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Several scenarios exist for the protein crystallization and aggregation in solutions near a metastable

fluid-fluid phase separation below the solubility line. Based on computations, it was proposed that the

fluid-fluid critical point enhances the crystallization rate by many orders of magnitude, while, based on

experiments, it was proposed that the fluid-fluid spinodal controls the crystallization rate. Using molecular

dynamic simulations for an isotropic model with sticky interaction, we show that neither of these

scenarios adequately describes the crystallization mechanism near a metastable fluid-fluid phase separa-

tion. We find that the emergence of the high-density fluid inside the spinodal drastically enhances the

crystal nucleation in the subcritical region following Ostwald’s rule of stages.

DOI: 10.1103/PhysRevLett.109.095702 PACS numbers: 64.70.Ja, 05.40.!a, 64.60.Q!, 81.10.Aj

Protein aggregation is believed to cause neurodegener-
ative diseases, such as Alzheimer’s, Huntington’s chorea,
and Parkinson’s; prion diseases, such as bovine spongi-
form encephalopathy; blood diseases, such as sickle-
hemoglobin (HbS) anemia; and less fatal but widespread
pathologies, such as eye cataracts—a common cause of
blindness. The repercussions of protein aggregation, to-
gether with the need for methods to produce better protein
crystals for structural studies, has increased scientific in-
terest in understanding the mechanisms of nucleation of
solidlike clusters of proteins. Studies [1–5] suggest that the
fluid-fluid separation between protein-poor and protein-
rich phases could play a relevant role in this process.
Thus, one strategy to control the process could be to find
the fluid-fluid phase boundaries and develop a protocol to
modify them to reduce their triggering effect. Following
Rosenbaum, Zamora, and Zukoski [6], we model globular
proteins with a short-range attractive interaction potential,
as those used for uncharged spherical colloids. When the
range of attraction is less than 25% of the colloid diameter,
only gas and crystal phases are stable, and the gas-liquid
coexistence becomes metastable below the sublimation
line [7]. In this approach, the colloid density ! replaces
the protein concentration and the sublimation line Tmð!Þ
replaces the solubility line.

According to the classical nucleation theory (CNT) [8],
the nucleation rate I is defined as

I $ " exp
!!!G

kBT

"
; (1)

where " is the kinetic prefactor, !G ¼ ð16#$3Þ=
ð3!2

cj!%j2Þ is the activation free energy barrier, !c is the
number density of the crystal, !%< 0 is the difference in
chemical potential between the crystal and the liquid, $ is
the crystal-liquid interfacial free energy density, kB is the

Boltzmann constant, and T is the absolute temperature. In
the CNT picture, increasing the supersaturation, i.e., in-
creasing j!%j, lowers the nucleation barrier. If the surface
free energy $ were independent of !%, then !G would
always decrease with increasing j!%j. Criticisms of stan-
dard approximations of the CNT have been presented by
several authors [9].
According to the Becker-Döring formalism to nuclea-

tion in condensed systems, Turnbull and Fisher [10] pro-
posed an approximate expression for the nucleation time
& $ 1=I $ A expð!G=kBTÞ, where A $ 1=",

!G

kBT
¼ B

T2
m

TðTm ! TÞ2 $ 'B; (2)

B $ ð16#$3Þ=ð3kB!2
c!h

2Þ, !h is the enthalpy difference
between the crystal and the fluid at coexistence, and
' $ 'ð!; TÞ $ T2

mð!Þ=fT½Tmð!Þ ! T'g is the CNT scaling
parameter. A standard assumption is that A and B weakly
depend on !; hence, the nucleation rate I is dominated by
the degree of supercooling Tm ! T.
However, this conclusion is inconsistent with simulation

results for narrow attractive potentials. In the vicinity of the
metastable gas-liquid critical point at a temperature Tc, ten
Wolde and Frenkel (tWF) found that !G is lower than
expected from the CNT Eq. (2) [2]. It was concluded that
there is an enhancement of crystal nucleation by critical
density fluctuations near a metastable fluid-fluid critical
point. This is consistent with experiments showing that
large density fluctuations associated with fluid-fluid
demixing could facilitate protein crystal nucleation.
Specifically, Vaiana et al. [4] established for various he-
moglobin concentrations a direct quantitative link between
HbS fiber nucleation kinetics and the temperature Ts of the
fluid-fluid spinodal. This result suggests that the crystal-
lization rate at temperature T outside the spinodal region is

