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In interdependent networks, it is usually assumed, based on per-
colation theory, that nodes become nonfunctional if they lose
connection to the network giant component. However, in reality,
some nodes, equipped with alternative resources, together with
their connected neighbors can still be functioning after discon-
nected from the giant component. Here, we propose and study
a generalized percolation model that introduces a fraction of
reinforced nodes in the interdependent networks that can func-
tion and support their neighborhood. We analyze, both analyt-
ically and via simulations, the order parameter—the functioning
component—comprising both the giant component and smaller
components that include at least one reinforced node. Remark-
ably, it is found that, for interdependent networks, we need to
reinforce only a small fraction of nodes to prevent abrupt catas-
trophic collapses. Moreover, we find that the universal upper
bound of this fraction is 0.1756 for two interdependent Erdős–
Rényi (ER) networks: regular random (RR) networks and scale-free
(SF) networks with large average degrees. We also generalize our
theory to interdependent networks of networks (NONs). These
findings might yield insight for designing resilient interdependent
infrastructure networks.
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Complex networks often interact and depend on each other
to function properly (1–8). Because of interdependencies,

these interacting networks may easily suffer abrupt failures and
face catastrophic consequences, such as the blackouts of Italy in
2003 and North America in 2008 (3, 4, 6). Thus, a major open
challenge arises as how to tackle the vulnerability of interdepen-
dent networks. Virtually, many existing theories on the resilience
of interacting networks have centered on the formation of the
largest cluster (called the giant component) (4, 6, 9–15) and
consider only the nodes in the giant component as functional,
because all of the small clusters do not have a connection to the
majority of nodes, which are in the giant component.

However, in many realistic networks, in case of network com-
ponent failures, some nodes (which we call here reinforced
nodes) and even clusters containing reinforced nodes outside of
the giant component can resort to contingency mechanisms or
backup facilities to keep themselves functioning normally (16–
18). For example, small neighborhoods in a city, when facing a
sudden power outage, could use alternative facilities to sustain
themselves. Consider also the case where some important inter-
net ports, after their fiber links are cutoff from the giant compo-
nent, could use satellites (19) or high-altitude platforms (20) to
exchange vital information. These possibilities strongly motivate
us to generalize the percolation theory (9, 21) to include a frac-
tion of reinforced nodes that are capable of securing the func-
tioning of the finite clusters in which they are located. We apply
this framework to study a system of interdependent networks and
find that a small fraction of reinforced nodes can avoid the catas-
trophic abrupt collapse.

In this paper, we develop a mathematical framework based
on percolation (4, 6, 12, 13, 22) for studying interdependent

networks with reinforced nodes and find exact solutions to
the minimal fraction of reinforced nodes needed to eradi-
cate catastrophic collapses. In particular, we apply our frame-
work to study and compare three types of random networks:
(i) Erdős–Rényi (ER) networks with a Poisson degree distri-
bution [P(k)= e

�hkihkik/k !] (23), (ii) scale-free (SF) networks
with a power law degree distribution [P(k)⇠ k

��] (24), and
(iii) regular random (RR) networks with a Kronecker delta
degree distribution [P(k)= �k,k0 ]. Here, k stands for the num-
ber of connections of a single node. We find the universal upper
bound for this minimal fraction to be 0.1756 for two interdepen-
dent ER networks with any average degree and SF and RR net-
works with a large average degree.

Model
Formally, for simplicity and without loss of generality, our model
consists of two networks, A and B , with N nodes in each net-
work (Fig. 1). Within network A, the nodes are randomly con-
nected by A links with degree distribution PA(k), whereas in
network B , the nodes are randomly connected by B links with
degree distribution PB (k). In addition, a fraction qA of nodes in
A is randomly dependent (through dependency links) on nodes
in network B , and a fraction qB of nodes in network B is ran-
domly dependent on nodes in network A (25). We also assume
that a node from one network depends on no more than one
node from the other network, and if a node i in network A is
dependent on a node j in network B and j depends on a node l

in network A, then l = i [a no-feedback condition (4, 6, 26, 27)].
We denote ⇢A and ⇢B as the fractions of nodes that are randomly
chosen as reinforced nodes in network A and network B , respec-
tively. In each network, together with the giant component,

