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Abstract. Properties of the q-dependent cross-correlation matrices of the 
stock market have been analyzed by using random matrix theory and complex 
networks. The correlation structures of the fluctuations at different magnitudes 
have unique properties. The cross-correlations among small fluctuations are much 
stronger than those among large fluctuations. The large and small fluctuations are 
dominated by different groups of stocks. We use complex network representation 
to study these q-dependent matrices and discover some new identities. By 
utilizing those q-dependent correlation-based networks, we are able to construct 
some portfolios of those more independent stocks which consistently perform 
better. The optimal multifractal order for portfolio optimization is around q  =  2 
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under the mean-variance portfolio framework, and q ∈ [2, 6] under the expected 
shortfall criterion. These results have deepened our understanding regarding the 
collective behavior of the complex financial system.

Keywords: quantitative finance, financial networks

1. Introduction

The analysis of the collective behavior of cross-correlations between different financial 
assets has become extremely attractive since physicists started to report the violation 
of efficient market hypothesis [1–3]. Initially, cross-correlation analyses relied on such 
linear tools as the Pearson correlation, which requires data to be stationary, but real-
world financial data sets are rarely stationary. To take into account the non-linearity 
and non-stationarity in real-world data, new methods based on detrendization have 
been proposed, among which the most popular has been the detrended fluctuation anal-
ysis (DFA) [4]. Motivated by the DFA that is applied for a single time series, its gen-
eralization, named detrended cross-correlation fluctuation analysis (DCCA), has been 
proposed to quantify the long-range cross-correlations between a pair of non-stationary 
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signals [5]. DFA and DCCA are subsequently extended to their multifractal versions—
MFDFA and MFDCCA, respectively[6–8]. DFA, DCCA and their multifractal coun-
terparts have been applied cross a broad range of systems, including biological, and 
financial to physical systems[9–17]. Recently an analog to the Pearson coefficient, the 
detrended cross-correlation coefficient ρ(s), was introduced in [18]. This coefficient, 
which applies to non-stationary signals, quantifies the significance level of correlations 
among fluctuations of detrended non-stationary signals at a given detrending scale s 
[19]. More recently, the DCCA coefficient ρ(s) has been widely used to study the non-
linear cross-correlations among financial time series [10, 20–23]. Despite the success 
of the ρ(s) coefficient, it has some limitations when cross-correlations are quantified 
among fluctuations at different magnitudes. A more recent extension of the DCCA 
coefficient ρ(s), the q-dependent detrended cross-correlation coefficient ρ(q, s), q ∈ R, 
is based on the q-dependent fluctuation function Fq from MFDFA and MFDCCA [6, 
8, 24]. Kwapień et al [24] recently indicated that this method could be applied to the 
analysis of empirical data from such natural complex systems as physical, biological, 
social and financial systems. Our focus here is on the financial market.

Here we employ the q-dependent cross-correlation coefficient to quantify the cross-
correlations among the return time series of 401 constituent stocks of the S&P 500 
index. For those return time series, we calculate the q-dependent cross-correlation 
matrices C(q, s). We then calculate the statistical properties of the matrices at different 
multifractal orders q and varying time scales s. As when analyzing the Pearson cross-
correlation matrix, we also analyze the eigenvalue and eigenvector dynamics of the 
matrices and find that the cross-correlations of stock market fluctuations at different 
magnitudes exhibit unique structures and dynamics. The large fluctuations are always 
dominated by a few industry groups, but the small fluctuations exhibit different behav-
iors. We then represent the cross-correlation matrices as complex networks and use 
the planar maximally filtered graph (PMFG) method [25] to construct the correla-
tion-based networks and to analyze their basic topological features. The PMFG net-
works for small fluctuations are more heterogeneous than those networks obtained from 
large fluctuations. Using a centrality metric, we classify stocks as central or peripheral 
according to their centrality ranking. Applying this to portfolio optimization, we find 
that portfolios of peripheral stocks have consistently higher returns and lower risk than 
those portfolios of central and randomly selected stocks.

The paper is organized as follows. In section 2 we introduce the methodologies used 
in this paper. In section 3 we present the data and main empirical results. In section 4, 
applications to portfolio optimization have been given. The last section provides our 
conclusion and discussion.

2. Methodology

2.1. q-dependent cross-correlation analysis

The q-dependent cross-correlation coefficient can be obtained from the following pro-
cedure [8]:

https://doi.org/10.1088/1742-5468/aa9db0
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 (i) We consider a pair of time series xi and yi, i = 1 . . . l. We integrate these time 
series and obtain two new time series

χx(k) =
k∑

i=1

xi − ⟨x⟩, k = 1 . . . l, (1)

  

χy(k) =
k∑

i=1

yi − ⟨y⟩, k = 1 . . . l. (2)

 (ii) We divide χx(k) and χy(k) into 2Ms = 2 × int(l/s) non-overlapping boxes of 
length s from the beginning and the end of two integrated time series. We then 
calculate the local trends for each segment v(v = 1, . . . , 2Ms) by a least-square 
fit and subtract it from χx(k) and χy(k) to detrend the integrated series. We 
then find the residual signals X,Y equal to the differences between the integrated 

signals and the mth-order polynomials P (m)
s,v  fitted to these signals:

Xs(i, v) =
s∑

i=1

χx(vs+ i)− P (m)
X,s (i, v), (3)

Ys(i, v) =
s∑

i=1

χy(vs+ i)− P (m)
Y ,s (i, v). (4)

  The covariance and variance of X and Y in box v are defined as:

f 2
XY ;s(v) =

1

s

s∑

i=1

Xs(i, v)Ys(i, v), (5)

f 2
ZZ;s(v) =

1

s

s∑

i=1

Z2
s (i, v), (6)

  where Z represents either X or Y.

 (iii) We then define the fluctuation functions at multifractal order q and detrending 
scale s:

F q
XY(s) =

1

2Ms

2Ms∑

v=1

sgn[ f 2
XY;s(v)]|f 2

XY;s(v)|q/2, (7)

F q
ZZ(s) =

1

2Ms

2Ms∑

v=1

[ f 2
ZZ;s(v)]

q/2. (8)
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  Then the q-dependent cross-correlation coefficient between xi and yi is defined as:

ρ(q, s) =
F q
XY (s)√

F q
XX(s)F

q
Y Y (s)

. (9)

  When q  =  2, we restore the detrended cross-correlation coefficient ρ(s) [18]. The 
q-dependent cross-correlation coefficient is bounded in [−1,1] when q ≥ 0. This 
coefficient can be an arbitrary value when q  <  0 [24]. Here we focus on the 
case when q  >  0. The exponent q acts as a filter. When q  >  2, the boxes with 
large fluctuations contribute the most to ρ(q, s), but when q  <  2, the boxes with 
relatively small values dominate the fluctuation function, thus contributing the 
most to ρ(q, s).

