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H I G H L I G H T S

• A novel prediction paradigm (DFN-AI) is proposed based on complex network and AI algorithms.

• DFN analysis technique is performed to extract the fluctuation features in original data.

• A new data reconstruction method is designed by using the extracted data.

• A certain artificial intelligence tool is employed to model the reconstructed data.

• Empirical results demonstrate the effectiveness and robustness of DFN-AI method.
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A B S T R A C T

Forecasting the price of crude oil is a challenging task. To improve this forecasting, this paper proposes a novel
hybrid method that uses an integrated data fluctuation network (DFN) and several artificial intelligence (AI)
algorithms, named DFN-AI model. In the proposed DFN-AI model, a complex network time series analysis
technique is performed as a preprocessor for the original data to extract the fluctuation features and reconstruct
the original data, and then an artificial intelligence tool, e.g., BPNN, RBFNN or ELM, is employed to model the
reconstructed data and predict the future data. To verify these results we examine the daily, weekly, and
monthly price data from the crude oil trading hub in Cushing, Oklahoma. Empirical results demonstrate that the
proposed DFN-AI models (i.e., DFN-BP, DFN-RBF, and DFN-ELM) perform significantly better than their cor-
responding single AI models in both the direction and level of prediction. This confirms the effectiveness of our
proposed modeling of the nonlinear patterns hidden in crude oil prices. In addition, our proposed DFN-AI
methods are robust and reliable and are unaffected by random sample selection, sample frequency, or breaks in
sample structure.

1. Introduction

Because crude oil is a basic energy source and its price volatilities
strongly impact a country's economic development, social stability, and
national security [1], accurately predicting crude oil price fluctuations
is a consistently active topic of research. The research on crude oil price
fluctuations being carried out internationally is made more complex by
the interplay among many factors—including market supply and

demand [2], the US dollar exchange rate [3], speculative trading [4],
geopolitical conflicts [5], and natural disasters [6]—that introduces a
high level of noise into the crude oil data. Thus the crude oil prices,
which exhibit such complex volatility characteristics as nonlinearity
and uncertainty, are difficult to forecast and any results obtained un-
certain. Therefore, crude price prediction remains a huge challenge.

Up to now, there has been a raft of literature discussing crude oil
price forecasting. Among these prediction models, one of the most
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important models is econometric model. For instance, Lanza et al. [7]
used cointegration and error correction models (ECM) to predict crude
oil prices from January 2002 to June 2002. Murat et al. [8] proposed a
vector error correction model (VECM) to forecast oil price movements
and crack spread futures. Baumeister et al. [9] used vector auto-
regressive (VAR) to forecast WTI spot price. Xiang et al. [10] used an
autoregressive integrated moving average (ARIMA) model to predict
the Brent crude oil. Sadorsky [11] used several GARCH models to
forecast the daily volatility in petroleum futures price returns. Fan et al.
[12] introduced GARCH type models based on generalized error dis-
tribution (GED) to examine the risk spillover effect between West Texas
Intermediate (WTI) and Brent crude oil markets. Kang et al. [13] then
proposed a variety of conditional volatility models, including GARCH,
IGARCH, CGARCH, and FIGARCH, to forecast the volatility of crude oil
markets, and found that the CGARCH and FIGARCH models can fore-
cast volatility persistence. Mohammadi et al. [14] investigated the out-
of-sample forecasting performance of four volatility models—GARCH,
EGARCH, APARCH and FIGARCH over January 2009 to October 2009.
Hou and Suardi [15] focused on two crude oil markets, Brent and WTI,
considered an alternative approach involving nonparametric method to
model and forecast oil price return volatility. The main results of the
above mentioned econometric models are listed in Table 1 (the upper
part). In essence there are two different types of econometric models.
The first is a structural model of the price of oil, including ECM [7],
VECM [8], VAR [9] et al., depending on fundamental data such as
demand and supply and is implemented through the use of a linear
regression. This structural modeling approach includes explanatory
variables other than just the past data of oil prices into the process. The
second is a time series approach, including ARIMA [10], GARCH-type
models [11–15] et al., only looking at the history of price to determine
future price movement. Because they are able to capture time-varying
volatility, econometric models have improved the accuracy of fore-
casting, but because they assume the data to be stationary, regular, and
linear they cannot accurately model time series that are complex, ir-
regular, and nonlinear [7–15].

In addition to the classic econometric approaches, artificial in-
telligence (AI) methods have been used to uncover the inner complexity
of oil prices. For example, Moshiri et al. [16] set up a nonlinear and
flexible artificial neural network (ANN) model to forecast daily crude
oil futures prices traded at the New York Mercantile Exchange
(NYMEX). Kaboudan [17] evaluated forecasts produced by two

competing compumetric forecasting methods: genetic programming
(GP) and artificial neural networks (ANN). Mostafa et al. [18] fore-
casted oil prices using gene expression programming (GEP) and artifi-
cial neural network (ANN) models. Kaboli et al. [19,20] developed
artificial cooperative search algorithm (ACSA) and GEP to provide
better-fit solution and improve the accuracy of estimation. Xie et al.
[21] proposed a support vector machine (SVM) to forecast crude oil
prices and compared its performance with ARIMA and back propaga-
tion neural network (BPNN). Shin et al. [22] employed semi-supervised
learning (SSL) to forecast the upward and downward movement of oil
prices. Yusof et al. [23] proposed least squares support vector machine
(LSSVM) method of the oil futures price forecasting. Zhao et al. [24]
introduced deep learning approach (SDAE) for WTI crude oil spot price
forecasting. The main results of the above mentioned AI models are
listed in Table 1 (the middle part). Unlike econometric models [7–15],
artificial intelligence methods are able to model such complex char-
acteristics as nonlinearity and volatility. Artificial intelligence methods
also have disadvantages, For example, ANN and BPNN often suffer from
local minima and over-fitting, while other AI models, such as SVM and
GP including ANN, are sensitive to parameter selection [16–24].

Because single prediction models—including both econometric
models and AI methods—are limited, many studies are now using hy-
brid methods to forecast crude oil prices. Some typical literature re-
garding the hybrid methods for crude oil price forecasting can be found
in Table 1 (the bottom part). Overall, the hybrid methods often imply
the combination of interdisciplinary methods to use their strengths and
can be roughly classified into two categories: (1) the combination
among AI models, such as the empirical mode decomposition (EMD)
based neural network ensemble learning paradigm [25], the hybrid
model combining the dynamic properties of multilayer back propaga-
tion neural network and the recent Harr A trous wavelet decomposition,
i.e., HTW-MPNN [26], the hybrid model built upon EMD based on the
feed-forward neural network (FNN) modeling framework incorporating
the slope based method (SBM), i.e., EMD-SBM-FNN [27], a decom-
position-and-ensemble learning paradigm integrating ensemble em-
pirical mode decomposition (EEMD) and extended extreme learning
machine (EELM), i.e., EEMD-EELM [28], the compressed sensing based
learning paradigm, integrating compressed sensing based de-noising
(CSD) and certain artificial intelligence (AI), i.e., CSD-AI [29], the al-
ternative approach based on a genetic algorithm and neural network
(GA-NN) [30], the hybrid AI system framework integrating web-based

Nomenclature

X original time series
N data size
P fluctuation series of X
S symbol series
k number of the symbols
si symbol
L length of the sliding window
l sliding step
r threshold
FMi the ith fluctuation modes
M number of the fluctuation modes
M number of different fluctuation modes
υi

t node numbered i at time t
→
+Vi j

t 1 set of all out-neighbor nodes of υi
t

W weight
η learning rate
E the gradient of error function
Bi the prototype of the input vectors
σi the width of RBF unit i
X predicted data

f x( ) the activation function
bi the bias of hidden node i
βi the weights of hidden neuron i to output neurons
EX extracted data
SX sub data of original data
α the selectivity coefficient
RX the reconstructed data

