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a b s t r a c t

The algorithm of limited penetrable horizontal visibility graphs (LPHVGs) including the
limited penetrable horizontal visibility graph [LPHVG(ρ)], the directed limited penetrable
horizontal visibility graph [DLPHVG(ρ)] and the image limited penetrable horizontal vis-
ibility graph [ILPHVGn(ρ))] are used to map time series (or matrices) on graphs and are
powerful tools for analyzing time series. We derive the degree distributions of LPHVGs
using an iterative LPHVGs construction process. We propose a more intuitive method of
reproducing the construction process of limited penetrable horizontal visibility graphs that
is simple to calculate. We find that the results confirm the analytical results from previous
methods. We then introduce the concept of sequential LPHVG(ρ) motifs and present a
theoretical way of computing the exact motif profiles associated with unrelated random
series.Weperform several numerical simulations to further check the accuracy of our theo-
retical results. Finallywe use the analytical results of LPHVG(ρ)motif profiles to distinguish
among random, periodic, and chaotic signals and find that the frequency of the type-I motif
captures sufficient information to easily distinguish among different processes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the development of complex network theories [1–4], a new multidisciplinary methodology for characterizing
nonlinear time series using complex network science has emerged and is now in arewidely used [5–36]. Over the past decade
severalmethodologies have been proposed formapping a univariate andmultivariate time series in a complex network using
visibility graph algorithms [5–11], a recurrence network (RN) method [12–14], a stochastic processes method [15,16], a
coarse geometry theory [17], a phase-space reconstructionmethod [18,19], and a phase-space coarse-graining method [20].
These methods have been widely used to solve problems in a variety of research fields [21–41].
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Recently a limited penetrable visibility graph (LPVG) [42,43] and a multiscale limited penetrable horizontal visibility
graph (MLPHVG) [44] were developed from the visibility graph (VG) and the horizontal visibility graph (HVG) to analyze
nonlinear time series. The LPVG and LPHVG have been successfully used to analyze a variety of real signals across different
fields, e.g., experimental flow signals [42] and electromechanical signals (EEG) [44–46]. Research has shown that the LPVG
and LPHVG inherit the merits of the VG, but also successfully screen out noise, which makes them particularly useful when
analyzing signals polluted by unavoidable noise [42–46].

A number of topological properties of the limited penetrable horizontal visibility graphs (LPHVGs) including the limited
penetrable horizontal visibility graph [LPHVG(ρ)], the directed limited penetrable horizontal visibility graph [DLPHVG(ρ)]
and the image limited penetrable horizontal visibility graph [ILPHVGn(ρ))] mapped from time series of different complex
systems have been studied numerically and analytically. Themain contributions have come fromWang and his collaborators
[47,48]. For example,Wang et al. [47] show that the random series maps on a LPHVG(ρ) with an exponential degree distri-
bution P(k) ∼ exp[−λ(k−2ρ −2)], λ = ln[(2ρ +3)/(2ρ +2)], ρ = 0, 1, 2, . . . , and k = 2ρ +2, 2ρ +3, . . ., independent of
the probability distribution fromwhich the series was generated. They deduce the exact expressions of themean degree and
the clustering coefficient and demonstrate the long distance visibility property. Wang et al. [48] also extend LPHVG(ρ) and
create aDLPHVG(ρ) and an ILPHVGn(ρ)). They found that for the unrelated random series, the in- and out-degree distribution

of its associated DLPHVG(ρ) follow the exponential degree distribution Pin(k) = Pout(k) =
1

ρ+2

(
ρ+1
ρ+2

)k−(ρ+1)
, k ≥ ρ +1. The

degree distribution P(k) of the associated ILPHVGn(ρ) converges to 1
[n(ρ+1)+1]

[
n(ρ+1)

n(ρ+1)+1

]k−n(ρ+1)
, k ≥ n(ρ + 1).

We here propose an iterative approach to analytically deriving the degree distributions of LPHVG(ρ), DLPHVG(ρ) and
ILPHVGn(ρ). We derive the degree distributions of LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ) mapped from random series that
recover the results in Refs. [47] and [48]. We then introduce the sequential LPHVG motif concept and develop a theoretical
way of exactly computing the motif profiles associated with unrelated random series. We perform several numerical
simulations to further check the accuracy of our theoretical results. Finally we use the analytical results of LPHVG motif
profiles to distinguish among random, periodic, and chaotic signals and find that the frequency of the type-I motif captures
sufficient information to easily distinguish among different processes.

We organize the paper as follows. In Section 2 we describe LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ). In Section 3 we
derive the degree distributions using iterative construction processes LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ). In Section
4 we introduce the concept of sequential LPHVG motifs, derive the motif profiles associated with unrelated random series,
and present several numerical simulations to check their accuracy. In Section 5 we show a simple application of LPHVG
motif profiles to distinguish among random, periodic and chaotic signals. In Section 6 we present our conclusions.

2. Construction of LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ)

The limited penetrable horizontal visibility graph [LPHVG(ρ)] [47] is a geometrically simpler and analytically solvable
version of VG [5], LPVG [42,43], and MLPHVG [44]. To define it we let {xi}i=1,2,...,N be a time series of N real numbers. We set
the limited penetrable distance to ρ, and LPHVG(ρ) maps the time series on a graph with N nodes and an adjacency matrix
A. Nodes xi and xj are connected through an undirected edge (Aij = Aji = 1) if xi and xj have a limited penetrable horizontal
visibility (see Fig. 1(a)), i.e., if ρ ≥ 0 intermediate data xq follows

xq ≥ inf {xi, xj}, ∀q ∈ (i, j), ℵ(q) ≤ ρ, (1)

where ℵ(q) is the number of q. The graph spanned by this mapping is the limited penetrable horizontal visibility
graph [LPHVG(ρ)]. When we set the limited penetrable distance ρ to 0, then LPHVG(0) degenerates into an HVG [6],
i.e., LPHVG(0) = HVG. When ρ ̸= 0 there are more connections between any two LPHVG(ρ) nodes than in HVG. Fig. 1(a)
shows the new established connections (red lines) when we infer the LPHVG(1) using HVG.