2.2. Random matrix theory

Having introduced the q-dependent cross-correlation coefficient, we now construct 
the cross-correlation matrices C(q, s) at different multifractal orders q and detrend-
ing scales s. In previous studies, random matrix theory [26] is the most commonly 
used method to analyze the cross-correlation matrices. Since the exact relationship 
between random time series and the q-dependent cross-correlation matrix cannot be 
established, although the q-dependent cross-correlation matrices have obvious different 
identities, we still employed many concepts in random matrix theory to analyze the 
q-dependent cross-correlation matrices. If we assume that the correlation matrices are 
random, random matrix theory can be employed as a benchmark to quantify to what 
extent the properties of a matrix deviate from the prediction of a purely random case. 
Random matrix theory has been widely applied to investigate the collective phenomena 
in financial markets [1, 2, 27–35]. But, as mentioned in the previous context, we can-
not use random matrix theory as a benchmark for the q-dependent cross-correlation 
matrix. A comprehensive review of the application of random matrix theory in the 
financial market is provided in [36]. Since we cannot derive the exact equation for the 
q-dependent cross-correlation matrix in a purely random situation, the shuffled and 
random simulation results have been used as other references. Nevertheless, the tools 
from random matrix theory can be quite useful to explore the structures of the cross-
correlation matrices. Here we briefly introduce random matrix theory.

We consider a random correlation matrix constructed from a bunch of normal 
 distributed uncorrelated time series R = {ri(t), i = 1, . . . ,N , t = 1, . . . ,L}

C =
1

L
RRT , (10)

where R is an N × L matrix containing N time series {ri(t)} of length L with zero mean 
and unit variance, that are mutually uncorrelated. The probability distribution func-
tion of the eigenvalues for the random matrix can be written analytically in the limit 
N ,L −→ ∞ with a fixed Q = L

N > 1 [26],

https://doi.org/10.1088/1742-5468/aa9db0
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P (λ) =
Q

2 π

√
(λ+ − λ)(λ− λ−)

λ
, (11)

where λ− and λ+ are the minimum and maximum eigenvalues of C. λ− and λ+ are 
given by

λ± = 1 +
1

Q
± 2

√
1

Q
. (12)

If the eigenvalue distributions deviate from the prediction of equation (11), that signals 
the existence of mutual correlation in the time series.

We decompose the q-dependent cross-correlation matrices with eigenvalues 
λk, k = 1, . . . ,N  and eigenvectors Uk, k = 1, . . . ,N which provide information regard-
ing the collective behavior of the stock market. The eigenvalues are sorted in ascending 
order with λ1 ≤ λ2 ≤ . . . ≤ λN . Here we use the inverse participation ratio (IPR) to 
quantify the reciprocal number of eigenvector components that significantly contribute 
to the corresponding eigenvalue. The IPR is defined as

Ik =
N∑

l=1

[ul
k]

4. (13)

Here ul
k is the lth component of the eigenvector Uk corresponding to eigenvalue λk. The 

meaning of Ik  can be illustrated by two limiting cases: (i) a vector with identical com-
ponents ul

k = 1/
√
N  has Ik   =  1/N, whereas (ii) a vector with one component ul

k = 1 and 
the remainder ul

k = 0 has Ik   =  1. We also define the participation ratio (PR) as 1/Ik , 
which is approximately equal to the number of significant contributors for eigenvalue 
λk. In random matrix theory, the expectation of IPR for a purely random time series is

⟨Ik⟩ = N

∫ ∞

−∞
[ul

k]
4 1√

2 πN
exp(−[ul

k]
2

2N
)dul

k =
3

N
. (14)

2.3. Planar maximally filtered graph

As suggested in [24], we use the complex network approach to analyze the q-depen-
dent cross-correlation matrix. We employ the PMFG method [25] to construct net-
works based on cross-correlation matrices C(q, s). The PMFG algorithm converts the 
dense correlation matrix into a sparse representation. The algorithm is implemented 
as follows:

 (i) Sort all of the ρij(q, s) in descending order to obtain an ordered list lsort(q, s).

 (ii) Add an edge between nodes i and j based on the order in lsort(q, s) only if the 
graph remains planar after the edge is added.

 (iii) A graph G(q, s) is formed with Ne  =  3(N  −  2) edges under the constraint of 
 planarity and N is the number of stocks.

As described in [25], PMFGs not only maintain the hierarchical organizations of 
the minimum spanning trees (MST), but also generate cliques, especially three and 

https://doi.org/10.1088/1742-5468/aa9db0
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four node cliques. We calculate the basic topological parameters, such as clustering 
coefficient C, the shortest-path length L and the assortativity A [37]. We also adopt a 
heterogeneity index γ to measure the heterogeneity of PMFGs which is defined by [38]

γ =

N − 2
∑

ij∈{e}
(kikj)−1/2

N − 2
√
N − 1

. (15)

Here k i and k j are the degrees of nodes i and j connected by edge {eij}.

3. Data and results

3.1. Data description

Our data sets include N  =  401 S&P 500 constituent stocks from 4 January 1999 to 31 
December 2014 with 4025 trading records for each stock. We use the logarithm return 
defined as

ri(t) = ln(pi(t+ 1))− ln(pi(t)), (16)
where pi(t) is the daily adjusted closure price of stock i at time t. We then use the 
previous method to compute the q-dependent cross-correlation coefficients between 
any pair of return time series ri(t) and rj(t) and obtain the N ×N matrix C(q, s). The 
matrix entries of C(q, s) are the correlation coefficients ρij(q, s) between all pairs of 
stocks. We set the multifractal orders q ∈ [0.2, 5] with δq = 0.2 and the detrending 
scales s ∈ [30, 600] trading days with δs = 40 d. We also perform the same calculation 
on the shuffled return time series and the simulated uncorrelated random time series 
and use them as reference models.

3.2. Cross-correlation matrix analysis

With those q-dependent cross-correlation matrices C(q, s) at different multifractal 
orders q and detrending scales s, we analyze the probability distributions of the cross-
correlation values, i.e. the upper triangle entries of the correlation matrices and the 
eigen dynamics.

First we show the plot of matrices for different multifractal orders q and detrending 
scales s in figures 1. The strength of the average correlation will increase slightly as the 
scale s increases, but will decrease dramatically as the multifractal order q increases. 
We sort the rows and columns of the correlation matrices according to the official sec-
tor and sub-sector partitions of S&P 500. Note the distinct sector and sub-sector struc-
tures in the cross-correlation matrices. In particular, when q  <  2, the sector structures 
are much more pronounced.

Figure 2 shows the probability distribution function P(ρ) of the matrices ele-
ments for different values of q  =  0.4,1.0,1.4,2.0,4.0 and different values of scales 
s  =  70,110,230,310,430. We can observe that the distribution of the matrices becomes 
increasingly skewed to the left, and the widths of the distributions become narrow 
as the multifractal order q increases. The probability distribution of the q-dependent 

https://doi.org/10.1088/1742-5468/aa9db0
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cross-correlation coefficients for the return time series deviates significantly from the 
shuffled and simulated distributions, and this may provide genuine information regard-
ing the cross-correlation among different magnitudes of fluctuations. The shuffled and 
simulated distributions coincide with each other, which means that the probability 
distribution of the return time series is not responsible for those deviated cross-corre-
lations. At the same instant, the shuffled and simulated distributions are symmetric 
around zero means. Thus the different cross-correlation structures are the result of non-
linear correlations among different magnitudes of fluctuations. In addition, when q  >  2, 
the distributions become relatively close to the shuffled case. We also calculate the first 

Figure 1. The cross-correlation matrices C(q, s) between 401 S&P 500 constituent 
stocks for different orders q  =  0.4, 1.0, 2.0, 4.0 and scales s  =  70, 110, 210, 410 d. 
We have sorted the matrix entries according to the official sector classification of 
those stocks. Thus very clear intra sector and inter sector structures have been 
presented.

https://doi.org/10.1088/1742-5468/aa9db0
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four order moments of the correlation matrices to better illustrate the variation of the 
cross-correlation distributions.