Abbreviations

DFN data fluctuation network
BPNN back propagation neural network
RBFNN radial basis function neural network
ELM extreme learning machine
DFN-BP hybrid model based on DFN and BPNN
DFN-RBF hybrid model based on DFN and RBFNN
DFN-ELM hybrid model based on DFN and ELM
MAPE mean absolute percentage error
RMSE root mean square error
Dstat directional statistic
DMS Diebold-Mariano statistic
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text mining and rule-based expert system with ANN-based time series
forecasting techniques [31]. (2) The combination of AI methods and
econometric methods, such as a hybrid method that combines EEMD,
least square support vector machine particle swarm optimization
(LSSVM-PSO), and the GARCH model, i.e., EEMD-LSSVM-PSO-GARCH
[1]. Empirical analysis results repeatedly demonstrate that hybrid
forecast methods are more accurate than single methods (see Table 1).
This is the case because hybrid methods combine single models such
that the merits of each offset the defects of others. At the same time, the
calculation process required in hybrid methods is complicated. In other
words, the hybrid forecasting models are more likely to be advocated in
recent literature, which also gives some hints for our research in this
paper.

As mentioned above, the most important challenge in modeling
crude oil price is the complexity in terms of interactive inner factors,
which leads to a high level of noise corrupting the original data and
thus largely weakening the prediction capability of models. Actually,
noise reduction techniques already being employed include entropy-
based wavelet de-noising [32], hybrid slantlet de-noising based on the
least squares support vector regression model [33], exponential
smoothing based on neural networks [34], and the extended Kalman
filter method [35]. However, all of these techniques have a fatal
weakness: their fixed basis design makes them sensitive to parameter
settings. In recent years complex network theory has been widely used
to analyze nonlinear time series. Complex network theory uses algo-
rithms to transform a nonlinear time series into corresponding complex
networks and uses the typology of complex networks to draw out reg-
ular fluctuation patterns. The application of complex network theory
has been widely effective in determining the essential characteristics of
a time series. It has produced a number of new algorithms that can
transform a time series into a complex network system. Among them
are the visibility graph (VG) [36], the pseudo-periodic time series
transform algorithm [37], phase space reconstruction [38], and the
coarse graining of phase space [39]. A large number of researchers have
recently applied complex network theory to the study of energy price
fluctuations and have produced many valuable results [40–51]. In other
words, the rapid development of complex network time series analysis
technology provides a new perspective for eliminating the noise in the
original data.

Therefore, due to the complexity in terms of high level of noise in
crude oil price data, this paper focus on the following questions: How to
eliminate the noise from original data using the complex network time
series analysis techniques? How to determine regular fluctuation pat-
terns and extract the nonlinear patterns hidden in original data effi-
ciently? How to enhance the robustness of analysis and forecasting
performance for crude oil price? To date there have fewer related stu-
dies. To address the above questions, here we combine complex net-
work analysis and AI predictive methods to formulate a novel hybrid
prediction model for crude oil price fluctuations. Different from the
previous studies and four main novel contributions in our studies are as
follows: (1) a complex network analysis of the original data is first
performed to extract the fluctuation features using the topological
structure of the network. (2) A new data reconstruction method is de-
signed by using the extracted fluctuation features data and the original
data. (3) A certain AI tool, e.g., BPNN, RBFNN, or ELM, is employed to
model the reconstructed data and generate the final prediction. (4)
Empirical results demonstrate that the proposed data fluctuation net-
work (DFN) AI models (i.e., DFN-BP, DFN-RBF, and DFN-ELM) perform
significantly better than their corresponding single AI models in both
the direction and level of prediction. And our proposed DFN-AI
methods are robust and reliable and are unaffected by random sample
selection, sample frequency, or breaks in sample structure.

We organize the rest of this paper as follows. Section 2 provides a
detailed description of how the proposed model was formulated. Sec-
tion 3 presents a sensitivity analysis of the parameters. Section 4

describes and discusses the crude oil forecasting results. At the end of
the paper we present our conclusions and propose possible future lines
of research.

2. Methodology

2.1. Complex network analysis of time series

Complex network theory has been recently applied to the analysis of
time series and has yielded high-quality results [36–39]. There are two
steps in this approach. The first uses algorithms to map the time series
into a complex network. The second uses the topological structure of
the network to uncover the essential characteristics of the time series.

2.1.1. Map the time series into a data fluctuation network (DFN)
Here we use coarse geometry theory to map the time series into a

directed and weighted network [39,43]. In the calculation process we
denote the time series =X X t{ ( )}, with = …t N1,2, , , and the fluctuation
series =P P t{ ( )}, which we obtained using

= − −
−

P t X t X t
X t

( ) ( ) ( 1)
( 1)

,
(1)

where =X X(0) (1) and =P (1) 0. We next define k symbols …s s s{ , , , },k1 2
which denote the fluctuation state of the time series at time t. To pre-
serve the symmetries of symbols, k satisfies two conditions: it is an odd
number and ⩾k 3. We then set −k 2 thresholds

… … − −− − − −r r r r r{ , , , , , , }k k k k3/2 5/2 0 5/2 3/2 , where =r 00 . Using these thresholds,
we map the fluctuation series P t{ ( )} into a continuous symbol series

=S S t{ ( )} and ∈ …S t s s s( ) { , , , }k1 2 . For example, when =k 5 we have

∑=

⎧

⎨

⎪
⎪

⎩
⎪
⎪

>
< ⩽

= =
− ⩽ <

<

=S t

s P t r
s P t r
s P t r
s r P t
s P t r

r
N

P t( )

, ( ) ,
,0 ( ) ,
, ( ) 0,
, ( ) 0,
, ( ) ,

1 | ( )|

1 1

2 1

3 0

4 1

5 1

1

(2)

Note that we can either increase or decrease the number of symbols
in different time series according to what the problem requires. The
sliding window method [31] then used to divide the continuous symbol
sequence S t{ ( )} into modes. Here there are  = − +M N L l[( )/ 1] fluc-
tuation modes, where L is the sliding window length and l the sliding
step. The different fluctuation modes are denoted to be FMi,

= …i M1,2, , , ⩽M M where each fluctuation mode is a network node
and transformations among modes are the edges between nodes. The
fluctuating modes evolve into each other with time, and the weight of
an edge is defined to be the transformation frequency. Thus, the di-
rected and weighted data fluctuation network is constructed and de-
noted to be DFN r k L l( , , , ). In summary, we use five characters
s s s s s{ , , , , }1 2 3 4 5 to represent the fluctuation sequence, let =L 5, and =l 1,
then the mapping process of DFN r k L l( , , , ) is shown in Fig. 1.

