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Inhomogeneous materials, such as plaster or concrete, subjected
to an external elastic stress display sudden movements owing to
the formation and propagation of microfractures. Studies of
acoustic emission from these systems reveal power-law
behaviour1. Similar behaviour in damage propagation has also
been seen in acoustic emission resulting from volcanic activity2

and hydrogen precipitation in niobium3. It has been suggested
that the underlying fracture dynamics in these systems might
display self-organized criticality4, implying that long-ranged cor-
relations between fracture events lead to a scale-free cascade of
‘avalanches’. A hierarchy of avalanche events is also observed in a
wide range of other systems, such as the dynamics of random
magnets5 and high-temperature superconductors6 in magnetic
fields, lung inflation7 and seismic behaviour characterized by
the Gutenberg–Richter law8. The applicability of self-organized
criticality to microfracturing has been questioned9,10, however, as
power laws alone are not unequivocal evidence for it. Here we
present a scalar model of microfracturing which generates power-
law behaviour in properties related to acoustic emission, and a
scale-free hierarchy of avalanches characteristic of self-organized
criticality. The geometric structure of the fracture surfaces agrees
with that seen experimentally. We find that the critical steady state
exhibits plastic macroscopic behaviour, which is commonly
observed in real materials.

Quasi-static models of fracture propagation have been exten-
sively studied in the past11. Such analyses have been mainly focused
on the geometrical properties of the macroscopic crack, although
some dynamical effects have also been studied12,13. Recently, ava-
lanches and other dynamical properties have been investigated in a
model for hydraulic fracturing14. However, the amplitude distribu-

tion associated with the acoustic emission signal did not reveal any
scaling behaviour.

The mesoscopic description of an elastic disordered medium is
usually obtained by discretizing macroscopic elastic equations. In
the theory of linear elasticity15, these equations relate the stress
tensor sab to the strain tensor egd via the Hooke tensor Cabgd:

sab ¼ ^
g;d

Cabgdegd ð1Þ

In highly inhomogeneous materials, like concrete, linear elasticity
breaks down owing to the formation and the propagation of
microcracks. It is still possible to describe the system using equation
(1) by using an effective Hooke tensor C̃. The ‘damage’ D is defined
through the relation between C and C̃ (ref. 16),

C̃ ¼ ð1 2 DÞC ð2Þ

where the tensor indices have been omitted for simplicity. The full
tensorial formalism can be quite complex to handle numerically.
Fortunately, many essential features of fracture phenomenology can
be described using scalar models11,17,18. There is a formal analogy
between the scalar elasticity problem and an equivalent electrical
problem; one identifies the current I with the stress, the voltage V
with the strain, and the conductivity j with the Hooke tensor: we
will use this electrical analogy.

To study the system at a mesoscopic scale, we discretize the
problem by considering a resistor network17 on a tilted square
lattice. We introduce the disorder, due to the inhomogeneities
present in the material, by assigning a random failure threshold Ic

to each resistor, where Ic is drawn from a uniform distribution in the
interval [0,1]. In the classic ‘fuse’ model17,19, if the current flowing in
a resistor exceeds the failure threshold, the bond is removed from
the lattice (that is, the electrical conductivity drops to zero). In this
way the system develops a macroscopic crack and eventually the
lattice breaks apart. We adopt a different breaking rule: when the
current in a bond exceeds the threshold, we impose permanent
‘damage’ to the bond by decreasing the conductivity of the bond by
a factor a [ ð1 2 DÞ. Describing the local damage with a continuous
parameter corresponds to studying the system at a scale larger than
the microscopic crack scale, but smaller than the homogeneous
macroscopic scale.

After a bond failure we choose at random a new threshold for the
bond in order to model the microscopic rearrangements in the
material. The model in this form is quite slow to simulate numeri-
cally. A big reduction in the simulation time can be obtained by also
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Figure 1 The damage for a system of size L ¼ 64. a, In the early stage, after 500 avalanches; b, in the steady state, after 1,000 avalanches. c, The final crack, which

develops in the highly damaged region. Damaged parts are shown in red and undamaged parts in yellow; absent bonds (the crack) are shown in black.
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changing the thresholds of the bonds that neighbour a damaged
bond. This local rearrangement does not change the properties of
the model but makes it easier to obtain statistics of sufficiently high
quality.

The simulation proceeds as follows. We apply an external voltage
difference between two opposite edges of the lattice, while periodic
boundary conditions are imposed on the other direction. We
compute the currents in each bond by solving numerically the
Kirchoff equations, using a multigrid20 relaxation algorithm with
precision e ¼ 10 2 12. The voltage is then slowly increased until the
current in some bond reaches its threshold. The bond is damaged
and the disorder is changed according to the rules specified above.
We then compute new currents and repeat the process until no
unstable bonds are present. Owing to the long-range elastic inter-
actions and the ‘redistribution’ of the disorder, a single bond failure
can be followed by an avalanche of additional failures.

We study the system in the limit of ‘slow driving’: the timescale
over which fractures form and propagate is much faster than the
timescale of the external driving. This is a common characteristic of
systems that display self-organized criticality (SOC). In fact, for
SOC systems the control parameter is always related to the ratio
between two timescales. In this situation, however, the existence of a
timescale separation makes the system very close to the critical point
for a wide range of internal parameters.