PRL 109, 095702 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

0031-9007=12=109(9)=095702(5) 095702-1 ! 2012 American Physical Society



governed by the temperature distance T ! Ts [4].
However, both Vaiana et al. and tWF analyzed only spe-
cific paths to approach the spinodal. Vaiana et al. consid-
ered only data for subcritical protein concentration, while
tWF considered paths along iso-CNT lines in the T-!
phase diagram, i.e., loci at a constant value of ', at
T * Ts. Here, we ask whether these interpretations can
be extended for any metastable fluid-fluid critical point.

We consider the case of a short-range square-well
potential

UðrÞ $

8
>><
>>:

1 r < a

!U0 a < r < b

0 r > b;

; (3)

where a is the hard core diameter, b is the attractive well
diameter, and U0 is the attraction energy. The ratio b=a
determines whether the fluid has a metastable liquid phase
[11], b=a ¼ 1:25 being the maximum value to have a
metastable critical point, and b=a ¼ 1:005 being the lower
limit for a detectable metastable critical point [12]. We
choose b ¼ 1:06a for which we can reliably detect the
metastable fluid and observe hundreds of nucleation events
in the vicinity of the fluid-fluid critical point in a relatively
small system. We perform constant ! $ N=V and constant
T simulations for N ¼ 1728 particles of mass m in a cubic
box of volume V with periodic boundary conditions. We
adopt standard discrete molecular dynamics simulations
with a modified Berendsen thermostat, calibrating the
thermostat heat-exchange coefficient in such a way as to
attain the desired T within a time !tN ¼ 200t0, where

t0 $ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=U0

p
is the unit of time, and within a tolerance

!T ¼ 0:001U0=kB [13].
For each T-! state point, we perform 100 independent

runs, quenching the system to a desired T at fixed ! from
fluid configurations at T ¼ 0:5U0=kB, and find a phase
diagram with a metastable fluid-fluid spinodal ending in
a critical point (Fig. 1). The pressure PmðTÞ of sublimation
is calculated as the time average over 25 000t0 of the
equilibrium pressure achieved at constant T in the gaseous
phase in contact with the face-centered-cubic (fcc) crystal
made of N ¼ 16( 16( 16 particles, cut along the [001]
plane in an elongated simulation box of fixed total V.
The equilibrium density of gas, !mðTÞ was computed in
the simulations of pure phases at constant N ¼ 4096, P ¼
PmðTÞ, and T. Crystal nucleation times & faster than the
fluid equilibration time &e do not allow us to calculate the
spinodal line for T < 0:382U0=kB at high ! and for T <
0:354U0=kB at low !. We test the finite size effect on the
spinodal by comparing results forN ¼ 1728 andN ¼ 850,
finding no significant difference. For T ) 0:384U0=kB, we
can calculate both the low- and high-! branch of the
spinodal, allowing us to estimate the coexistence line.

To determine the equilibration time &e for the metastable
fluid after the quench, we find the time of first local

minimum, t*, of the graph of the potential energy hUðtÞi
averaged over 20 independent runs and then average t*
over five independent blocks of 20 runs. When computing
hUðtÞi, we make sure that the system remains in the fluid
phase, i.e., checking that (i) the root mean square displace-
ment of the particles in 100t0 is greater than the typical
interparticle distance and (ii) the system does not crystal-
lize. As a criterion to define the crystal phase, we calculate
the t dependence of the size S of clusters of nearest
neighbors (NN) particles, i.e., particles within a distance
r < b, which have local crystalline environment.
Namely, for each particle i, we compute vectors ~ri;j $
ðri;j; (i;j;)i;jÞ to its n ¼ 12 closest particles j ¼ 1; . . . ; 12
in terms of spherical coordinates and define

