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To study the statistical structure of crosscorrelations in empirical data, we generalize random
matrix theory and propose a new method of cross-correlation analysis, known as autoregressive
random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations
in the study of cross-correlations in multiple time series. We first analytically and numerically
determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then
we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we
illustrate the method using two examples taken from inflation rates for air pressure data for
95 US cities. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975217]

The best method of studying correlations in multiple time
series is random matrix theory (RMT). However, RMT
assumes that there are no autocorrelations in empirical
time series, and in most cases, this assumption does not
hold. We analytically study the relationship between the
eigenvalue distributions of the correlation matrix of
uncrosscorrelated but autocorrelated time series. To take
into account the influence of autocorrelations, we propose
autoregressive random matrix theory (ARRMT). We use
an empirical example to show that the results of ARRMT
and RMT can differ greatly when autocorrelations are
significant. RMT is thus invalid, and we use ARRMT
when autocorrelations are significant.

I. INTRODUCTION

Cross-correlations have been widely observed in nano-
devices,1–3 and in various fields of wave physics such as
ultrasonics,4 underwater acoustics,5 geophysics,6,7 seismol-
ogy,8 and finance.9–11 Numerous methods have been intro-
duced to analyze cross-correlations between time
series9,12–16 among which random matrix theory (RMT) is
one of the most popular for analyzing cross-correlations in
multiple time series.9,17–24

The usual approach in RMT is to study the eigenvalue
distribution of a Wishart matrix, which is the correlation
matrix for a finite-length independent and identically distrib-
uted (i.i.d.) series, and to compare it with the eigenvalue dis-
tribution of the cross-correlation matrix of an empirical time
series. Deviations between these two distributions might
then suggest the presence of cross-correlations in the data. In
this paper, we discuss the limitation of using RMT when

empirical data are strongly autocorrelated, and we propose a
generalization of RMT, autoregressive random matrix theory
(ARRMT), to address this problem.

When cross-correlations are calculated for empirical
data, the degree of cross-correlation between the two time
series is usually measured by the cross-correlation coeffi-

cient, defined as qX;Y ¼
covðX;YÞ

rXrY
¼ E½ðX%lXÞðY%lYÞ&

rXrY
, where rX rY

are the standard deviations of X and Y, respectively, and lX

and lY are the expected values of X and Y, respectively. The
sample cross-correlation coefficient can be calculated by

r ¼ 1

T % 1

XT

i¼1

Xi % !X

sX

! "
Yi % !Y

sY

! "
: (1)

For the Wishart matrix for N uncorrelated i.i.d. time series,
each with length T'N, for large N the eigenvalues follow

a Marchenko-Pastur distribution: PðkÞ ¼ Q
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ%kÞðk%k%Þ
p

k ,28

where Q ) N
T and

k6 ¼ 1þ 1

Q
62

ffiffiffiffi
1

Q

s

(2)

are the maximum and minimum eigenvalues of W.
As noted above, according to RMT, the difference

between the eigenvalue distributions of an empirical cross-
correlation matrix and a Wishart matrix indicates the pres-
ence of cross-correlations and collective modes in the empir-
ical time series. If cross-correlations are present in the
empirical time series, we expect some eigenvalues to be
larger than kþ, where the largest eigenvalue kL indicates the
global behavior of the multiple time series. The eigenvalues
smaller than kþ and their corresponding eigenvectors are
considered noise.a)Electronic mail: zhangxin@shmtu.edu.cn
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However, RMT has a serious limitation when applied in
practice. It does not take into account that the empirical
eigenvalue distributions of the cross-correlation matrix can
be influenced by auto-correlations in empirical data. The
i.i.d. time series used to calculate a Wishart matrix generally
differs from the empirical time series because, in contrast
to an i.i.d. time series, an empirical time series has (i) cross-
correlations between time series pairs and (ii) auto-
correlations in individual time series. Thus, the difference
between the eigenvalue distributions of the empirical corre-
lation matrix and the Wishart matrix can be caused by either
cross-correlations or auto-correlations in the empirical data.