Figure 3 shows the first four order moments of the cross-correlation coefficient 
distributions at different multifractal orders q and detrending scales s. The average 
cross-correlation decreases as the multifractal order increases, indicating that the cross-
correlations between large fluctuations are relatively weak. From the variance, skew-
ness and kurtosis, we see an obvious transition in the shapes of the distributions around 
q  =  2. For small q and large s, the variance of the distribution is large. The shape of 
the distribution changes from a right skew to a left skew shape when q decreases and s 
increases. The distribution becomes increasingly peaked with kurtosis larger than three 
when q increases and s decreases. The cross-correlation coefficients for large and small 
multifractal orders q are largely different, which indicates disparate correlation struc-
tures among different magnitudes of fluctuations.

To analyze the genuine information carried by the q-dependent cross-corre-
lation matrices, we decompose the cross-correlation matrices and sort the eigen-
values λk, k = 1, . . . , 401 in ascending order with their corresponding eigenvectors 
Uk, k = 1, . . . , 401. Figures 4 and 5 show the distributions of the bulk eigenvalues and 
deviating eigenvalues, respectively. Figure 4 only provides eigenvalues smaller than two 
to better present the bulk eigenvalue distributions. The black and blue lines are the 
eigenvalue distributions for the original q-dependent cross-correlation matrices and the 
shuffled scenario. We also simulate 401 random Gaussian distributed uncorrelated time 
series. The green lines are the bulk eigenvalues from the q-dependent cross-correlation 
matrices calculated by using the simulated Gaussian time series. We find that the bulk 
eigenvalue distributions of the shuffled time series and the simulated time series are 
approximately the same. This confirms that the deviations of the eigenvalue distribu-
tions are the result of non-linear cross-correlations. The distributions of the bulk eigen-
values for the original q-dependent cross-correlation matrices differ from two reference 
models. Note that when q  <  2, many eigenvalues of the q-dependent cross-correlation 
matrices are negative. But for q ! 2, the q-dependent cross-correlation matrices are 
positive definite, and we can see that the magnitude of the negative eigenvalues will 
increase gradually as q decreases. For the Pearson cross-correlation matrices, if the data 
length L ! N , the cross-correlation matrices are positive definite. Although our data 
length is more than ten times the system size, there is no such property that guaran-
tees the positive definite of the q-dependent cross-correlation matrices. Except for the 
empirical q-dependent cross-correlation matrices, there are also some negative eigenval-
ues for the shuffled and simulated matrices when q  <  2.

Figure 5 shows the deviating eigenvalues for the original cross-correlation matrices 
(black), the shuffled results (blue), and the simulated results (green). The behavior of 
those deviating eigenvalues differ as the values of q and s differ. Large q values and 
small s values tend to cause a greater amount of large deviating eigenvalues. In figure 5, 
note that the deviating eigenvalues for large q  =  4 and small s  =  70 are especially clear. 
In contrast, when q  =  0.4 and s  =  430, only the largest and second largest eigenvalues 
continue to deviate from the shuffled and simulated eigenvalues. This indicates that 
the small fluctuations only have very short characteristic time scales. The long-term 
average effect of small fluctuations equals the noise level. Meanwhile, we can observe 
that the largest eigenvalue will decrease dramatically as q increases, which means that 

https://doi.org/10.1088/1742-5468/aa9db0
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the large fluctuations are localized. Generally speaking, large multifractal orders q and 
small detrending scales s make the sector structures (deviating eigenvalues) separate 
from the noise level. However, small multifractal orders q and large detrending scales s 
correspond to the strong market mode (the largest eigenvalue).

The first four eigenvalues for different multifractal orders q and detrending scales 
s are shown in figure 6. The largest eigenvalues λ401 for q  <  2 are approximately equal 
to the order of the system size. The behavior of the largest eigenvalue is similar to the 

Figure 2. The distributions of the non-diagonal elements of the cross-correlation 
matrices C(q, s). The black lines are the distributions of the q-dependent cross-
correlation coefficients for the return time series. The blue lines and green lines are 
the same distributions for the shuffled return time series and simulated random 
time series, respectively. q  =  0.4, 1.0, 1.4, 2.0, 4.0 from bottom to top and s  =  70, 
110, 230, 310, 430 d from left to right. The distributions of the matrice elements 
for shuffled and simulated time series largely overlap each other.

https://doi.org/10.1088/1742-5468/aa9db0
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eigenvalue corresponds to the market mode described by numerous studies [1, 27] and 
it decreases when the value of q increases. Thus the market mode at small q is extremely 
strong, which seems counterintuitive. It means that the whole market fluctuations only 
influence the constituent stocks in a relatively small fluctuation level. We also observe 
that the first four eigenvalues increase as the detrending scale s increases.

It is believed that those eigenvalues which deviated from the bulk contain some 
genuine information related to the sector or industry, as described in [27, 29]. To 
uncover the hidden information carried by those deviating eigenvalues at different 
multifractal orders and detrending scales, we first partition those 401 stocks into indus-
try groups labeled l = 1 . . . 24 (Nl stocks each) according to the industry group code 
of the stocks supplied by GICS [39]. We then construct a projection matrix P, with 
elements Pli = 1/Nl if stock i belongs to industry group l and Pli  =  0 otherwise. For 

Figure 3. The first four order moments—mean, variance, skewness, kurtosis—of 
the q-dependent cross-correlation matrices C(q, s) at different multifractal orders 
q and detrending scales s. q ∈ (0.2, 5) with step size δq = 0.2 and s ∈ (30, 600) with 
step size δs = 40 d. The black lines inside the heat map are contour lines for the 
first four order moments.

https://doi.org/10.1088/1742-5468/aa9db0
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each eigenvector Uk, the contribution X l
k =

∑N
i=1 Pli(ui

k)
2 of each industry group can 

be obtained. Figure 7 shows the contribution of each industry group to the smallest 
and second smallest eigenvalues λk, k = 1  and λk, k = 2 . The red (k   =  1) and sky blue 
(k   =  2) lines are the contribution values of the industry groups to these two eigenval-
ues. The blue lines are the average contribution values X l

k for the correlation matri-
ces calculated by using the shuffled time series. This reference model tells us how 
much the X l

k deviates from the noise level. There are 24 major industry groups for 

Figure 4. The eigenvalue distributions P(λ) of the q-dependent cross-correlation 
matrices C(q, s) inside the eigenvalue bulk region. We only show the distributions 
of those eigenvalues that are smaller than two. The black, blue and green lines are 
the eigenvalue distributions of the q-dependent cross-correlation matrices for the 
original, shuffled and simulated time series, respectively. The multifractal orders 
q  =  0.4, 1.0, 2.0, 4.0 from bottom to top and the detrending scales s  =  70, 110, 230, 
430 d from left to right.

