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We study the return interval � between price volatilities that are above a certain threshold q for 31 intraday
data sets, including the Standard and Poor’s 500 index and the 30 stocks that form the Dow Jones Industrial
index. For different threshold q, the probability density function Pq��� scales with the mean interval �̄ as
Pq���= �̄−1f�� / �̄�, similar to that found in daily volatilities. Since the intraday records have significantly more
data points compared to the daily records, we could probe for much higher thresholds q and still obtain good
statistics. We find that the scaling function f�x� is consistent for all 31 intraday data sets in various time
resolutions, and the function is well-approximated by the stretched exponential, f�x��e−ax�

, with �
=0.38±0.05 and a=3.9±0.5, which indicates the existence of correlations. We analyze the conditional prob-
ability distribution Pq�� ��0� for � following a certain interval �0, and find Pq�� ��0� depends on �0, which
demonstrates memory in intraday return intervals. Also, we find that the mean conditional interval �� ��0�
increases with �0, consistent with the memory found for Pq�� ��0�. Moreover, we find that return interval
records, in addition to having short-term correlations as demonstrated by Pq�� ��0�, have long-term correlations
with correlation exponents similar to that of volatility records.
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I. INTRODUCTION

Statistical properties of price fluctuations �1–15� are very
important to understand and model financial market dynam-
ics, which has long been a focus of economic research. Stock
volatility is of interest to traders because it quantifies risk,
optimizes the portfolio �4,16,17�, and provides a key input of
option pricing models that are based on the estimation of the
volatility of the asset �17–20�. Although the logarithmic
changes of stock price from time t−1 to time t,

G�t� 	 log
 pt

pt−1
� , �1�

are only short-term correlated, their absolute values are
known to be long-term power-law correlated �21–33�. The
probability density function �PDF� of �G�t�� possesses a
power-law tail,

���G�� � �G�−��+1�, �2�

with ��3, and the PDF of G�t� also has a power-law tail
with the same value of the exponent � �3,33–38�

��G� � G−��+1�. �3�

A possible explanation of Eq. �3� involves the distribution
obtained by convolving many different Gaussians, with log-
normally distributed variance �39,40�. Also, nq�t�, the num-
ber of times that the volatility �G�t�� exceeds a threshold q,
follows a power law in the time t after a market crash,

nq�t� � t−p, �4�

with p�1 �41�. Equation �4� is the financial analog of the
Omori earthquake law �42�.

Recently Yamasaki et al. �43� studied the behavior of re-
turn intervals � between volatilities that are above a certain

threshold q �illustrated in Fig. 1�a��. They analyzed daily
financial records and found scaling and memory in return
intervals, similar to that found in climate data �44�. To inves-
tigate the generality of these statistical features of Ref. �43�,
here we examine 31 intraday data sets. We find that similar
scaling and memory behavior occurs at a wide range of time
resolutions �not only on the daily scale�. Due to the larger
size of the data sets we analyze, we are able to extend our
work to significantly larger values of q. Remarkably, scaling
functions are well-approximated by the stretched exponential
form, which indicates long-range correlations in volatility
records �44�. Also, we explore clusters of short and long
return intervals, and find that the larger the cluster is the
stronger is the memory.

II. DATABASES ANALYZED

We analyze the trades and quotes �TAQ� database from
the New York Stock Exchange �NYSE�, which records every
trade for all the securities in the United States stock market
for the 2-year period from January 1, 2001 to December 31,
2002, a total of 497 trading days. We study all 30 companies
of the Dow Jones Industrial Average index �DJIA�. The sam-
pling time is 1 min and the average size is about 160,000
values per DJIA stock. Another database we analyze is the
Standard and Poor’s 500 index �S&P 500�, which consists of
500 companies. This database is for a 13-year period, from
January 1, 1984 to December 31, 1996, with one data point
every 10 min �total data points is about 130,000�. For both
databases, the records are continuous in regular open hours
for all trading days, due to the removal of all market closure
times.