2.1.2. Extract the fluctuation features accordingly to the topological
structure of the DFN

Using the topological structure of the DFN, the fluctuation char-
acteristics of time series can be characterized. For example, let =k 5,

=L 5, =l 1 and denote the node at time t to be υi
t , where = …t M1,2, , ,

 = − +M N L 1, and = …i M1,2, , . Since the DFN is a directed network,
with the exception of the first and the last nodes every node has an in-
neighbor node and out-neighbor node. Using the construction method
of the DFN (see Section 2.1.1), we see two types of connection between
node υi

M and its out-neighbor nodes:

(i) When υi
M has no out-neighbor node. If the mapped symbol series of

the time series is ′ =′= …S t s s s s s s s s s s{ ( )} { }t 1,2, ,10 3 4 4 1 2 1 5 5 1 2 , then the
nodes of the DFN are =υ s s s s s1

1
3 4 4 1 2, =υ s s s s s2

2
4 4 1 2 1, =υ s s s s s3

3
4 1 2 1 5,
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=υ s s s s s4
4

1 2 1 5 5, =υ s s s s s5
5

2 1 5 5 1 and =υ s s s s s6
6

1 5 5 1 2. Fig. 2(a) shows
the network structure. Here node υ6

6 (shown in green1) has no out-
neighbor node.

(ii) When υi
M has out-neighbor nodes. If the mapped symbol series of

the time series is

′ =′= …S t s s s s s s s s s s s s s s{ ( )} { },t 1,2, ,14 4 4 1 2 4 1 2 4 1 4 1 2 4 1

then the nodes of the DFN are =υ s s s s s1
1

4 4 1 2 4, =υ s s s s s2
2

4 1 2 4 1,
=υ s s s s s3

3
1 2 4 1 2, =υ s s s s s4

4
2 4 1 2 4, =υ s s s s s2

5
4 1 2 4 1, =υ s s s s s5

6
1 2 4 1 4,

=υ s s s s s6
7

2 4 1 4 1, =υ s s s s s7
8

4 1 4 1 2, =υ s s s s s8
9

1 4 1 2 4 and =υ s s s s s2
10

4 1 2 4 1.

Fig. 2(b) shows the network structure. Here node υ2
10 (shown in green)

has two out-neighbor nodes. We can also find that each node here has
an out-neighbor node.

Fig. 2(b) shows the network structure of the DFN when the size of
the sample data is sufficiently large. Fig. 2(a) shows a network structure
of the DFN that requires an adjustment of the parameters. There are two
ways of adjusting this structure so that it conforms to that in Fig. 2(b).
(i) Reduce the number of symbols in the coarse graining process and
adopt three characters, i.e., =k 3, when coarse graining the fluctuation
series. (ii) Reduce the number characters during the construction of the
fluctuation mode, e.g., adopting a three-character combination (i.e.,

=L 3). Using these two methods a small sample dataset can be con-
verted into a usable DFN. The sensitivity analysis parameters of the
DFN is described in Section 3.After building the DFN we select the
target node based on the input data. Using the above analysis, the target
node must have an out-neighbor node, e.g., in Fig. 2(b) the green node
is the target node and nodes υ3

3 and υ5
6 are its out-neighbor nodes. The

set of all out-neighbor nodes of target υi
t is

=→
+

→ ∈ ∈V υ{ }i j
t

i j
t

j M t M
1

[1, ], [1, ] (3)

The parameters of DFN are usable when the node that appears at
time +t 1 is an element in the set →

+Vi j
t 1. Thus there are two ways of

extracting the future fluctuation features of the target node, (i) using all
the elements in set →

+Vi j
t 1 or (ii) using the element with the greatest

strength in set →
+Vi j

t 1. Fig. 3 shows a summary of the complex network
analysis of a crude oil price series.

2.2. Artificial intelligence algorithms

A series of artificial intelligence algorithms for forecasting crude oil
prices were recently developed, and they have proven to be superior to

Fig. 1. The mapping process of DFN r k L l( , , , ).

Fig. 2. Two different types of DFN.

Fig. 3. The process of the complex network analysis of crude oil price.

1 For interpretation of color in Fig. 2, the reader is referred to the web version of this
article.
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traditional forecasting models [16–24]. Here we focus on three, (i) the
back propagation neural network (BPNN), (ii) the radial basis function
neural network (RBFNN), (iii) and the extreme learning machine (ELM)
[52–55].

2.2.1. Back propagation neural network (BPNN)
The back propagation neural network (BPNN) model is one of the

most widely used artificial intelligence algorithms for classification and
prediction [52]. This technique is an advanced multiple regression
analysis that deals with responses that are more complex and non-linear
than those of standard regression analysis. The basic formula of the BP
algorithm is

= − −W n W n W n( ) ( 1) Δ ( ), (4)

where

= ∂
∂

− + −W n η E
W

n γ W nΔ ( ) ( 1) Δ ( 1), (5)

where W is the weight, η is the learning rate, E is the gradient of error
function, and −γ W nΔ ( 1) is the incremental weight. Because the BPNN
uses the gradient method the learning convergent velocity is slow and a
convergence to the local minimum always occurs. In addition, the se-
lection of the learning and inertial factors affects the convergence of the
BPNN, which is determined by the level of experience. Thus the use-
fulness of the BPNN is limited.

2.2.2. Radial basis function neural network (RBFNN)
The radial basis function (RBF) neural network has been widely

applied in the neural network community [53]. The RBFNN is a map-
ping, i.e., R R→r s. When R∈X r is the input vector and R∈Bi

r ,
⩽ ⩽i u(1 ) the prototype of the input vectors, the output of each RBF

unit is

= − = …R X R X B i u( ) (‖ ‖), 1,2, , ,i i i (6)

where ‖·‖ is the Euclidean norm on the input space. Because it can be
factored, the Gaussian function is the preferred radial basis function.
Thus

= ⎡
⎣⎢

− − ⎤
⎦⎥

R X X B
σ

( ) exp ‖ ‖ ,i
i

i

2

2 (7)

where σi is the width of RBF unit i. The output Y X( )j unit j of an RBFNN
is

∑= ×
=

Y X R X W j i( ) ( ) ( , ),j
i

u

i
1 (8)

where =R 10 , W j i( , ) is the weight or strength of receptive field i to the
output j, and W j( ,0) is the bias of output j. Geometrically, an RBFNN
partitions the input space into several hyper sphere subspaces. This
introduces several challenges into the development of the RBF algo-
rithm, e.g., over-fitting, overtraining, the small-sample effect, and the
singular problem.

2.2.3. Extreme learning machine (ELM)
The extreme learning machine (ELM) was originally applied to

single hidden-layer feed-forward neural networks and then extended to
generalized feed-forward networks [54,55]. For a set of training sam-
ples =X C{( , )}j j j

N
1 with N samples and C classes, the single hidden layer

feed-forward neural network with h hidden nodes and activation
function f x( ) is

∑ ∑= + = = …
= =

β f X β f W X b Y j N( ) ( · ) , 1,2, , ,
i

h

i i j
i

h

i i j i j
1 1 (9)

where = …X x x x[ , , , ]j j j jn
T

1 2 , = …C c c c[ , , , ]j j j jm
T

1 2 , = …W w w w[ , , , ]i i i in
T

1 2 , and
bi are the input, its corresponding output, the connecting weights of
hidden neuron i to input neurons, and the bias of hidden node i,

respectively, and = …β β β β[ , , , ]i i i im
T

1 2 are the connecting weights of
hidden neuron i to output neurons, and Yj the actual network output
with respect to input Xj. Because the hidden parameters W b{ , }i i can be
randomly generated during the training period without tuning, ELM
solves a compact model that minimizes the error between Cj and Yj, i.e.,

−Hβ Cmin ‖ ‖ ,
β

F (10)

with
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(11)

Here H is the hidden layer output matrix and β the output weight
matrix. Eq. (10) is a least squares problem with a solution ̂ = −β H C1 ,
where −H 1 is the pseudo-inverse of H . The merit of ELM is that only the
output weights are needed when randomly selecting the hidden node
parameters (input weights and bias). Its weakness is that it cannot ef-
fectively handle noisy time series.