Qi
6 $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4#

13

X6

m¼!6

jhYi
mij2

vuut ; (4)

where

hYi
mi $

1

n

Xn

j¼1

Ym
6 ð(i;j;)i;jÞ; (5)

and Ym
‘ ð(;)Þ are orthonormal spherical harmonics. For a

particle i in a perfect fcc crystal Qi
6 ¼ 0:575, while for a

particle in a perfect hexagonal-close-packed crystal Qi
6 ¼

0:485. We find that the probability of each value of Qi
6

shows large peaks at the fcc and hexagonal-close-packed

0.2 0.4 0.6 0.8
Density ρa3

0.4

0.5

0.6

0.7

T
em

pe
ra

tu
re

  k
B
T

/U
0

sublim
ation lin

e T m

spinodal line Ts

critical pointcoexistence line

FIG. 1 (color online). T-! phase diagram for the potential in
Eq. (3). Below the sublimation line, we calculate the metastable
gas-liquid spinodal line by connecting minima and maxima
along the isotherms in the P-! plane and the coexistence
line from the equal-area Maxwell construction in the P-V plane.
The point of merging of these two lines corresponds to the
metastable critical point. By interpolating the minima of the
inverse compressibility for the isotherms at T ¼ 0:392U0=kB
and T ¼ 0:391U0=kB, we locate the critical point at
Tc ¼ ð0:3916+ 0:0005ÞU0=kB, !c ¼ ð0:523+ 0:005Þð1=a3Þ,
and Pc ¼ ð0:0519+ 0:0005ÞU0=a

3, with Tc=Tm ’ 0:64 at !c.
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values only when the particle i has at least zi ¼ 11 particles
in the NN shell. Therefore, we classify particle i as fluid-
like if zi < 11 and crystal-like if zi ) 11 and Qi

6 ) 0:475
[14]. We observe that when a crystal-like cluster reaches
size S ¼ 5, the system irreversibly crystallizes [15].
Hence, S ¼ 5 * Sc is the size of the critical nucleus for
the crystallization, and &5 is the time at which the system
has at least one crystal-like cluster with S ¼ 5. When the
crystallization starts, S increases very sharply with time;
therefore, we define the crystal nucleation time & $ h&5i,
averaged over 100 independent simulations at the same T
and !. When &e < t < &, the system is in its metastable
fluid phase (Fig. 2) [16].

To test the theory of Vaiana et al. [4], we plot & along
isochores as a function of T ! Tsð!Þ (Fig. 3). The theory
predicts that all the data should collapse on a single curve
because & only depends on T ! Tsð!Þ. We observe that the
scaling holds for a limited range of !< !c, corresponding
to the subcritical case considered by Vaiana et al. [4], but
breaks down for !> !c and for ! , !c.

We plot the loci of equal & in the T-! phase diagram and
do not observe any special feature when these lines ap-
proach the metastable critical point. To determine whether
this is consistent with the tWF theory [2], we calculate the
iso-CNT lines from Eq. (2) for constant A and B (Fig. 4).
Along the iso-CNT line around Tc, tWF predict that the
!G=kBT has a minimum at Tc, which corresponds to a
minimum of & at Tc for constant A. However, in the present
case we observe that & decreases monotonically for de-
creasing T along the iso-CNT line around Tc. The decrease

is even more dramatic along iso-CNT lines at subcritical
densities. Therefore, either the tWF theory does not de-
scribe our results or A is not constant in the vicinity of Tc.
It is clear that the presence of the spinodal affects the

