ER network. Here network size N  =  104, average degree ⟨k⟩ = 10, 
γ = 1, and seed fraction ρ0 = 1/N . Symbols and dash lines indicate the numerical 
simulations and the theoretical solutions, respectively.
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S(k, t) =
k∑

m=0

φm(k, t)
m∏

j=0

[1 − h(
j

k
,α,∆)]

=
⌊bk⌋∑

m=0

φm(k, t).

 

(6)

Traversing all possible degrees k, we achieve the whole ratio that susceptible indi-
viduals account for as

S(t) =
∑

k

P (k)S(k, t).
 (7)

where P (k) is the degree distribution.
Analogously, the fraction of individuals with m pieces of information at time t is

Φ(m, t) =
∞∑

k=0

P (k)φm(k, t). (8)

Since neighbor v of individual u possibly stays in either susceptible, adopted, or 
recovered status, θ(t) can be represented as

Figure 7. Demonstration of the dependence of R(∞) versus λ on SF network, 
under exponent v = 2.1, 3, 4, with α = 0.01,∆ = 0.05  in (a), α = 0.01,∆ = 0.5  in (b), 
α = 0.1,∆ = 0.05  in (c), and α = 0.1,∆ = 0.5  in (d). Network size N  =  104, average 
degree ⟨k⟩ = 10, γ = 1, and seed fraction ρ0 = 1/N . The minimum degree is 4 and 
the cutoff for the maximum degree is 100. Symbols and dashed lines indicate the 
numerical simulations and the theoretical solutions, respectively.



Optimal imitation capacity and crossover phenomenon in the dynamics of social contagions

13https://doi.org/10.1088/1742-5468/aac914

J. S
tat. M

ech. (2018) 063405
θ(t) = ξS(t) + ξA(t) + ξR(t), (9)

where ξS(t) [ξA(t), ξR(t)] is the probability that neighbor v of individual u is in the sus-
ceptible (adopted, recovered) state and has not transmitted the behavioral information 
to u by time t.

At the beginning, individual v with degree k′ is susceptible, and cannot transmit 
behavior information to u. He or she can receive information from the other k′ − 1 
neighbors except susceptible u. Thus, individual v by time t has received m units of 
information with probability

φm(k
′ − 1, t) =

(
k′ − 1

m

)
[θ(t)]k

′−m−1[1− θ(t)]m. (10)

With all possible values of m, individual v of degree k′ remains susceptible with 
probability

Θ(k′, t) =
k′−1∑

m=0

φm(k
′ − 1, t)

m∏

j=0

[1− h(
j

k′ ,α,∆)]

=
⌊αk′⌋∑

m=0

φm(k
′ − 1, t)

m∏

j=0

[1− h(
j

k′ ,α,∆)]

+
k′−1∑

m=⌈αk′⌉

φm(k
′ − 1, t)

m∏

j=0

[1− h(
j

k′ ,α,∆)]

=
⌊αk′⌋∑

m=0

φm(k
′ − 1, t).

 

(11)

In an uncorrelated network, an edge connects an individual of degree k′ with probabil-
ity k′P (k′)/⟨k⟩, where ⟨k⟩ is the average degree. We obtain

ξS(t) =
∑

k′

k′P (k′)

⟨k⟩ Θ(k′, t). (12)

If an individual in adopted status transmits behavior information through an edge with 
probability λ, θ(t) will reduce the fraction λξA(t), i.e.

dθ(t)

dt
= −λξA(t). (13)

If an adopted individual does not transmit the behavior information through any edge 
with probability 1− λ but turns into the recovered state with probability γ, ξR(t) will 
consequently increase a fraction

dξR(t)

dt
= γ(1 − λ)ξA(t). (14)

Using equations (13) and (14), and the initial conditions of θ(0) = 1 and ξR(0) = 0, we 
get
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ξR(t) =

γ[1 − θ(t)](1 − λ)

λ
. (15)

Substituting ξS(t), ξA(t) and ξR(t) of equation (9) into equations (12), (13) and (15), 
respectively, we acquire the time evolution of θ(t) as

dθ(t)

dt
= −λ[θ(t)−

∑

k′

k′P (k′)