III. VOLATILITY DEFINITION

In contrast to daily volatilities, the intraday data are
known to show specific patterns �23,24,33�, due to different

PHYSICAL REVIEW E 73, 026117 �2006�

1539-3755/2006/73�2�/026117�8�/$23.00 ©2006 The American Physical Society026117-1

http://dx.doi.org/10.1103/PhysRevE.73.026117


behaviors of traders at different periods during the trading
day. For example, the market is very active immediately after
the opening �24� due to information arriving while the mar-
ket is closed. To understand the possible effect on volatility
correlations, we investigate the daily trend in DJIA stocks.
The intraday pattern, denoted as A�s� �33�, is defined as

A�s� 	


i=1

N

�Gi�s��

N
, �5�

which is the return at a specific moment s of the day aver-
aged over all N trading days, and Gi�s� is the price change at
time s in day i. As shown in Fig. 1�b�, the intraday pattern
A�s� has similar behavior for the four stocks AT&T, Citi, GE,
and IBM and the average over 30 DJIA stocks. The pattern is
not uniformly distributed, exhibiting a pronounced peak at
the opening hours and a minimum around time s=200 min
that may cause some artificial correlations. To avoid the ef-
fect of this daily oscillation, we remove the intraday pattern
by studying

G��t� 	 �G�t��/A�s� . �6�

In order to compare different stocks, we define the nor-
malized volatility g�t� by dividing G��t� with its standard
deviation,

g�t� 	
G��t�

„�G��t�2� − �G��t��2
…

1/2 , �7�

where �¯� is the time average for each separate stock. Con-
sequently, the threshold q is measured in units of the stan-
dard deviation of G��t�. As shown in Fig. 1�a�, every vola-
tility g�t� above a threshold q �“event”� is picked and the
series of the time intervals between those events, ���q��, is
generated. The series depends on the threshold q. To main-
tain good statistics and avoid spurious discreteness effects
�43�, we restrict ourselves to thresholds with average inter-

vals �̄= �̄�q��3 time units �30 min for the S&P 500 and
3 min for the 30 stocks of the DJIA�.

IV. SCALING PROPERTIES

We study the dependence of Pq��� on q, where Pq��� is
the PDF of the return interval series ���q��. Figure 2 shows
results for the S&P 500 index and for two typical DJIA
stocks, Citi and GE. The time window �t of volatility
records is 1 min for the DJIA stocks and 10 min for the S&P
500. The left panels of Fig. 2 ��a�, �c�, and �e�� show that the
PDF Pq��� for large q decays slower than for small q. The
right panels of Fig. 2 ��b�, �d�, and �f�� show the scaled PDF
Pq����̄ as a function of the scaled return intervals � / �̄. The
five curves for q=2, 3, 4, 5, and 6 collapse onto a single
curve. Thus the distribution functions follow the scaling re-
lation �43,45�

Pq��� =
1

�̄
f��/�̄� . �8�

We also study the other 28 DJIA stocks and find that they
have similar scaling behavior for different thresholds.

To examine the scaling for larger thresholds with good
statistics, we calculate the return intervals of each DJIA
stock, and then aggregate all the data. As shown in Figs. 2�g�
and 2�h�, the scaling behavior extends even to q=15. In Eq.
�8�, the scaling function f�� / �̄� does not directly depend on
the threshold q but only through �̄	 �̄�q�. Therefore if Pq���
for an individual value of q is known, distributions for other
thresholds can be predicted by the scaling Eq. �8�. In particu-
lar, the distribution of rare events �very large q, such as mar-
ket crashes� may be extrapolated from smaller thresholds,
which have enough data to achieve good statistics.

Next, we investigate the similarity of scaling functions for
different companies. Scaled PDFs Pq����̄ with q=2 for re-
turn intervals �upper symbols� are plotted in Fig. 3�a�, show-
ing the S&P 500 index and 30 DJIA stocks in alphabetical

FIG. 1. �Color online� �a� Il-
lustration of volatility return inter-
vals for a volatility time series for
IBM on May 10, 2002. Return in-
tervals �3 and �2 for two thresh-
olds q=3 and 2 are displayed. �b�
The 5-min interval intraday pat-
tern for AT&T, Citi, GE, IBM, and
the average over 30 DJIA stocks.
The time s is the moment in each
day, while A�s� is the mean return
over all trading days. Note that all
curves have a similar pattern, such
as a pronounced peak after the
market opens and a minimum
around noon �s�200 min�.