To take into account the influence of autocorrelations, we
propose an autoregressive random matrix theory (ARRMT).
We generate uncrosscorrelated time series that have the same
autocorrelation properties as the empirical time series, and
then calculate their correlation matrix and eigenvalue distribu-
tion. Then, we compare it with the eigenvalue distribution of
the empirical correlation matrix. This approach takes into con-
sideration the influence of autocorrelations on the eigenvalue
distribution.

II. METHODS

A. Impact of autocorrelation on crosscorrelation
coefficient

Autocorrelations change the eigenvalue distribution
of the uncorrelated time series by changing the distribution
of the sample correlated coefficients between each data
pair. Considering two arbitrary time series X and Y, when
(X, Y) has a bivariate i.i.d normal distribution, the Fisher

transformation of r, 1
2 ln 1þr

1%r

$ %
, is approximately normally

distributed with a mean of 1
2 lnð1þq

1%qÞ, and a standard error

of 1ffiffiffiffiffiffiffi
N%3
p .26

For a limit when jrj* 1 and T+ 1, the distribution of
the sample correlation coefficients for N i.i.d. series is
approximated by a normal distribution with mean zero and

standard error
ffiffiffi
1
T

q
. However, the distribution of r will change

when both X and Y are autocorrelated time series.
To simplify the derivation of the distribution of r

between an autocorrelated time series, we use a standardized
time series zt ¼ ðXt % hXtiÞ=sX. The sample cross-correlation
coefficient between Xt and X0t is r ¼ hztz0ti ¼ 1

T

PT
t¼0 ztz0t. We

assume that Xt and X0t are not cross-correlated, but that both
Xt and X0t are auto-correlated. Thus, r is a random variable
with an expectation of zero and a variance

Var rð Þ ¼
1

T2

X

t

X

t0
E ztzt0ð ÞE z0tz

0
t0

$ %
; (3)

¼ 1

T2

X

t

X

t0
djt%t0 j; (4)

where we use Eðztzt0Þ ¼ Aðjt% t0ÞÞ and Eðz0tz0t0Þ ¼ A0ðjt% t0jÞ,
and Aðjt% t0jÞ and ðA0ðjt% t0jÞÞ are the auto-correlations of
Xt and X0t, respectively, where jt% t0j denotes the time lags.

It is straightforward to show that when jrj* 1 and
T+ 129

Var rð Þ ,
1

T
1þ 2

X1

Dt¼1

A Dtð ÞA0 Dtð Þ
" #

: (5)

Unlike an i.i.d. time series, the variance of sample correla-
tion coefficients increases by 2

T

P1
Dt¼1 AðDtÞA0ðDtÞ. Note

that Eq. (5) corresponds to an i.i.d. time series with a dif-
ferent number of observations,30 where the effective num-
ber of observations T* is 1

T- ¼
1
T 1þ 2

P1
Dt¼1 AðDtÞA0ðDtÞ&

&
.

Therefore, T* has the equivalent length of an autocorre-
lated time series.

To show how the presence of auto-correlations affects the
eigenvalue distribution,25 we assume that empirical time series
are generated by the first-order autoregressive AR(1) process

Xt ¼ /Xt%1 þ !t; (6)

where / ðj/j < 1Þ is a parameter and ! is an i.i.d. process. The
auto-correlation function of an AR(1) process decays with Dt as
an exponential function, AðDtÞ ¼ /jDtj.27 Applying Eq. (5), the
variance of sample correlation coefficients for two AR(1) pro-
cesses, each defined by coefficients / and /0, respectively, is

Var rð Þ ¼
1

T

1þ //0

1% //0
: (7)

We take N time series Xt that are not cross-correlated,
each series having the same AR(1) coefficient /. Using
Eq. (7), where / ¼ /0, and the corresponding expression that
holds for i.i.d. time series of length T*, which variance is 1

T-,
we obtain T- ¼ T 1%/2

1þ/2. Since the eigenvalue distribution of the
cross-correlation matrix generated by the i.i.d. time series
depends only on Q¼ T/N, we can define an equivalent Q to be

Q- ¼ T-=N ¼ T

N

1% /2

1þ /2
: (8)

Similarly, the eigenvalue distribution becomes

P kð Þ ¼ Q-

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k-þ % k
$ %

k% k-%
$ %q

k
; (9)

where the largest and smallest eigenvalues are equal to

k06 ¼ 1þ 1

Q-
62

ffiffiffiffiffiffi
1

Q-

s

: (10)

These results are approximate and work better when autocor-
relations are weak. When autocorrelations are strong, the
distribution of the sample correlation coefficients cannot be
approximated using a normal distribution—and thus the
equations no longer hold—but the largest eigenvalue contin-
ues to increase with the autocorrelations because of the
increased variance in the crosscorrelations.

