PHYSICAL REVIEW E 98, 062320 (2018)

Social contagions with communication channel alternation on multiplex networks

Wei Wang,'> Ming Tang,>*” H. Eugene Stanley,’ and Lidia A. Braunstein®’
'Cybersecurity Research Institute, Sichuan University, Chengdu 610065, China
’Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
38chool of Information Science and Technology, East China Normal University, Shanghai, 200241, China

4Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China

3Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

SInstituto de Investigaciones Fisicas de Mar del Plata (IFIMAR)-Departamento de Fisica, Facultad de Ciencias Exactas y Naturales,

Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina
® (Received 20 June 2018; revised manuscript received 30 November 2018; published 26 December 2018)

Internet communication channels, e.g., Facebook, Twitter, and email, are multiplex networks that facilitate
interaction and information-sharing among individuals. During brief time periods users often use a single
communication channel, but then communication channel alteration (CCA) occurs. This means that we must
refine our understanding of the dynamics of social contagions. We propose a non-Markovian behavior spreading
model in multiplex networks that takes into account the CCA mechanism, and we develop a generalized edge-
based compartmental method to describe the spreading dynamics. Through extensive numerical simulations and
theoretical analyses we find that the time delays induced by CCA slow the behavior spreading but do not affect
the final adoption size. We also find that the CCA suppresses behavior spreading. On two coupled random regular
networks, the adoption size exhibits hybrid growth, i.e., it grows first continuously and then discontinuously with
the information transmission probability. CCA in Erd8s-Rényi—Scale-Free (ER-SF) multiplex networks in which
two subnetworks are ER and SF introduces a crossover from continuous to hybrid growth in adoption size versus
information transmission probability. Our results extend our understanding of the role of CCA in spreading

dynamics and may elicit further research.
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I. INTRODUCTION

Numerous social communication platforms, including
Facebook, Twitter, and email, are a part of the current world-
wide information explosion. These platforms taken together
behave as a network of networks (NON) in which each com-
munication platform functions as a subnetwork [1-4]. These
NONs can be multilayer, interdependent, or multiplex. In
interdependent networks the functionality of the components
in one network depends on the functionality of nodes in other
networks. A multiplex network is a special NON case in
which each agent can be present in more than one layer.
Extensive studies of cascading failure, evolutionary games,
synchronization, and spreading dynamics have found that the
dynamics of NONs differ greatly from those of single net-
works [5—11]. For example, Buldyrev et al. found a first-order
percolation phase transition in interdependent networks that is
qualitatively different from the second-order phase transition
in single networks [7]. Baxter et al. found a hybrid phase
transition in the percolation phase transition on multiplex
networks [12].

Spreading dynamics in complex networks can be classified
as either biological or social contagions. In biological con-
tagions, such as epidemic spreading, researchers have found
that multilayer networks promote spreading [8,9], induce the
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coexistence of mixed phase transitions [13], and produce
rare-region phenomena [14]. In contrast to biological conta-
gions, social contagions are strongly affected by social rein-
forcement [15]. Research on social contagions has focused
primarily on a generalized Watts threshold model [16-21].
As in biological contagions, the behavior of NONs promotes
social contagions [16]. Majdandzic et al. found multiple
tipping points of social contagions in multilayer networks
[21,22]. Recently Wang et al. used a data-driven asymmetric
sociobiological coevolutionary model to locate an optimal
information diffusion mechanism for suppressing biological
contagions [23] that enables us to understand the effect of
asymmetry in interacting dynamics [24-27].

Although there are many different communication chan-
nels, we usually select one to transmit information to friends
during short periods of time due to the inelasticity of such
resources as time and energy [28-30]. Thus when transmitting
information through a multiplex network we often migrate
to other channels [31,32], and a communication channel
alteration (CCA) occurs. For example, when transmitting
information using texting or email, if we change to another
channel, then a CCA occurs. This event (i) creates distinct
active time periods for individuals in different communication
platforms and (ii) introduces time delays when obtaining
information from other platforms. Theoretically CCA induces
a non-Markovian effect into the spreading dynamics that
further causes strong dynamic correlations among the states
of neighbors.
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Because there has been no systematic study of how
CCA affects the dynamics of social contagions on multiplex
networks, we propose a non-Markovian behavior spreading
model on multiplex networks. At any given time an indi-
vidual can be active in only one communication layer and
can transmit behavioral information to neighbors and obtain
behavioral information from neighbors only within the same
subnetwork. Using extensive numerical simulations we find
that time delays induced by CCA slow behavior spreading but
do not affect the final adoption size. We also find that CCA
suppresses the final behavior adoption size. It is significant
that CCA changes the growth pattern of the final adoption
size on Erd6s-Rényi—Scale-Free (ER-SF) networks, i.e., the
growth pattern of the adoption size versus the behavioral
information transmission probability changes from continu-
ous to hybrid. We develop a generalized edge-based com-
partmental method to describe this non-Markovian spreading
model and find that the theoretical predictions agree with the
numerical predictions.

