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Both volume and volatility have the predicting power for the volatility.
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1. Introduction

After recent financial crisis, more and more people are starting to realize that financial market is complex [1,2]
bearing lots of instability and risk as volatility changes widely across time. The core part of this field has been focusing
on the relationship between the price volatility and trading volume. There have been studies reporting that absolute
price change (volatility) and trading volume are positively correlated [3], while others indicate that the correlation is
weak [4] and their analyses of time-lag correlations produce a variety of contradictory results [5-12]. The subtleties of
the relationship between volume and volatility remain unclear [ 13] and disagreement persists. For example, Zhou provides
some evidence supporting the possibility that volume might play a minor role in extreme price fluctuations at transaction
level [14]. Brailsford et al. report a significant cross-correlation between overnight return and trading volume [15]. Brooks
indicates that including lagged volume may lead to modest improvements in forecasting performance [16] while Clark
shows a nearly parabolic functional relationship between volume and volatility [17], and a popular model developed by
Clark holds that volatility could be modeled as a subordinated random process, in which volume, insofar as it affects
trading times, accounts for the majority of observed volatility clustering and leptokurtosis (i.e., heavy tails). On the
other hand, several studies report that volume is only nominally useful in predicting volatility. Koulakiotis et al. report a
negative relationship between volatility and trading volume [18]. Lamoureux and Lastrapes show that ARCH effects tend
to disappear (i.e., volatility persistence is lost) when volume is included in the variance equation [6]. Sharma et al. even
suggest that price returns of the NYSE are best described by the GARCH model in the absence of volume as a mixing
variable [19]. Recently, Gillemot et al. demonstrated that the subordinated random process developed by Clark accounts
for, at most, only a small fraction of observed volatility clustering and leptokurtosis [20].

Besides the statistical and empirical studies, several information-based theories have been developed. Clark [17] first
developed the mixture of distributions hypothesis (MDH). However, different types of traders and the lagged effect
between volume and volatility are not considered in MDH which leads to several new theories including the sequential
arrival of information hypothesis (SAIH) [21], the dispersion of belief hypothesis [22], the noise trader hypothesis [23]
and etc.

There are two key problems to the above studies: one is that they are more focus on the linear relationship
between volume and volatility, lacking of more detailed non-linear relationship despite the heteroskedasticity among the
volatilities; the other is that the empirical studies are not well supported by the theoretical work with gaps remaining
except for the mixture of distributions hypothesis (MDH) developed by Clark [17]. Other notable theoretical information
models including the sequential arrival of information hypothesis (SAIH) [21], the dispersion of belief hypothesis [22]
and the noise trader hypothesis [23], but they are having some contradictory results.In order to clearly uncover the
underlying non-linear relationship between volume and volatility (absolute price change [24]) and the behavior theories
behind, we focus on the most fundamental features of these two quantities, starting by examining the probability
density function (pdf) of each, as well as the linear casual relationship between them. Then we go one step further by
investigating volume-conditional pdf of volatility in our dataset. Based on these elementary analyses, we show that the
pdf for volume-conditional volatility is actually invariant under volume change when the units of volatility are scaled
appropriately. This scaling property is useful because it is in line with a similar scaling law found in other complex
systems, e.g., atmospheric and biological systems [25,26], giving us a better understanding of the underlying dynamics,
which allows us to extrapolate large volume values that correspond to large market fluctuations from fluctuations at small
volume values. Here we propose a new pdf that links volatility and volume, investigate the highest volatility distribution
value in specified volume regimes, and propose the quantity “local maximum volatility” (LMV). We demonstrate that
this quantity is strongly correlated with both the trading volume on a given day and the trading volume on the previous
day compared to the normal volatility we used. Also we have found behavior explanations behind the LMV which is the
overconfidence, which proves to be a perfect representative of market participant’s overreaction on the market fluctuation.
Finally we combine volume and volatility and find that the two taken together can be used as a much improved predictor
of risk.

2. Materials and methods

We analyze the 30 stocks comprising the Dow Jones Industrial Average, using daily values from the 17-year time period
from April 1990 to June 2007, for a total of 130,410 data points. We avoid data after June 2007 due to the potential for high
non-stationarity in the volume time series associated with the world financial crisis, although further analysis indicates
that our results do not change when post-2007 data is included.