2.3. The novel hybrid method for crude oil price forecast

Using these techniques, a novel hybrid DFN-AI learning paradigm is
formulated for crude oil prices (see Fig. 4). There are three steps in the
proposed DFN-AI learning paradigm, i.e., extract the fluctuation fea-
tures, reconstruct the data, and formulate the forecast.

STEP 1: Construct the data fluctuation network (DFN) and extract
the fluctuation features.

The original data is first mapped on a directed and weighted data
fluctuation network (DFN) using the complex network analysis of the
time series shown in Figs. 1 and 4. We then use the topological structure
of the DFN to extract the fluctuation features of the crude oil prices. For
example, if the original data =X X t{ ( )}, with = …t N1,2, , , assume that
the length of sliding window is L, the sliding step is l, then the original
data X can be rewritten




=

⎡

⎣

⎢
⎢

⋯
⋮ ⋮ ⋯ ⋮

+ ⋯ + −

⎤

⎦

⎥
⎥

= ⋯X
X X X M

X L X L X L M
X X X

(1) (2) ( )

( ) ( 1) ( 1)
[ ].M1 2

(12)

where = … + −X X i X i L[ ( ), , ( 1)]i
T , = …i M1,2, , ,  = − −M N L l( )/ 1, then

using the method of Section 2.1.2, the extracted fluctuation data fea-
tures are

=
⎡

⎣

⎢
⎢

⋯
⋮ ⋮ ⋯ ⋮

+ ⋯ + −

⎤

⎦

⎥
⎥

= ⋯EX
EX EX EX D

EX L EX L EX L D
X X X

(1) (2) ( )

( ) ( 1) ( 1)
[ ].i i iD1 2

(13)

where <D M , ∈ij M[1, ], = ⋯j D1,2, , .

STEP 2: Reconstruct data

We introduce the sub data of original data, = ′SX X t{ ( )}, with
′ = − + ⋯t N αN N[ ] 1, , , ∈α (0,1], where x[ ] is integer-valued function, α
is the selectivity coefficient, when =α 1, then =SX X . Using the sub
data SX and the extracted fluctuation features data EX , the new data
RX is obtained for further analysis, i.e.,
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STEP 3: Forecasting using artificial intelligence algorithms

After data reconstruction, we use AI techniques BPNN, RBFNN, or
ELM to model the reconstruction data RX , then a novel hybrid DFN-AI
learning paradigm for crude oil price can be formulated, as illustrated
in Fig. 5. Combining the data fluctuation network analysis technology
and BPNN, RBFNN, or ELM, the hybrid prediction model DFN-BP, DFN-
RBF and DFN-ELM can be built, respectively.

2.4. Performance evaluation criteria

To measure the forecasting accuracy of these proposed methods, we
apply the widely-used mean absolute percentage error (MAPE) and root
mean square error (RMSE) [1,17,23,46] methods, defined as


∑= −

=

MAPE
N

X t X t
X t

1 ( ) ( )
( )

.
t

N

1 (16)

and


=

∑ −=RMSE
X t X t

N
( ( ) ( ))

.t
N

1
2

(17)

where X t( ) and X t( ) are the predicted and real values at time t , re-
spectively, and N is the size of the dataset being tested. The MAPE
technique measures the mean absolute relative error of the prediction
models, and the RMSE technique measures their standard deviation. In
using these error criteria we find that the smaller the MAPE and RMSE
values the greater the level of model accuracy. Our most important
concern, however, is the directional tendency of data fluctuations—-
whether they are upward, stable or downward—and we measure them
using

∑= = ⎧
⎨⎩

+ − + − ⩾

=

Dstat
N

a t a t X t X t X t X t
otherwise

1 ( ), ( ) 1, ( ( 1) ( ))( ( 1) ( )) 0
0,

.
t

N

1

(18)

The closer the Dstat value is to 1, the higher the accuracy of the
directional prediction of the models, and the closer the Dstat value is to
0, the lower the accuracy of their directional predictions.

The Diebold-Mariano (DM) statistic [24,56] is used to measure the
differences in the predictive accuracies of the forecasting models. Here
the loss function is set to the mean square prediction error (MSPE). The
null hypothesis is that the MSPE value of the tested model is not lower
than that of the benchmark model. The DM statistic is defined

Fig. 5. The overall process of DFN-AI learning
paradigm.

Fig. 4. The procedures of DFN-AI algorithm for crude oil price forecasting.
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=DMS D
V M/

,
D (19)

where = ∑ =D d t( )M t
M1

1 ,  = − − −d t X t X t X t X t( ) ( ( ) ( )) ( ( ) ( ))test bench
2 2,

= + ∑ =
∞V γ γ2D q q0 1 , = −γ d dcov( , )q t t q . X t( )test and X t( )bench are the pre-

dicted values for X t( ) calculated by the tested model and its benchmark
model, respectively, at time t .

3. Sensitivity analysis of the parameters in data fluctuation
network

The DFN (r, k, L, l) is constructed by mapping the time series on the
directed and weighted network. The associated network then inherits
some of the time series structure. We examine, without loss of gen-
erality, how the associated directed and weighted network inherits in-
formation from the time series. We test four time series of 1000 data
each, including a chaotic time series generated from a logistic map

=μ( 4), a chaotic time series generated from a Lorenz system
= = =a b c( 10, 28, 8), an independent and identically distributed

(i.i.d.) random series from a uniform distribution =f x U( ) [0,1], and the
crude oil price series from 4 April 1983 to 30 March 1987. Three of
these time series are dynamic systems and the fourth is a real price
series. Thus their inner characteristics differ. The parameters are set at

= = =k L l5, 5, 1, and r1 calculate

∑=
=

r
N

P t1 | ( )|.
t

N

1
1 (20)

Fig. 6 shows the network structure of DFNs mapped from the four
time series types. Note that their structures (e.g., the number of the

nodes and the node strength distribution) differ completely. Specifi-
cally, the number of nodes M( ) are 100, 40, 440, and 554, respectively,
all which are fewer than the number of fluctuation modes (i.e.,
 = − + =M (1000 5) 1 996). This is the case because many fluctuation
modes are repeated, which indicates that there are no new and different
fluctuation modes in many of the time windows.Fig. 7(a) shows the
relationship between the number of network nodes M( ) and the time
series data size N( ). Note that as the sample data size N( ) increases, the
number of nodes M( ) also slowly increases, and when the sample data
size N( ) reaches a certain value the number of nodes M( ) will become
stable. This suggests that we can use previous fluctuation modes to
characterize the fluctuation modes appearing in the short term future.
In addition, because we need to understand the transforming relation-
ship among the nodes to understand the evolution of the time series, we
examine how parameters r , k, and L of DFN affect the number of nodes.
Fig. 7(b) shows the evolving relationship between the number of nodes
and the threshold r . Note that there is a complex relationship between
the number of network nodes M( ) and the threshold r . In a practical
application, we determine the threshold r by first setting the initial
threshold rn, e.g., using Eq. (20) to calculate r1, selecting the r threshold
in the vicinity of rn, and calculating the corresponding loss function by
using different r thresholds. We then construct the optimization model

∑= ⩽G r w g r s t g r g rmin ( ) ( ) . . ( ) ( ),
i

i i i i n
(21)

where gi is the loss function and wi is the weight. Using Eq. (21) the op-
timal threshold r is obtained that minimizes the loss function. Fig. 7(c) and
(d) show the evolutionary relationship between the number of nodes M
and parameters k and L. We find that the number of network nodes M , the
number of symbols k, and the length of the sliding window L are positively

Fig. 6. Data fluctuation network (DFN) associated to different time series.
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correlated, i.e., as parameters k and L increase, the number of network
nodes increase. Thus, the parameters k and L can be directly determined
by using the characters of the time series.