II. SOCIAL CONTAGION MODEL
ON MULTIPLEX NETWORKS

Communication channels such as Facebook, Twitter, and
email facilitate interaction and information sharing. Taken
together they form a multiplex network in which each com-
munication channel functions as a subnetwork. During short
periods of time individuals select a single communication
platform to transmit information, and then CCA occurs. To
understand how CCA affects the dynamics of social conta-
gion, we examine the behavior spreading dynamics in two-
layer multiplex networks in which each layer or subnetwork
represents a single communication channel. Figure 1(a) shows
a multiplex network. In the multiplex network model, sub-
networks 4 and BB have the same number of nodes, and they
randomly match one to one, which means that each individual
can communicate with friends through two different commu-
nication channels. To establish the multiplex network, we first
assign degrees k4 and kp to individuals in subnetworks .4
and B, respectively, according to a joint degree distribution

P(Tg) = P(k4, k). We then build each subnetwork using an
uncorrelated configuration model [33]. In the thermodynamic
limit, i.e., the network size N — oo, there are no intralayer
degree correlations in the subnetworks.

We propose a generalized non-Markovian susceptible-
adopted-recovered (SAR) model [34-36] to describe the be-
havior spreading dynamics in multiplex networks. Wang et al.
[34] found a transition phenomenon in which the dependence
of the final adoption size versus information transmission
probability can change from discontinuous to continuous by
decreasing the individual adoption threshold, increasing the
initial seed size, or enhancing the network heterogeneity.
In the SAR model, social reinforcement is triggered by the
reception of nonredundant behavioral information, i.e., a sus-
ceptible individual adopts the new behavior only when the
amount of received nonredundant information from neighbors
rises above a given adoption threshold. We only allow the
transmission of nonredundant information. An individual in
the susceptible state has not adopted the behavior. An indi-
vidual in the adopted state has adopted the behavior and is
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FIG. 1. Illustration of social contagions on multiplex networks.
Initially, individuals 1 and 5 are selected as seeds (adopted), and
the remaining individuals are susceptible. (a) At time # = 1, indi-
vidual 1 (5) successfully transmits the information to his or her
susceptible neighbor 2 (4) in subnetwork A (B). The accumulated
pieces of information of 2 (4) in subnetwork network A4 (B) is
mz =1 (m8 = 1). (b) At time ¢ = 2, individuals 1, 3, and 5 are in
subnetwork A. Individual 5 successfully transmits the information to
2:; however, individual 2 does not read this information since he or
she belongs to subnetwork B. (c) At r = 3, individual 2 activates in
subnetwork A, he or she fulfills his or her adoption threshold 74 = 2.
Thus, individual 2 adopts the behavior. Individuals 1 and 5 recover
with probability y = 0.6. (d) At time ¢ = 4, all adopted individuals
recover and no individual whose received information is greater
than his or her adoption threshold. The processes terminates. Each
individual activates in subnetwork A with probability p = 0.6 and
in subnetwork B with the complementary probability 1 — p = 0.4.
Individuals activates in the subnetwork are marked with red shadow,
such as individual 1 activates in .A.

willing to transmit the information to neighbors through one
communication channel. An individual in the recovered state
has lost interest in the behavior and no longer transmits the
information.

During short periods of time the constraints posed by
inelastic resources limit individuals to a single communication
channel [28,29], i.e., at any given time step an individual
can only be active in one subnetwork. Individuals thus use
CCA as the system evolves. To describe CCA, we introduce
a layer-switching parameter p; and assume that individual i
is active in subnetwork A with a probability p; and active
in subnetwork B with a probability 1 — p;. For simplicity,
we assume that all individuals have equal values of p = p;.
When an individual is active in a subnetwork X € {A, B}, it
can transmit the information to neighbors in subnetwork X
and can read information from neighbors in subnetwork X’ but
cannot read information in the other nonactive subnetwork ).
Thus individuals cannot simultaneously read all information
from neighbors in all communication channels, and this intro-
duces time delays into receiving information.
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We use a synchronous updating method [37] to renew the
states of individuals. We first randomly select a fraction pg
of individuals to be seeds in the adopted state. The remaining
individuals are in the susceptible state. At each time step, each
adopted individual vy active in subnetwork X transmits the
information to each susceptible neighbor uy with a probabil-
ity Ax. When individual vy successfully transmits informa-
tion to uy, the information transmission between them does
not occur in subsequent steps, i.e., we only allow nonredun-
dant information to transmit between two individuals because
each neighbor can only partially guarantee the credibility and
legitimacy of the behavior [38]. Note that if a susceptible
individual uy is active in subnetwork X', he or she only
reads information in subnetwork X. Thus the CCA introduces
time delays into receiving information. If an individual u y in
subnetwork X receives a new piece of information, he or she
adopts the behavior with a probability 7 (m:*, m?), where the
m¥ value is the number of cumulative pieces of nonredundant
information from neighbors in subnetwork X. If individual
uy adopts the behavior, then his or her counterpart uy also
adopts the behavior in subnetwork ). Here we focus on a case
in which an individual in the susceptible state adopts the new
behavior when mf exceeds his or her adoption threshold TMX
in subnetwork X. For simplicity, we assume all individuals
have the same adoption threshold 7 = Ty in subnetwork X'.
The 7 (mA, mB) value is

