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Abstract

This paper proposes a Hankel matrix-based statistical study to calculate the final synchronization state
of the entire network via local observation of just a single node for a time period significantly shorter
than the synchronization process. It surfaces that synchronization can be achieved more quickly than
the routine rhythm for networks no matter with linear or nonlinear dynamics. This finding refines our
understanding of the abundant ultrafast synchronization phenomena observed in nature, which
enables the efficient design of self-aligned robots as well.

1. Introduction

Synchronization is ubiquitous in nature [ 1, 2], man-made systems [3] and human behaviors [4]. Understanding
synchronizing processes and regulating synchronizability have already benefited both biological and
engineering systems [5], including foraging [6], predator avoidance [7], migration [8], collective control of
unmanned air vehicles [9], and the self-organized formation of multi-robot systems [ 10]. Synchronization
phenomena and such closely related concepts as collective motion and consensus have already attracted more
and more attentions in many branches of science [11, 12].

Many mechanisms have been proposed to explain synchronization phenomena [12]. The best known is the
neighborhood coordination mechanism [13] in which the activity of each individual is affected by their nearest
neighbors. The neighbors of an individual are defined to be (i) those inside a ball-shaped vision range of a fixed
radius [13, 14], (ii) those directly connected in a network [15, 16], or (iii) those, limited in number, that are
closest [17]. A ‘hierarchical leadership model’ was proposed [ 18] to explain the flock of pigeons, where each
pigeon follows its leader and is in turn followed by other pigeons, resulting in a hierarchical leader-follower
network.

Empirical studies have found that synchronization emerges quickly in real-world ecological and biological
systems [19-21]. In contrast, the synchronization produced by the neighborhood coordination mechanism is
gradual. Although many methods have been proposed to speed up the synchronizing process [22—24], the
neighborhood coordination mechanism cannot achieve extremely rapid synchronization or coordination as
observed in real-world systems. The hierarchical leadership model has not been validated in large-scale systems
[25]. Two candidate mechanisms, information propagation [21, 26] and predictive protocol [27-30], have been
proposed to explain ultrafast synchronization. The former argues that direction change information can quickly
propagate throughout the flock without attenuation, and the latter shows that an individual, such as abird or a
fish, is able to predict the near-future moving trajectories of neighbors, and thus is more able to anticipate
collective motion. Understanding ultrafast synchronization is still an open challenge, because these two
proposed mechanisms need further experimental validation. In addition, it is probable that the observed
phenomena are the result of the integrated effects of multiple mechanisms.
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We here implement a statistical analysis using Hankel matrix-based prediction method [30], for reaching
ultrafast network synchronization, where the Hankel matrix is constructed only from the finite-time and local
history of the networked system. In connected networks, we find that the record of the past states of the observed
node can be used to achieve ultrafast synchronization. Monitoring additional nodes in the neighborhood of the
initial node further accelerates the synchronization. We demonstrate the ultrafast synchronizing speed of this
mechanism using simulations of representative network models and of a variety of real networks, no matter with
linear or nonlinear dynamics.

2. Methods and results

For simplicity, we take an N-node general directed network with linear dynamics for example. When there is an
edge from node jtonode i,a; = 1intheadjacency matrix A. Otherwise, a;; = 0. The state x; of an arbitrary
node ifollows a discrete-time linear dynamics
N
xi(t+ 1) = xi(t) + €y aglx;(t) — xi(0)], (1
j=1
where € is the sampling period, which is small enough (¢ < 1/d . and dpy,., is the maximal out-degree) to
guarantee convergence [31]. Then the dynamics of the entire network is

x(t + 1) = Px(t), 2)
where x = (x;, %, -, x5) >, P = I — e(D — A), I isthe unit matrix, and D = diag{1".4} with 1 being an
N-dimensional all-1 vector. As a simple fact, the state x(f) asymptotically converges to the final value
x(00) = px(0)1ifthe spectral radius of Pis no greater than 1. Here 1 is the left eigenvector of P corresponding
to eigenvalue 1, which also satisfies the normalization condition 11 = 1. Specifically, for undirected networks or
balanced directed networks (i.e. > i = 2 dji for every node i), x(c0) = %Zi 1%i(0)1. An essential problem
naturally emerges: how to predict the future dynamics of the entire network without the global knowledge of P
or x(0), but just by observing the state of a single node?