https://doi.org/10.1088/1742-5468/aa9db0
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the 401 stocks, from left to right: Media, Retailing, Consumer Durables & Apparel, 
Automobiles & Components, Consumer Services, Food & Beverage & Tobacco, Food 
& Staples Retailing, Household & Personal Products, Energy, Diversified Financials, 
Banks, Insurance, Real Estate, Pharmaceuticals, Biotechnology & Life Sciences, Health 
Care Equipment & Services, Capital Goods, Transportation, Software & Services, 
Commercial & Professional Services, Materials, Technology Hardware & Equipment, 
Semiconductors & Semiconductor Equipment, Telecommunication Services, Utilities. 
It is shown that for the smallest and second smallest eigenvalues, λ1 and λ2, the 

Figure 5. The eigenvalues of the cross-correlation matrices C(q, s) deviating from 
the bulk (λ > 2). The meaning of the color is the same as in figure 4. Each vertical 
line indicates that there is an eigenvalue with a corresponding magnitude. The 
multifractal orders q  =  0.4, 1.0, 2.0, 4.0 from bottom to top and the detrending 
scales s  =  70, 230, 310, 430 d from left to right.
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contributions are from a few industry groups such as Household & Personal Products, 
Pharmaceuticals and Utilities. The X l

k for these industry groups are much stronger 
than the noise level. One explanation for this phenomena is that those three industries 
are relatively insensitive to the micro economics status. So the fluctuation of those sec-
tors is extremely small. Meanwhile, the industry contributions of two large eigenvalues 
λk, k = 399, 400 are presented in figure 8. The contributions to large eigenvalues also 
come from a few industry groups and are much stronger than the noise level. For λ399, 
there are multiple industries which contribute significantly with a mixed pattern. The 
main contributions are from Diversified Financials, Banks and Real Estate. Those sec-
tors are all related to the financial industry with very high risk and the contrib utions 
come from different sectors for different multifractal orders q. Meanwhile, the contrib-
ution to λ400 is always from the Energy sector for q  <  2. But for q  ≥  2, the contrib-
utions to λ400 are from Energy, Banks, Semiconductors & Semiconductor Equipment 
and Utilities.

As shown in figure 4, there are many small eigenvalues within the eigenvalue 
ranges of the shuffled and simulated matrices. Figure 9 shows the contributions of 
each industry group to the eigenvalues λk, k = 200, 250 deep inside the eigenvalue bulk 
region. As expected, in this region the eigenvalues do not exhibit a significant pattern. 
The contribution levels X l

k of each industry group are the same as for the shuffled time 
series. For both λk, k = 200 and λk, k = 250 , there is no clear contributing industry 
group.

As explained above, the IPR quantifies the reciprocal number of the eigenvector 
components that contribute significantly. Here we give the IPRs of the q-dependent 
cross-correlation matrices at different multifractal orders and detrending scales in 
figure 10. We present the IPR without the largest eigenvalues for better visualization. 
Note that there is a transition in the IPR Ik  between small and large multifractal orders 
q. When q ! 2, the small eigenvalues are dominant by a relatively small proportion of 
stocks with larger IPR. It can be validated by using the PR 1/Ik  in figure 12, which 
shows that the PRs for those small eigenvalues are less than 50, but for medium and 
large eigenvalues, the PR is larger than 200.

Figure 11 shows the PR 1/Ik  for the largest eigenvalue. The largest PR for q  <  2 
is 376, which approaches the system size N  =  401. When q ! 2, the PR for the largest 
eigenvalue decreases rapidly with a value of 200. The striking difference in the con-
tribution number of the largest eigenvalues for different fluctuations implies that the 
collective behavior of small fluctuations (q  <  2) is more homogeneous (large PR). Figure 
12 shows the heat map of the PR 1/Ik  at different multifractal orders q when s  =  50, 
210, 410, 810. k = 1, . . . , 400 are the labels of the eigenvalues λk. Note that the PR for 
the largest eigenvalue λ401 is not shown in figure 12. When q ! 2, the PRs for small 
eigenvalues (small k ) are very small, suggesting that the small eigenvalues contain use-
ful information. Only a very small set of stocks contributed to the smallest eigenvalue. 
We can verify this from the eigenvector component contributions in figure 7. When 
q ! 2, the small and large eigenvalues are dominated by a few sectors with PR values 
smaller than 80. Meanwhile, the PR values for those medium eigenvalues are around 
120 which are very close to the purely random situation N/3 ≈ 133.7. But for q  <  2, 
the PR values are all around N/3 ≈ 133.7 for most of the eigenvalues, which means 
for small fluctuations the contributions are homogeneous and very close to the random 
case except the PR values for those very large eigenvalues.
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Those results above have implications relevant to portfolio optimization. In general, 
the pattern of collective behavior for small fluctuations is quite different from that for 
large fluctuations.

3.3. PMFG analysis

The complex network has become a standard and powerful way to analyze the cross-
correlation among subunits with mutual interactions. Particularly for the financial 
market, rich dynamics of the cross-correlation matrix has inspired plenty of correlation-
based network methods and enormous applications[40–44] The PMFG has been used to 
analyze the structure and dynamics of the stock market in times of crisis [45, 46], and 
it can effectively capture the sector structures. Here we construct the PMFG  networks 
by using the q-dependent cross-correlation matrices, namely, q-PMFG.

Figure 13 shows the q-PMFG networks constructed by using the PMFG algo-
rithm. The sector structures for small q are clearer than those for large q. Recently 
Kawpeń et al [16] constructed an MST by using q-dependent cross-correlation matrices. 

Figure 6. The heat maps of the first four eigenvalues λk, k = 401, 400, 399, 398 as 
a function of multifractal orders q ∈ (0.2, 5) with step size δq = 0.2 and detrending 
scales s ∈ (30, 600) with step size δs = 40 d.
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Some hidden structures were found by using minute datasets. It is known that the 
PMFG network includes the MST. Here we find that when q ! 2, a hub stock emerges, 
but when q  >  2, the degree heterogeneity becomes weak. In particular, when q ! 2, the 
dark green nodes (the stocks from the financial sector) are very close to each other. 
However, when q  >  2, the links between the financial sector stocks loosen. Those char-
acteristics qualitatively agree with the results from [16] where they discovered a star-
like MST structure when q ! 2.