For each of the 30 stocks i, we calculate the daily logarithmic change, commonly referred to as the return, of

price p;(t)
Ri(t) = Inpj(t) — Inpi(t — 1), (1)
and also the daily normalized logarithmic trading volume @(t). calculated from the trading volume Q;(t) as

Qi(t) = InQy(t) — Vi, (2)
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Fig. 1. Range of volumes in the dataset, as well as probability density function (pdf). P(g) and conditional pdf P(g|v), demonstrating that all conditional
volatility distributions behave the same in scaled units. (a) Pdf of normalized logarithmic volume v Eq. (4) for the 30 Dow Jones Industrial Average
stocks for the period from April 1990 to June 2007, well fit by a normal curve (solid line). (b) Conditional pdf showing the distribution of volatility
given a specified volume range. Inset: unconditioned pdf of volatility, roughly fit by a power-law distribution. (c) When the curves in (b) are plotted
in scaled parameter of v’, where v’ = v + 4.5, data for all volumes collapse onto the same curve. (d) Same as (b), but shifted horizontally for better
visibility with tails given power-law fits with exponential cut offs described by Egs. (5) and (6).

for a given stock i, where Y; represents a least-squares linear fit of In Q; [27], which removes the global trend over the entire
17-year period. For each different stock, we define the normalized volatility g;(t) and normalized logarithmic volume v;(t)
from the raw returns and raw logarithmic volume by

Ri(t) — (Ri(t))

&i(t) = o (3)

and

v(t) = w, (4)

%4

where (---) denotes a time average over the period studied. Here oz = +/(R?) — (R)? and o5 = (dz) - (Q)2 are the

standard deviations of R(t) and Q(t), respectively. Note that the volatility is expressed in terms of absolute value while
the logarithmic volume can be both positive and negative. In this paper, the volume indicates the normalized logarithmic
volume v;(t), and volatility indicates the normalized volatility gi(t).

3. Results
3.1. Dynamics between volume and volatility

We begin by examining the probability density function (pdf) of the normalized logarithmic trading volume, which
we find in Fig. 1(a) to be in excellent agreement with a unit Gaussian. The normal curve is often a null model for various
econometric quantities. For example, Wang et al. [28] have shown that a normal curve is also a good fit for trading values.
However, the pdf of volatility is widely known to be more leptokurtic (i.e., fat-tailed) than a normal fit, which we show
in the inset picture in Fig. 1(b) as a log-log plot. The solid red line is the pdf of volatility, the tail of which we observe
roughly matches a power-law distribution, as was pointed out in Ref. [29]. The scaling exponents of distributions are
systematically related which was also found in Ref. [30]. We also find the distribution of returns to be leptokurtic as well,
being better fit by a Laplace distribution than a Gaussian, in agreement with work by Podobonik et al. on NYSE stocks [31].

The tendency of trading volume and price change to move together has important implications in the prediction of
financial risk. Recent studies have revealed the long-term cross-correlation of volume changes with price changes [25],
power-law cross-correlations between trading activity and volume traded [32], and also the positive correlation of price
changes with volume [4,33]. As the absolute value of return, volatility should be a better indicator for market fluctuation
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Fig. 2. Fit of the joint distribution of volatility and volume. Using fitted values for «, 8, a, b, we show the contour plot for the probability density
function of Eq. (6) to fit the data seen in Fig. 1(b). We show that either decreasing g (volatility) or increasing v (volume) results in monotonic
increases in the probability density. Higher volatilities are far more localized in their range of volumes than low volatilities, leading to the possibility
that higher volatilities may be predicted from volume.

and so we investigate the pdf of volatility given a specified volume. As shown in Fig. 1(b), the conditional volatility
distributions for various volumes seem very similar, which leads us to search for scaling features that unify these
distributions. We draw inspiration from the work of Yamasaki et al., who analyzed the distribution of return intervals
T between volatilities larger than a specified threshold q [26]. They found that the distributions for different q across
seven stocks and currencies all collapsed to a single curve when plotted in units scaled by the mean return interval,
dependent on q. We investigate here whether a similar scaling parameter exists that could unify these distributions. This
scaling parameter should incorporate volume dependence the same way 7 incorporates q dependence in Yamasaki's work.