⟨k⟩ Θ(k′, t)] + γ[1 − θ(t)](1 − λ). (16)

At each time step t, some susceptible individuals adopt the behavior and some 
adopted individuals move into the recovered state. Note that the growth of A(t) is 
equivalent to the decrease of S(t) minus the fraction of adopted individuals that with 
probability γ enter into the recovered state. Thus the time evolution of A(t) is

dA(t)

dt
= −dS(t)

dt
− γA(t)

= −
∑

k

P (k)
dS(k, t)

dt
− γA(t).

 
(17)

The time evolution of R(t) is

dR(t)

dt
= γA(t). (18)

Equations (5)–(7), (16) and (17) describe social contagion in terms of LI effect, and 
can determine the fraction of each state at arbitrary time step. When t → ∞, we find 
the final adoption size R(∞).

In the final state, we find that

θ(∞) =
∑

k′

k′P (k′)

⟨k⟩ Θ(k′,∞) +
γ[1 − θ(∞)](1 − λ)

λ
. (19)

Note that θ(t) diminishes with t when adopted individuals continually transmit the 
behavior information to neighbors. Thus in the case of more than one stable fixed 
point in equation (19) only the maximum stable fixed point is physically meaningful. 
Inserting this value into equations (5)–(7) gives us the steady value of the susceptible 
density S(∞) and the final behavior adoption size R(∞).

At the critical point, the equation

g(θ,α,∆, γ,λ) =
N−1∑

k′=1

k′P (k′)

⟨k⟩ Θ(k′,∞) +
γ[1 −θ(∞)](1 −λ)

λ
−θ(∞) (20)

is tangent to the horizontal axis at θ(∞) = 1. Thus the critical condition of the general 
social contagion model satisfies

dg

dθ(∞)
|θ(∞)=1 = 0. (21)

From equation (21), the continuous critical information transmission probability can 
be achieved as
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λI
c =

γ

Γ+ γ − 1
, (22)

where

Γ =
∑

k′

k′P (k′)

⟨k⟩
dΘ(k′, θ(∞))

dθ(∞)

∣∣
θ(∞)=1 .

From equation (21), we can obtain the critical condition. Since initially a vanish-
ingly small fraction of seeds are randomly selected and all individuals conform to 
the consistent adoption probability distribution h(x,α,∆), equation (19) possesses one 
trivial solution, θ(∞) = 1. At the critical point, the function g[θ,α,∆, γ,λ] is tangent 
to horizontal axis at θ(∞) = 1. For αk < 1 and ⌈kα⌉ = 0, leveraging equation (19)–(22), 
we can get the continuous critical transmission probability as

λII
c =

γ⟨k⟩
⟨k2⟩ − 2 ⟨k⟩+ γ⟨k⟩ , (23)

which exhibits the same form as the one of epidemic outbreak threshold. For αk ! 1 
and ⌈kα⌉ > 0, the function g[θ,α,∆, γ,λ] can never be tangent to the horizontal axis, 
implying that a vanishingly small fraction of initial seeds cannot induce a finite fraction 
of individuals to adopt the behavior.

We mainly care about how the LI effect under non-redundant memory influences 
the dependence of R(∞) on the transmission probability λ, which can be elucidated by 
the situation of roots from equation (19). Numerically solving equations (19)–(22), we 
find λI

c is associated with adoption probability h(x,α,∆), recovery probability γ, degree 
distribution P (k), and average degree ⟨k⟩. When given all the parameters except λ, we 
can more easily analyze the dependence. If equation (19) has only two roots for different 
values of λ, as in figure 8(a) with α = 0.06,∆ = 0.2 , the trivial solution of equation (19) 
is θ(∞) = 1 and there is no global behavior adoption. R(∞) will increase continuously.