mt > TyormB > Ty

7 (m7t, m8) = {1’ ey

0, others

To include the social reinforcement effect, both T4 and T
values are greater than unity. At each time step we assume that
all individuals in the adopted state lose interest in transmitting
the information and with a probability y they recover. The
spreading stops when all the adopted individuals become
recovered, and the received information of all susceptible in-
dividuals does not exceed their threshold in either subnetwork.
Figure 1 shows the behavior spreading dynamics in multiplex
networks.

There are two key features in our proposed spreading
dynamics. (1) The memory effect is induced in our model.
Unlike bootstrap percolation [39—41] or a threshold model
[19] in which a susceptible individual becomes active (or
adopted) only when its current number or fraction of adopted
neighbors is larger than a given value, in our model a sus-
ceptible individual becomes adopted when his or her received
accumulated information in either subnetwork is larger than
a threshold. (2) CCA is included in our model. Unlike the
models in Refs. [16,18] in which each node can obtain the
information from two subnetworks simultaneously, CCA al-
lows an individual to be active in only one subnetwork at a
time step.

III. THEORETICAL METHOD

From the description of the behavior adoption process in
Sec. II we know that there is a non-Markovian characteris-
tic in the dynamics because (i) social reinforcement occurs
when nonredundant behavioral information transmissions are
remembered, and (ii) CCA causes time delays in the reception
of information. This non-Markovian characteristic makes the
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FIG. 2. Dynamics of social contagions on RR-RR multiplex
networks. Active events in subnetwork A, i.e., individuals are active
in subnetwork A, versus time @ with (a) p =0.8 and (¢) p =
0.6, respectively. The time interval distribution P(z ) between two
consecutive activates in subnetwork .A with (b) p = 0.8 and (d) p =
0.6, respectively. We set other parameters to be pp = 0.1, y = 1.0,
k= IO,AA:)ngo.Q,andTA:TA:&

strong dynamic correlations among the states of the neigh-
bors difficult to describe. Here we develop a generalized
edge-based compartmental method [42—45] of describing the
spreading of behavior in multiplex networks. In this theo-
retical method we assume that the networks are large, the
edges sparse, there are no degree-degree correlations, and the
dynamics evolve continuously.

An individual # adopting the new behavior must take into
account his or her received information in both subnetworks
A and B. Denoting u » as an individual u active in subnetwork
X € {A, B}, we quantify the probability that individual « is in
the susceptible state and assume that u y is in the cavity state
[46], i.e., that u y cannot transmit the information to neighbors
in subnetwork X but can receive information from neighbors
in all the subnetworks. The probability that an individual
vy has not transmitted the information to a neighbor uy
along a randomly chosen edge in subnetwork X" by time ¢ is
Ox(t). At time ¢, the probability that u y has received units of
information m y from subnetwork X is

k
B (ks 1) = (m);) [0 (DI [1 = 6x(O]"*,  (2)

where ky is the degree of individual u in subnetwork X'. Here
the CCA disallows individual u y from reading all information
from all subnetworks because he or she can only focus on the
information in the layer in which he or she is currently active.
At time ¢, individual u can only read received information
from neighbors in subnetwork X when he or she is active in
that subnetwork, i.e., when u is active in X he or she cannot
read received information in ).

The CCA between two subnetworks for individual u is
a stochastic Poisson process. The time interval distribution
between two successive actions of u in subnetwork A is
P (@) ~ e~U=P¥ [47], as shown in Figs. 2(a) and 2(b) and
Figs. 2(d) and 2(e), where p is the probability that u is
active in subnetwork A. Note that we use random regular
(RR) [48] networks to describe the two subnetworks A and
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B in Fig. 2. All nodes have the same degree in the RR net-
WOI‘k, i.e., PA(kA) = PB(kB) =1if (kA) = (klg) = 10. Each
RR network can be built using an uncorrelated configuration
model [33]. We find the approximate average time interval of
all individuals active in subnetwork & to be
(wx) = : ;
1 —px

3)

where py is the probability that an individual is active in
subnetwork X. When X = A, then py = p. When X = B,
then py =1 — p.