The directed limited penetrable horizontal visibility graph [DLPHVG(ρ)] [48] can be defined by adding the directionality
of LPHVG(ρ), where the degree k(xt ) of the node xt is split between an ingoing degree kin(xt ) and an outgoing degree kout(xt )
such that k(xt ) = kin(xt )+ kout(xt ). We define the ingoing degree kin(xt ) to be the number of links of node xt with past nodes
associatedwith data in the series, i.e., nodes with t ′ < t . Conversely, we define the outgoing degree kout(xt ) to be the number
of links with future nodes, i.e., nodes with t ′′ > t . Thus DLPHVG(ρ) maps the time series into a graph with N nodes and an
adjacency matrix A = Ain + Aout, where Ain is a lower triangular matrix and Aout is a upper triangular matrix. Nodes xt ′ and
xt , t ′ < t (or xt and xt ′′ , t < t ′′) are connected through a directed edge xt ′ → xt , i.e., At ′t = 1 (or xt → xt ′′ , i.e., Att ′′ = 1)
if it satisfies Eq. (1). Fig. 1(b) shows a graphical representation of the definition. As in the degree distribution P(k), we use
the ingoing and outgoing degree distributions of a DLPHVG(ρ) to define the probability distributions of kout and kin on the
graph, which are Pout(k) ≡ P(kout = k) and Pin(k) ≡ P(kin = k), respectively. We see the asymmetry of the resulting graph
in a first approximation when we use the invariance of the outgoing (or ingoing) degree series under a time reversal.

The image limited penetrable horizontal visibility graph of order n [ILPHVGn(ρ)] [48] is the extension of LPHVG(ρ). To
define the image limited penetrable horizontal visibility graph of order n [ILPHVGn(ρ)] we let X be a N × N matrix for
an arbitrary entry (i, j) and partition the plane into n directions such that direction p is at an angle with the row axis of
2π (p−1)/n, where p = 1, 2, . . . , n. The image limited penetrable visibility graph of order n, ILPHVGn(ρ), hasN2 nodes, each
of which is labeled using a duple (i, j) associated with the entry indices xij, such that two nodes, xij and xi′j′ , are linked when
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Fig. 1. Graphical illustration of LPHVGs (a) Example of a time series (11 data values) and its corresponding LPHVG(1), where every node corresponds to time
series data in the same order. The horizontal penetrable visibility lines between data points define the links connecting nodes in the graph. (b) Graphical
illustration of DLPHVG(1), where arrows, describing allowed directed penetrable visibility, link nodes. In this graph, each node has an ingoing degree kin ,
which accounts for the number of links with past nodes, and an outgoing degree kout , which in turn accounts for the number of links with future nodes. (c)
we describe the connectivity pattern associated to this entry x0 in the case of ILPHVG4(1), which is evaluated along the vertical and horizontal directions.
(d) we describe the connectivity pattern associated to this entry x0 in the case of ILPHVG8(1), which is evaluated both along the vertical and horizontal
directions and along the diagonals directions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

(i) xi′j′ belongs to one of the n angular partition lines, and (ii) xij and xi′j′ are linked in the LPHVG(ρ) defined over the ordered
sequence that includes (i, j) and (i′, j′). For example, in ILPHVG4(1) the penetrable visibility between two points xij and xi′j′
is

i = i′, xiq ≥ inf {xij, xi′j′}, ∀q ∈ (j, j′), ℵ(q) ≤ ρ, (2)

or

j = j′, xqj ≥ inf {xij, xi′j′}, ∀q ∈ (i, i′), ℵ(q) ≤ ρ. (3)

Fig. 1(c) shows a sample matrix in which x0 is the central entry, which shows the ILPHVG4(1) algorithm evaluated
along the vertical and horizontal directions and the connectivity pattern associated to the entry x0 of the ILPHVG4(1)
algorithm. Fig. 1(d) shows the ILPHVG8(1) algorithm evaluated along the vertical, horizontal, and diagonal directions, and
the connectivity pattern associated to the entry x0 of the ILPHVG8(1) algorithm.

3. Degree distributions associated to uncorrelated random time series

3.1. Degree distribution of LPHVG(ρ)

Wang et al. provided a detailed analysis and description about the degree distribution of the LPHVG(ρ) mapped from
random time series [47]. Here we derive alternatively the theoretical function of degree distribution based on the master
equation. Generating a time series of sizeN is equivalent to puttingN numbers intoN positions. In the first step,we randomly
choose a position and put the largest number on it. In the second step, we choose a position from the rest N − 1 positions
and put the second largest number on it. In step l, we randomly choose a position from the rest N − l + 1 positions and put
the largest number l on it.
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In general, we can construct an LPHVG(ρ) during the series generating process. For example, in step l, we have a series
with a size of l − 1 and we denote L(k, l − 1) the number of nodes with degree k in the corresponding LPHVG(ρ). When we
put the last number into the series, the resulting LPHVG(ρ) will have l nodes. Because the last number is the smallest, only
2(ρ + 1) new edges will be added to the LPHVG(ρ), as shown the green node in Fig. 1(a). (the case for ρ = 1) and these
2(ρ + 1) new edges link to the 2(ρ + 1) nodes adjacent to the node l. At the same time, the degree of each of the 2(ρ + 1)
nodes increase by 1. Since the new node is randomly placed, l − 1 nodes have the same probability 2(ρ + 1)/(l − 1) of
changing their degrees. Although node l can be placed at the first ρ or the last ρ of the ρ − 1 nodes, when the number l is
very large and ρ ≪ l, i.e., l → ∞, the probability of it happening is very small. We ignore the influence of these two extreme
situations.

When a new node is added 2(ρ + 1) the node degree increases by 1, from k to k + 1, and the degrees of the remaining
nodes are unchanged. The probability of a node degree change is 2(ρ + 1)/(l− 1) and the probability of degree not changing
is 1 − 2(ρ + 1)/(l − 1). Hence the number of nodes with a degree k in the LPHVG(ρ) containing l nodes can be calculated

L(k, l) = [1 −
2(ρ + 1)
l − 1

]L(k, l − 1) +
2(ρ + 1)
l − 1

L(k − 1, l − 1) + δk2(ρ+1). (4)

where

δk2(ρ+1) =

{
1, k = 2ρ + 2,
0, otherwise,

because the degree of each new node is k = 2(ρ + 1). We define the probability of nodes with degree k in the LPHVG(ρ)
containing l nodes

P(k, l) = L(k, l)/l. (5)

Hence, Eq. (4) can be rewritten

P(k, l) ≈

(
1 −

3 + 2ρ
l

)
P(k, l − 1) +

2(ρ + 1)
l

P(k − 1, l − 1), (6)

in which δk2(ρ+1)/l = 0 for large l. When l → ∞, we have{
P(k − 1, l) = P(k − 1, l − 1) = P(k − 1),
P(k, l) = P(k, l − 1) = P(k).

(7)

Combining Eqs. (6) and (7), we obtain

P(k) =
2ρ + 2
2ρ + 3

P(k − 1). (8)

By applying
∑

∞

k=2(ρ+1) P(k) = 1, we obtain the solution of Eq. (8)

P(k) =
(2ρ + 3)2ρ+1

(2ρ + 2)2ρ+2

(
2ρ + 2
2ρ + 3

)k

(9)

This result is consistent with the analytical expression in Refs. [47,48].