Significance

Percolation theory assumes that only the largest connected
component is functional. However, in reality, some compo-
nents that are not connected to the largest component can
also function. Here, we generalize the percolation theory by
assuming a fraction of reinforced nodes that can function and
support their components, although they are disconnected
from the largest connected component. We find that the rein-
forced nodes reduce significantly the cascading failures in
interdependent networks system. Moreover, including a small
critical fraction of reinforced nodes can avoid abrupt catas-
trophic failures in such systems.

Author contributions: X.Y., Y.H., and S.H. designed research; X.Y. and Y.H. performed
research; S.H. contributed new reagents/analytic tools; X.Y., H.E.S., and S.H. analyzed
data; and X.Y., Y.H., H.E.S., and S.H. wrote the paper.

Reviewers: A.C., University of Naples; and M.F.S., Office of Naval Research.

The authors declare no conflict of interest.
1To whom correspondence may be addressed. Email: hes@bu.edu or yanqing.hu.sc@
gmail.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1621369114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1621369114 PNAS | March 28, 2017 | vol. 114 | no. 13 | 3311–3315

mailto:hes@bu.edu
mailto:yanqing.hu.sc@gmail.com
mailto:yanqing.hu.sc@gmail.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621369114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621369114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1621369114
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1621369114&domain=pdf


Fig. 1. Demonstration of the model studied here, where two interdepen-
dent networks A and B have gone through cascading failures and reached
a steady state. The yellow arrows represent a fraction q

A(B) of nodes from
network A(B) depending on nodes from network B(A) for critical support.
Reinforced nodes ↵ and � (purple circles) are nodes that survive and also
support their clusters, even if the clusters are not connected to the largest
component. Some regular nodes (green circles) survive the cascading fail-
ures, whereas some other regular nodes (red circles) fail. Note that the clus-
ters of circles in the shaded purple areas constitute the functioning compo-
nent studied in our model.

those smaller clusters containing at least one reinforced node
make up the functioning component, as shown in Fig. 1. The fail-
ure process is initiated by removing randomly a fraction 1� p of
nodes from each network. Therefore, when nodes from one net-
work fail, their dependent counterparts from the other network
must also fail. In this case, an autonomous node (a node that does
not need support from the other network) (25) survives if it is con-
nected to a functioning component of its own network; a depen-
dent node n0 survives if both n0 and the node that it depends on
are connected to their own networks’ functioning components.

We introduce the generating function of the degree dis-
tribution GA0(x )=

P
k PA(k)x

k and the associated branching
processes GA1(x )=G

0
A0(x )/G

0
A0(1) (14), where G

0
A0(x )=P

k kPA(k)x
k�1; similar equations exist to describe network B .
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Fig. 2. The sizes of functioning components as a function of p for ER net-
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) of nodes functioning after fractions 1 � p of
nodes are removed from both networks.

At the steady state, using the probabilistic framework (28–34),
we denote x (y) as the probability that a randomly chosen link
in network A (B) reaches the functioning component of network
A (B) at one of its nodes. Thus, x and y satisfy the following
self-consistent equations (SI Text, section 2):

x = p [1� (1� ⇢A)GA1(1� x )]⇥
{1� qA + pqA[1� (1� ⇢B )GB0(1� y)]} [1]

and

y = p [1� (1� ⇢B )GB1(1� y)]⇥
{1� qB + pqB [1� (1� ⇢A)GA0(1� x )]}. [2]

These two equations can be transformed into x =F1(p, y) and
y =F2(p, x ), respectively, which can be solved numerically by
iteration with the proper initial values of x and y .