If individual u is active in subnetwork ) at time #, on
average his or her latest active time in subnetwork & is
t — (wx). Here he or she reads all information in subnetwork
Y. The approximate number of information units he can read
in subnetwork X’ is the number of information units in the
inbox of subnetwork X" at t — (wy). The cumulative number
of information units ny read by susceptible individual u y at
time ¢ has a probability
kx

Ko ) = ( )w"“ — @)y
ny

x [1 = Ox(r — (@x)]". “4)

If individual u with degree 7() = (k4, kp) has not adopted
the behavior by time ¢, then the cumulative pieces of informa-
tion individual u has read in both subnetworks A and B will
be less than the adoption thresholds T4 and Tp, respectively.
At time ¢, if individual u is active in subnetwork A, then he or
she remains susceptible with a probability

ka kg
FAK.0) =3 ¢t (ke 0068 (ks 1)
m=0np=0
< [T Tt =7 G sl ©)
Jja=0 jz=0

Similarly, if individual u is active in subnetwork B at time z,
then he or she remains susceptible with a probability

ko kp
Fs(K.0)=3" 3 xf (ka, 0685, ks, 1)
n=0mp=0
ng mpg
< [T [Tt = 7Ga. ). (6)
Jja=0 jp=0

The probability that individual u with a degree 7{) is suscepti-
ble is

- - -
s(K, 1) =(1 = po)[paFa(K 1)+ psFp(K.0)],  (7)

where the factor (1 — pp) is the probability that individual u
is initially susceptible, and py = % Z;v=1 pf is the average
probability that individual u is active in subnetwork X. Note

—
that p4 = 1 — pp. Examining the degree distribution P(K ),
the fraction of susceptible individuals at time 7 is

S0 =Y P(K)s(K.1). ®)
F4

According to the definition of 6y, an endpoint individual
vy of the randomly selected edge of uy can be in a sus-

ceptible, adopted, or recovered state, and thus 6y (¢) can be
rewritten

Ox(1) = E5 () +EL () + ER (1), )

where &5 () [£7 (1) or €7 ()] is the probability that individual
vy is susceptible (adopted or recovered) and has not transmit-
ted the information to u y by time ¢.

If individual uy is initially susceptible, then he or she is
in the cavity state and thus cannot transmit the information to
susceptible neighbors vy in subnetworks X'. When individual
vy with degree k', is susceptible and active in subnetwork X,
he or she can only receive the information from k', — 1 other
neighbors in subnetwork X. At time ¢, if the susceptible indi-
vidual vy is active in subnetwork X, then the probability that
he can read m y pieces of information from this subnetwork is

/

k., —
X X
TmX(k:Y’t): < m

1 k’—m/y—l _ my
B Ox (1) (I —Ox(O]"*. (10)

In contrast, individual v can only read the information at
time t — (wy) in subnetwork X when he or she is active in
subnetwork ) at time ¢. As in Eq. (4), the probability that

individual vy reads ny pieces of information is
!

/ Ky —1 Ko
i Ky 1) = ( x )em— (@)l
nx

X [1 = Ox(r — (@)™ (1)

Individual vy remains susceptible when the cumulative pieces
of information read from neighbors in subnetwork A’ is lower
than adoption threshold Ty in the absence of individual u y.
When v is active in subnetwork X', he or she reads ny
pieces of information in subnetwork ) with a probability
X,%, (k%,, 1) [see Eq. (4)]. Thus the probability that individual
v is susceptible is

Ky—1 K,
—
V(K1) = Z Zrﬂi(k;(,t)x%(ks,,t)
mfl):On'y:O
m’y n’y
< [TTIT0==Gh. i) (2
Jv=0j3,=0

Similarly, when individual v is active in subnetwork ) the
probability that v will read ny and my pieces of information
from subnetworks X and Y is ;* (k). 1) and ¢>,3,fy(k/ 1),
respectively. The probability that individual v is susceptible
is

K-l K
- ’ /
WK ) =) D ok (K (K1)
n'y=0my=0
nhy m)
< [ JT = =Gk i3l (13)
J2=0J3=0

When an initially susceptible individual v is active in subnet-
work X, the probability that he or she remains susceptible is

— v, = v =
Ox(K,t) =pxVy(K,1)+ pyVy(K,1). (14

Denoting Hx (k" |kx) to be the probability of a node with
degree ky connects to a node with degree k', in network
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X. Thus the probability that individual u#y connects to a
susceptible individual in subnetwork X is

X0 = (1 - p0) Y He(Wylkn)Ox(K 1) (15)
7

In an uncorrelated network, Hy(k'y|kx) = ké‘_,P(T())/(kX).
We rewrite Eq. (15) to be
1

&= Y K P(K)ex(K. 1. (16)

When the information transmits through an edge at time ¢ in
subnetwork &, the edge does not fulfill the definition of 6y (¢).
The decreasing of 0 (¢) is thus

dbx (1)
dt
For S,f (t) to grow, (i) the information cannot be transmitted

through the edge and (ii) the adopted individual must recover
at time ¢. The evolution of & ff (t)is

d X
% = y(1 — pxix)Es (0).

Combining Eqs. (17) and (18) and the initial condition
0x(0) = 1 and &5 (0) = O gives us

(1 = pxrx)[l —Ox(1)]

PxAx '
We use Eqgs. (9), (16), (17), and (19) to obtain the value of
Ox(1).