To this end, we designate node i to be the one from which we gather time-sequential information about itself
and its # neighboring nodes iy, - -, i (‘monitored nodes’) as y. = (x;, x;, -+, X; /)T. We define an output matrix
C; € RZ*D*N in which column i in the first row and columns i;in (j + 1)throwsare 1 (j = 1,2,--,1). All
other elements are 0. Thus

(1) = (i), xi, (1), -+ xi, (D) = Cix(2). (3)
We designate D; to be the smallest integer that satisfies condition C,(P) = 0, where g;(-) isa monic polynomial
with degree D; + 1,and g,(z) = Z?j)l agl)zj with ag’), j = 0, -, D;being free parameters and 04%2 =1L
Since y,(t + j) = Cix(t + j) = CiPx(t), for any time t we have
D+l
> oyt + j) = Cig,(P)x(t) = 0. )
=0

Noting the Z-transform Y;(z) = Z(y.(t)), from equation (4) and the time-shift property of the Z-transform
we have

D+l (j-1 ‘
) aﬁ’)( yi(’ﬂth)
0

Vi) = L 2 1@ ©)
qi(z) q; (2)
According to the definition of Pin (2), the only unstable root of g,(z) is the one at 1. We then define
i(Z) D; :
pi(2) = : =2 Bz, ©)
z—1 5
which immediately leads to that
D D .
DB+ + 1) =yt + ) =) BiCi(P — DPix(t) = 0. (7)
j=0 j=0

Using the final value theorem in (6) and some simple algebra we find the consensus value ¢1

HO) 9B
p(y 18’
where y;_ = [500) »Q) ... y(D)land B(p1)x1is the vector of coefficients of pi(2).

¢1 =lim(z — DYi(z) = (¥
z—1
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We denote the Hankel matrix [32, 30]

F{)/,»(O), 71, y([;i ” +k— 1)}

y:(0) y:(1) y:(k)
y:(1) 7:(2) yi(k+1)

(-] o)

Node ithen stores y;(f) (t = 0, 1, ...) in its own memory and recursively builds up the Hankel matrix Hil,(t” as

ko _ - ([t ~ ([k+1 -
Hlfr{yi(n 50), %(2) %(1),...,%([f+1]+k) %([£+1]+k 1)} )

where [x]is the nearest integer not less than x, and H}, always has more rows than columns. Node i then

calculates the rank of Hi’ff and increases the dimension k until H,-]ff loses column rank and stores the first
defective Hankel matrix H,%,. Here K is a good estimation of D;. Node i then calculates the normalized kernel

8 = (Bo->Bx_1 1N of Hff, ie. Hi{; 0 = 0according to equation (7). Once (s obtained and combined with
the previously memorized [3.(0) (1) ... »(K)],nodeican usethe final value theorem in equation (8) and
calculate the final global synchronized value

_ 3@ 3@ .y KI8T

P1 ]

B, (10)

within N; » = [%—I + K iteration steps, which is defined as the minimal memory length (MML). Here,

¢ = 1x(0). All nodes then propel themselves toward the calculated destination ¢. Given the observed node i and
its £ monitored nodes, the synchronizing time of the method can thus be quantified using N; ». In fact, this
synchronizing time N; » denotes the minimal necessary recording length of the historical trajectory of the
observed node i and the # monitored nodes. To quantify the synchronization speed of the routine process, we
directly simulate the dynamics (1) and define the minimal convergence steps (MCS) M as when the state
difference of all node pairs, e.g. 3, j|x,- — xj|, drops below a small threshold 6 (here we set 6 = 107°). The
smaller the value of M, the more rapid the synchronization. The convergence of Hankel matrix-based iterations
can be refereed to [30]. Once one node has achieved the final consensus value, it will simultaneously send the
final synchronization value to all the other nodes of the network.