loci of constant &, with one approaching the other at a3!<
0:15. At this low-! range, the loci of constant & seems to
follow the iso-CNT lines. However, a closer look of the
plot shows that along the iso-CNT line & decreases by one
order of magnitude within a density range !! ¼ 0:03a3,
with a large deviation from the CNT prediction.
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FIG. 2 (color online). Equilibration time &e (closed symbols)
and nucleation time & (open symbols) as function of density !
for different temperatures T (labels near symbols) in units of
U0=kB. At each !, the metastable fluid is defined only when
&> &e, above the gray area; otherwise, the crystallization is
instantaneous compared to &e. Along the spinodal line, the
values of & (connected by a solid line) are larger than &e only
for 0:38 - kBT=U0 - 0:39 and !> 0:3=a3.
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FIG. 3 (color online). The scaling of the crystal nucleation
time & with respect to the spinodal temperature Ts, proposed by
Vaiana et al., only holds for the subcritical range 0:2<a3!<0:5
but fails outside of it. Lines correspond to different densities.
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Nevertheless, if we allow both parameters A and B to be
strongly dependent on !, but independent of T, we achieve
a satisfactory collapse of & with respect to ' (Fig. 5).

We find that A is approximately constant within the
density range of the critical iso-CNT line [Fig. 5(b)].
This implies, according to the above discussion, that the
tWF theory does not describe our results. According to
Eq. (2) and along an iso-CNT line (constant Tm ! T),
!G=kBT . Bð!ðTÞÞ. Thus, the decrease of B within the
density range of the critical iso-CNT line implies a de-
crease of !G=kBT for T < Tc along the critical iso-CNT
line, at variance with the tWF theory. The saturating be-
havior of B for !< !c is consistent with the fact that for
low ! the slopes of the CNT lines approach the slopes of
the equal-& lines in Fig. 4.

For subcritical densities, the rapid decrease of A is
consistent with the large decrease of & along iso-CNT lines
(Fig. 4), considering the fact that B is approximately
constant in the subcritical region as shown in Fig. 5(c).
We note that this decrease of A (increase of the kinetic
prefactor ") occurs within the spinodal region, where the
fluid separates into a low-density fluid and a high-density
fluid. Therefore, the dominating mechanism for the crys-
tallization within the spinodal region at this range of
densities is the large increase of the collision rate due to
the formation of the high-density fluid.

For supercritical region, e.g., !> 1:25!c, we find that A
decreases with increasing density, opposite to the behavior
of B. Thus, according to Eq. (2), the large increase of &
along iso-CNT at !> !c shows that the increase of B
overpowers the decrease of A. We understand the maxi-
mum of Að!Þ in the vicinity of !c to be a consequence of
the critical slowing down of the dynamics near the critical
point.
The behavior of B allows us to predict up to a 50%

decrease of the free energy barrier for the crystal nuclea-
tion approaching the fluid-fluid critical point along the
iso-CNT line from the supercritical region, favoring the
increase of the crystallization rate. However, the rate has
no maximum around the critical point. Specifically, we find
that the nucleation time & monotonically decreases with
decreasing density along iso-CNT lines. In the subcritical
region below the spinodal, & rapidly decreases as a con-
sequence of the increase of rate of collisions due to the
high-! phase. At the critical point, the slowing down is
maximal, determining the minimum kinetic prefactor ".
Nevertheless, the increase of " in the supercritical region is
overpowered by the increase of the free energy barrier, here
proportional to B, determining an increase of &. Hence, we
conclude that the presence of a metastable fluid-fluid phase
transition does not necessarily imply an enhancement of
the nucleation rate in the vicinity of the critical point,
clarifying that the tWF theory [2] does not hold for all
metastable fluid-fluid phase transition. On the other hand,
the effect of the metastable spinodal line is evident but
cannot be interpreted as in the scaling theory proposed by
Vaiana et al. [4], which we show holds only for subcritical
conditions. However, the metastable fluid-fluid phase tran-
sition drastically favors the crystal nucleation process due
to the high-! fluid phase formation following Ostwald’s
rule of stages on the route to the crystallization. A similar
result has been found recently in simulations for silicon
[17] and in experiments for water-glycerol mixture in the
vicinity of a liquid-liquid phase transition [18].
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