4. Crude oil price forecasting result analysis

Here all the models are run 10 times using the MATLAB R2017b
software package. All programs are run on a Lenovo laptop computer
with an i5-4200U 1.60 GHz CPU and 4 GB of RAM. The sample data is
obtained from the U.S. energy information administration (EIA)
(http://www.eia.gov/). To analyze robustness three datasets are se-
lected, i.e., daily, weekly, and monthly. To compare and analyze, in
each dataset we randomly select 200 sample data for training and
testing. In response to previous relevant research [57] we set at 9:1 the
size ratio between training and testing sets. Using the number of the
sample data, we set parameters k=3, r=0, L=5, and l=1 to build
the DFN, and use all the elements in set →

+Vi j
t 1 to determine the future

fluctuations of the target node. The BPNN, RBFNN, and ELM are stan-
dard two-layer AI network models that have a hidden layer and an
output layer. Note that a small number of hidden neurons causes in-
accuracies in the correlation between inputs and outputs, and that a
large number produces local optimums. Hastie et al. [57] find that the

typical number of nodes is in the 5 to 100 range, and thus using cross
validation is unnecessary. Thus, the parameters are set as follows. For
BPNN we set the number of nodes in the hidden layer to the default
value of 'newff' command in MATLAB, and we set the other training
parameters net.trainParam.epochs= 1000, net.trainParam.goal= 1e-
6, and net.trainParam.lr= 0.01. For RBFNN we set the number of
nodes in the hidden layer to 90 and the radial basis function to the
Gaussian function. For ELM we set the number of nodes in the hidden
layer to 8.

4.1. WTI crude oil price forecasting

4.1.1. Daily crude oil price forecasting
The daily prices from the Cushing, Oklahoma Crude Oil Future

Contract 1 (Dollars per Barrel) from 4 April 1983 to 31 October 2017
are used as sample data. From these data, to verify how capable the
DFN-AI models are of being generalized, we randomly select 200
sample data and use the previous 180 sample data (90%) as training
samples and the remaining 20 sample data (10%) as testing samples.
The original training samples are selected in 10 different periods.
Fig. 8(a) and (b) show the original training samples and the corre-
sponding DFNs. Fig. 8(c) and (d) show the testing sample values of the

Fig. 7. The results of the parameters sensitivity analysis (a) the evolutionary relations between M and N, (b) the evolutionary relations between M and r, (c) the
evolutionary relations between M and L, (d) the evolutionary relations between M and k.
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crude oil prices in different periods and the forecasts of each model.
Table 2 compares the forecasting performances of the six methods, and
the last line in each period shows the average running time of each
model in the period. The last row of Table 2 shows the mean value of
each model in all periods. The values in boldface are the best MAPE,
RMSE and Dstat performances among the six models.

Table 2 compares the DFN-BP, DFN-RBF, and DFN-ELM hybrid models
with their respective BPNN, RBFNN, and ELM single counterparts. Note
that the directional and level prediction accuracies of the hybrid models
are better than those of the single AI benchmark models. The average
MAPE values of BPNN (0.01566), RBFNN (0.1548), and ELM (0.1740) are
much higher than the average MAPE values of DFN-BP (0.01359), DFN-
RBF (0.0137), and DFN-ELM (0.01360), and the DFN-BP model has the
lowest MAPE. Similarly, the average RMSE values of BPNN (0.94848),
RBFNN (0.98419), and ELM (1.12115) are much higher than the average
RMSE values of DFN-BP (0.85213), DFN-RBF (0.86065), and DFN-ELM
(0.85444), and the DFN-BP model has the lowest RMSE.

The directional prediction accuracy of the average Dstat values of
BPNN (0.47500), RBFNN (0.50500) and ELM (0.43500) is lower than
the average Dstat values of DFN-BP (0.68000), DFN-RBF (0.69000), and
DFN-ELM (0.71500). Note that the hybrid models achieve a higher
Dstat than their corresponding single AI models, and that the DFN-ELM
model has highest Dstat. All of this indicates the proposed DFN-AI
technique is a promising tool for forecasting crude oil prices. This is
because the traditional AI models (i.e., BPNN, RBFNN and ELM) are
unable to extract, organize, and discriminate the information from the
original data [44]. Because there are many fluctuation features in the
crude oil price series, the traditional AI models cannot learn a useful
representation, and their sample forecast is thus inferior. In contrast,
the DFN-AI models use a complex network oil price algorithm to extract

the fluctuation features of the crude oil price series, and thus they
improve the predictive performance by reconstructing the data using
the extracted information. Thus, daily observations tell us that the
forecasted results of DFN-AI models are more reasonable and more
accurate than the corresponding single AI models. In addition, the DFN-
AI models are able to generalize when forecasting crude oil prices, i.e.,
their forecasting power is not affected by the training and testing
sample selection.

4.1.2. Weekly crude oil price forecasting
Previous studies assume data frequency to be an important factor

that affects the accuracy of crude oil price forecasting [1–31]. Thus we
use weekly data to examine the forecasting accuracy of DFN-AI models.
Fig. 9(a) and (b) show the original weekly training samples and the
corresponding DFNs. As in the daily sample data, we select the original
weekly training samples from ten different periods. Fig. 9(c) and (d)
show the crude oil price forecasts of each model of the testing samples
in the different periods. Table 3 lists the forecasting performance results
of the six methods.

Table 3 compares the DFN-AI models with their respective single
counterparts. Note that the weekly observations clearly indicate that
the DFN-AI models are more accurate in both their directional and level
predictions than the single benchmark models. The average MAPE va-
lues of BPNN (0.02799), RBFNN (0.03072) and ELM (0.03015) are
higher than the average MAPE values of DFN-BP (0.02610), DFN-RBF
(0.02687), and DFN-ELM (0.02603), and the DFN-ELM model has the
lowest MAPE. The average RMSE values of BPNN (1.76251), RBFNN
(1.87347) and ELM (1.77927) are higher than the average RMSE values
of DFN-BP (1.71515), DFN-RBF (1.73190), and DFN-ELM (1.70225),
and the DFN-ELM model has the lowest RMSE. For the directional

Fig. 8. The daily sample data and forecast results: (a, b) the original training samples and the DFNs mapped from these sample data. (c, d) Actual testing samples
values and predicted series.
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prediction accuracy, the average Dstat values of BP (0.52000), RBF
(0.53000) and ELM (0.49500) are lower than the average Dstat values
of DFN-BP (0.63000), DFN-RBF (0.645000), and DFN-ELM (0.64500),
and the DFN-ELM model has the highest Dstat. This clearly indicates
that data frequency is a robust factor in our new DFN-AI crude oil price
forecasting method.

4.1.3. Monthly crude oil price forecasting
To further test the robustness of our proposed DFN-AI forecasting

method, we examine monthly observations. To take into account
structural breaks in the data when examining the forecasting perfor-
mance, we use crude oil prices from February 1994 to January 2009
and from December 1999 to November 2014 for our original training
data and test them with monthly observations from February 2009 to
September 2010 and from December 2014 to July 2016, respectively.
We find that the crude oil prices in these periods have structural breaks
[1,18,41]. Outside of these two sample periods, three other sample

periods are also selected, i.e., June 1987 to January 2004, February
1989 to September 2005, and December 1999 to July 2016. Fig. 10(a)
shows the selected original training samples and the corresponding
DFNs. Fig. 10(b) shows the testing sample crude oil price values in
different periods and the forecasts provided by each model. Table 4 lists
the forecasting performance results of the six methods.