Redrawing the conditional volatility distributions using the scale parameter v/, where v/ = v + 4.5, results in all
conditional distributions collapsing onto the same curve, regardless of the value of volume, as shown in Fig. 1(c), meaning
that all conditional volatility distributions are unified, differing only by a factor of the volume chosen, very similar to
Yamasaki's findings on volatility return intervals. We have chosen the offset in a volume of 4.5 to avoid singularities and
unphysical values, since normalized volume as defined in Eq. (4) can be a non-positive quantity.

We next investigate what unified pdf these distributions follow. In Fig. 1(d) the volume-conditional pdfs are offset for
better visibility. We notice that the tails of these distributions are too curved to fit power-laws. After investigating such
distributions as log-normal and stretched exponential, we find the best fit using power-law distributions with exponential
cutoffs. Thus the distribution of volatility given a certain value of volume should be

P(glv) ~ g fe <E. (5)

However, as Fig. 1(c) shows, the above pdf can be scaled in v/(v' = v+4.5), which leads us to add volume as a variable
of the conditional volatility distribution function. Thus we assume & = av + a and ¢ = Sv + b, making Eq. (5)

P(g, v|v) ~ g l@vtae=(vible (6)

Using a maximum likelihood estimation for the data shown in Fig. 1(b), we find « = 0.4, 8 = —1.23, a = 2.5, and
b = 3. We draw a contour plot using these parameters with Eq. (6) in Fig. 2, showing that g (volatility) and v (volume)
increase concurrently given a certain probability density value. Specifically, we note that while low volatilities can occur
over the entire range of volumes fairly regularly, higher volatilities have a strong tendency to occur only with larger
volumes, meaning that high volatilities may be predictable from volume, although low volatilities cannot.

3.2. Local maximum volatility (LMV) and correlation with volume

As a consequence, we restrict our analysis to the days comprising the largest portion of volatilities—which is
appropriate, given that days of high volatility are the ones of greatest interest to traders and market researchers. To
do this we introduce the quantity “local maximum volatility” (LMV), which, because it is closely related both to a given
day’s volume and the volume of previous days, allows the possibility of making predictive statements.

We define the LMV parameter, denoted by gy, by partitioning the values of observed trading volumes into bins
uq, Uz, Us, ..., Up. Then

2, = max({g )Vt | v € u;. )
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Fig. 3. While volatility is not highly correlated to volume, LMV is highly correlated to both today’s volume and to yesterday’s volume (linear fits
for LMV shown). LMV days occur throughout the period which we study. Shown is a scatter plot of volatility vs. volume for the example of The
Boeing Company (BA): (a) Volatility g(t) vs. normalized logarithmic volume v(t), (b) volatility g(t) vs. normalized logarithmic volume the day before,
v(t — 1). The red solid triangles depict the largest values in each bin of g (from —3 to 3 we delineate 30 bins evenly). po is the correlation coefficient
between logarithmic volume and LMV (Eq. (7)), while p represents correlation coefficient between logarithmic volume and volatility. The volatility
time series and LMV (red triangle) are shown for LMV based on (c) concurrent volume and (d) previous day’s volume.

LMV is the maximum volatility observed in a given range of trading volumes, i.e., the volatility of the most volatile
day a given trading volume has co-occurred with. Although correlation between volatility and logarithmic volume is
weak, we find that, in general, LMV and logarithmic volume are highly correlated. We demonstrate this in Fig. 3(a) using
the example of the Boeing Company (BA). For BA, we observe that while the correlation coefficient between same-day
volume and volatility is only 0.5, the correlation coefficient between volume and LMV is 0.93. We further investigate the
correlation between volatility and volume using the scatter plot of volatility against volume in Fig. 3. A characteristic
triangular shape can be seen in both the scatter plot of (a) volatility vs. the same-day volume and (b) volatility vs. the
previous day’s volume. The volume ranges used to define LMV are delimited by defined bins as is shown in Fig. 1(a) (30
bins evenly divided from —3 to 3). As defined in Eq. (7), we use the highest volatility in each given bin. In both cases, the
maximum volatility matching a given volume is shown in red triangles and a linear regression fit is shown in solid black,
visually confirming the calculated correlation. Because it is possible that the volatilities used in LMV could originate in a
narrow, unusually volatile time window (e.g., one week), and thus be giving spurious results, we investigate the timing
of the high volatility days used. Figs. 3(c) and 3(d) show that these high volatility days do indeed occur throughout the
span of the time period under consideration, which ensures the universal representativeness of LMV.