Using the evolution process of the behavior spreading dy-
namics described in Sec. II, we derive the evolution equations
of the fraction of individuals in the adopted and recovered
states,

= —prrxEs (D). (17)

(18)

g ="~

19)

dA()  dS(r)
dt  dt

— v A(t) (20)

and

dR(t)

respectively. Combining Eqgs. (8) and (20)—(21), we obtain the
time evolution of the behavior spreading dynamics in multi-
plex networks. When t — o0, the final behavior adoption size
is denoted R(00).

We next examine the growth pattern of the final behavior
adoption size R(oo) versus the information transmission prob-

ability %= (A4, 2p) and the CCA probability p. We first
investigate the effects of the time delays induced by CCA on
the dynamics of social contagions by comparing them with a
null model without time delays. Details about the null model
are supplied in the Appendix. Figure 3(a) shows that the time
delays—induced CCA affect behavior spreading dynamics,
including the time evolutions of susceptible S(z), adopted
A(t), and recovered R(t) individuals. We find that S(¢) [R(¢)]
decreases (increases) with ¢ and that A(¢) first increases and
then decreases. Note that the time delays induced by CCA
slow behavior adoption. To quantify the slowing caused by
the time delays induced by CCA, we compute the stabilizing
time of the system ., i.€., the average time needed for the

2n

100
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FIG. 3. Dynamics of social contagions on RR-RR multiplex net-
works. (a) The time evolutions of susceptible S(), adopted A(¢), and
recovered R(t) individuals with (solid symbols) and without (empty
symbols) time delays when p = 0.8. The symbols are numerical
simulation results and lines are the theoretical predictions. (b) The
stabilizing time of the system #,,,, with (solid symbols) and without
(empty symbols) time delays versus p. The inset of (b) shows the
retardation time as a function of p for the system with or without time
delays. We set other parameters to be pp = 0.1, y = 1.0, k£ = 10,
)\A :)\B :0.9, and TA = TA =3.

system to reach the final state. When 0 < p < 0.5, fx first
increases with p and then decreases. When the p value is
small, most individuals are active in subnetwork 5. When
susceptible individuals receive information that exceeds his or
her adoption threshold, they quickly adopt the behavior. When
the p value is increased, some individuals become active in
subnetwork A but adopt the behavior only after their received
information exceeds their adoption threshold. Thus 7, first
increases. When the p value is large, fewer individuals adopt
the behavior (see Fig. 4) and t,,x thus decreases. The inset
of Fig. 3(b) shows the retardation time Aty,, for social
contagion models with and without time delays. Note that
Atmax first increases with p and then decreases. We find the
same phenomena for 0.5 < p < 1.0 because subnetworks A
and B are both RR networks.

Figure 3(a) shows that the time delays induced by CCA
do not affect the final behavior adoption size R(oo). This is
because when a susceptible individual fulfills the behavior
adoption conditions the time delays affect only the behavior
adoption time. This also indicates that the critical points of the
system remain the same when there are no time delays in his
or her behavior adoption, i.e., a susceptible individual adopts
the new behavior as soon as the received pieces of information
equal or exceed the adoption threshold, independent of the
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FIG. 4. Behavior spreading on RR-RR networks. (a) Final be-
havior adoption size R(c0), (b) the fraction of individuals in the
subcritical state g(00), and (c) NOI versus information transmission
probability A for CCA probability p = 0.0, 0.2, and 0.4. (d) R(00),
(e) g(00), and (f) NOI versus p for . = 0.7, 0.8, and 0.9. The inset of
(d) shows R(o0) versus p for A = 0.6. The empty (full) symbols are
the simulated values of R(oco) at network size N = 10* (N = 10°).
The lines in (a), (b), (d), and (e) are the theoretical values and are
numerical simulation results in (c) and (f). Other parameters are
po=0.1,y = 1.0, (k) =10, and T4 = T4 = 3, respectively.

subnetwork in which he or she is currently active. Thus when
examining the final state of the behavior we disregard time
delays, i.e., Egs. (4) and (11) are the same as Egs. (2) and
(10), respectively. We perform numerical simulations and the-
oretical analyses of the social contagions on ER-SF multiplex
networks and find that the time delays induced by CCA slow
the spreading dynamics but do not affect the final adoption
size.