Figure 7. The contributions X l
k, l = . . . 24  of each industry group to the smallest 

eigenvalue λk, k = 1  (red lines) and second smallest eigenvalue λk, k = 2  (sky blue 
lines) at different multifractal orders q  =  0.4, 1.0, 2.0, 4.0 and detrending scales 
s  =  70, 110, 230, 430 d. The blue solid and dashed lines are the mean X l

k with one 
standard deviation for the cross-correlation matrices calculated from the shuffled 
return time series.
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To quantify the influence of the fluctuations on the q-PMFGs at different mul-
tifractal orders q and detrending scales s, we calculate the topological quantities of 
the q-PMFGs. The topological quantities of the q-PMFGs are presented in figure 14. 
Figure 14(a) shows that the clustering coefficient C of q-PMFG increases as the mul-
tifractal order q increases. The shortest path length L has been shown in figure 14(b). 
The shortest path length is longer for large q and short s. Figure 14(c) shows the het-
erogeneity indexes H [38], which quantifies the heterogeneity level of the q-PMFGs. 
It is analogous to the power law index of the scale-free network. It is known that 

Figure 8. The contributions X l
k, l = 1, . . . , 24 of each industry group to the third 

largest eigenvalue λk, k = 399 (red lines) and second largest eigenvalue λk, k = 400 
(sky blue lines) at different multifractal orders q  =  0.4, 1.0, 2.0, 4.0 and detrending 
scales s  =  70, 110, 230, 430 d. The blue solid and dashed lines are the mean X l

k 
with one standard deviation for the shuffled correlation matrices.
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the heterogeneity of the BA network is 0.11. We notice that for small q, the hetero-
geneity index of the q-PMFG network is larger than the BA network. This means 
the structure of the q-PMFG networks for small multifractal orders q are extremely 
heterogeneous. We also show the assortativity A of the q-PMFGs at figure 14(d). 
The negative assortativity values for q  <  2 provide a hint regarding the disassorta-
tive structures in which hub stocks tend to connect with small degree stocks. When 
q  >  2, the assortativity approaches 0. This indicates that for large q, the connections 

Figure 9. The contributions X l
k, l = . . . 24  of each industry group to two eigenvalues 

fall deep inside the bulk region λk, k = 200 (red lines) and λk, k = 250  (sky blue 
lines) at different multifractal orders q  =  0.4, 1.0, 2.0, 4.0 and detrending scales 
s  =  70, 110, 230, 430 d. The blue solid and dashed lines are the mean X l

k with one 
standard deviation for the cross-correlation matrices calculated from the shuffled 
return time series.
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are more evenly distributed (see figure 13). In networks with q  >  2, the degree of the 
hub stocks are smaller than those hubs in networks with q  <  2. From the variation of 
topological quantities, we can infer that for small fluctuations (small q) at short time 
scales (small s), some leading stocks exist. But for large fluctuations (large q) and long 
time scales (large s), stocks are correlated uniformly. To sum up, from those topologi-
cal quantities, an obvious structure transition is evident which provides an indication 
of the collective behavior differences among fluctuations of different magnitudes at 
varying time scales.

Figure 10. The inverse participation ratio (IPR) as a function of eigenvalues 
without the largest eigenvalue for different multifractal orders q and detrending 
scales s. The multifractal orders q  =  0.4, 1.0, 2.0, 4.0 from bottom to top and the 
detrending scales s  =  70, 230, 310, 430 d from left to right. The red line is the IPR 
for the random matrix with value ⟨Ik⟩ = 3/N.
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4. Application

4.1. Mean-variance portfolio optimization

We now explore the possibility of using the q-PMFG networks to improve the perfor-
mance of portfolio optimization under the Markowitz portfolio framework [47]. First, 
we briefly introduce the Markowitz portfolio theory and then we use a centrality met-
ric to construct portfolios from the q-PMFG networks. Considering a portfolio Π(t) 
of stocks with return {ri(t), i = 1, . . . ,m; t = 1, . . . ,L}, m is the portfolio size, i.e. the 
number of stocks in the portfolio. The return Π(t) of the portfolio is

Π(t) =
m∑

i=1

ωiri(t), (17)

where ωi is the fraction of wealth invested in stock i. The fractions ωi are normalized 
such that 

∑m
i=1 ωi = 1. The risk in holding the portfolio Π(t) can be quantified by the 

return variance of the portfolio

Ω2 =
m∑

i=1

m∑

j=1

ωiωjCijσiσj, (18)

where Cij is the Pearson cross-correlation between the return series ri and rj, and σi and 
σj are the standard deviations of ri and rj. To find the optimal portfolio weights, we 
maximize the return of the portfolio Φ =

∑T
t=1 Π(t) under the constraint that the risk 

on the portfolio is some fixed value Ω2. Maximizing Φ subject to those two constraints 
is equivalent to a quadratic optimization problem

ωTΣω − q ∗ RTω. (19)

Figure 11. The participation ratio (PR) 1/Ik  of the largest eigenvalue λ401 for 
different multifractal orders q ∈ (0.2, 5) with step size δq = 0.2 and detrending 
scales s ∈ (30, 600) with step size δs = 40 d.
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ous context, now with dimension L×m). The parameter q is the risk tolerance with 
q ∈ [0,∞). If we set large q we have strong tolerance to the risk, which will result in a 
large expected return. The optimal portfolios can be represented as a plot of the return 
Φ as a function of risk Ω2 which is known as the efficient frontier. Because the positive 
definite property of the q-dependent covariance matrix Σ (or q-dependent cross-correlation 
matrix C(q, s)) cannot be guaranteed when q  <  2, we do not use the q-dependent cross-
correlation matrices (or covariance matrices) in the risk metric Ω2. Thus we try to use 
the q-dependent PMFG network topological properties to help us select m stocks, and 
then the traditional Markowitz portfolio theory (with the Pearson cross-correlation 
matrix C of those selected m return time series) is used to quantify the performance of 
the portfolio. In this sense, the constituent stocks for portfolios at different multifractal 
orders q and detrending scales s are very likely to be different. It has shown that a port-
folio selected from the PMFG networks (with the Pearson cross-correlation matrix C), 

Figure 12. The PR 1/Ik  as a function of q ∈ (0.2, 5) with step size 0.2 and k ∈ (1, 400) 
from left to right. k  is the label of the eigenvalues λk. The PR of the largest 
eigenvalue is not shown here. We set the detrending scales s  =  50,110,210,410 d. 
The numbers inside the heat maps are marked to better distinguish the magnitudes 
of the corresponding PR values.
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by using some centrality measures, performed very well [48]. Here we first calculate the 
centrality scores defined by

η =
Cw

D + Cu
D + Cw

BC + Cu
BC − 4

4 × (N − 1)
+

Cw
E + Cu

E + Cw
C + Cu

C + Cw
EC + Cu

EC − 6

6 × (N − 1)
,

 
(20)

where Cw
D is the weighted (superscript w) degree (D) centrality and Cu

D is the unweighted 
(superscript u) counterpart. The other centrality metrics are betweenness centrality 
(BC), eccentricity (E), closeness (C), and eigenvector centrality (EC). A portfolio con-
structed by using the central (peripheral) stocks are those with a very high (low) cen-
trality value η. This composed centrality measure is constructed in this way because 
different centrality measures are not independent. With a large amount of numerical 
tests, ten centrality measures have been found to fall into two groups with extremely 
high correlation within each group. A complete description of this composed central-
ity metric is provided in [48]. Actually, the choice of the centrality metric does not 
significantly affect the final results.

In figure 15, we show the efficient frontiers calculated from those portfolios con-
structed by using central (black lines), peripheral (red lines) and random selected (blue 
lines) stocks with different multifractal orders q. We have conducted the tests using the 

Figure 13. The q-PMFG networks for different multifractal orders q  =  1.0, 2.0, 
4.0, 5.0. We set the detrending scale s  =  110 d here. Different vertex colors 
represent different sectors. The color table related to the sectors are: consumer 
discretionary—red, consumer staples—orange, energy—yellow, financials—green,  
health care—blue, industrials—purple, information technology—brown, 
materials—pink, telecommunications services—gray, utilities—black. The vertex 
size is proportional to the degree of the vertex.
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portfolio sizes m  =  10, 20, 30, 40, 50, 60 and calculated the average return value for all 
the detrending scales s at one specific risk value Ω2 to reveal the effect of fluctuations 
at different magnitudes. It is very clear that for different portfolio sizes from m  =  10 to 
m  =  60 stocks, the peripheral portfolios (red lines) are always the best performing ones. 
In contrast, the performance of the central portfolios is even worse than the random 
portfolios.