We now generalize the analysis shown in Fig. 3 for same-day and one-day offsets to variable time offsets up to 16
days. Our results are shown in Fig. 4. In the figure, we show the mean correlation coefficient against time-lag for the 30
DJIA stocks. The figure shows that while the correlation between volume and volatility quickly drops to zero for almost
any nonzero time-lag, the correlation between volume and LMV retains significant value (*0.4) at a one-day lag and
remains noticeable (*0.2) even with a 4-day time-lag, indicating significant potential for predicting days of potential
largest volatility, and therefore largest risk, which is extremely important in protecting investments during a financial
crisis [34].

3.3. Predicting power of volume and volatility

The fact that the possible volatility is closely tied to the same-day trading volume is intuitive, as the extent to which
the price can change is a function of quantity of trading that has transpired in a given day. The connection between
volume and future volatility is more interesting. Because volatility is already widely known to correlate with its own
values in the immediate future, this result may seem trivial. We later present evidence (see Fig. 5) that our findings go
beyond this obvious result, that the inclusion of volume really does add non-redundant information into the prediction
scheme. Additionally, as has been shown by Gillemot et al. the tendency for volatility to cluster is not a simple volume
effect resulting from reductions in average trading time [20].
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Fig. 4. There is a weak correlation between volatility and volume (red squares), though this effect quickly drops off with time lag. LMV has a
stronger correlation with volume (black circles) throughout the range of time lags. Shown is the mean correlation coefficient vs. time lag for the 30
DJIA stocks. The error bars depict + standard deviation. Note that the mean correlation coefficients for time-lag = 0 days, 1 day are very similar to
those found in Fig. 4, which depicts results for only The Boeing Company (BA).

Fig. 5(a) and (b) show the conditional distribution of P(v(t)|go(t + 1)) and P(g(t)|go(t + 1)). Here go(t + 1) represents
the subset that contains the highest 1% or lowest 1% of volatilities. Fig. 5(a)shows the quintile distribution of the volume
today, given a specified volatility tomorrow while Fig. 5(b) shows the volatility today, given a specified volatility tomorrow.
In the absence of memory effects, Figs. 5(a) and 5(b) would be completely flat distributions, in both highest and lowest
volatility cases. Instead we clearly see memory effect in highest cases. 20% of volumes account for roughly 40% of the days
preceding the highest (top 1%) volatilities. This effect is monotone across the quintiles and the most extreme example
of underrepresentation being that the lowest 20% of volumes account for approximately 10% of the highest volatilities.
For the lowest 1% of volatilities we find no such effect. The distribution of days preceding low volatility is statistically
the same as a flat distribution across volume. That low volatility days do not have a statistically different distribution
in volumes agrees with earlier observations seen in Fig. 2 that low volatilities have a broad range across volumes, and
hence are not predictable from volumes. We observe similar results when considering the distribution a day’s volatility,
knowing that the next day will have a particular high or particularly low volatility. Again, days prior to high volatility are
overrepresented in the highest quintile of volatility, but days prior to low volatility have a distribution that is essentially
flat across quintiles in volatility.

In summary, Fig. 5(a) and (b) show not only that high volatility tends to follow high volatility, but also high volatility
tends to follow high volume. No such significant effects can be observed for low volatility.

Extending this analysis, we include both volume and volatility in order to better predict next-day volatility. Fig. 5(c)
and (d) give P(g(t + 1) = A|v,(t), g,(t)), the distribution of the days preceding the highest or lowest 1% of volatilities
according to preceding volatilities and volumes broken up into quintiles (n = 1...5). The probabilities are given in
units of P(g(t + 1) = A), the unconditioned probability of a defined volatility (top or bottom 1%) day, which is equal
to 1%. Fig. 5(c) and (d) therefore divide the 1304 data points (1% of all data points) into 5 x 5 = 25 equal-sized sets of
approximately 52 points each. Fig. 5(c) shows the relative probability of that one particular set of data points to precede
a high volatility day with probability proportional to circle radius. Essentially, Fig. 5(c) and (d) are heat maps with bubble
size being used in lieu of color intensity.