We first consider the Erdos—Rényi (ER) [33], the Barabdsi—Albert (BA) [34], and the Watts—Strogatz (WS)
[35] models. In an ER network, node pairs are connected with a probability p. Initially a BA network is a small
clique of m nodes, and at each time step a single node is added with m edges connecting to existing nodes. The
probability of selecting an existing node is proportional to its degree. WS network is an one-dimensional lattice
in which each node connects to zneighbors, and each edge has a constant probability p of being rewired. The
average degree of an BA network is approximately 21, and the average degree of an WS network is z. We
generate S = 100 networks of size N = 100 for each network model. In each network, we independently pick up
an observed node i and its # neighbors for R = 100 times. To compare the local observation scheme and the
existing synchronization method (1), we define the average minimal memory length (AMML) and the average
minimal convergence steps (AMCS) for these S networks as Ny = %mzf: 1Z§:1 Nl] sand M = éZ?Z M,
respectively. Here, Nl] »and M;are the MML and MCS of the jth network (j = 1,2, ---, S) with associate output
matrix C; (i = 1,2, ..., R), respectively. As shown in table 1, even when # = 0, namely we know only the record
of the observed node, the synchronization speed of this method is much faster than the routine process, as
indicated by how much smaller the value of Ny is than M . In addition, Ny decreases when # increases,
suggesting that the synchronization can be further accelerated by including the monitored nodes.

Significantly, the state of a node is directly affected by its neighbors, the state of the neighbors are in turn
affected by their neighbors, and so on. Accordingly, the average number of steps required for the influence from
arandomly selected node to reach another randomly selected node is equal to the average distance (d). Thus the
synchronization time is strongly dependent on (d). Figure 1 shows the relationship between the synchronization
time and (d) in both our method and the routine process. The synchronization time M required by routine
method is much longer than Ny even when # = 0, and relationships (M, (d))and (Ny, {d)) both
approximately fit a linear function, but the increasing rate of M is much larger than that of Ny. We thus expect
that in networks with alarger (d) the advantage enjoyed by N, will become even more significant.

We next consider a significant extension towards nonlinear dynamics. Take the prestigious Kuramoto
model [36] as example, for anynodei(i = 1,2, ---,N)
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Table 1. AMML and AMCS of S = 100 ER, BA and WS networks with size
N = 100. The initial state of each node is randomly selected in the range [ — 2, 2].
The rewiring probability of WS networks is setas p = 0.1.

AMML AMML AMML AMML AMCS
(=0 =1 (=2 =4

ER(p = 0.1) 52.34 44.63 35.80 33.85 281.51

ER(p = 0.2) 18.92 11.14 10.21 9.29 74.61

BA(m = 3) 77.17 67.22 62.86 63.92 507.39

BA(m = 5) 44.49 26.18 23.73 22.79 233.22

WS(z = 6) 78.22 69.34 62.93 46.78 582.31

WS(z = 10) 37.83 19.86 16.54 13.98 233.20
1000

500

1500

1000

500

1000

500

Figure 1. The synchronization time, M and Ny, versus the average distance (d) for ER (a), BA (b) and WS (c) networks. The initial
state of each node in these S = 100 ER, BA and WS networks is randomly selected in the range [—2, 2] and set as fixed. The average

distance of a directed network with N nodes is defined as (d) = mzixjd (1, j), where d(3, j) is the distance from node 7 to node j.

If the network is not strongly connected, (d) = co. The black lines represent the linear fitting by the least squares estimation. The
network size is setas N = 100, and the rewiring probability is setas p = 0.1 for WS networks.

K

> b

i

0;(t +1)=0;(t) + e|w; + b,‘]‘ sin(9j(t) —6;@) |, (11)
j

where j runs over all 7’s neighbors. The system is composed of N oscillators, with phases 8, natural frequencies
w;, coupling K, sampling period € = 1/N, and edge betweenness b;;[37]. It is observed that the errors of the
proposed Hankel matrix-based prediction method keep less than 0.015 (see figure 2) and quickly settles down to
almost zero. The AMML N are also approximately proportional to the average distances (see figure 3). This
result is consistent to the linear case (see figure 1), suggesting the generality of the proposed prediction method.