We then calculate the return differences between peripheral and central portfolios 
∆ = Φp − Φc (p and c are peripheral and central portfolios, respectively) as a function 
of the multifractal orders q in figure 16. Here we use the multifractal orders q from 
0.2–10 to identify the optimal q. It is very evident that the peripheral portfolios out-
perform the central portfolios most around multifractal order q  =  2 and exhibit a supe-
riority greater than 7%. This provides a hint that we should trade based on moderate 
fluctuations which will lead to higher returns and lower risks. The results above indi-
cate the potential of utilizing the q-dependent cross-correlation matrix and q-PMFG 
network as new portfolio optimization tools.

Figure 14. The topological quantities of the q-PMFGs at different multifractal 
orders q ∈ (0.2, 5) with step δq = 0.2 and scales s ∈ (30, 600) with step δs = 40 d. (a) 
The clustering coefficient C, (b) the shortest path length L, (c) the heterogeneity 
index H, and (d) the assortativity A.
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4.2. Expected shortfall approach

Except the mean-variance framework, the expected shortfall (ES) is a modern tool to 
quantify the performance of a portfolio. The ES is a coherent risk measure [49–51]. It 
meets all the requirements of a risk measure. Thus we also employ the ES to quan-
tify the performance of those portfolios constructed with the guidance of the q-PMFG 
networks. Let X be the profit loss of a portfolio on a specified time horizon T and let 
α = A% ∈ (0, 1) be some specified probability level. The expected A% shortfall of the 
portfolio is then defined as [49]

Figure 15. The efficient frontiers for different portfolio sizes m  =  10, 20, 30, 40, 50, 
60 stocks. The red, blue and black lines are efficient frontiers for those portfolios 
constructed by using peripheral, random selected and central stocks in the  
q-PMFG networks. The effect of the detrending scales s ∈ (30, 600) with step  
size δs = 40 d has been averaged during the portfolio optimization procedure.
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ESα(X) = − 1

α
(E[X1 X!xα ]− xα(P[X ! xα]− α)). (21)

It gives the expected loss incurred in the A% worst cases of the portfolio. For a port-
folio {ωi, i = 1, . . . ,m} of m stocks with return time series {ri, i = 1 . . .m}, we want to 
minimize the ES(α) of the portfolio under the constraint of normalization 

∑m
i=1 ωi = 1. 

Here we use the expected shortfall of the portfolio ES(α) with confidence level α = 0.95, 

Figure 16. The differences between the returns of peripheral portfolios and the 
returns of central portfolios as a function of the multifractal orders q ∈ (0.2, 10) 
with step size δq = 0.2.

Figure 17. (a) The expected shortfall ES(α) for central, peripheral and random 
portfolios at different multifractal orders q ∈ (0.2, 10) with step size δq = 0.2 and 
α = 0.95. (b) The differences between the ES(α) of the portfolios for central and 
peripheral stocks. Here the portfolio size m  =  30 stocks and we have averaged the 
ES(α) for different detrending scales s ∈ (30, 600) with step size δs = 40 d.
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and the short selling is prohibited. After ranking the stocks with centrality scores η 
described in the previous subsection, we choose the portfolio size m  =  30, namely, 30 
central (peripheral) stocks with the largest (smallest) centrality scores. Meanwhile, a 
portfolio with 30 randomly chosen stocks is also used here as a reference. Figure 17(a) 
shows the expected shortfall for central, peripheral and random portfolios. Obviously 
the central portfolios have the highest expected shortfalls. However, the peripheral 
portfolios’ ES is much lower than the central ones and even lower than the random 
portfolios. This confirms that the peripheral stocks have relatively low risk compared 
to the central and random selected ones. In figure 17(b), we provide the differences 
between the expected shortfalls for peripheral and central portfolios ∆ES = ESp − ESc 
for different multifractal order q. Under this performance measure, the optimal multi-
fractal order q ranges from 2–6 which is different from the result given by the mean-
variance framework.

5. Conclusion and discussion

In this paper, we have employed the q-dependent cross-correlation coefficient to analyze 
the cross-correlations among fluctuations at different magnitudes for the stock market. 
With the help of random matrix theory and complex network theory, we analyze the 
cross-correlation matrices of the stock market for different magnitudes of fluctuations. 
We find that the cross-correlations among small fluctuations are stronger than large 
ones. There are more deviating eigenvalues for the cross-correlation matrices of large 
fluctuations than that of small fluctuations. By analyzing the IPR and the eigenvector 
contribution, we find that the small eigenvalues of the cross-correlation matrices for 
large fluctuations are dominated by a small number of industry groups. This is similar 
to those large deviating eigenvalues that are also dominated by a small number of indus-
try groups. Thus we conclude that small eigenvalues of the q-dependent cross-correlation 
matrices also carry some genuine information, which seems very counterintuitive. We 
also find that the large and small fluctuations are dominated by different groups of 
stocks or sectors. The structure variation of the q-dependent cross-correlation matrices 
reveal the different identities of the cross-correlations for small and large fluctuations. 
The multifractal order q acts as a filter which enlarges the effect of different magni-
tudes of fluctuations. In [52, 53], a similar method, named power-mapping, is used as a 
filter to suppress the noise which can ‘prolong’ the time series. The traditional Pearson 
cross-correlation matrix is powered by an index q  >  1. But from the definition of the 
q-dependent cross-correlation coefficient, the detrended covariance has been empha-
sized by the multifractal order q. Checking the equivalence between these two methods 
is not so obvious. However, in [53], different factor models and real time series are used 
to prove the effectiveness of the method in which the authors find that the optimal 
order q ranges from 1.5–1.8. Thus it should be very interesting to test the q-dependent 
cross-correlation coefficient with factor models and datasets from other markets. In this 
work, the complex network representation has also validated the correlation difference 
between small and large fluctuations. The network structures are more heterogeneous 
and disassortative for the networks constructed from small fluctuations which means 
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the existence of leading stocks. We then utilize the network centrality as a portfo-
lio selection metric. Under the mean-variance portfolio framework, we find that the 
portfolios of the peripheral stocks always outperform the portfolios of central stocks. 
Optimal multifractal order with the largest return difference approaching %7 is around 
q  =  2. Then we also employ a modern and coherent risk measure named the expected 
shortfall to test the portfolios constructed with the guidance of the q-PMFG networks. 
The outcome is that the portfolios consisting of those peripheral stocks have the lowest 
risk compared to the portfolios of the central and randomly selected stocks. The opti-
mal multifractal order q ranges from 2–6 under the expected shortfall measure. Those 
results may be used as new portfolio optimization and risk management tools. Thus 
our investigations regarding the cross-correlations among stocks with different magni-
tudes of fluctuations have demonstrated the huge difference between large and small 
fluctuations of the stock market. They are regulated by different non-linear correlation 
structures. Those results expand our understanding regarding the collective behavior 
of the stock market.