Accordingly, the sizes of the functioning components are
determined by (SI Text, section 2)

P

A
1 = p[1� (1� ⇢A)GA0(1� x )]⇥

{1� qA + pqA[1� (1� ⇢B )GB0(1� y)]} [3]

and

P

B
1 = p[1� (1� ⇢B )GB0(1� y)]⇥

{1� qB + pqB [1� (1� ⇢A)GA0(1� x )]}. [4]

If the system has an abrupt phase transition at p= p

I
c , the func-

tions x =F1(p, y) and y =F2(p, x ) satisfy the condition

@F1(p
I
c , y

I )
@yI

· @F2(p
I
c , x

I )
@x I

= 1, [5]

namely the curves x =F1(p
I
c , y) and y =F2(p

I
c , x ) touch each

other tangentially at (x I , yI ) (32, 35).

Results
For a general system of interdependent networks A and B , PA

1,
P

B
1, and the existence of pI

c can be easily determined numeri-
cally using Eqs. 1–5. As an example, Fig. 2 shows the excellent
agreement between simulation and theory.

However, it is important to find analytic expressions for P

A
1,

P

B
1, and p

I
c , at least for simpler cases, that can serve as a
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Fig. 3. Percolation properties of symmetric interdependent ER and SF net-
works. (A and B) Demonstration of the behavior of P1 around ⇢⇤ for (A)
ER networks with hki = 4 and q = 1 and (B) SF networks with P(k) ⇠ k

��,
�= 2.7, kmin = 2, kmax = 2048, and q = 1. (C and D) The abrupt collapse
point p

I

c

(thick black line) and the jump of the functioning component 4P1
(thin black lines) at p

I

c

as a function of ⇢ for (C) ER and (D) SF networks. We
find ⇢⇤ for both cases as highlighted in the graphs.
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Fig. 4. (A) ⇢⇤ As a function of q for symmetric ER networks with different
values of hki. The results are obtained using Eq. 7, and these curves con-
verge at the point (1, 0.1756). (B) ⇢⇤ As a function of q for symmetric SF
networks with kmin = 2 and different values of �. The results are obtained
from numerical calculations (Eq. S30 in SI Text, section 3). We always have
⇢⇤

max at q = 1 corresponding to the fully interdependent scenario.

benchmark to better understand simulated solutions of more real-
istic cases. Thus, here, for simplicity, we consider the symmetric
case, where PA(k)=PB (k), ⇢A = ⇢B = ⇢, and qA = qB = q . This
symmetry readily implies that x = y ⌘F (p, x ), reducing Eqs. 1
and 2 to a single equation. Similarly, it renders PA

1 =P

B
1 ⌘P1

and transforms Eq. 5 to @F (pI
c , x

I )/@x I · dx

I /dx I =1 [i.e.,
@F (pI

c , x
I )/@x I =1]. Using Eqs. 1–5, we derive p

I
c and P1 rig-

orously (SI Text, section 3).
Surprisingly, we find that, even for a system built with a rela-

tively high dependency coupling, there exists a specific value ⇢⇤

that divides the phase diagram into two regimes. Specifically, if
⇢ ⇢⇤, the system is subject to abrupt transitions; however, if
⇢> ⇢⇤, the abrupt percolation transition is absent in the system,
because the giant component changes from a first-order phase
transition behavior to a second-order phase transition behavior
(SI Text, section 3). Therefore, ⇢⇤ is the minimum fraction of
nodes in each network that needs to be reinforced to make the
interdependent system less risky and free from abrupt transitions.
Moreover, ⇢⇤ satisfies the condition (SI Text, section 3)

dp

I
c

dx

I
|⇢=⇢⇤ = 0. [6]