We further test the validity of our algorithm for ten disparate real-world networks (using equation (1) as
example dynamics), with the last two are directed. (i) Karate—a friendship network consisting of 34 members of
akarate club [38]. (ii) Power—a US electric power grid built in the early 1960s [39]. (iii) Dolphin—a social
contact network among 62 bottlenose dolphins in a community at Doubtful Sound, New Zealand [40]. (iv)
Lesmis—the network of fictional characters in Victor Hugo’s novel Les Miserables, where each edge denotes the
co-appearance of the two corresponding characters [41]. (v) Polbooks—the network of books about recent US
politics in Amazon.com, where edges represent co-purchasing relations [42]. (vi) Football—the network of
American football games between Division IA colleges during the regular season in Fall 2000, where each node
represents a team and two teams are connected if they have regular seasonal games [43]. (vil) FFHI—the face-to-
face human interaction network in a school [44]. (viii) Corporate—an European corporate community in which
nodes represent firms and two firms are connected if they share at least one manager or director [45]. (ix) Bison
—the dominance relationships among American bisosn in 1972 on the National Bison Range in Moiese,

4
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Figure 2. Temporal evolution of (a) 6,(t) and (b) prediction errors e(t) = 6;(¢) — 0;(¢) for ER networks with link probability
p = 0.15. The parametersare N = 100,K = 50,¢ = 1/N, w; = % and 6,(0) randomly selected from [

T T
50" 50 1"

Figure 3. Nj versus (d) for (a) ER, (b) BA and (c) WS networks for dynamics in equation (11). Here, the initial state values 6,0), i = 1,
2,..., S, are the same as in the simulation for figure 2,and N, = ﬁzi 1Z§:1 N/, The black lines represent the linear fitting by the
least squares estimation. The rewiring probability for WS networks is p = 0.1 and other parameters are the same as figure 2.

Montana, where each node denotes a bison and each directed edge represents the dominance relationship [46].
(x) Highschool—the network of friendships among boys in a high school in Illinois, where a directed link from ¢
tojmeans i identifies j as his friend [46]. Table 2 provides the structural statistics and synchronization time of the
ten real-world networks. When we compare the last two columns, it is observed that the present method
produces much faster synchronization. In most cases our method is ten times faster than the routine procedure
even without monitored nodes. Figure 4 shows that despite some oscillations, the synchronization time Ny
further decreases as £ increases, indicating additional benefit when monitored nodes are introduced. The
oscillations in figure 4 lie in the specific topology of each real network. Similar to artificial network models, as
shown in figure 5, both N and M increase with (d) for real-world networks. Figure 5 further shows linear
fittings for visual guidance, where it is clear that the increasing rate of M is much larger than Nj. Thus extensive
experimental analyses of disparate real-world networks once again demonstrate the results obtained from
network models, i.e. (i) our method speeds up synchronization, (ii) monitoring more neighbors further
accelerates synchronization, and (iii) the synchronization time is positively correlated with (d), while the present
method grows much more slowly. Note that we do NOT need a CPU for each node, but a programmable chip
with limited functions like information storage, and neighboring communication. Besides, a useful monitored




10P Publishing

New J. Phys. 21 (2019) 013040

H-T Zhanget al

Table 2. Topological features and synchronization time for the 10 real networks
under consideration. N, E, (k)and (d) represent the number of nodes, the number
of edges, the average degree and the average distance, respectively. The former 8
networks are undirected while the last two are directed. As clearly observed from this
table, AMML Nj is much smaller than M (the MCS of the real network), indicating
the advantage of the present Hankel matrix-based prediction method.