Acknowledgments

This work is supported in part by the Programme of Introducing Talents of Discipline 
to Universities under grant NO. B08033 and the program of China Scholarship Council 
(No. 201606770023). This work is also supported by the National Natural Science 
Foundation of China (Grant No. 61773069). The Boston University Center for Polymer 
Studies is supported by NSF Grants PHY-1505000, CMMI-1125290, and CHE-1213217, 
by DTRA Grant HDTRA1-14-1-0017, and by DOE Contract DE-AC07-05Id14517.

ORCID iDs

Longfeng Zhao  https://orcid.org/0000-0002-0642-3798

References

 [1] Plerou V, Gopikrishnan P, Rosenow B, Nunes Amaral L A and Stanley H E 1999 Phys. Rev. Lett. 
83 1471–4

 [2] Laloux L, Cizeau P, Bouchaud J P and Potters M 1999 Phys. Rev. Lett. 83 1467–70
 [3] Kwapień J and Drożdż S 2012 Phys. Rep. 515 115–226
 [4] Peng C K, Buldyrev S V, Havlin S, Simons M, Stanley H E and Goldberger A L 1994 Phys. Rev. E 

49 1685–9
 [5] Podobnik B and Stanley H E 2008 Phys. Rev. Lett. 100 084102
 [6] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin S, Bunde A and Stanley H E 2002 Physica A 

316 87–114
 [7] Zhou W X 2008 Phys. Rev. E 77 066211
 [8] Oświęcimka P, Drożdż S, Forczek M, Jadach S and Kwapień J 2014 Phys. Rev. E 89 023305
 [9] Alvarez-Ramirez J, Rodriguez E and Echeverria J C 2009 Phys. Rev. E 79 057202
 [10] Podobnik B, Jiang Z Q, Zhou W X and Stanley H E 2011 Phys. Rev. E 84 066118
 [11] Stan C, Cristescu M T, Luiza B I and Cristescu C 2013 J. Theor. Biol. 321 54–62
 [12] Rak R, Drożdż S, Kwapień J and Oświęcimka P 2015 Europhys. Lett. 112 48001
 [13] Kristoufek L 2015 Phys. Rev. E 91 022802

https://doi.org/10.1088/1742-5468/aa9db0
https://orcid.org/0000-0002-0642-3798
https://orcid.org/0000-0002-0642-3798
https://doi.org/10.1103/PhysRevLett.83.1471
https://doi.org/10.1103/PhysRevLett.83.1471
https://doi.org/10.1103/PhysRevLett.83.1471
https://doi.org/10.1103/PhysRevLett.83.1467
https://doi.org/10.1103/PhysRevLett.83.1467
https://doi.org/10.1103/PhysRevLett.83.1467
https://doi.org/10.1016/j.physrep.2012.01.007
https://doi.org/10.1016/j.physrep.2012.01.007
https://doi.org/10.1016/j.physrep.2012.01.007
https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1103/PhysRevLett.100.084102
https://doi.org/10.1103/PhysRevLett.100.084102
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1103/PhysRevE.77.066211
https://doi.org/10.1103/PhysRevE.77.066211
https://doi.org/10.1103/PhysRevE.89.023305
https://doi.org/10.1103/PhysRevE.89.023305
https://doi.org/10.1103/PhysRevE.79.057202
https://doi.org/10.1103/PhysRevE.79.057202
https://doi.org/10.1103/PhysRevE.84.066118
https://doi.org/10.1103/PhysRevE.84.066118
https://doi.org/10.1016/j.jtbi.2012.12.027
https://doi.org/10.1016/j.jtbi.2012.12.027
https://doi.org/10.1016/j.jtbi.2012.12.027
https://doi.org/10.1209/0295-5075/112/48001
https://doi.org/10.1209/0295-5075/112/48001
https://doi.org/10.1103/PhysRevE.91.022802
https://doi.org/10.1103/PhysRevE.91.022802


A q-dependent detrended cross-correlation analysis of the stock market

28https://doi.org/10.1088/1742-5468/aa9db0

J. S
tat. M

ech. (2018) 023402

 [14] Oświęcimka P, Livi L and Drożdż S 2016 Phys. Rev. E 94 042307
 [15] Salat H, Murcio R and Arcaute E 2017 Physica A 473 467–87
 [16] Kwapień J, Oświęcimka P, Forczek M and Drożdż S 2017 Phys. Rev. E 95 052313
 [17] Zhao L, Li W, Yang C, Han J, Su Z and Zou Y 2017 PLoS One 12 1–23
 [18] Zebende G 2011 Physica A 390 614–8
 [19] Kristoufek L 2014 Physica A 402 291–8
 [20] Wang G J, Xie C, Chen S, Yang J J and Yang M Y 2013 Physica A 392 3715–30
 [21] Wang G J, Xie C, Chen Y J and Chen S 2013 Entropy 15 1643–62
 [22] Zebende G, da Silva M and Filho A M 2013 Physica A 392 1756–61
 [23] Sun X and Liu Z 2016 Physica A 444 667–79
 [24] Kwapień J, Oświęcimka P and Drożdż S 2015 Phys. Rev. E 92 052815
 [25] Tumminello M, Aste T, Di Matteo T and Mantegna R N 2005 Proc. Natl Acad. Sci. USA 102 10421–6
 [26] Marčenko V A and Pastur L A 1967 Math. USSR-Sb. 1 457
 [27] Gopikrishnan P, Rosenow B, Plerou V and Stanley H E 2001 Phys. Rev. E 64 035106
 [28] Rosenow B, Plerou V, Gopikrishnan P and Stanley H E 2002 Europhys. Lett. 59 500
 [29] Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N, Guhr T and Stanley H E 2002 Phys. Rev. E 

65 066126
 [30] Podobnik B, Wang D, Horvatic D, Grosse I and Stanley H E 2010 Europhys. Lett. 90 68001
 [31] Zhou W X, Mu G H and Kertész J 2012 New J. Phys. 14 093025
 [32] Livan G, Alfarano S and Scalas E 2011 Phys. Rev. E 84 016113
 [33] Fenn D J, Porter M A, Williams S, McDonald M, Johnson N F and Jones N S 2011 Phys. Rev. E 84 026109
 [34] Wang D, Podobnik B, Horvatić D and Stanley H E 2011 Phys. Rev. E 83 046121
 [35] Singh A and Xu D 2016 Quant. Finance 16 69–83
 [36] Bun J, Bouchaud J P and Potters M 2017 Phys. Rep. 666 1–109
 [37] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175–308
 [38] Estrada E 2010 Phys. Rev. E 82 066102
 [39] www.msci.com/gics (Accessed: 11 December 2017)
 [40] Marti G, Nielsen F, Bińkowski M and Donnat P 2017 in preparation (arXiv:1703.00485v2)
 [41] Cai S M, Zhou Y B, Zhou T and Zhou P L 2010 Int. J. Mod. Phys. C 21 433–41
 [42] Gao Y C, Zeng Y and Cai S M 2015 J. Stat. Mech. P03017
 [43] Gan S L and Djauhari M A 2015 J. Stat. Mech. P12005
 [44] Djauhari M A and Gan S L 2016 J. Stat. Mech. 093401
 [45] Song D M, Tumminello M, Zhou W X and Mantegna R N 2011 Phys. Rev. E 84 026108
 [46] Zhao L, Li W and Cai X 2016 Phys. Lett. A 380 654–66
 [47] Markowitz H 1952 J. Finance 7 77–91
 [48] Pozzi F, Di Matteo T and Aste T 2013 Sci. Rep. 3 1665
 [49] Acerbi C and Tasche D 2002 Econ. Notes 31 379–88
 [50] Caccioli F, Still S, Marsili M and Kondor I 2013 Eur. J. Finance 19 554–71
 [51] Caccioli F, Kondor I, Marsili M and Still S 2016 Int. J. Theor. Appl. Finance 19 1650035
 [52] Guhr T and Kälber B 2003 J. Phys. A: Math. Gen. 36 3009
 [53] Schäfer R, Nilsson N F and Guhr T 2010 Quant. Finance 10 107–19