3.2. Degree distributions of DLPHVG(ρ)

The degree distribution of a DLPHVG(ρ) can also be derived by using a construction process for the DLPHVG(ρ) that is
iterative. As when deriving LPHVG(ρ), we construct a directed LPHVG(ρ) from a time series with l − 1 numbers in step l.
We define LD(k, l − 1) to be the number of nodes with an in- or out-degree k. Fig. 1(b) shows that when we add the largest
number l into the DLPHVG(ρ), 2(ρ+1) new edges are generated (green) – ρ+1 out-edges and ρ+1 in-edges – and they link
to the 2(ρ + 1) nodes adjacent to node l. The out-degree of the left node and the in-degree of the right node increase by 1.
Because the new node is placed randomly, with a probability (ρ +1)/(l−1) one end point of a node in-degree or out-degree
increases by 1. With a probability of 1− (ρ + 1)/(l− 1) the other node degrees remain the same. Thus the number of nodes
with degree k in the new DLPHVG(ρ) containing l nodes is

LD(k, l) =

(
1 −

ρ + 1
l − 1

)
LD(k, l − 1) +

ρ + 1
l − 1

LD(k − 1, l − 1) + δk(ρ+1). (10)

where

δk(ρ+1) =

{
1, k = ρ + 1,
0, otherwise,
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because the degree of each new node is k = ρ + 1. When k = ρ + 1,then δk(ρ+1) = 1. When k ̸= ρ + 1, then δk(ρ+1) = 0. We
define PD(k) = LD(k, l)/l the probability of nodes with the in-degree or out-degree k in the DLPHVG(ρ) containing l nodes.
Thus Eq. (10) can be rewritten

PD(k, l) =

(
1 −

ρ + 2
l

)
PD(k, l − 1) +

ρ + 1
l

PD(k − 1, l − 1). (11)

When l → ∞, we have{
PD(k − 1, l) = PD(k − 1, l − 1) = PD(k − 1),
PD(k, l) = PD(k, l − 1) = PD(k).

(12)

Combining Eqs. (11) and (12), we obtain

PD(k) =
ρ + 1
ρ + 2

PD(k − 1). (13)

By applying
∑

∞

k=ρ+1 PD(k) = 1, we obtain the solution to Eq. (13)

P(k) =
(ρ + 2)ρ

(ρ + 1)ρ+1

(
ρ + 1
ρ + 2

)k

. (14)

This result is consistent with the analytical expression in Ref. [48].

3.3. Degree distributions of ILPHVGn(ρ)

To derive the general results of a ILPHVGn(ρ) using iterative construction process, we first examine the two special cases
n = 4 and n = 8.

When n = 4, as in the derivation process of LPHVG(ρ) we construct the ILPHVGn(ρ) from amatrix with l2 −1 numbers in
step l2. We define LI (k, l2 −1) the number of nodes with degree k. When we add largest number l2 into the ILPHVG4(ρ), only
4(ρ + 1) new edges are generated shown as the green node in Fig. 2(a) (ρ = 0), Fig. 2(b) (ρ = 1), Fig. 2(c) (ρ = 2) and the
4(ρ + 1) new edges link to the 4(ρ + 1) nodes adjacent to node l2. The degree of each 4(ρ + 1) node increases by 1. Because
the new node is placed randomly, l2 − 1 nodes have the same probability 4(ρ + 1)/(l2 − 1) of changing their degrees. With
a probability 1 − 4(ρ + 1)/(l2 − 1) the other node degrees remain the same. So the number of nodes with degree k in the
new ILPHVG4(ρ) containing l2 nodes is

LI4(k, l2) =

[
1 −

4(ρ + 1)
l2 − 1

]
LI4(k, l2 − 1) +

4(ρ + 1)
l2 − 1

LI4(k − 1, l2 − 1) + δk4(ρ+1). (15)

where

δk4(ρ+1) =

{
1, k = 4ρ + 4,
0, otherwise,

because the degree of each new node is k = 4(ρ + 1). The probability that nodes with degree k in the ILHVG4(ρ) containing
l2 nodes is calculated

PI4(k, l2) = LI4(k, l2)/l2. (16)

Thus we rewrite Eq. (15) to be

PI4(k, l2) ≈

(
1 −

4ρ + 5
l2

)
PI4(k, l2 − 1) +

4(ρ + 1)
l2

PI4(k − 1, l2 − 1), (17)

in which δk2(ρ+1)/l2 = 0 for large l2. When l2 → ∞, we have{
PI4(k − 1, l2) = PI4(k − 1, l2 − 1) = PI4(k − 1),
PI4(k, l2) = PI4(k, l2 − 1) = PI4(k).

(18)

Combining Eqs. (17) and (18) we obtain

PI4(k) =
4ρ + 4
4ρ + 5

PI4(k − 1). (19)

By applying
∑

∞

k=4(ρ+1) PI4(k) = 1 we obtain the solution to Eq. (19)

PI4(k) =
(4ρ + 5)4ρ+3

(4ρ + 4)4ρ+4

(
4ρ + 4
4ρ + 5

)k

. (20)
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Fig. 2. Graphical illustration of the new edges generated of ILPHVG4(ρ) and ILPHVG8(ρ) with ρ = 0, 1, 2 when we add the l2-th largest number (the green
node) into ILPHVG4(ρ) and ILPHVG8(ρ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Similarly, when n = 8 we add the largest number l2 into the ILPHVG8(ρ), and 8(ρ + 1) new edges are generated, i.e., the
green node in Fig. 2(d) (ρ = 0), Fig. 2(e) (ρ = 1), and Fig. 2(f) (ρ = 2) and 8(ρ +1) new edges link to 8(ρ +1) nodes adjacent
to node l2. We then change Eq. (15) to

LI8(k, l2) =

[
1 −

8(ρ + 1)
l2 − 1

]
LI8(k, l2 − 1) +

8(ρ + 1)
l2 − 1

LI8(k − 1, l2 − 1) + δk8(ρ+1). (21)

Thus

PI8(k, l2) ≈

(
1 −

8ρ + 9
l2

)
PI8(k, l2 − 1) +

8(ρ + 1)
l2

PI8(k − 1, l2 − 1), (22)

When l2 → ∞, we have

PI8(k) =
8ρ + 8
8ρ + 9

PI8(k − 1). (23)

By applying
∑

∞

k=8(ρ+1) PI8(k) = 1 we obtain the solution to Eq. (23)

PI8(k) =
(8ρ + 9)8ρ+7

(8ρ + 8)8ρ+8

(
8ρ + 8
8ρ + 9

)k

. (24)

From Eq. (20) and (24), we deduce a generic n that yields

PIn(k) =
[n(ρ + 1) + 1]n(ρ+1)−1

[n(ρ + 1)]n(ρ+1)

[
n(ρ + 1)

n(ρ + 1) + 1

]k

. (25)

This result is also consistent with the analytical expression in Ref. [48].
On the above work, we propose a method of deriving the degree distributions of the limited penetrable horizontal

visibility graphs, including LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ) using an iterative construction process for all three.
In contrast with previous methods [45,46], this method reproduces the construction process of the limited penetrable
horizontal visibility graphs, and it is more intuitive and the calculation process simpler.