Table 4 lists and compares the DFN-AI model results with their re-
spective single counterparts. Note that, based on monthly observations,
the accuracy of both the directional and level predictions of the DFN-AI
models is better than their single benchmark counterparts. With regard
to level prediction accuracy, the average MAPE values of BPNN
(0.07647), RBFNN (0.10432), and ELM (0.10382) are higher than the
average MAPE values of DFN-BP (0.07003), DFN-RBF (0.07788), and
DFN-ELM (0.06916), and the DFN-ELM model has the lowest MAPE.
The average RMSE values of BPNN (4.60547), RBFNN (6.52349) and
ELM (6.26923) are higher than the average RMSE values of DFN-BP
(4.25353), DFN-RBF (4.66344), and DFN-ELM (4.17084), and the DFN-

Table 2
The errors and elapsed times of daily WTI crude oil price forecasting using the six methods.

Training Testing Criteria BPNN DFN-BP RBFNN DFN-RBF ELM DFN-ELM

1984/01/18–1984/10/02 1984/10/03–1984/10/30 MAPE 0.00762 0.00640 0.00874 0.00617 0.00698 0.00594
RMSE 0.32236 0.29254 0.33550 0.28044 0.29118 0.27305
Dstat 0.30000 0.70000 0.50000 0.75000 0.55000 0.80000
Time(s) 5.30200 36.74100 3.43500 15.27500 1.00000 2.82900

1988/06/08–1989/02/23 1989/02/24–1989/03/23 MAPE 0.01567 0.01243 0.01438 0.01279 0.02008 0.01249
RMSE 0.36350 0.30829 0.35877 0.31448 0.50126 0.31017
Dstat 0.40000 0.70000 0.40000 0.70000 0.30000 0.70000
Time(s) 5.20800 33.06400 3.44100 15.36200 0.96900 2.81500

1993/05/24–1994/02/08 1994/02/09–1994/03/09 MAPE 0.01483 0.01247 0.01550 0.01276 0.01442 0.01261
RMSE 0.28055 0.26285 0.28203 0.26627 0.27137 0.25732
Dstat 0.50000 0.65000 0.30000 0.55000 0.50000 0.65000
Time(s) 7.28000 39.09000 3.30800 15.83400 1.05600 2.98600

1993/12/28–1994/09/14 1994/09/15–1994/10/12 MAPE 0.01098 0.01064 0.01034 0.01033 0.01170 0.01038
RMSE 0.24365 0.24022 0.23447 0.23875 0.25587 0.23808
Dstat 0.55000 0.75000 0.70000 0.80000 0.45000 0.80000
Time(s) 5.84300 37.62600 3.46400 44.16300 1.06300 3.06300

1997/05/16–1998/02/03 1998/2/4–1998/03/04 MAPE 0.01225 0.01045 0.01177 0.00997 0.01534 0.01036
RMSE 0.27124 0.25745 0.25661 0.25452 0.30291 0.25600
Dstat 0.45000 0.75000 0.60000 0.70000 0.35000 0.70000
Time(s) 6.11300 37.60900 3.40900 43.74900 3.12000 2.88600

2005/10/12–2006/06/30 2006/07/05–2006/08/01 MAPE 0.01171 0.01029 0.01060 0.01011 0.01301 0.01024
RMSE 1.00221 0.92563 0.95441 0.92237 1.14353 0.91243
Dstat 0.60000 0.75000 0.65000 0.75000 0.40000 0.80000
Time(s) 5.26600 34.28100 3.33400 14.91300 0.95300 2.84700

2007/05/22–2008/02/06 2008/02/07–2008/03/06 MAPE 0.01807 0.01603 0.01952 0.01631 0.02244 0.01641
RMSE 2.22894 2.06907 2.38964 2.09595 2.78182 2.09777
Dstat 0.60000 0.75000 0.35000 0.70000 0.40000 0.75000
Time(s) 5.14100 34.52800 3.45000 15.09800 0.92600 2.82900

2012/09/27–2013/06/14 2013/6/17–2013/07/15 MAPE 0.01291 0.01105 0.01595 0.01106 0.02258 0.01124
RMSE 1.56477 1.40429 2.04951 1.40391 2.89178 1.43652
Dstat 0.40000 0.55000 0.35000 0.60000 0.40000 0.65000
Time(s) 5.07800 35.15500 3.41000 15.84300 1.37500 3.06400

2014/05/01–2015/01/15 2015/1/16–2015/02/13 MAPE 0.04152 0.03659 0.03783 0.03794 0.03759 0.03642
RMSE 2.51419 2.13464 2.32341 2.20231 2.12963 2.12610
Dstat 0.45000 0.55000 0.50000 0.60000 0.45000 0.60000
Time(s) 5.12600 34.12700 3.09400 15.49000 0.95300 2.89400

2016/05/02–2017/01/19 2017/01/20–2017/02/16 MAPE 0.01102 0.00956 0.01017 0.00991 0.00988 0.00990
RMSE 0.69340 0.62634 0.65759 0.62753 0.64219 0.63693
Dstat 0.50000 0.65000 0.70000 0.75000 0.55000 0.70000
Time(s) 5.11100 33.50500 3.12600 15.12800 0.93800 2.86000

Average value MAPE 0.01566 0.01359 0.01548 0.01374 0.01740 0.01360
RMSE 0.94848 0.85213 0.98419 0.86065 1.12115 0.85444
Dstat 0.47500 0.68000 0.50500 0.69000 0.43500 0.71500
Time(s) 5.54680 35.57260 3.34710 15.26960 1.23530 2.90730

(The value in boldface represents the best performance amongst 6 models in terms of MAPE, RMSE and Dstat.)
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ELM model has the lowest RMSE. With regard to directional prediction
accuracy, the average Dstat values of BPNN (0.45000), RBFNN
(0.48000) and ELM (0.49000) are lower than the average Dstat values
of DFN-BP (0.62000), DFN-RBF (0.600000), and DFN-ELM (0.63000),
and the DFN-ELM model has the highest Dstat. This clearly indicates
that our proposed DFN-AI crude oil price forecasting method is more
robust with respect to data frequency and structural breaks.

This brings us to four conclusions. (i) The proposed DFN-AI models,
i.e., the DFN-BP, DFN-RBF, and DFN-ELM, yield the best directional and
level predictions. This is the case because a complex network analysis
algorithm of crude oil prices can extract their fluctuation features and,
using the extracted information, reconstruct the data and improve
predictive model performance. (ii) The proposed DFN-AI models are
able to generalize the results of their crude oil price forecasting, i.e.,
their forecasting power is not sensitive to training and testing sample
selection. (iii) The proposed DFN-AI models are robust with respect to
the data frequency and structural breaks. (iv) Although the last rows of
Tables 2–4 indicate that the average running time of the proposed DFN-
AI models has a higher computational cost than the corresponding
single models, this is disappearing as a concern because computing
power is rapidly increasing and parallel computing hardware now in
common use.

4.2. Diebold-Mariano (DM) test

In using the DM test to statistically confirm our conclusions, the
DMS value of Eq. (19) and the p-value are used to measure how much
the test model is an improvement over the benchmark model. Table 5
lists the corresponding DMS values and p-values (in brackets). Note that

the p-values of the DFN-AI forecasting models are over 10% smaller
than those of their single benchmarks in the three cases of crude oil
price data. This indicates that data reconstruction improves forecasting
with a confidence level of 90%, i.e., the DFN-AI models are statistically
more effective than their corresponding single models. Note that be-
cause the p-values are above 10% neither the three DFN-AI models (i.e.,
DFN-BP, DFN-RBF and DFN-ELM) nor the three single AI models (i.e.,
BPNN, RBFNN and ELM) are unmistakably superior.