In the final state, i.e., when ¢ — o0, there are no nodes in
the adopted state, and no information is transmitted through
edges. Thus we have dOy(t)/dt =0 and Ox(t) = Ox(t —
(wx)) = 0%. Combining Egs. (9), (16)—(17), and (19) we
obtain

Y= kx P(K)Ox(K , 00)
6% = (1— po)
(k)
n y(1 — pxix)[1 —0%]
Pxix
— fe(0%,0%). (22)

When py — 0, then 6% = 1 is a trivial solution of Eq. (22),
but this vanishingly small fraction of seeds cannot trigger

global behavior adoption because Ty > 1 [34]. To stimulate
global behavior adoption, we must have a finite fraction of
seed individuals. Here 63 =1 is no longer the solution of
Eq. (22), which now has either one or three fixed points
(including multiplicity). If Eq. (22) has only one solution at
all values of Ay, then 6% decreases continuously with Ay, and
this leads to a continuous growth pattern in the final behavior
adoption R(oo). If the number of the solutions of Eq. (22)
varies with Ay, then the situation is different. For a given
Ax, if there is only one fixed point of Eq. (22), then it is the
physically meaningful solution. If there are three fixed points,
which are stable, unstable, and saddle points, then only the
maximum solution is physically meaningful in our irreversible
behavior spreading dynamics when we randomly select a
relatively small fraction of seeds, since the individuals in the
adopted state persistently transmit the information to their
neighbors, and 63 decreases from unity. Thus a saddle-node
bifurcation occurs [49,50]. Through a bifurcation analysis of
Eq. (22), we find that the system undergoes a cusp catastro-
phe: Varying Ay the physically meaningful stable solution
of 6% suddenly produces a different outcome. Therefore, the
growth patten of R(oo) will be discontinuous because a mean-
ingful solution decreases abruptly at such critical conditions

as the critical information transmission probability 76 and
the critical CCA probability p..
To determine p., we first rewrite Eq. (22) to be

Fu(03.05) = 0% — fa(05.65) =0 (23)
and
Fs(07. 65) = 65 — f5(6%. 5) = 0. (24)

At the discontinuous critical point, the curves of f4(0%, 63)
and f5(0}, 0) are tangent to each other at the discontinuous
critical point [51,52]. Thus we find that the critical point for

the discontinuous growth pattern is given by dejéfﬂ) dejéf“)
B A

1. Combining Egs. (23) and (24), we further obtain the discon-
—

tinuous critical points of A . and p. by solving both Eq. (22)

and

f (0%, 0p) 3f5(0%, O5) _
36} 967,

1. 25)

IV. NUMERICAL SIMULATIONS

Here we perform extensive simulations on multiplex net-
works, including RR-RR networks (i.e., in which each sub-
network is a RR network) and ER-SF networks (i.e., in which
subnetworks A and B are ER [53] and SF [33] networks,
respectively). In each case we set the network size, average
degree, and recovery probability to be N = 10*, py = 0.1,
(k4q) = (kg) = 10, and y = 1.0, respectively, unless stated
otherwise.

A. RR-RR multiplex networks

We first study social contagions on RR-RR multiplex
networks in which each node in each subnetwork has a
degree k = 10. Figure 4(a) shows R(c0) as a function of A
under different CCA probabilities p. We find that R(co) first
grows continuously for small values of A and then increases
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discontinuously at A, i.e., exhibiting a hybrid growth, regard-
less of p. We can understand the discontinuous increasing
of R(co) by studying the fraction of individuals g(oco) in
the subcritical state. When an individual is in the subcritical
state he has received the information but have not adopted
the behavior, and the number of information units from dis-
tinct neighbors is one less than the adoption threshold in
subnetwork A or B [34]. Slightly increasing the value of
A can increase the number of subcritical state individuals
with information units equal to or greater than their threshold
[see Fig. 4(b)] and lead to a discontinuous jump in R(00).
In addition, R(co) decreases with p, since an increasing
number of susceptible individuals are unable to fulfill the
behavior adoption condition. Because near the critical point
the system exhibits a critical slowing, we locate the numerical
critical point A! by examining the number of iterations (NOI),
which is widely used in the bootstrap percolation [39-41] and
cascading failures [54,55], required to reach the final state,
and we take into account only iterations in which at least one
individual adopts the behavior. Figure 4(c) shows that at the
critical point the NOI exhibit a peak. Note that our theoretical
method accurately predicts R(co) and the growth pattern of
R(00). The deviations around the critical points are caused by
finite-size network effects [see Fig. 4(a)].

Figures 4(d)—4(f) show the effect of p on social contagions.
Unlike when T4 = Tg = 1 in Fig. 7 of Appendix B, Fig. 4(d)
shows that the final behavior adoption size R(co) versus p
is nonmonotonic. Specifically, for relatively small values of
A = 0.6 few susceptible individuals adopt the behavior, and
R(00) first decreases continuously with p and then increases
continuously [see the inset in Fig. 4(d)]. For large values of
A =0.7,0.8,0.9, R(co) first decreases discontinuously with
p and then increases discontinuously [see Fig. 4(d)]. We can
similarly understand the growth pattern of R(co) by studying
g(00). For a small value of p, e.g., p = 0.1 when L = 0.9,
most individuals in subnetwork 4 are active, many individ-
uals adopt the behavior, and few individuals remain in the
subcritical state [see Fig. 4(e)]. With an increase of p, fewer
individuals are active in subnetwork B, many individuals in
subnetwork A are in the subcritical state [see Fig. 4(e)], and
there is a sharp decrease in R(0c0). By further increasing p,
many individuals “jump” between subnetworks .4 and 53, and
fewer individuals receive one fewer information units than
the adoption threshold in the two subnetworks. Thus g(c0)
decreases [see Fig. 4(e)]. Similarly, g(oo) first increases and
then decreases discontinuously when the value of p is large.
Note that NOI versus p exhibits two peaks at p! = 1 — p?
because the two subnetworks are RR networks [see Fig. 4(f)].