Fig. 3 shows the existence of ⇢⇤ for systems of fully interdepen-
dent ER networks (⇢⇤ ⇡ 0.1756) and SF networks (⇢⇤ ⇡ 0.0863).
Fig. 3 A and B depicts the dramatic behavior change of the
functioning components as ⇢ increases slightly from under ⇢⇤ to
above ⇢⇤. Fig. 3C shows that pI

c slowly decreases as ⇢ approaches
⇢⇤ and ceases to exist for ⇢> ⇢⇤. We can also see in Fig. 3D that
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max As a function of � for two fully interdependent SF net-

works with the same number of nodes and degree exponent and kmin = 2
(circles), 5 (diamonds), and 20 (triangles); ⇢⇤

max has upper limits of 0.282 (cir-
cles), 0.201 (diamonds), and 0.181 (triangles) as � ! 1. (B) ⇢⇤

max As a func-
tion of k0 for two fully interdependent RR networks with the same number
of nodes and k0; ⇢⇤

max approaches 0.1756 as k0 ! 1.
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Fig. 6. Percolation transition in real world systems with the introduction of
reinforced nodes. (A) The circles, squares, and triangles represent simulation
results of a system composed of the US PG (N = 4941 and hki = 2.699) and
an ER network (N = 4941 and hki = 2.699) with interdependence strength
q = 0.65 and ⇢= 0, 0.02, 0.05, respectively. (B) The circles, squares, and tri-
angles represent simulation results of a system composed of the same PG
and an SF network (N = 4941, �= 2.7, and kmin = 2) with interdependence
q = 0.65 and ⇢= 0, 0.01, 0.02, respectively. The symbols are results obtained
from a single realization.

the jump of the functioning component 4P1 at pI
c decreases to

zero as ⇢ increases from zero to ⇢⇤.
We next solve this critical value ⇢⇤ as a function of q and hki

for two interdependent ER networks as (SI Text, section 3)

⇢⇤ = 1�
exp

�
1
2

⇥
1� hki (1� q)2/2q

⇤ 

2�
q

hki (1� q)2/2q
, [7]

where q0  q  1, and q0 is the minimum strength of interdepen-
dence required to abruptly collapse the system (36). If we set
⇢⇤ =0 in Eq. 7, q0 can be obtained from hki (1� q0)

2/2q0 =1

as q0 =
⇣
1 + hki �

p
2 hki+ 1

⌘
/ hki, as found in refs. 35 and

37. Applying Taylor expansion to Eq. 7 for q ! q0, we get the
critical exponent �1 defined via ⇢⇤ v (q � q0)

�1 with �1 =3.
Hence, for any q 2 [q0, 1], we first calculate ⇢⇤ using Eq. 7;

then, pI
c corresponding to this q and ⇢⇤ can be computed as (SI

Text, section 3)

p

I
c (q , ⇢

⇤) =
h
2� (1� q)

p
hki /2q

i
/
p

2 hki q , [8]

and the size of the functioning component at this pI
c is

P1(pI
c ) = [1� hki (1� q)2/2q ]/2hki. [9]

The behavior of the order parameter P1(p) near the crit-
ical point is defined by the critical exponent �2, where
P1(p)�P1(pI

c )v (p � p

I
c )

�2 with �2 =1/3 if ⇢= ⇢⇤ and
�2 =1/2 if ⇢< ⇢⇤ (SI Text, section 3.1.1) (25). Similar scaling
behaviors have been reported in a bootstrap percolation prob-
lem (29) and a Fredrickson–Andersen model on Bethe lattice
with quenched impurities (38, 39).

In Fig. 4A, we plot ⇢⇤ from Eq. 7 as a function q for several
different values of hki. Interestingly, at q =1, namely, for two
fully interdependent ER networks, we find, for all mean degrees,
the maximum of ⇢⇤ to be

⇢⇤max = 1� e

1/2/2 ⇡ 0.1756, [10]

which is independent of hki. In Fig. 4B, we plot ⇢⇤ as a func-
tion of q for several degree exponents � of SF networks. Here,
⇢⇤ increases as � increases and takes its maximum ⇢⇤max at q =1,
corresponding to the fully interdependent case, which is the most
vulnerable. Thus, if the dependency strength q is unknown, ⇢⇤max
is the minimal fraction of reinforced nodes that can prevent
catastrophic collapse.
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Similarly, we obtain ⇢⇤max as a function of the degree exponent
� for two fully interdependent SF networks (Fig. 5A) and ⇢⇤max
as a function of k0 for two fully interdependent RR networks
(Fig. 5B). Note that, as � increases, ⇢⇤max initially increases but
later stabilizes at a value determined by kmin as the degree dis-
tribution becomes more homogeneous and its network structure
becomes the same as that in an RR network with k0 = kmin (SI