4. Sequential motif profile of limited penetrable horizontal visibility graphs

Iacovacci and his collaborators [9,10] recently introduced the concept of sequential VG and HVG motifs and proposed a
theory of exactly computing Z4 in VG and HVG. They demonstrated that using the 4-motif statistics allows us to discriminate
between different types of dynamical and stochastic processes. We extend their results [9,10] and introduce sequential
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Fig. 3. All (ρ + 3)-node motifs of LPHVG(ρ) withρ = 0 (the upper) and ρ = 1 (the bottom).

Fig. 4. All (ρ + 4)-node motifs of LPHVG(ρ)withρ = 0 (the upper) and ρ = 1 (the bottom). Note that when ρ = 0, the type-V and type-VIII motifs are
actually not admissible under the HVG algorithm.

(ρ + n)-node motifs for LPHVG(ρ). We examine a LPHVG(ρ) of N nodes associated with a time series of N data and label the
nodes according to the natural ordering induced by the time direction. We set (ρ + n) < N and consider sequentially all
the subgraphs formed by the sequence of nodes {τ , τ + 1, . . . , τ + ρ + n − 1} (where τ is an integer that takes values in
[1,N-ρ-n+1]), and the edges from the LPHVG(ρ) connect the nodes. We define them to be the sequential (ρ +n)-nodemotifs
of the LPHVG(ρ). Figs. 3 and 4 show all the (ρ + 3)-node and (ρ + 4)-node motifs of LPHVG(ρ) with ρ = 0,1. Note that the
(ρ + 3)-node motifs include the Type-I and Type-II motifs, and that (ρ + 4)-node motifs include the Type-I, Type-II, Type-III,
Type-IV, Type-V, Type-VI, Type-VII and Type-VIII motifs. Note that for (ρ + 4)-node motifs, when ρ = 0 the Type-V and
Type-VIII motifs are not admissible under the HVG algorithm, i.e., there are only six admissible 4-node motifs of HVG [9],
but when ρ > 0, the Type-V and Type-VIII motifs are both admissible.

As in Refs. [9] and [10], we compare the LPHVG(ρ)s associated with different time series and dynamics by comparing the
relative occurrence of each motif inside a LPHVG(ρ). To do so we add to LPHVG(ρ) a significance profile [named LPHVG(ρ)
motif profile Zρ+n]. Let p be the total number of admissible LPHVG(ρ) motifs with ρ + n nodes. We assign to each p motif
a label from 1 to p (see Figs. 3 and 4), and define the LPHVG(ρ) motif profile Zρ+n of a time series of size N to be the vector
function

Zρ+n
: (ρ + n) ∈ N → [Pρ+n

1 , . . . , Pρ+n
p ], (26)

whose output is a vector of p components, where component i, Pρ+n
i , is the relative frequency of the type-i motif. We next

compute the frequency of each LPHVG(ρ) motif. We examine a generic dynamical process H : R → R with a smooth
invariant measure f (x), x ∈ [a, b] that fulfills the Markov property f (xτ |xτ−1, xτ−2, . . .) = f (xτ |xτ−1), where f (xτ |xτ−1) is
the transition probability distribution [9,10]. Each LPHVG(ρ) motif has a probability of appearance as a subgraph that is
determined by measuring the set of ordering inequalities that occur in the time series. For example, the LPHVG(ρ) motif
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profile Zρ+3
= [Pρ+3

I , Pρ+3
II ] is

Pρ+3
i =

∫ ∫
...

∫
f (xτ )f (xτ+1|xτ )...f (xτ+ρ+2|xτ+ρ+1)dxτ+ρ+2...dxτ+1dxτ . (27)

Using Eq. (27) to examine the independent and identically distributed (i.i.d.) random time series, for the (ρ + 3)− node
motif, we obtain the following:

Theorem 1. Consider a bi-infinite series of i.i.d. random variable extracted from a continuous distribution f (x)with support (a, b),
where a, b ∈ R. Then the probability of finding the (ρ + 3)− node motif of LPHVG(ρ) converges to

[
2

ρ+3 ,
ρ+1
ρ+3

]
, i.e.,

lim
N→∞

Zρ+3
=

[
2

ρ + 3
,
ρ + 1
ρ + 3

]
.

Proof. Ref. [9] provides a constructive proof of the special case (ρ = 0) of this theorem.Wehere derive the general case. Fig. 3
shows both undirected motifs of (ρ + 3)-nodes with ρ = 0,1. Note that there are only two types of motifs for (ρ + 3)-nodes
only have two types. We here first calculate the probability of Type-II (Pρ+3

II ).
We first consider ρ = 1. Here the motif of Type-II can be characterized using a hierarchy of inequalities in the associated

time series and the union sets of the three exclusive inequality sets

S1+3
II = {∀x0, x1 < x0, x2 < x1, x3 > x2} ∪ {∀x0, x1 < x0, x2 > x1, x3 > x1} ∪ {∀x0, x1 > x0, x2 < x0, x3 > x2}. (28)

We define the cumulative probability distribution function F (x) of any probability density f (x) to be

F (x) =

∫ x

a
f (t)dt, F (a) = 0, F (b) = 1. (29)

Using Eqs. (27) and (29), the probability of Eq. (28) is

P1+3
II =

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x1

a
f (x2)dx2

∫ b

x2

f (x3)dx3 +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x1

f (x2)dx2

∫ b

x1

f (x3)dx3

+

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ x0

a
f (x2)dx2

∫ b

x2

f (x3)dx3 =
1
2
.