Figure 1 shows a simulation of N¼ 2000 time series
each with a length T¼ 4000. Using AR(1) processes, with /
from 0 to 0.6, the largest eigenvalue increases from 2.9298
to 4.7257.25,29

The above expressions are illustrations of how the auto-
correlations impact the distribution of the sample correlation
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coefficients and the eigenvalues of the correlation matrices,
based on which we propose our method in the next section.
A theoretical solution for the eigenvalue distribution for cor-
related Wishart matrices can also be derived.31

B. Autoregressive random matrix theory (ARRMT)

To remove the influence of auto-correlations and to
study how cross-correlations affect the data, we introduce
the auto-regressive Wishart matrix, which is the correlation
matrix of the artificial time series fY0tg. This series has no
cross-correlations but has the same auto-correlations as those
in the empirical time series fYtg. By replacing the Wishart
matrix W in RMT with the autoregressive Wishart matrix
W0, we create the autoregressive random matrix theory
(ARRMT) method and remove the influence of the auto-
correlations on the eigenvalue distributions. Similarly, the
difference between the eigenvalue distributions of the empir-
ical correlation matrix C and W0 is due solely to the cross-
correlations between time series {Yt}.

The steps of the ARRMT are as follows:

(i) We test whether auto-correlations are significant
among the N cross-correlated original time series Yi,t.
One of the most popular autocorrelation tests is the
Ljung-Box approach.32

(ii) We fit each time series Yi,t with the auto-correlation
model that best fits Yi,t. Based on this fitting, we assign
to each series i a set of model parameters (e.g., /i,
hi,…). The simplest model is AR(1), but higher orders
of autoregressive and moving-average (ARMA) models,

Yt ¼ et þ
Xp

i¼1

uiYt%i þ
Xq

i¼1

hiet%i; (11)

or non-linear models like threshold autoregressive
(TAR)33 can also be used if AR(1) does not fit the
auto-correlations. In econometrics, people use time
dependent volatility models like generalized autore-
gressive conditional heteroskedasticity (GARCH)
for better fit of the time series data with auto-
correlations in the volatilities. However, in ARRMT
it is not necessary to use these volatility models
because they do not change the distribution of the
sample correlation coefficients. According to Eq.
(refvar1), the variance of the sample correlation
coefficients depends only on the auto-correlation of
Xt, not on the volatility of Xt.

(iii) Using the fitted model from (ii), we simulate N time
series Y0i;t, each characterized by the same coefficients
(/i, hi,…) we found in the original time series Yi,t.
Then, Y0i;t has the same auto-correlation properties as
the original time series Yi,t.

(iv) We calculate the cross-correlation matrix W0 of the
generated time series Y0i;t. Then, we calculate the larg-
est eigenvalue k0þ of W0.

(v) Finally, we compare the largest eigenvalue k0þ with
the eigenvalues of the correlation matrix C of the
empirical time series. Eigenvalues larger than k0þ are
related to significant factors.

When N and T are small, the variance of the simulated k0þ
will be large. Thus, the last two steps in the procedure become:

• We repeat steps (ii) and (iii) n times and calculate the 95th
percentile of k0þ, denoted k0þ0:95.

• Finally, we compare k0þ0:95 with the largest eigenvalue
kL of the correlation matrix C of the empirical time
series. Eigenvalues larger than k0þ are related to significant
factors.