https://doi.org/10.1088/1742-5468/aa9db0
https://doi.org/10.1103/PhysRevE.94.042307
https://doi.org/10.1103/PhysRevE.94.042307
https://doi.org/10.1016/j.physa.2017.01.041
https://doi.org/10.1016/j.physa.2017.01.041
https://doi.org/10.1016/j.physa.2017.01.041
https://doi.org/10.1103/PhysRevE.95.052313
https://doi.org/10.1103/PhysRevE.95.052313
https://doi.org/10.1371/journal.pone.0170467
https://doi.org/10.1371/journal.pone.0170467
https://doi.org/10.1371/journal.pone.0170467
https://doi.org/10.1016/j.physa.2010.10.022
https://doi.org/10.1016/j.physa.2010.10.022
https://doi.org/10.1016/j.physa.2010.10.022
https://doi.org/10.1016/j.physa.2014.01.058
https://doi.org/10.1016/j.physa.2014.01.058
https://doi.org/10.1016/j.physa.2014.01.058
https://doi.org/10.1016/j.physa.2013.04.027
https://doi.org/10.1016/j.physa.2013.04.027
https://doi.org/10.1016/j.physa.2013.04.027
https://doi.org/10.3390/e15051643
https://doi.org/10.3390/e15051643
https://doi.org/10.3390/e15051643
https://doi.org/10.1016/j.physa.2013.01.011
https://doi.org/10.1016/j.physa.2013.01.011
https://doi.org/10.1016/j.physa.2013.01.011
https://doi.org/10.1016/j.physa.2015.10.065
https://doi.org/10.1016/j.physa.2015.10.065
https://doi.org/10.1016/j.physa.2015.10.065
https://doi.org/10.1103/PhysRevE.92.052815
https://doi.org/10.1103/PhysRevE.92.052815
https://doi.org/10.1073/pnas.0500298102
https://doi.org/10.1073/pnas.0500298102
https://doi.org/10.1073/pnas.0500298102
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1103/PhysRevE.64.035106
https://doi.org/10.1103/PhysRevE.64.035106
https://doi.org/10.1209/epl/i2002-00135-4
https://doi.org/10.1209/epl/i2002-00135-4
https://doi.org/10.1103/PhysRevE.65.066126
https://doi.org/10.1103/PhysRevE.65.066126
https://doi.org/10.1209/0295-5075/90/68001
https://doi.org/10.1209/0295-5075/90/68001
https://doi.org/10.1088/1367-2630/14/9/093025
https://doi.org/10.1088/1367-2630/14/9/093025
https://doi.org/10.1103/PhysRevE.84.016113
https://doi.org/10.1103/PhysRevE.84.016113
https://doi.org/10.1103/PhysRevE.84.026109
https://doi.org/10.1103/PhysRevE.84.026109
https://doi.org/10.1103/PhysRevE.83.046121
https://doi.org/10.1103/PhysRevE.83.046121
https://doi.org/10.1080/14697688.2015.1014400
https://doi.org/10.1080/14697688.2015.1014400
https://doi.org/10.1080/14697688.2015.1014400
https://doi.org/10.1016/j.physrep.2016.10.005
https://doi.org/10.1016/j.physrep.2016.10.005
https://doi.org/10.1016/j.physrep.2016.10.005
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1103/PhysRevE.82.066102
https://doi.org/10.1103/PhysRevE.82.066102
http://www.msci.com/gics
http://arxiv.org/abs/1703.00485v2
https://doi.org/10.1142/S0129183110015208
https://doi.org/10.1142/S0129183110015208
https://doi.org/10.1142/S0129183110015208
https://doi.org/10.1088/1742-5468/2015/03/P03017
https://doi.org/10.1088/1742-5468/2015/12/P12005
https://doi.org/10.1088/1742-5468/2016/09/093401
https://doi.org/10.1103/PhysRevE.84.026108
https://doi.org/10.1103/PhysRevE.84.026108
https://doi.org/10.1016/j.physleta.2015.11.015
https://doi.org/10.1016/j.physleta.2015.11.015
https://doi.org/10.1016/j.physleta.2015.11.015
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1038/srep01665
https://doi.org/10.1038/srep01665
https://doi.org/10.1111/1468-0300.00091
https://doi.org/10.1111/1468-0300.00091
https://doi.org/10.1111/1468-0300.00091
https://doi.org/10.1080/1351847X.2011.601661
https://doi.org/10.1080/1351847X.2011.601661
https://doi.org/10.1080/1351847X.2011.601661
https://doi.org/10.1142/S0219024916500357
https://doi.org/10.1142/S0219024916500357
https://doi.org/10.1088/0305-4470/36/12/310
https://doi.org/10.1088/0305-4470/36/12/310
https://doi.org/10.1080/14697680902748498
https://doi.org/10.1080/14697680902748498
https://doi.org/10.1080/14697680902748498

	1. Introduction
	2. Methodology
	2.1. q-dependent cross-correlation analysis
	2.2. Random matrix theory
	2.3. Planar maximally ﬁltered graph

	3. Data and results
	3.1. Data description
	3.2. Cross-correlation matrix analysis
	3.3. PMFG analysis

	4. Application
	4.1. Mean-variance portfolio optimization
	4.2. Expected shortfall approach

	5. Conclusion and discussion
	Acknowledgments
	References


	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿The ﻿q﻿-dependent detrended 
cross-correlation analysis 
of stock market
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Methodology
	﻿﻿2.1. ﻿﻿﻿﻿q﻿-dependent cross-correlation analysis
	﻿﻿2.2. ﻿﻿﻿Random matrix theory
	﻿﻿2.3. ﻿﻿﻿Planar maximally ﬁltered graph

	﻿﻿3. ﻿﻿﻿Data and results
	﻿﻿3.1. ﻿﻿﻿Data description
	﻿﻿3.2. ﻿﻿﻿Cross-correlation matrix analysis
	﻿﻿3.3. ﻿﻿﻿PMFG analysis

	﻿﻿4. ﻿﻿﻿Application
	﻿﻿4.1. ﻿﻿﻿Mean-variance portfolio optimization
	﻿﻿4.2. ﻿﻿﻿Expected shortfall approach

	﻿﻿5. ﻿﻿﻿Conclusion and discussion
	﻿﻿﻿﻿﻿﻿﻿Acknowledgments
	﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