Text, section 3.2). For RR networks, as k0 increases, ⇢⇤max initially
decreases but later stabilizes at a value close to 0.1756, because
at very large k0, the structure of these RR networks resembles
that of ER networks with hki = k0 (SI Text, section 3.2).

Next, we solve ⇢⇤max of two fully interdependent networks as
a function of ↵, where ↵= hkiA/hkiB (Fig. S10 in SI Text, sec-
tion 4.1). We find that, in two ER networks, as ↵ increases,
⇢⇤max increases and has a maximum at ↵=1, corresponding to
the symmetric case studied above. In the case of RR networks
with large k0, ⇢⇤max behaves similarly to its counterpart in ER net-
works, peaking around ↵=1 at 0.1756 (Fig. 5B). Moreover, in
the case of SF networks when � 2 (2, 3], ⇢⇤max  0.11; whereas
when � and kmin are relatively large, ⇢⇤max will also peak around
↵=1, with a value close to that obtained in RR networks. There-
fore, in the extreme case where � and kmin are large, SF net-
works converge to RR networks with k0 = kmin, which further
converge to ER networks with hki = k0. Thus, in these extreme
cases, there exists a universal ⇢⇤max equal to 0.1756 (SI Text,
section 4.2).

Our approach can be generalized to solve the case of tree-like
networks of networks (NONs) (6, 34). For example, we study the
symmetric case of an ER NON with n fully interdependent mem-
ber networks and obtain

⇢⇤max = 1� e

1�1/n/n, [11]

which is independent of the average degree hki (SI Text, section
3.1.2). This relationship indicates that the bigger n is, the larger
⇢⇤max should be, which is consistent with the previous finding that
the more networks an NON has, the more vulnerable it will (6).

Test on Empirical Data
We next test our mathematical framework on an empirical net-
work, the US power grid (PG) (40), with the introduction of a
small fraction of reinforced nodes. It is difficult to establish the
exact structure of the network that the PG interacts with and
their interdependencies because of lack of data. However, to
get qualitative insight into the problem, we couple the PG with

either ER or SF network, which can be regarded as approxima-
tions to many real world networks. Our motivation is to test how
our model performs in the interdependent networks system with
some real world network features. Note that, here, our results
present cascading failures caused by structural failures and do
not represent failures caused by real dynamics, such as cascading
failures caused by overloads, that appear in a PG network system.
Fig. 6 compares the mutual percolation of two systems of interde-
pendent networks with the same interdependence strength: PG
coupled to a same-sized ER network (Fig. 6A) and PG coupled
to a same-sized SF network (Fig. 6B). As discussed above, for ⇢
below a certain critical value ⇢⇤, the systems will undergo abrupt
transitions, whereas for ⇢ above ⇢⇤, the systems do not undergo
any transition at all. We also find that, for the interdependence
strength q =0.65 shown here, the ⇢⇤ value of the latter case is
very small and close to 0.02 (Fig. 6B).

Summary
In summary, we have developed a general percolation framework
for studying interdependent networks by introducing a fraction
of reinforced nodes at random. We show that the introduction
of a relatively small fraction of reinforced nodes, ⇢⇤, can avoid
abrupt collapse and thus, enhance its robustness. By comparing
⇢⇤ in ER, SF, and RR networks, we reveal the close relation-
ship between these network structures in extreme cases and find
the universal upper bound for ⇢⇤ to be 0.1756. We also observe
improved robustness in systems with some real world network
structure features. The framework presented here might offer
some useful suggestions on how to design robust interdependent
networks.
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