(30)

When ρ = 2, we characterize the motif of Type-II using the union sets of the seven exclusive inequality sets

S2+3
II = {∀x0, x1 < x0, x2 < x1, x3 < x2, x4 > x3} ∪ {∀x0, x1 < x0, x2 < x1, x3 > x2, x4 > x2}

∪{∀x0, x1 < x0, x2 > x1, x3 > x1, x4 > x1} ∪ {∀x0, x1 < x0, x2 > x1, x3 < x1, x4 > x3}
∪{∀x0, x1 > x0, x2 > x0, x3 < x0, x4 > x3} ∪ {∀x0, x1 > x0, x2 < x0, x3 < x2, x4 > x3}
∪{∀x0, x1 > x0, x2 < x0, x3 > x2, x4 > x2}.

(31)

The probability of this event occurring is

P2+3
II =

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x1

a
f (x2)dx2

∫ x2

a
f (x3)dx3

∫ b

x3

f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

×

∫ x1

a
f (x2)dx2

∫ b

x2

f (x3)dx3

∫ b

x2

f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x1

f (x2)dx2

∫ b

x1

f (x3)dx3

∫ b

x1

f (x4)dx4

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x1

f (x2)dx2

∫ x1

a
f (x3)dx3

∫ b

x3

f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ b

x0

f (x2)dx2

×

∫ x0

a
f (x3)dx3

∫ b

x3

f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ x0

a
f (x2)dx2

∫ x2

a
f (x3)dx3

∫ b

x3

f (x4)dx4

+

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ x0

a
f (x2)dx2

∫ b

x2

f (x3)dx3

∫ b

x2

f (x4)dx4 =
3
5
.

(32)
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In the same way we characterize the motif of Type-II using the union sets of the
∑ρ

i=0 2
i exclusive inequality sets

Sρ+3
II = {∀x0, x1 < x0, x2 < x1, x3 < x2, . . . , xρ−1 < xρ−2, xρ < xρ−1, xρ+1 < xρ, xρ+2 > xρ+1}

∪{∀x0, x1 < x0, x2 < x1, x3 < x2, . . . , xρ−1 < xρ−2, xρ < xρ−1, xρ+1 > xρ, xρ+2 > xρ}

∪{∀x0, x1 < x0, x2 < x1, x3 < x2, . . . , xρ−1 < xρ−2, xρ > xρ−1, xρ+1 > xρ−1, xρ+2 > xρ−1}

∪{∀x0, x1 < x0, x2 < x1, x3 < x2, . . . , xρ−1 < xρ−2, xρ > xρ−1, xρ+1 < xρ−1, xρ+2 > xρ+1}

∪ · · · ∪ {∀x0, x1 < x0, x2 > x1, x3 > x1, . . . , xρ−1 > x1, xρ > x1, xρ+1 > x1, xρ+2 > x1}
∪ · · · ∪ {∀x0, x1 < x0, x2 > x1, x3 < x1, . . . , xρ+1 > xρ, xρ+2 > xρ}

∪{∀x0, x1 > x0, x2 > x0, x3 > x0, . . . , xρ > x0, xρ+1 < xρ, xρ+2 > xρ+1}

∪{∀x0, x1 > x0, x2 > x0, x3 > x0, . . . , xρ < x0, xρ+1 < xρ, xρ+2 > xρ+1}

∪{∀x0, x1 > x0, x2 > x0, x3 > x0, . . . , xρ < x0, xρ+1 > xρ, xρ+2 > xρ}

∪ · · · ∪ {∀x0, x1 > x0, x2 < x0, x3 > x2, . . . , xρ > x2, xρ+1 > x2, xρ+2 > x2}.

(33)

The probability of this event occurring is

Pρ(II)ρ+3
=

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x1

a
f (x2)dx2

∫ x2

a
f (x3)dx3...

∫ xρ−1

a
f (xρ)dxρ

×

∫ xρ

a
f (xρ+1)dxρ+1

∫ b

xρ+1

f (xρ+2)dxρ+2

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x1

a
f (x2)dx2

∫ x2

a
f (x3)dx3...

∫ xρ−1

a
f (xρ)dxρ

∫ b

xρ
f (xρ+1)dxρ+1

∫ b

xρ
f (xρ+2)dxρ+2

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x1

a
f (x2)dx2

∫ x2

a
f (x3)dx3...

∫ b

xρ−1

f (xρ)dxρ

∫ b

xρ−1

f (xρ+1)dxρ+1

∫ b

xρ−1

f (xρ+2)dxρ+2

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x1

a
f (x2)dx2

∫ x2

a
f (x3)dx3...

∫ b

xρ−1

f (xρ)dxρ

∫ xρ−1

a
f (xρ+1)dxρ+1

∫ b

xρ+1

f (xρ+2)dxρ+2

+ · · · +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x1

f (x2)dx2

∫ b

x1

f (x3)dx3...
∫ b

x1

f (xρ)dxρ

∫ b

x1

f (xρ+1)dxρ+1

∫ b

x1

f (xρ+2)dxρ+2

+ · · · +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x1

f (x2)dx2

∫ x1

a
f (x3)dx3...

∫ b

xρ
f (xρ+1)dxρ+1

∫ b

xρ
f (xρ+2)dxρ+2

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x0

f (x2)dx2

∫ b

x0

f (x3)dx3...
∫ b

x0

f (xρ)dxρ

∫ xρ

a
f (xρ+1)dxρ+1

∫ b

xρ+1

f (xρ+2)dxρ+2

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x0

f (x2)dx2

∫ b

x0

f (x3)dx3...
∫ x0

a
f (xρ)dxρ

∫ xρ

a
f (xρ+1)dxρ+1

∫ b

xρ+1

f (xρ+2)dxρ+2

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x0

f (x2)dx2

∫ b

x0

f (x3)dx3...
∫ x0

a
f (xρ)dxρ

∫ b

xρ
f (xρ+1)dxρ+1

∫ b

xρ
f (xρ+2)dxρ+2

+ · · · +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x0

a
f (x2)dx2

∫ b

x2

f (x3)dx3...
∫ b

x2

f (xρ)dxρ

×

∫ b

x2

f (xρ+1)dxρ+1

∫ b

x2

f (xρ+2)dxρ+2 =
ρ + 1
ρ + 2

.

(34)

Thus, Pρ+3
I = 1 − Pρ+3

II = 1 −
ρ+1
ρ+2 =

2
ρ+3 , that is,

lim
N→∞

Zρ+3
=

[
2

ρ + 3
,
ρ + 1
ρ + 3

]
. (35)

Note that when ρ → ∞, Pρ+3
II → 1, i.e., Zρ+3

→ [0, 1].