Were there no next-day memory effect, all bubbles would be of equal size. However, in Fig. 5(d) we find that the
joint conditional probability for the top quintiles P[g(t + 1) = p|vs(t), g5(t)] is approximately three times the size of
the unconditioned probability P(g(t 4+ 1) = A), indicating that days with the top quintiles of both volatility and volume
are overrepresented in the days preceding high volatility by a factor of three. In contrast, the probability for the bottom
quintiles P[g(t + 1) = p|v1(t), g1(t)] is only half that of the unconditioned probability, meaning that days with the bottom
quintiles in both volatility and volume are underrepresented in the days preceding high volatility by a factor of two.
We compare this to the results yielded from the investigation in Fig. 5(a) and (b), where the greatest overrepresentation
by quintile is approximately only a factor of two. This indicates that the volume and volatility combined are a more
powerful predictor of upcoming high volatility than either volume or volatility alone. The variation of results by both
row and column also indicates that there is information potentially important for volatility prediction embedded into
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both quantities. We confirm this by applying a simple multiregression model predicting next-day volatility from either
volatility alone or volatility and volume together. We find an average 6% increase in the R? value when volume is included.

By contrast, Fig. 5(c) shows the distribution by quintile of volume and volatility for days preceding the very lowest
volatility days. The variation in bubble size is considerably reduced compared to that of Fig. 5(d), showing that days
preceding low volatility are far more evenly distributed in volatility and volume. Additionally, there are no clear
pronounced trends across row or column that would indicate a clear effect of either volume or volatility on the next
day’s volatility value.

Discussion and conclusion

In this paper, we have examined the relationship between trading volume, volatility, and LMV and have uncovered the
scaling laws and memory effect between them. We have combined volume and volatility and found that while the same-
day correlation between the logarithmic volume and volatility is fairly weak, the same day and time-lagged correlation
between logarithmic volume and a quantity we introduce as “local maximum volatility” (LMV) are both very strong. This
finding may help explain the inconsistency between investors intuition about market stability during high volume days
and the empirical fact that the relationship is not strong. Although it is essential that a trader understands the effects
of trading volume, the weak correlation coefficient (*0.2) is unable to explain the importance of trading volume. While
humans often interpret correlations to be stronger than they are (i.e., illusory correlation [35]), in the case of volume-
volatility correlations there are obvious mechanisms indicating their reality. Thus, we further investigate and find out that
through the strong correlation between volume and LMV, a trader’s interpretation may be justified. We believe LMV to be
a more accurate representation of an investor’s memory than the actual volatilities themselves. The cognitive bias in which
humans disproportionately focus their attention on negative experiences and threats over positive experiences and aid
is well-documented in cognitive psychology and termed the “negativity bias” [36], summarized by Baumeister et al. [37]
as “bad is stronger than good”. The manifestation of negativity bias in trading in the form of volatility asymmetry -
wherein negative price changes cause a market to become more volatile than positive price changes - has been observed
in many different countries [38-42]. Thus our findings using LMV match the behavior of investors because LMV is a
more important quantity when it comes to human perception. An investor may thus be justified in having an negative
attentional bias because (s)he does not know the next-day volatility level in advance and must treat the “risk of risk”
as the relevant quantity. Our findings also indicate that high volatility tends to follow high trading volume, although
low volatility is largely unaffected by volume. Because we observe that high volatility strongly affects trading volume,
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we posit that volume can be used to predict future highest volatility. Based on the new dynamics we provided and the
empirical analysis, we find the good use of volume in predicting near-future high volatility. Our analysis shows that using
both volume and volatility in the prediction is better than using either of them alone. Further, we have introduced the
functional form that gives the tail of the volume-conditional volatility distribution and shown that the distribution is
unified across wide ranges of volumes when viewed in scaled units making the abscissa the volatility divided by the
volume. Thus, we are able to explain not only why high volatility tends to occur with large volume, but also to what
extent the latter effects the former.
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