WANG et al. PHYSICAL REVIEW E 73, 026117 �2006�

026117-2



order of names �one symbol represents one dataset�. We see
that the PDF curves collapse, so their scaling functions f�x�
are similar, consistent with a universal structure for Pq���. As
suggested by the line on upper symbols in Fig. 3�a� and on
the closed symbols in Fig. 4, the function f�x� may follow a
stretched exponential form �44�,

f�x� � e−ax�
. �9�

Remarkably, we find that all 31 datasets have similar expo-
nent values, and conclude that � appears to be “universal,”
with

FIG. 2. �Color online� Distri-
bution and scaling of return inter-
vals for �a� and �b� Citi, �c� and
�d� GE, �e� and �f� S&P 500, and
�g� and �h� mixture of 30 DJIA
stocks �for very large thresholds�.
Symbols are for different thresh-
old q, as shown in �c� for �a�–�f�
and shown in �g� for �g� and �h�.
The sampling time for S&P 500 is
10 min, and for the stocks is
1 min. For one dataset, the distri-
butions Pq��� are different with
different q, but they collapse onto
a single curve for Pq����̄ vs � / �̄ ��̄
is the mean interval�, which indi-
cates a scaling relation. �g� and �h�
show that the scaling can extend
to very large thresholds.

FIG. 3. �Color online� �a� Scaling of return intervals for all 30 DJIA stocks and S&P 500 index. Scaled distribution function Pq����̄ vs
� / �̄ with threshold q=2 for actual return intervals, as well as for the shuffled volatility records �divided by 10�, are shown. Every symbol
represents one stock. The line on the symbols for original records suggests a stretched exponential relation, f�x��e−ax�

with �
�0.38±0.05 and a�3.9±0.5, while the curve fitting the shuffled records is exponential, y=e−bx, from a Poisson distribution. Note that all
the datasets are consistent with a single scaling relation. A Poisson distribution indicates no correlation in shuffled volatility data, but the
stretched exponential behavior indicates strong correlation in the volatilities �see �44��. �b� Stretched exponential fit for AT&T, Citi, GE, and
S&P 500 all with ��0.4. Each stock is well-approximated by stretched exponential for diverse thresholds, q=2, 3, 4, 5, and 6, presented in
the plot. Each plot is shifted by �10 for clarity.
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� = 0.38 ± 0.05. �10�

The value a is found to be almost the same for all data sets,

a = 3.9 ± 0.5. �11�

Further, we plot the stretched exponential fit for four compa-
nies, AT&T, Citi, GE, and IBM in a log-linear plot �Fig.
3�b��. We find good fits for all four companies, and we also
find good collapse for different thresholds for each stock.
The scaling function clearly differs from the Poisson distri-
bution for uncorrelated data, f�x��e−x, which is demon-
strated by curves on lower symbols in Fig. 3�a�.

For statistical systems, the time resolution of records is an
important aspect. The system may exhibit diverse behavior
in different time windows �t. In Fig. 4 we analyze five time
scales for four typical companies �q=2�: �a� AT&T, �b� Citi,
�c� GE, and �d� IBM. It is seen that for �t=1, 5, 10, 15, and
30 min, the Pq����̄ curves collapse onto one curve, which
shows the persistence of the scaling for a broad range of time
scales. Thus there seems to be a universal structure for stocks
not only in different companies, but also in each stock with
various time resolutions. For a related study of persistence in
different time scales of financial markets, see �46�.

To understand the origin of the scaling behavior in return
intervals, we analyze PDFs of the volatility after shuffling �in
order to remove correlations in the volatility records
�33,43��. For uncorrelated data, as expected, a Poisson dis-
tribution is obtained, shown by the lower symbols in Fig.
3�a� and open symbols in Fig. 4. In contrast to the distribu-
tion for uncorrelated records, the distribution of the actual

return intervals �the upper symbols in Fig. 3�a� and closed
symbols in Fig. 4� is more frequent for both small and large
intervals, and less frequent in intermediate intervals. The dis-
tinct difference between the distributions of return intervals
in the original data and shuffled records suggests that the
scaling behavior and the form in Eq. �9� must arise from
long-term correlations in the volatility �see also �44��.

V. MEMORY EFFECTS

The sequence of return intervals may, or may not, be fully
characterized by Pq���, depending on the time organization
of the sequence. If the sequence of return intervals is uncor-
related, the return intervals are independent of each other
and totally determined by the probability distribution. On the
other hand, if the intervals are correlated, the memory will
also affect the order in the sequence of intervals.