Note that Z3 does not capture enough structure for distinguishing the chaotic logistic map and i.i.d. series [9]. We here
test whether Zρ+3, ρ ≥ 1 can capture enough structure for distinguishing both processes. We calculate Z1+3 for the chaotic
logistic map

h̄(x) = 4x(1 − x), x ∈ [0, 1], f (x) =
1

π
√
x(1 − x)

.
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In this case,

P1+3
II =

∫ 1

0
f (x0)dx0

∫ x0

0
δ(x1 − h̄(x0))dx1

∫ x1

0
δ(x2 − h̄2(x0))dx2

∫ 1

x2

δ(x3 − h̄3(x0))dx3

+

∫ 1

0
f (x0)dx0

∫ x0

0
δ(x1 − h̄(x0))dx1

∫ 1

x1

δ(x2 − h̄2(x0))dx2

∫ 1

x1

δ(x3 − h̄3(x0))dx3

+

∫ 1

0
f (x0)dx0

∫ b

x0

δ(x1 − h̄(x0))dx1

∫ x0

0
δ(x2 − h̄2(x0))dx2

∫ 1

x2

δ(x3 − h̄3(x0))dx3

= P1 + P2 + P3,

(36)

where∫ 1

0
δ(x − y)dx =

{
1, y ∈ [0, 1],
0, otherwise.

(37)

Since the Dirac-delta integrals only have the effects of shrinking the range of integration of x0, thus for P1, the integral in
x1 requires (see Fig. 5(a))

[h̄(x0) < x0] ∩ [0, 1] ⇒ x0 ∈ [3/4, 1], (38)

the integral in x2 requires

[h̄2(x0) < h̄(x0)] ∩ [3/4, 1] ⇒ x0 ∈ [1/4, 3/4] ∩ [3/4, 1] = ∅, (39)

the integral in x3 requires

[h̄3(x0) > h̄2(x0)] ∩ ∅ ⇒ x0 = ∅. (40)

thus, P1 = 0.
For P2, the integral in x1 requires

[h̄(x0) < x0] ∩ [0, 1] ⇒ x0 ∈ [3/4, 1], (41)

the integral in x2 requires

[h̄2(x0) > h̄(x0)] ∩ [3/4, 1] ⇒ x0 ∈ ([0, 1/4] ∪ [3/4, 1]) ∩ [3/4, 1] ⇒ x0 ∈ [3/4, 1], (42)

the integral in x3 requires

[h̄3(x0) > h̄(x0)] ∩ [3/4, 1]
⇒ x0 ∈ ([0, (3 −

√
5)/8] ∪ [1/4, (3 +

√
5)/8] ∪ [(5 −

√
5)/8, 3/4] ∪ [(5 +

√
5)/8, 1]) ∩ [3/4, 1]

⇒ x0 ∈ [(5 +
√
5)/8, 1],

(43)

thus, P2 =
∫ 1
(5+

√
5)/8 f (x0)dx0 = 1/5.

For P3, the integral in x1 requires

[h̄(x0) > x0] ∩ [0, 1] ⇒ x0 ∈ [0, 3/4], (44)

the integral in x2 requires

[h̄(x0) < x0] ∩ [0, 3/4]
⇒ x0 ∈ ([(5 −

√
5)/8, 3/4] ∪ [(5 +

√
5)/8, 1]) ∩ [0, 3/4] ⇒ x0 ∈ [(5 −

√
5)/8, 3/4],

(45)

the integral in x3 requires

[h̄3(x0) > h̄2(x0)] ∩ [(5 −
√
5)/8, 3/4]

⇒ x0 ∈ ([0, (2 −
√
3)/4] ∪ [1/4, 3/4] ∪ [(2 +

√
3)/4, 1]) ∩ [(5 −

√
5)/8, 3/4]

⇒ x0 ∈ [(5 −
√
5)/8, 3/4],

(46)

thus, P3 =
∫ 3/4
(5−

√
5)/8

f (x0)dx0 = 4/15. Therefore, P1+3
II = P1 + P2 + P3 =

14
30 , which is indeed quite different from the result

for i.i.d. (Eq. (30)). This result demonstrates Z1+3 can capture enough structure for distinguishing the logistic map and i.i.d.
series. In fact, for chaotic logistic map we can also obtain

lim
N→∞

Zρ+3
= [

8
3ρ + 12

,
3ρ + 4
3ρ + 12

]. (47)

Comparing Eq. (47) with Eq. (35), we find that when ρ ≥ 1, the motif profile for logistic map is different from the result for
i.i.d., which indicates that Zρ+3 with ρ > 1 can capture enough structure for distinguishing both process (see Fig. 5b). Thus,
Zρ+3 contains more structure information than Z3 [9].

For the (ρ + 4)− node motif, we obtain the following:
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Fig. 5. (a) Plot of the iterates of the chaotic logistic map, (b) (ρ + 3)-node motif profiles Zρ+3 associated with logistic map and i.i.d. series.

Theorem 2. Consider a bi-infinite series of i.i.d. random variable extracted from a continuous distribution f (x)with support (a, b),
where a, b ∈ R. Then the probability of finding (ρ+4)−nodemotif of LPHVG(ρ) converges to

[
4

(ρ+3)(ρ+4) ,
1

ρ+4 ,
1

ρ+4 , 0,
2ρ

(ρ+3)(ρ+4) ,

ρ+1
(ρ+3)(ρ+4) ,

ρ+1
(ρ+3)(ρ+4) ,

ρ(ρ+1)
(ρ+3)(ρ+4)

]
, i.e.,

lim
N→∞

Zρ+4
=

[
4

(ρ + 3)(ρ + 4)
,

1
ρ + 4

,
1

ρ + 4
, 0,

2ρ
(ρ + 3)(ρ + 4)

,
ρ + 1

(ρ + 3)(ρ + 4)
,

ρ + 1
(ρ + 3)(ρ + 4)

,
ρ(ρ + 1)

(ρ + 3)(ρ + 4)

]
.

Proof. We give the proof for P1+4
I and the proofs for the rest of the probabilities follow analogously. The motif of Type-I of

(ρ + 4)− node motif of LPHVG(1) (see Fig. 4) can be characterized using a hierarchy of inequalities in the associated time
series using the union sets of the nine exclusive inequality sets

S1+4
I = {∀(x0, x4), x1 > x0, x2 > x1, x3 > x1} ∪ {∀x0, x1 > x0, x2 > x1, x3 < x1, x4 < x3}

∪{∀x0, x1 > x0, x0 < x2 < x1, x3 > x1, x4 < x2} ∪ {∀x0, x1 > x0, x0 < x2 < x1, x2 < x3 < x1, x4 < x2}
∪{∀x0, x1 > x0, x0 < x2 < x1, x3 < x2, x4 < x3} ∪ {∀x0, x1 > x0, x2 < x0, x3 < x2, x4 < x3}
∪{∀x0, x1 < x0, x2 > x0, x3 < x1, x4 < x3} ∪ {∀x0, x1 < x0, x1 < x2 < x0, x3 < x1, x4 < x3}
∪{∀x0, x1 < x0, x2 < x1, x3 < x2, x4 < x3}.