5. Conclusion

This paper has proposed a novel hybrid prediction method by
combining a complex network time series analysis and artificial in-
telligence algorithms. A complex network analysis of a time series is
first performed as a preprocessor of the original crude oil price data to
extract the fluctuation features, and then reconstruct the original data.
Then an artificial intelligence tool is employed to model the re-
constructed original data and gain a final prediction.

We first analyze the sensitivity of the data fluctuation parameters
and then test the performance of the new hybrid method (DFN-AI) with
respect to such factors as random sample selection, sample frequency,
and sample structural breaks. From the empirical analysis, we draw
four conclusions. (1) A complex network analysis algorithm of crude oil
price can be used to extract the fluctuation features of the crude oil
price and improve the predictive performance of traditional AI models
by reconstructing the data using this extracted information. (2) The
proposed DFN-AI models (DFN-BP, DFN-RBF, and DFN-ELM) perform
significantly better than the traditional models in predicting both di-
rection and level, indicating their ability to model nonlinear patterns

Fig. 9. The weekly sample data and forecast results: (a, b) the original training samples and the DFNs mapped from these sample data (c, d) Actual testing samples
values and predicted series.
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hidden in crude oil prices. (3) The forecasting performance of the
proposed DFN-AI model is excellent irrespective of random sample se-
lection, sample frequency, or sample structural breaks, indicating its
robustness and reliability. (4) Although the average running time of the
proposed DFN-AI models has a higher computational cost than that of
the corresponding single models, this is disappearing as a concern be-
cause computing power is rapidly increasing and parallel computing
hardware now in common use.Thus the DFN-AI crude oil price fore-
casting method is a useful tool for investors and analysts evaluating
price trends and forecasting crude oil prices. For example, we can use a
complex network analysis algorithm to map crude oil prices on a di-
rected and weighted data fluctuation network (DFN) using the topolo-
gical structure of the DFN (e.g., node strength, cluster coefficient, and
node betweenness) in order to characterize the fluctuation character-
istics of crude oil prices. Specifically, we can use the link relations
among the nodes to uncover the fluctuation trends of crude oil prices.
Thus, our new method can be used to capture the complex dynamic
behavior of crude oil prices. For our oil price prediction problem, by

mapping time-series data into data fluctuation network, the noise in the
data was removed and the underlying tendencies were revealed. This
enables to resolve the complexity and irregularity of oil price prediction
problem caused by its intrinsic dynamics, and results in more accurate
prediction than that offered by the traditional prediction models. Note
that we set 200 sample data as an example for training and testing,
moreover, we can set different scales of sample size depending on the
needs of the analysis. Here we discuss how what is the effect of in-
creasing the training set on the predicted results? For the sake of sim-
plicity, we fixed the model parameters set in the above paper, only
changed the training set size. Fig. 11 shows the prediction results of the
single AI models and DFN-AI models under different training set size. It
can be seen that in Fig. 11, under each of these single AI and DFN-AI
models, both the level accuracy indicators MAPE and RMSE move
downward and then gradually go stable, while the direction accuracy
indicator Dstat goes upward and then turns stable. Such tendencies
indicate that both the level and direction prediction accuracies of these
single AI and DFN-AI models improve as sample size increases.

Table 3
The errors and elapsed times of weekly WTI crude oil price forecasting using the six methods.

Training Testing Criteria BPNN DFN-BP RBFNN DFN-RBF ELM DFN-ELM

1984/03/23–1987/08/28 1987/09/04–1988/01/15 MAPE 0.02360 0.02327 0.02576 0.02618 0.02566 0.02339
RMSE 0.64594 0.64113 0.70314 0.69752 0.64395 0.64214
Dstat 0.50000 0.55000 0.40000 0.60000 0.45000 0.50000
Time(s) 5.18800 33.59600 3.11000 14.71100 1.01600 2.84800

1989/12/22–1993/05/28 1993/06/04–1993/10/15 MAPE 0.02590 0.01827 0.02182 0.01986 0.02688 0.01835
RMSE 0.56671 0.41464 0.52458 0.44756 0.59137 0.42591
Dstat 0.35000 0.60000 0.50000 0.55000 0.40000 0.60000
Time(s) 5.12500 33.71600 3.06300 14.94100 0.92200 2.82900

1992/11/06–1996/04/12 1996/04/19–1996/08/30 MAPE 0.03023 0.02810 0.02677 0.02606 0.03334 0.02693
RMSE 0.78025 0.76047 0.75036 0.70696 0.85774 0.73953
Dstat 0.55000 0.65000 0.75000 0.80000 0.45000 0.75000
Time(s) 5.23500 33.36100 3.11000 14.80000 0.95300 2.86100

1999/07/23–2002/12/27 2003/01/03–2003/05/16 MAPE 0.03787 0.03686 0.05033 0.04169 0.04253 0.03836
RMSE 1.69630 1.75929 1.89560 1.90146 1.65495 1.77796
Dstat 0.50000 0.65000 0.50000 0.40000 0.45000 0.60000
Time(s) 5.12700 33.58400 3.07800 14.85200 0.90600 2.79700

2001/06/22–2004/11/26 2004/12/03–2005/04/15 MAPE 0.03579 0.03393 0.04481 0.03242 0.03545 0.03305
RMSE 2.05170 2.01826 2.61509 2.00607 2.01482 2.01028
Dstat 0.65000 0.70000 0.55000 0.70000 0.65000 0.75000
Time(s) 5.04800 33.63700 3.09500 14.89500 0.93800 2.82900

2002/06/07–2005/11/11 2005/11/18–2006/03/31 MAPE 0.02833 0.02860 0.02894 0.02674 0.02770 0.02741
RMSE 2.15536 2.12314 2.27032 2.04847 2.08595 2.06149
Dstat 0.60000 0.65000 0.55000 0.65000 0.55000 0.65000
Time(s) 5.06900 33.56800 3.06300 14.66200 0.93700 2.82900

2008/03/07–2011/08/12 2011/08/19–2011/12/30 MAPE 0.02766 0.02664 0.03019 0.02638 0.02717 0.02645
RMSE 3.13763 2.98420 3.26857 3.08068 3.12836 2.98981
Dstat 0.50000 0.65000 0.55000 0.70000 0.50000 0.65000
Time(s) 5.12600 33.51200 3.07900 14.86300 0.93700 2.81300

2009/02/20–2012/07/27 2012/08/03–2012/12/14 MAPE 0.01461 0.01408 0.01503 0.01483 0.01458 0.01430
RMSE 1.94809 1.99358 1.88318 1.93221 1.97159 1.95198
Dstat 0.50000 0.60000 0.55000 0.75000 0.55000 0.65000
Time(s) 5.09500 33.46800 3.06300 14.77100 0.93800 2.87500

2011/01/21–2014/06/27 2014/07/04–2014/11/14 MAPE 0.02085 0.01768 0.01985 0.01701 0.02169 0.01752
RMSE 2.29797 2.11034 2.23731 2.06173 2.40837 2.10342
Dstat 0.45000 0.55000 0.40000 0.70000 0.45000 0.70000
Time(s) 5.08400 33.53800 3.06400 14.65200 0.92200 2.76600