To investigate the memory in the records, we study the
conditional PDF, Pq�� ��0�, which is the probability of finding
a return interval � immediately after a return interval of size
�0. In records without memory, Pq�� ��0� should be identical
to Pq��� and independent of �0. Otherwise, it should depend
on �0. Due to the poor statistics for a single �0, we study
Pq�� ��0� for a bin �range� of �0. The entire database is parti-
tioned into eight equal-size bins with intervals in increasing
length. Figure 5 shows Pq�� ��0� for �0 in the smallest �closed
symbols� and largest �open symbols� subset of the four
stocks AT&T, Citi, GE, and IBM. For �0 in the lowest bin the
probability is larger for small �, while for �0 in the largest bin

FIG. 4. �Color online� Scaling for different time windows, �t=1, 5, 10, 15, and 30 min. Plots display scaled PDF Pq����̄ with threshold
q=2 for volatility return intervals �closed symbols� and shuffled volatility records �shifted by factor 10, open symbols� vs � / �̄ of �a� AT&T,
�b� Citi, �c� GE, and �d� IBM. Each symbol represents one scale �t, as shown in �a�. Similar to Figs. 2 and 3, curves fall onto a single line
for actual return intervals and shuffled data, respectively, which indicates the scaling relation in Eq. �9�. Also, the actual return intervals
suggest a stretched exponential scaling function, demonstrated by the line fitting the solid symbols. The stretched exponential is a result of
the long-term correlations in the volatility records. The shuffled volatility records display no correlation, indicated by the good fit �solid line�
to the Poisson distribution.
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the probability is higher for large �. Thus large �0 tend to be
followed by large �, while small �0 tend to be followed by
small � �“clustering”�, which indicates memory in the return
interval sequence. Thus long-term correlations in the volatil-
ity records affect the PDF of intervals as well as the time
organization of �. Note also that Pq�� ��0� for all thresholds
seems to collapse onto a single scaling function for each of
the �0 subsets.

Further, the memory is also seen in the mean conditional
return interval �� ��0�, which is the first moment of Pq�� ��0�,

immediately after a given �0 subset. Closed symbols in Fig. 6
show again that large � tend to follow large �0, and small �
follow small �0, similar to the clustering in the conditional
PDF Pq�� ��0�. Correspondingly, shuffled data �open sym-
bols� exhibit a flat shape, demonstrating that the value of � is
independent on the previous interval �0.

The quantities Pq�� ��0� and �� ��0� show memory for in-
tervals that immediately follow an interval �0, which indi-
cates short-term memory in the return interval records. To
study the possibility that the long-term memory exists in the

FIG. 5. �Color online� Scaled conditional distribution Pq�� ��0��̄ vs � / �̄ for �a� AT&T, �b� Citi, �c� GE, and �d� S&P 500. Here �0

represents binning of a subset which contains 1/8 of the total number of return intervals in increasing order. Lowest 1 /8 subset �closed
symbols� and largest 1 /8 subset �open symbols� are displayed, which have a different tendency, as suggested by black curves. Symbols are
plotted for different thresholds, denoted in �a�. In contrast to the largest subset, the lowest bin has larger probability for small intervals and
smaller probability for large values, which indicates memory in records: small intervals tend to follow small ones and large intervals tend to
follow large ones. Solid curves on symbols are stretched exponential fits.

FIG. 6. �Color online� Scaled
mean conditional return interval
�� ��0� / �̄ vs �0 / �̄ for �a� AT&T, �b�
Citi, �c� GE, and �d� S&P 500.
The �� ��0� / �̄ of intervals �closed
symbols� and shuffled records
�open symbols� are plotted. Five
thresholds, q=2.0, 2.5, 3.0, 3.5,
and 4.0 are represented by differ-
ent symbols, as shown in �a�. The
distinct difference between actual
intervals and shuffled records im-
plies memory in the original inter-
val records.
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return intervals sequence, we investigate the mean return in-
terval after a cluster of n intervals, all within a bin �0. To
obtain good statistics we divide the sequence only into two
bins, separated by the median of the entire database. We
denote intervals that are above the median by “�” and that
are below the median by “	.” Accordingly, n consecutive
“�” or “	” intervals form a cluster and the mean of the
return intervals after such n-clusters may reveal the range of
memory in the sequence. Figure 7 shows the mean return
intervals �� ��0� / �̄ vs the size n, where �0 in �� ��0� / �̄ refers to
a cluster with size n. For “�” clusters, the mean intervals
increase with the size of the cluster, the opposite of that for
“	” clusters. The results indicate long-term memory in the
sequence of � since we do not see a plateau for large clusters.