FIG. 1. Eigenvalue distribution for
N¼ 2000 autocorrelate time series
each with length T¼ 4000. Time series
are simulated using AR(1) processes,
with / from 0 to 0.6. As can be seen
from the figure, the largest eigenvalue
increased from 2.9298 to 4.7257 when
/ increased from 0 to 0.6.
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III. RESULTS

To illustrate the ARRMT method, we apply both RMT
and ARRMT to multiple time series characterized by both
cross-correlations and auto-correlations, data comprising 649
daily changes in atmospheric pressure Pi,t for 95 different
cities in the US, and defined as

Ri;t ¼ Pi;t % Pi;t%1: (12)

To demonstrate the advantage of using ARRMT over RMT,
we apply RMT to air pressure changes and calculate the 95th
percentile of the largest eigenvalues kþ0.95¼ 1.9174 of the
Wishart matrix using Eq. (2). Then we calculate the correla-
tion matrix of empirical time series and the empirical

FIG. 2. Distribution of AR(1) coeffi-
cients of the 95 air pressure changes
time series. The distribution indicates
that most of the air pressure change
time series have strong positive
autocorrelations.

FIG. 3. Bar eigenvalue distribution of
the correlation matrix for the air pres-
sure changes of 95 US cities. Red solid
line: the eigenvalue distribution of 95
simulated random time series repeated
1000 times. Blue dashed line: eigen-
value distribution of 95 simulated
uncorrelated time series which has the
same autocorrelations as the empirical
time series repeated 1000 times. Using
ARRMT, we find 8 empirical eigenval-
ues larger than k0þ, indicating that there
are only 8 factors that accounts for the
air pressures in 95 US cities, as com-
pared to 13 from RMT.
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eigenvalues, among which the largest eigenvalue is
kL¼ 8.9740 (+kþ), indicating the existence of cross-
correlations. We find that among the 20 eigenvalues there
are 13 eigenvalues larger than kþ, indicating that there
are 13 significant factors influencing the air pressure in the
95 cities.

We next apply ARRMT by assuming that AR(1) of
Eq. (6) is an appropriate candidate for modeling auto-
correlations in the data. Using Eq. (6), we fit each of the 95
air pressure change time series Rt of Eq. (12). For each series
Ri,t, we obtain the AR(1) coefficient /i. Figure 2 shows the
distribution of AR(1) coefficients, which indicates that the
auto-correlations are significant in most of the time series.
We then generate 95 time series Y0i;t using the AR(1) model,
each with a fitted value of /i. We next calculate the correla-
tion matrix W0 of the 95 generated time series Y0i;t and the
eigenvalue distribution.

Figure 3 shows the largest eigenvalue for the Wishart
matrix W and the autoregressive Wishart matrix W0. As
expected, due to the presence of auto-correlations in the
data, we find that the 95th percentile of the largest eigenval-
ues of matrix W0; k0þ0:95 ¼ 2:5922, is larger than kþ0.95

¼ 1.9174 calculated for the Wishart matrix W. We then com-
pare k0þ0:95 of Eq. (10) with the largest eigenvalues obtained
for the empirical correlation matrix of the inflation rates and
find that ARRMT reveals that there are only eight significant
eigenvalues larger than k0þ. Thus taking into account the
presence of auto-correlations in the data, ARRMT finds that
there are only eight factors that affect the changes in air pres-
sure in the 95 cities.

In practice, when empirical data exhibit long memory
auto-correlations AR(1) must be replaced by the more gen-
eral AR(n) process Xt ¼ et þ

Pp
i¼1 uiXt%i. Here, we fit each

time series with a higher-order AR(n) model and find that
AR(10) fits the data better than AR(1). Applying the AR(10)
model, we find that the largest eigenvalue is k0þ ¼ 2:823.
Although it is larger than the 2.592 value obtained by AR(1),
the number of significant factors remains eight.

IV. CONCLUSIONS

In conclusion, we find that auto-correlations can signifi-
cantly influence the eigenvalue distribution of the correlation
matrix, and that RMT is therefore unreliable when analyzing
cross-correlations in multiple time series when there are
strong auto-correlations. To take into account the presence
of auto-correlations in cross-correlated time series, we intro-
duce the auto-regressive random matrix theory (ARRMT).

In ARRMT, we use a modified Wishart matrix that takes
into account the auto-correlations commonly found in empir-
ical data. The difference between the eigenvalue distribu-
tions of the empirical correlation matrix and modified
Wishart matrix indicates the existence of the cross-
correlations. We show that ARRMT is much more reliable
method when auto-correlations exist in the studied atmo-
spheric pressure data for 95 US cities.
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