2012/01/06–2015/06/12 2015/06/19–2015/10/30 MAPE 0.03502 0.03358 0.04372 0.03758 0.04654 0.03453
RMSE 2.34512 2.34650 2.58654 2.43634 2.43559 2.32001
Dstat 0.60000 0.70000 0.55000 0.60000 0.50000 0.60000
Time(s) 5.07200 33.69800 3.07800 14.86300 0.93800 2.81300

Average value MAPE 0.02799 0.02610 0.03072 0.02687 0.03015 0.02603
RMSE 1.76251 1.71515 1.87347 1.73190 1.77927 1.70225
Dstat 0.52000 0.63000 0.53000 0.64500 0.49500 0.64500
Time(s) 5.11690 33.56780 3.08030 14.80100 0.94070 2.82600

(The value in boldface represents the best performance amongst 6 models in terms of MAPE, RMSE and Dstat.)
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Comparing the prediction results of the single AI models and DFN-AI
models, we find that the proposed DFN-AI models (DFN-BP, DFN-RBF,
and DFN-ELM) perform significantly better than the single AI (BPNN,
RBFNN, and ELM) models in predicting both direction and level under
different training data size. Note that all the results in Fig. 11 are ob-
tained under the fixed parameters set in Section 4, in practical appli-
cation, in order to achieve higher prediction accuracy, we need to set
appropriate parameters of DFN-AI models according to the size and
structure characteristics of the sample data. For example, if the sample
data size is large, parameter k and L can be set to larger values and
parameter α can be set to smaller value.

In addition to examining crude oil price data, our DFN-AI method
can also address other forecasting tasks, especially when complex, ir-
regular, and highly nonlinear data are involved. In practical applica-
tion, the basic calculation of the method is: first perform DFN as a

preprocessor for the original data to reconstruct the data, and then use a
certain powerful AI tool such as SVM, deep neural networks (DNN) to
conduct prediction for the reconstructed data. In the process of building
the DFN-AI model, choosing suitable parameters (i.e., r, k, and L) to
build the data fluctuation network determines the quality of data re-
construction and the predictive accuracy of the model. In future studies,
we will do further research on how to determine the optimal para-
meters. Note that when we reconstruct the training data in this paper,
we use all the neighbor nodes of the target node. There are other to-
pological indicators for describing the topological structure of a data
fluctuation network, such as K-core centrality, the H index, and com-
munity structure. Further research is needed to make use of these to-
pological indicators when reconstructing training data. Because the
volatility of crude oil prices is complicated, future research could
combine the latest complex network theory, an econometric model, and

Fig. 10. The monthly sample data and forecast results: (a) the original training samples and the DFNs mapped from these sample data. (b) Actual testing samples
values and predicted series.

Table 4
The errors and elapsed times of monthly WTI crude oil price forecasting using the six methods.

Training Testing Criteria BPNN DFN-BP RBFNN DFN-RBF ELM DFN-ELM

1987/06–2002/05 2002/6–2004/01 MAPE 0.07206 0.06731 0.07564 0.06816 0.07061 0.06649
RMSE 2.42456 2.38523 2.61251 2.37701 2.39976 2.35643
Dstat 0.40000 0.55000 0.50000 0.65000 0.40000 0.5500
Time(s) 5.25400 34.68700 3.15700 16.24100 0.92200 2.78200

1989/02–2004/01 2004/02–2005/09 MAPE 0.07468 0.06370 0.11056 0.07925 0.21223 0.06497
RMSE 4.61656 3.73852 7.35495 4.43963 13.24985 3.79178
Dstat 0.30000 0.60000 0.30000 0.55000 0.30000 0.55000
Time(s) 5.20400 33.31100 3.13000 16.58500 0.93800 2.81400

1989/12–2004/11 2004/12–2006/07 MAPE 0.05960 0.05604 0.12910 0.06974 0.05835 0.05621
RMSE 4.22660 3.86493 9.84207 4.61297 3.95064 3.87414
Dstat 0.40000 0.75000 0.65000 0.55000 0.55000 0.75000
Time(s) 5.17300 33.63400 3.11000 17.23500 0.93700 3.03200

1994/02–2009/01 2009/02–2010/09 MAPE 0.07065 0.06586 0.07735 0.06558 0.06817 0.06101
RMSE 5.82473 5.60917 5.98303 5.80642 5.66098 5.17863
Dstat 0.50000 0.55000 0.55000 0.55000 0.55000 0.65000
Time(s) 5.07900 33.74300 3.10900 16.61100 0.91000 2.82800

1999/12–2014/11 2014/12–2016/7 MAPE 0.10538 0.09723 0.12895 0.10668 0.10975 0.09711
RMSE 5.93489 5.66978 6.82489 6.08115 6.08490 5.65323
Dstat 0.65000 0.65000 0.40000 0.70000 0.65000 0.65000
Time(s) 5.08400 33.51300 3.09400 16.29000 0.98400 2.84600

Average value MAPE 0.07647 0.07003 0.10432 0.07788 0.10382 0.06916
RMSE 4.60547 4.25353 6.52349 4.66344 6.26923 4.17084
Dstat 0.45000 0.62000 0.48000 0.60000 0.49000 0.63000
Time(s) 5.15880 33.77760 3.12000 16.59240 0.93820 2.86040

(The value in boldface represents the best performance amongst 6 models in terms of MAPE, RMSE and Dstat.)
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an artificial intelligence algorithm to construct new hybrid prediction
models and further enhance forecasting accuracy.

Acknowledgments

The Research was supported by the following foundations: The
National Natural Science Foundation of China (71503132, 71690242,
91546118, 11731014, 71403105, 61403171, 61603011), Qing Lan
Project of Jiangsu Province (2017), University Natural Science

Foundation of Jiangsu Province (14KJA110001), Jiangsu Center for
Collaborative Innovation in Geographical Information Resource
Development and Application, the program of China Scholarship
Council (No. 201606770023). China Postdoctoral Science Foundation
(2016M590973), Shanxi Postdoctoral Research Foundation. The Boston
University Center for Polymer Studies is supported by NSF Grants PHY-
1505000, CMMI-1125290, and CHE-1213217, by DTRA Grant
HDTRA1-14-1-0017, and by DOE Contract DE-AC07-05Id14517.

Table 5
DM test results for DFN-AI models and their single benchmark models.

Data type Tested model Reference model

DFN-RBF DFN-ELM BPNN RBFNN ELM

Daily data DFN-BP −1.16810
(0.13640)

−0.43311
(0.33760)

−2.66890
(0.01284)

DFN-RBF 0.71283
(0.75300)

−1.92100
(0.04346)

DFN-ELM −1.90400
(0.04236)

BPNN −0.63057
(0.27200)

−1.17000
(0.13600)

RBFNN −1.17680
(0.12692)

Weekly data DFN-BP −0.68571 (0.25510) 1.63160 (0.93140) −1.82150 (0.04863)
DFN-RBF 1.50070 (0.91620) −2.37900 (0.02065)
DFN-ELM −2.07670 (0.03381)
BPNN −0.81490 (0.15146) −0.87941 (0.20100)
RBFNN 1.31400 (0.88930)

Monthly data DFN-BP −1.03130 (0.12864) 0.93865 (0.79950) −2.48630 (0.03388)
DFN-RBF 3.83510 (0.99070) −1.89920 (0.06518)
DFN-ELM −1.83920 (0.06910)
BPNN −1.05030 (0.12697) −0.95408 (0.19700)
RBFNN 0.13606 (0.55080)

Fig. 11. The prediction results of the single AI models and DFN-AI models under different training set size.
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