(48)

Thus, using Eq. (27) the probability P1+4
I is expressed

P1+4
I =

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ b

x1

f (x2)dx2

∫ b

x1

f (x3)dx3

∫ b

a
f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ b

x1

f (x2)dx2

×

∫ x1

a
f (x3)dx3

∫ x3

a
f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ x1

x0

f (x2)dx2

∫ b

x1

f (x3)dx3

∫ x2

a
f (x4)dx4

+

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ x1

x0

f (x2)dx2

∫ x1

x2

f (x3)dx3

∫ x2

a
f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ x1

x0

f (x2)dx2

×

∫ x2

a
f (x3)dx3

∫ x3

a
f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ b

x0

f (x1)dx1

∫ x0

a
f (x2)dx2

∫ x2

a
f (x3)dx3

∫ x3

a
f (x4)dx4

+

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ b

x0

f (x2)dx2

∫ x1

a
f (x3)dx3

∫ x3

a
f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x0

x1

f (x2)dx2

×

∫ x1

a
f (x3)dx3

∫ x3

a
f (x4)dx4 +

∫ b

a
f (x0)dx0

∫ x0

a
f (x1)dx1

∫ x1

a
f (x2)dx2

∫ x2

a
f (x3)dx3

∫ x3

a
f (x4)dx4.

(49)

Using Eq. (29) with little calculation we obtain

P1+4
I =

1
12

+
1
40

+
1
60

+
1
60

+
1
40

+
1

120
+

1
120

+
1

120
+

1
120

=
1
5
. (50)

The equivalence between each motif and its associated inequality set we can also rigorously prove analogously for the other
motifs. Table 1 lists all the remaining inequality sets and their corresponding probabilities of LPHVG(1). Thus, we obtain

lim
N→∞

Z1+4
=

[
1
5
,
1
5
,
1
5
, 0,

1
10

,
1
10

,
1
10

,
1
10

]
. (51)
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Table 1
The rest sets of inequalities and the corresponding probability.
Motif type Inequality set Probability

Type-II {∀x0, x1 > x0, x2 < x0, x3 > x2, x4 < x2} ∪ {∀(x0, x4), x1 < x0, x2 > x0, x3 > x0} P1+4
II =

1
5

∪{∀x0, x1 < x0, x2 > x0, x1 < x3 < x0, x4 < x3} ∪ {∀x0, x1 < x0, x1 < x2 < x0, x3 > x2, x4 < x2}
∪{∀x0, x1 < x0, x1 < x2 < x0, x1 < x3 < x2, x4 < x3} ∪ {∀x0, x1 < x0, x2 < x1, x3 > x1, x4 < x1}
∪{∀x0, x1 < x0, x2 < x1, x2 < x3 < x1, x4 < x3}

Type-III {∀x0, x1 > x0, x2 < x0, x3 < x2, x3 < x4 < x2} ∪ {∀x0, x1 > x0, x0 < x2 < x1, x3 > x2, x4 > x2} P1+4
III =

1
5

∪{∀x0, x1 > x0, x0 < x2 < x1, x3 < x2, x4 > x3} ∪ {∀x0, x1 > x0, x2 > x1, x3 < x1, x4 > x3}
∪{∀x0, x1 < x0, x2 > x1, x3 < x1, x3 < x4 < x1} ∪ {∀x0, x1 < x0, x2 < x1, x3 < x2, x3 < x4 < x2}

Type-IV {∀x0, x1 < x0, x2 = x1, x3 = x1, x4 > x1} P1+4
IV = 0

Type-V {∀x0, x1 > x0, x2 < x0, x3 > x0, x4 > x2} ∪ {∀x0, x1 > x0, x2 < x0, x2 < x3 < x0, x2 < x4 < x3} P1+4
V =

1
10

∪{∀x0, x1 < x0, x2 < x1, x3 > x1, x2 < x4 < x1} ∪ {∀x0, x1 < x0, x2 < x1, x2 < x3 < x1, x2 < x4 < x3}
Type-VI {∀x0, x1 < x0, x2 > x0, x1 < x3 < x0, x4 > x3} ∪ {∀x0, x1 < x0, x1 < x2 < x0, x1 < x3 < x2, x4 > x3} P1+4

VI =
1
10

∪{∀x0, x1 < x0, x1 < x2 < x0, x2 < x3, x4 > x2}
Type-VII {∀x0, x1 > x0, x2 < x0, x3 < x2, x4 > x2} ∪ {∀x0, x1 < x0, x2 > x1, x3 < x1, x4 > x1} P1+4

VII =
1
10

∪{∀x0, x1 < x0, x2 < x1, x3 < x2, x4 > x2}
Type-VIII {∀x0, x1 > x0, x2 < x0, x2 < x3 < x0, x4 > x3} ∪ {∀x0, x1 < x0, x2 < x1, x2 < x3 < x1, x4 > x3} P1+4

VIII =
1
10

∪{∀x0, x1 < x0, x2 < x1, x3 > x1, x4 > x1}

When ρ > 1, we repeat the above proof and finally obtain

lim
N→∞

Zρ+4
=

[
4

(ρ + 3)(ρ + 4)
,

1
ρ + 4

,
1

ρ + 4
, 0,

2ρ
(ρ + 3)(ρ + 4)

,
ρ + 1

(ρ + 3)(ρ + 4)
,

ρ + 1
(ρ + 3)(ρ + 4)

,
ρ(ρ + 1)

(ρ + 3)(ρ + 4)

]
.

(52)

Theorems 1 and 2 demonstrate that the (ρ + 3)-node and (ρ + 4)-node motif profile of LPHVG(ρ) have the unified
form for every i.i.d. probability distribution f (x). To further check the accuracy of our analytical results, we perform several
numerical simulations. We generate a random series of 105 data points from uniform, Gaussian white noise, and power-law
distributions. Fig. 6(a) shows (ρ + 3)-node motif profiles Zρ+3 associated with uniform distribution (cycles), Gaussian white
noise (diamonds) and a power-law distribution (triangles)extracted from LPHVG(ρ) with ρ = 0, 1, 2, . . . , 50. The solid line
indicates the theoretical results of Theorem 1. Fig. 6(b) shows the (ρ + 4)-node motif profiles Zρ+4 associated with Gaussian
white noise (cycles for Type-I, diamonds for Type-II, squares for Type-III, pentagrams for Type-IV, upper triangles for Type-V,
left triangles for Type-VI, stars for Type-VII and crosses for Type-VIII) extracted from LPHVG(ρ) with ρ = 0, 1, 2, . . . , 50. The
solid line indicates the theoretical results of Theorem 2. We conclude that the theoretical results agree with the numerics.