NoE () @ N M
Karate 34 78 4.588 2.408 55.93 501
Power 57 78 2.737 4.954 214.04 4247
Dolphin 62 159 5.129 3.357 133.61 1595
Lesmis 77 254 6.597 2.641 103.33 2328
Polbooks 105 441 8.4 3.079 130.94 2285
Football 115 613 10.661 2.508 57.04 527
FFHI 180 2239 24.667 2.148 49.68 621
Corporate 197 801 8.132 2.106 160.36 3712
Bison 26 314 12.0769 1.571 18.92 161
Highschool 70 366 5.229 00 157 768
Power Karate
T 60 .
- 100 ‘ g 50
ST 40
50
0 5 10 0 5 10
Dolphin Lesmis
200 : 200 .
< ~
|g 100 f |Z 100
0 - 0 -
0 5 10 0 5 10
Polbooks Football
200 . 60, .
S
= 100 |= 40
0 20 :
0 5 10 0 5 10
FFHI Corporate
50 T 200 :
X = o
|= 40} |= 100
30 0
0 5 10 5 10
Bison Highschool
19, T 160 :
> ~
= 18 = 140
17
: 120 .
0 5 10 0 5 10
l /
Figure 4. AMML versus the number of monitored neighbors # for the 10 real networks. Here, AMML is defined as Ny = %ZL Niss
where N; / is the MML of the real network with associate output matrix C; (i = 1,2, ..., R). Given £, we only select those nodes with
degree no less than # as observed nodes to implement the simulation and then get average MML over these nodes. Since the maximal
degree of power is 7, the corresponding maximal £ in the first plot is 7 as well.

node selection technique is picking out the ones with short average distances to all the other nodes, like the
central node of a star-shaped graph. This will reduce the broadcasting time from them to the monitored nodes.

7 . . . A
The y-axis units of figures 1 and 3 are the same, which are set as one step (or one epoch). Hence, synchronization
time = epochs X sampling period, and the synchronization times of the present and previous methods are comparable by assuming

identical sampling period.




10P Publishing

New J. Phys. 21 (2019) 013040 H-T Zhanget al

Real networks

5000 — ‘ ‘ ’
® M o N, e
P0\‘ver
4000+ Corporate |
® Approxi. M /,"
Nt
3000r . |
= Lesmis  Polbooks _.-

] o o

o Dolphin ]
It [ ]

1000 p - o |

. FEHI Football Approxi. Ny
’,rBﬁlson K&Fate y
O—’--—a’n——--r%--nnﬂ---;ﬂ--ﬂ ------ Soneeee- a---
1 2 3 (a) 4 5 6

Figure 5. The synchronization time, M and Ny, versus the average distance (d) for the 9 real networks except highschool whose
average distance is infinite. The red circles and blue squares denote the synchronization times by the routine procedure and the
present method, respectively. The red and blue lines represent the linear fittings for data points by the least squares estimation.

3. Conclusions

In summary, we have found a mechanism that leads to the ultrafast synchronization while only requires the
historical dynamical trajectory of the observed node. In a networked dynamical system, the state of a node is
directly affected by its neighbors, who are directly affected by their neighbors, and so on. Thus the state of anode
will affect and be affected by all other nodes after a sufficiently long period of time. Our major contribution here
is successfully realizing this theoretical possibility by applying Hankel matrix analysis. The different choices of
the observed and monitored nodes will affect the synchronization speed. An intuitive idea is to select the node
with the largest centrality as the observed node since it usually locates in the central position with shorter average
distance to others [47]. The design of efficient algorithms to accurately locate the optimal observed node will be
our future work.

Compared to the information propagation [21, 26] and predictive protocol [27-29], the present mechanism
requires little intelligence from most individuals but a higher level of intelligence from the observed node. This
includes both the memory to store the historical dynamical trajectory and the ability to analyze this trajectory. In
abiological system, it is unlikely that a leader would use a Hankel matrix-based method to figure out the future
travel direction to lead the flock. Instead, we believe that this mechanism will have significant applications in
engineering systems. A group with one super leader is unlikely in the biological world but easy to be designed and
implemented in artificial systems. A distributed sensor network in which each sensor communicates and
interacts with its neighbors must be able to align and move together in such scenarios as field investigation or
battleground detection. Our proposed mechanism does not require a large number of low-intelligence sensors
but only one sensor with moderate memory and computational capacity. Modern information technology (in
particular, the rapid development of intelligent hardware) allows us to produce a smart sensor with a sufficiently
long memory and the ability to analyze the Hankel matrix. Thus this smart sensor could predict the future global
state of networked dynamics and shape the consensus of the entire sensor group.
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