B. ER-SF multiplex networks

When studying social contagions on ER-SF multiplex net-
works, we assume that there are no degree-degree correlations
in the intralayers and interlayers. We generate the SF networks
using the same method as that used in uncorrelated config-
uration networks that have a power-low degree distribution

P(kp) = Zk;k;,gkg '8 In network B without degree-degree
B

correlations, the maximum degree follows a structural cutoff
[56], i.e., kmax ~ ~/N. The SF network is built using the
uncorrelated configuration method in Ref. [33]. Figure 5

0.0 02 0.4 0.6 0.8 1.0

FIG. 5. Dynamics of social contagions on uncorrelated ER-SF
multiplex networks. (a) The final behavior adoption size R(c0) ver-
sus information transmission probability A under different communi-
cation channels alternation probability p. (b) R(co) as a function of
p for different A. Lines are the theoretical predictions from Egs. (7)
and (17)—(19). The error bars indicate the standard deviations. Other
parameters are set to be (k4) = 10, (kz) = 10, vg = 3.0, py = 0.1,
and TA = TA =3.

shows the social contagions on ER-SF networks. Figure 5(a)
shows that CCA changes the growth pattern of R(co) versus
A. When p = 0.0 (1.0), the number of individuals only active
in subnetwork B (A) and R(o0) grows continuously (discon-
tinuously) versus A (see Ref. [34]). Increasing p increases the
number of individuals active in the homogeneous subnetwork
A, and there are more individuals in the subcritical state who
are likely to simultaneously adopt the behavior. Thus we see
a hybrid growth in R(00), i.e., R(co) first grows continuously
for small values of X, and then grows discontinuously at A..
Figure 5(b) shows that R(co) versus p exhibits differing
patterns under different values of A. For a small value A = 0.5,
R(00) first decreases continuously with p. For a relatively
large value, e.g., . = 0.6, R(0co) first decreases continuously
with p and then increases discontinuously. Note that when
A = 0.7, R(c0) first decreases continuously with p and then
increases to a peak at some p, then decreases discontinu-
ously and, finally, increases discontinuously. For a very large
value A = 0.9, R(o0) first decreases continuously and then
increases continuously. For intermediate values of 0 < p < 1,
the CCA emerges and constrains user ability to receive enough
information to exceed the adoption threshold of a subnetwork,
and thus there is a nonmonotonous varying of R(co). We can
understand the different growth patterns by studying high-
degree nodes (hubs), which (i) are more likely to adopt the
behavior than those in homogeneous network networks for
small values of A and (ii) lead to individuals adopting the

062320-7



WANG, TANG, STANLEY, AND BRAUNSTEIN

PHYSICAL REVIEW E 98, 062320 (2018)

1.0

0.8

0.6

S8
0.4

02 0.7
0.0 0.6
| 8.0 1.0
’ 0.5
0.8
0.4F
0.6
ST 0.3
0.4
0.2
0.2
] & 0.1
0.0 ;
0.0 0.2 0.4 A 0.6 0.8 1.0

FIG. 6. Final behavior adoption size R(oo) versus information
transmission probability A and communication channels alternation
probability p on uncorrelated ER-SF networks. Color-coded values
of R(co) from numerical simulations (a) and theoretical solutions
(b) in the parameter plane (X, p). The white horizontal line p. sepa-
rates the plane into regions I and II. In region I (II), R(c0) exhibits
a hybrid (continuous) growth with A. The white curves denote the
theoretical discontinuous critical points A'. We set other parameters
as (k4) = 10, (kg) = 10, vp =3.0, 00 =0.1,and T4 = T4 = 3.

behavior gradually with fewer individuals in the subcritical
state simultaneously adopting the behavior [34]. The fraction
of hubs in the live subnetwork varies with p. We define a live
subnetwork to be a user’s active subnetwork at different time
steps. For small A = 0.5, individuals active in heterogeneous
(homogeneous) networks can easily (with difficulty) adopt
the behavior, adding the second role of hubs, and R(0c0)
thus decreases with p. For the larger A = 0.6, R(o0) first
decreases continuously because some individuals are active
in heterogeneous networks when p is relatively small (e.g.,
p < 0.5), and R(00) then increases discontinuously because
many individuals are active in homogeneous networks and in
the subcritical state for large p. The strange phenomena when
A = 0.7 is also induced by the live network. When p = 0.4,
many individuals are active in homogeneous subnetwork A,
and R(oco) thus increases with p. A further increase of p
is a slight perturbation that moves many individuals into the
subcritical state, and R(oo) decreases discontinuously. When
A = 0.8, most individuals adopt the behavior, few individuals
are in the subcritical state, and there is only a nonmonotonous
varying of R(oco) versus p. These phenomena do not occur
when T4 = Tp =1, as shown in Fig. 7. We can predict
these phenomena using our theoretical method. Note that the
deviations near the discontinuous points can be eliminated by
enlarging the network size N.