Note that a prerequisite for our theoretical results is that the length of the time series must be infinitely long, i.e., have a
series size N → ∞, so we assume that the deviation from the theoretical result is due to the effect of finite size. To check
the finite size effect, we compute for a series of size N the numeral estimate Zρ+3(N) and Zρ+4(N) and compare them with
the theoretical values. We define the index Φ(N)

Φ(N) = Zρ+n(N)/Zρ+n. (53)

We use Φ(N) to measure the deviation between the numerical result under a finite size and the theoretical result. Fig. 6(c)
plots Φ(N) = Z1+3(N)/Z1+3 as a function of the series size N , Fig. 6(d) plots Φ(N) = Z1+4(N)/Z1+4 as a function of the series
size N . Each dot is averaged over an ensemble of 100 realizations of each size N . The results indicate that a convergence to
the asymptotic theory is reached when N < 10, 000 ( we set the value N = 8728 in Section 5).

5. A simple application

We use the analytical results of LPHVG(ρ) to distinguish between random and chaotic signals, and we describe the global
evolution of crude oil futures [47]. We also describe using DLPHVG(ρ) and ILPHVGn(ρ) to measure real-value time series
irreversibility and discriminating between and chaos [48]. Here we describe the application of sequential (ρ + n)-node
motifs of LPHVG(ρ)and show that Zρ+3 and Zρ+4 produce enough information that we can distinguish different processes
and thus classify series.

The following are the equations of the continuous dynamical systems we use to generate our flow data. The time series
are derived from the x component in each system used to build the corresponding complex network.

To generate a periodic Rossler system we use

ẋ = −(y + z), ẏ = x + ay, ż = b + (x − c)z. (54)

where a = 0.1, b = 0.1, c = 6. The sampling interval T = 0.1.
To generate a chaotic Lorenz system we use

ẋ = σ (y − x), ẏ = x(r − z) − y, ż = xy − bz. (55)
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Fig. 6. Numerical simulation results (a) (ρ + 3)-node motif profiles Zρ+3 associated with uniform distribution (the cycles), Gaussian white noise (the
diamonds) and with a power law distribution (the triangles)extracted respectively from LPHVG(ρ) with ρ = 0, 1, 2, . . . , 50, (b) (ρ +4)-nodemotif profiles
Zρ+4 associated with Gaussian white noise extracted from LPHVG(ρ) with ρ = 0, 1, 2, . . . , 50, (c) The measured frequency of appearance rescaled by
its theoretical value Φ(N) = Z1+3(N)/Z1+3 is plotted for each motif associated with Gaussian white noise as a function of the time series size N , (d)
Φ(N) = Z1+4(N)/Z1+4 is plotted for each motif associated with Gaussian white noise as a function of the time series size N . Results are averaged over 100
realizations.

where σ = 10, r = 28, b = 8/3. The sampling interval T = 0.05. We also use data from the U.S. Energy Information
Administration ( https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET & s=RCLC1 & f=D ) on the crude oil future contract
1 (Dollars per Barrel) from 4 April 1983 to 23 Jan 2018 (8728 data points).

To allow comparisons, all the time series associated with different dynamic systems are set at 8728. Fig. 7(a–d) shows
the (ρ + 3)-node motif profiles Zρ+3 associated with different dynamic systems extracted from LPHVG(ρ) with ρ =

0, 1, 2, . . . , 50. Fig. 7(e) shows the frequency of type-I of (ρ + 3)-node motif associated with different dynamic systems.
Fig. 7(f) shows the frequency of type-I of (ρ+4)-nodemotif associatedwith different dynamic systems extracted respectively
from LPHVG(ρ) with ρ = 0, 1, 2, . . . , 50. The circles indicate a series extracted from a i.i.d. Gaussian distribution, and the
stars, triangles, and diamonds indicate series extracted from a periodic Rossler system, a chaotic Lorenz system, and a crude
oil price series, respectively.

From Fig. 7(a–d) show that the time series associated with different dynamic systems have different (ρ + 3)-node motif
profiles. Fig. 7(e) and (f) show that the frequency of type-I motif of (ρ + 3)-node motif and (ρ + 4)-node motif can capture
sufficient information to distinguish different processes, i.e., the periodic time series that has the highest frequency of type-I
motif, the i.i.d. time series that has the lowest frequency, and the frequency of type-I motif associated with chaotic time
series is between the periodic time series and the i.i.d. time series. Note that these results are only valid when ρ < 50,
because we selected 8728 to be the length of the time series. Increasing the size of time series increases the corresponding
value of ρ.

6. Discussions

We have proposed a novel method for deriving degree distributions of LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ) by using
an iterative construction process of LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ) and applying it to an uncorrelated random time
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Fig. 7. Numerical simulation results (a)(ρ + 3)-node motif profiles Zρ+3 associated with different dynamic systems extracted respectively from LPHVG(ρ)
with ρ = 0, 1, 2, . . . , 50, (a) i.i.d. time series, (b) crude oil price series, (c)chaotic Lorenz system, (d) periodic Rossler system, (e) the frequency of type-I of
(ρ + 3)-node motif associated with different dynamic systems, (c) (ρ + 4)-node motif profiles Zρ+4 associated with different dynamic systems extracted
respectively from LPHVG(ρ) with ρ = 0, 1, 2, . . . , 50, (f) the frequency of type-I of (ρ + 4)-node motif associated with different dynamic systems.

series. We analytically obtain the degree distributions of the LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ) for random series and
find that they are exponential, which confirms prior analytical results using other methods [47,48]. We also introduced the
concept of LPHVG(ρ)motifs, which are small subgraphs inwhich nodes are in consecutive orderwithin theHamiltonian path
that appear at characteristic frequencies for different types of dynamics.We compute themotif profiles for LPHVG(ρ), which
is an extension of previous work [9,10]. We find that LPHVG(ρ) motifs provide a mathematically sound, computationally
efficient, andhighly informative simple feature that canbe extracted fromany time series. It provides a newwayof describing
complex signals and their dynamics.

Unsolved problems remain.We still need to develop a theoretical framework for analytically computing themotif profiles
of the limited penetrable horizontal visibility graphs associated with such complicated time series as logistic maps and
Lorenz equations. We still need research on how to use real data when selecting optimal limited penetrable parameter ρ,
how to extend this analysis to the realm ofmultivariate time series, and how to develop practical applications thatwill reveal
the new dynamic characteristics of the actual system.
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