To further test the range of long-term correlations in the
return interval time series, we apply the detrended fluctuation
analysis �DFA� method �47–49�. After removing trends, the
DFA method computes the root-mean-square fluctuation
F��� of a time series within windows of � points, and deter-
mines the correlation exponent 
 from the scaling function
F�����
. The exponent 
 is related to the autocorrelation
function exponent � by


 = 1 − �/2, �12�

and autocorrelation function C�t�� t−� where 0���1
�44,50�. When 
�0.5, the time series has long-term corre-
lations and exhibits persistent behavior, meaning that large
values are more likely to be followed by large values and
small values by small ones. The value 
=0.5 indicates that
the signal is uncorrelated �white noise�.

We analyze the volatility series and the return interval
series by using the DFA method. The results of S&P 500
index and 30 DJIA stocks for two regimes �split by �*

=390 for volatilities and �*=93 for return intervals, which
corresponds to 1 day in time scale� are shown in Fig. 8 �47�.
We see that 
 values are distinctly different in the two re-
gimes, and both of them are larger than 0.5, which indicates
long-term correlations in the investigated time series but they
are not the same for different time scales. For large scales
����*�, 
=0.98±0.04 for the volatility �group mean� stan-
dard deviation� and 
=0.92±0.04 for the return interval are
almost the same, and the differences are within the error
bars. These results are consistent with Refs. �33,43� for 
 of
the volatilities, and with Ref. �43� for 
 of the return inter-
vals. For short scales ����*�, we find 
=0.66±0.01 for the
volatility �consistent with Ref. �33�� and 
=0.64±0.02 of the
return intervals, and the differences are again in the range of
the error bars. Here error bars refer to that of each dataset,
not the standard deviation of 
 group for 31 datasets, and
average error bars �0.06. Similar crossover from short
scales to large scales with similar values of 
 have been also
observed for intertrade times by Ivanov et al. �51�. Such
behavior suggests a common origin for the strong persistence
of correlations in both volatility and return interval records,
and in fact the clustering in return intervals is related to the
known effect of volatility clustering �52–54�.

VI. DISCUSSION AND CONCLUSION

The value of ��0.4 could be a result of �=2−2
 from
Eq. �12�, where 
�0.8 is the average of the two 
 regimes
that we observe �see Fig. 8�. It is possible for the value of �

FIG. 7. �Color online� Memory in return interval clusters. �0 represents a cluster of intervals, consisting of n consecutive values that all
are above �denoted as “�”� or below �“	”� the median of the entire interval records. Plots display the scaled mean interval conditioned on
a cluster, �� ��0� / �̄, vs the size n of the cluster for �a� AT&T, �b� Citi, �c� GE, and �d� S&P 500. One symbol shows one threshold q, as shown
in �c�. The upper part of curves is for “�” clusters while the lower part is for “	” clusters. The plots show that “�” clusters are likely to
be followed by large intervals, and “	” clusters by small intervals, consistent with long-term memory in return interval records.
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to be different for small and large q values. The reason for
these differences is that for small q the low volatilities are
probed and therefore the time scales are controlled by 

�0.65 �below the crossover�, while for the large q the high
volatilities are probed, which represent large time scales
�above the crossover�, controlled by 
�0.95. We will under-
take further analysis to test this possibility.

In summary, we studied scaling and memory effects in
volatility return intervals for intraday data. We found that the
distribution function for the return intervals can be well-
described by a single scaling function that depends only on
the ratio of � / �̄ for DJIA stocks and the S&P 500 index, for
various time scales ranging from short term �t=1 min to
�t=30 min. The scaling function, which results from the
long-term correlations in the volatility records, differs from
the Poisson distribution for uncorrelated data. We found that

the scaling function can be well-approximated by the
stretched exponential form, f�x��e−ax�

with �=0.38±0.05
and a=3.9±0.5. We showed strong memory effects by ana-
lyzing the conditional PDF Pq�� ��0� and mean return interval
�� ��0�. Furthermore, we studied the mean interval after a
cluster of intervals, and found long-term memory for both
clusters of short and long return intervals. We demonstrated
by the DFA method that the volatility and return intervals
have long-term correlations with similar correlation expo-
nents.
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