We start the simulation with undamaged material: all the con-
ductivities are set equal to one. In the early stage of the process only
small rearrangements take place. This is also evident by observing
the structure of the microfractures in the system (Fig. 1a): the
damage is homogeneously scattered throughout the system.
Increasing the voltage leads to a corresponding increase of the
total current flowing in the system: macroscopically the material
behaves elastically. Deviations from linear elasticity start to appear
as the activity increases. Eventually, the system reaches a steady-state
which is macroscopically ‘plastic’ (Fig. 2), in the sense that the
increase of the voltage is balanced by the damage in such a way that
the current is kept approximately constant. In this state the activity
is highly fluctuating and avalanches of all sizes occur. Plastic
behaviour is not uncommon in stressed synthetic materials21.

The damage in the steady state tends to be organized in linear
bands (Fig. 1b), arising from the coalescence of the underlying
microfractures. A similar geometrical structure has been observed
in microfracturing experiments on concrete22,23. We note that a
plastic steady state characterized by highly fluctuating activity has
been recently obtained in molecular dynamic studies of granular
solids24 and foams25 under shear.

In the plastic steady state, we investigate the statistical properties
of rupture sequences (Fig. 3a) in time and magnitude during
fracturing. We define the avalanche size s as the number of bonds
damaged for a given voltage increment, and find that the avalanche
size probability distribution function P(s) exhibits a power-law
behaviour

PðsÞ,s 2 t
ð3Þ

where t ¼ 1:19 6 0:01. By computing the distribution for different
lattice sizes, we observe that the cut-off scales with the system size
(Fig. 3b). This is the fingerprint of a scale-free activity; an absence of
characteristic lengths in the system.

We next compute the distribution of the time duration T of each
avalanche, obtaining a power-law decay

PðTÞ,T 2 a
ð4Þ

where a ¼ 1:30 6 0:01. Again we find that the cut-off scales with
the system size.

We also study the distribution of energy bursts, which is directly
related to the acoustic-emission signal recorded experimentally. In
this case also we find a power-law distribution if the energy is
rescaled by the energy of the unbroken lattice, as pointed out in
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Figure 2 The I–V characteristics of the present model for different values of the

parameter a (see text). Note the crossover at V < 12 between linear elasticity and

plasticity.

Figure 3 a, The number of broken bonds s as a function of time. b, The avalanche

size distribution for different system sizes (L ¼ 16; 32; 64). The statistical analysis

is performed only in the steady state for a ¼ 0:9, averaging over 2 3 104

avalanches.
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refs 26 and 27. The results for a lattice of size L ¼ 64 are shown in
Fig. 4.

Another quantity of interest is the distribution of time intervals
Dt between two avalanches in the steady state (Fig. 5). We find a
power decay which is reminiscent of the Omori law in earthquake
statistics28

PðDtÞ,ðDtÞ2 g
ð5Þ

where g < 1. The above behaviour provides another indication that
the system is critical in the plastic steady state, which develops
critical correlations and scaling behaviour through a self-organiza-
tion process. The critical exponents seem to be independent of the
changes in the damage parameter a within numerical uncertainties.

In our model the steady state could in principle last forever.
However, in realistic situations, the damage description should fail
at a given point. After a certain number of failure events, a bond will
no longer respond elastically. This observation can be modelled in a
natural way by allowing for only a finite number of failures per
bond. In other words, when the conductivity of a bond reaches a
given value jc owing to the repeated failures, the bond is no longer
considered to be elastic and is removed from the lattice. The
parameter jc adjusts the duration of the steady-state: for high
values of jc, the steady state is never reached and fracture is brittle,
whereas a low value of jc produces a plastic steady state. In both
cases a macroscopic crack will eventually form. In Fig. 1c we observe
that the crack develops in the region of high damage and has a rough
structure. Owing to the limited system size, we were not able to
calculate reliably the roughness exponent.

We note that to observe this behaviour the system must be driven
at a constant voltage. We have also performed simulations in which
the system is driven by imposing a constant current: in this case no
steady state is observed and the system is driven to an instability
corresponding to the critical current of the voltage-driven experi-
ment. One can still fit the non-stationary distribution of avalanches
with a power law but the system is clearly not SOC. With our model
we can therefore reconcile the controversy9,10 between SOC and
‘sweeping of an instability’29 as possible explanations of microfrac-
turing experiments: either of the two phenomena can arise accord-
ing to the driving conditions. It would be interesting to test this
prediction experimentally by comparing avalanche signals in stress-
driven and strain-driven experiments. In interpreting experimental
results, it is important to keep in mind that SOC requires a
‘stationary’ signal. In fracture phenomena this can be obtained in
the plastic regime. M
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Figure 4 The distribution of energy bursts, related to the experimentally observed

acoustic emission. We fit the power-law distribution with an exponent equal to

1:2 6 0:1.

Figure 5 The distribution of quiescent intervals Dt between two avalanches in the

plastic state. Plotted for reference is a line with slope corresponding to g ¼ 1 in

equation (5).