Figure 6 shows R(0o) versus the A—p plane. Using the
growth pattern of R(oo) versus A, we divide the plane into
regions I and II according to a critical CCA probability

O RR-RR
0 ER-SF

R(=)

0.6 1

05 Il Il Il Il
0 0.2 0.4 0.6 0.8 1

p

FIG. 7. Final behavior adoption size R(0c0) versus communica-
tion channels alternation probability p on multiplex networks when
T4 =Tz = 1. The symbols are the numerical simulation results,
and lines are the theoretical predictions. We set other parameters as
(kq) = 10, po = 0.1, (kg) = 10, and vg = 3.0 for SF networks.

pc. In region I, R(oc0) first grows continuously with A then
increases discontinuously at A., and in region II, R(c0) grows
continuously with A. There is thus a crossover phenomenon
in the growth pattern: When p > p,, the growth pattern of
R(00) is discontinuous; otherwise, it is continuous. We can
explain the growth pattern of R(co) using bifurcation theory.
The discontinuous critical points A! exhibit a nonmonotonic
change with p because of the CCA. When p > p., indi-
viduals are more likely to be active in subnetwork 4, and
thus there are some hubs and many low-degree individuals in
the live subnetwork. These hubs promote behavior adoption.
Increasing p decreases the number of hubs and low-degree
individuals in the live network, and p, thus first increases and
then decreases. The results from our theoretical method agree
with those from the numerical simulations.

V. CONCLUSIONS

We have investigated how CCA affects the dynamics of
social contagions. We first propose a non-Markovian behav-
ior spreading model for multiplex networks in which each
individual can only transmit and obtain the information from
neighbors in their own subnetwork. To include CCA, we
assume that an individual can be active in only one com-
munication layer and at any given time can only transmit
behavioral information to neighbors and read behavioral in-
formation from neighbors within the same subnetwork. The
CCA slows a user’s ability to receive information from both
subnetworks. Thus time delays in obtaining the information
from both subnetworks are introduced. We then perform
numerical simulations of artificial multiplex networks and
find that the time delays caused by CCA slow the behavior
adoption process but do not affect the final behavior adoption
size. In addition, CCA suppresses the final behavior adoption
size R(oo) but does not change the growth pattern of R(c0)
on RR-RR networks. We find in ER-SF networks that the
growth pattern of R(co) can be changed from hybrid to
continuous by decreasing the layer-switching probability. To
quantify the non-Markovian spreading dynamics, we develop
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an edge-based compartmental method that produces results
that agree with the numerical simulation results.

We have examined how CCA—an important interlayer
switching mechanism—affects social contagions. We first
construct the connections between human dynamics [57-59]
and social contagions on multiplex networks. Individuals
accomplishing different tasks using different communication
channels do so in patterns that exhibits memory and burst
characteristics. Our results here are the first to investigate
the effects of human dynamics on social contagions in mul-
tiplex networks, and they expand our understanding of phase
transition phenomena. The hybrid growth in the final adop-
tion size is similar to the hybrid phase transition observed
in other dynamics [60-62], and the critical phenomena of
our proposed social contagions near the critical point need
further investigation. Our theoretical method allows us to
understand how CCA shapes spreading dynamics and to
analyze different dynamic processes on multiplex networks.
Our work may stimulate further research on social contagions
that takes into account both realistic spreading mechanisms
and network topologies and provides theoretical insights into
how to control the spread of epidemics. In addition, social
contagions with a heterogeneous layer-switching probability
is an intriguing subject for examination [32]. For example,
a layer-switching probability follows a power-law distribu-
tion, and the layer-switching probability of each individual is
dependent on their inherent characteristics.
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APPENDIX A: NULL MODEL FOR SOCIAL
CONTAGIONS WITH CCA

We use the layer-switching parameter p to describe CCA
in the null model. The only difference between this null model
and the model described in Sec. 2 is that in this null model we
assume a susceptible individual becomes adopted when the
accumulated units of received information is equal to or larger
than the adoption threshold in any subnetwork, regardless
of whether the individual is active in the subnetwork. This
difference allows the susceptible individual to obtain the
behavioral information without time delays. The null model
includes CCA but not time delays.

APPENDIXB: Ty=Tz =1

Figure 7 shows the contagions on multiplex networks with
T, = T = 1, i.e., the contagions on both subnetworks return
to the simple contagion. We find that R(co) does not change
with p on RR-RR multiplex networks and increases with p on
ER-SF networks.
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