In the second scenario, if the number of roots of equation (19) is determined by λ, 
there will appear three roots and only the largest solution is valid, showing a saddle-
node bifurcation [50], as shown in figure 8(b). Equation (19) possess a non-trivial solu-
tion θ(∞) < 1. Changing λ induces the physically meaningful stable solution of θ(∞) 
to jump to an alternate value. A discontinuous growth pattern of R(∞) with λ occurs. 
In figure 8(b) with α = 0.1, for different values of λ, the function g[θ,α,∆, γ,λ] is tan-
gent to the horizontal axis at λI

c = 0.232. When λ > λI
c, if there are three fixed points 

in equation (19), e.g. λ = 0.24, the largest is the solution. When λ = λI
c, the tangent 

point is the solution. When λ < λI
c, e.g. λ = 0.22, the only fixed point is the solution of 

equation (19), which abruptly drops to a small value from a large value at λ = λI
c and 

results in a discontinuous change in R(∞).
In addition, for comparison with numerical simulations, based on the above edge-

based compartmental theory and theoretical equations, we compute the theoretical solu-
tions and, at the same time, plot the theoretical curves in figures 3–7, corre spondingly. 
We can find the theoretical solutions (denoted by the dash lines) coincide with numer-
ical simulations (denoted by the symbols) very well.
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5. Conclusions

In this paper, based on the social contagion model with non-redundant memory, we 
have investigated an interesting LI effect, in which individual will adopt an behavior 
via imitating adopted informants in his neighbors up to a point that they lose the drive 
to continuously adopt. Correspondingly, we propose a gate-like adoption probability 
distribution consisting of the ‘on’ and ‘off’ thresholds to match the LI effect. Besides, 
for convenience of investigation, we further introduce the gate width variable equal to 
the ‘off’ threshold minus the ‘on’ threshold. Moreover, we novelly explore such effect 
with social reinforcement based on non-Markovian model.

Through extensive numerical simulations, we analyze the above effect in different 
aspects. We first examine the time-evolution process of the behavior spreading in LI 
effect and point out the hierarchical adoption from the nodes with small degree to 
the nodes with large degree, especially the hubs, then to a great many nodes with the 
smallest degrees. Moreover, we focus on the dependence of the final adoption size on 
the transmission probability, ‘on’ threshold and the gate width (indirectly represent-
ing the ‘off’ threshold). We discover that the small and large values of ‘on’ threshold 
respectively result in the continuous first-order and the discontinuous second-order 
phase transition of the final adoption size versus the transmission probability. When 
paying attention to the dependence on the ‘on’ threshold, given gate width and chang-
ing the value of the ‘on’ threshold, there exists an optimal ‘on’ threshold maximizing 
the final adoption size. We call such phenomenon as optimal imitation capacity in LI 
effect. Meanwhile, we discover great gate width can enlarge the final adoption size. At 
last, we find the above phenomena qualitatively are unaffected by different hierarchical 
level of degree distribution.

For quantitatively analyzing the essence of the LI effect, we tender an edge-based 
compartmental theory, under which we build the time-evolution rules and unveil the 
intrinsic mechanism of the crossover phase transition based on the analysis of func-
tion roots. We also provide the theoretical solutions for comparison with the numerical 
simulations. Generally, the numerical simulations and the theoretical analyses agree 
very well.

Figure 8. Demonstration of graphical solutions of equation (20) for with 
α = 0.06,∆ = 0.2  in (a) and α = 0.1,∆ = 0.2  in (b). The horizontal axis are colored 
black and the tangent points are denoted as black dots.
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Moreover, the developed research on LI effect can assist in better understanding 

social behavioral information contagion, e.g. users’ purchase behavior spreading, to help 
product marketing, new fashion prediction, new technology recommendation. The effects 
of network structure on our model need to be investigated, such as clustering coefficient, 
degree correlation, community structure, multiplex network structure, temporal network 
structure. Our results expand our understanding of phenomena in phase transitions and 
may provide new insights into spreading dynamics. In our current era of big data, there 
exist many challenging issues associated with social contagions that need to be addressed. 
For example, using real data to verify the effectiveness of our proposed social contagion. 
Our model may shed some light on studying the general minority games.
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